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ABSTRACT

Online deep reinforcement learning (DRL) suffers from sample inefficiency. This
inefficiency challenges the training of effective policy models for complex tasks
and demands substantial time and computing resources. As trained policy models
can be transferred to other applications, protecting their intellectual property (IP)
has become a pressing issue. To address this, we need to prevent unauthorized
transfers for IP protection while maintaining transferability for future scalabil-
ity. We propose the first Transfer-Controllable Reinforcement Learning (TCRL)
framework. It has two key components: the Environment Randomization module
generates unauthorized target-domain environments randomly, and the Transfer-
Controllable module trains a policy model using source-domain and these unau-
thorized target-domain environments. This model resists transfer in unauthorized
settings yet remains transferable in authorized ones. We validated the framework’s
effectiveness across various DRL environments and algorithms. The TCRL pol-
icy model is hard to transfer to similar unauthorized target-domain environments,
but achieves source-domain-like performance in authorized ones. In the MuJoCo
environment, our trained policy model attains 98.78% of the source-domain per-
formance in authorized target-domain environments, and only 50.38% in unau-
thorized ones.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) techniques have thrived in various AI fields, like video games
Nie et al. (2024), board games Schrittwieser et al. (2020), and robot control Han et al. (2024);
Haarnoja et al. (2024). However, significant expertise is needed to ensure their proper operation
Miki et al. (2022). For example, by creating 8 different reward functions, including torque and joint
speed costs, and adopting curriculum learning, researchers enabled legged robots to learn animal-
like dynamic maneuvers Hwangbo et al. (2019). Also, training the AlphaGo policy model requires
tens of millions of dollars and thousands of GPUs Silver et al. (2016). Given the high investment in
time, resources, and expertise, protecting the intellectual property (IP) of policy models is crucial.

Figure 1: Training a policy model from scratch is time-consuming and costly. However, this model
can be seamlessly transferred to similar scenarios, substantially reducing training expenses. To safe-
guard against theft by malicious actors, any transfer to unauthorized environments must be strictly
prohibited. Simultaneously, to guarantee the model’s scalability in future applications, its transfer-
ability within authorized environments should be maintained.

DRL policy models risk theft and unauthorized transfer. Their relatively small model size (Fig. 1) fa-
cilitates easy theft and quick transfer to similar domains. During policy training Silver et al. (2016),
these models learn from observations and generate actions, storing valuable knowledge, making
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them more vulnerable to theft than large datasets. Training a policy model from scratch is extremely
time-consuming and costly, while using a pre-trained model can boost efficiency. Since policy mod-
els hold environment-related knowledge, it can be transferred to target domains via methods like
learning from demonstrations, representation transfer, and inter-task mapping Yi et al. (2023). This
transferability, however, also makes them prone to abuse.

Competitors may misuse obtained policy models by transferring them to similar scenarios, violating
IP rights. For example, if a trained gameplay robot’s policy model leaks, it could be used for illegal
activities like poaching through transfer learning, as depicted in Fig. 1. However, completely ban-
ning model transfer across different environments would harm the open-source community and limit
legitimate applications. With the growing use of DRL techniques, protecting policy model IP has be-
come an urgent issue. To address this, we propose the first Transfer-Controllable Reinforcement
Learning (TCRL) framework. This framework aims to balance model IP protection and usability
in authorized environments. It has two main modules: the Environment Randomization module,
which randomly generates unauthorized target-domain environments, and the Transfer-Controllable
Training module. The latter optimizes data from the source and authorized domains and performs
reverse optimization on unauthorized target-environment data. We also design a new policy-model
objective to stabilize the training process. In our experiment, the transfer difficulty of all environ-
ments is set equally to ensure consistent experimental conditions. Our main contributions are as
follows:

• We propose a new transfer-controllable task in DRL and validate its existence.

• We propose a preliminary TCRL framework to address this transfer-controllable task.

• Experimental results show policy models from our framework are controllably transferable:
readily transferring to authorized target domains, yet struggling with unauthorized ones.

2 RELATED WORKS

Policy Transfer in DRL. Our work is the opposite of the goal of policy transfer. Policy transfer
uses the knowledge learned on the source domain to help the policy training on the target domain
Zhu et al. (2023). In policy distillation, the algorithms learn a student policy πθS by minimizing
the divergence of action distributions between the teacher policy πθT and the student policy πθS
according to trajectories τ . These studies can be further divided into two categories: teacher distil-
lation Allen et al. (2021); Xu et al. (2019); Zhu et al. (2022) and student distillation D’Eramo et al.
(2024); Schmitt et al. (2018). The difference between them is that τ is sampled from teacher policy:
τ ∼ πθT in teacher distillation and student policy: τ ∼ πθS in student distillation. In policy reuse,
the algorithms reuse a set of teacher policies by the means of π-reuse exploration strategy, which
defines the trade-off among exploitation of the student policy, exploitation of the teacher policies,
and exploration of random actions using the evaluation of the teacher policies’ performance on the
target domain. The typical research include Wu et al. (2024); Daoudi et al. (2024); Zhang et al.
(2024); Gimelfarb et al. (2021); Tao et al. (2021); Yi et al. (2023); Tian et al. (2023).

IP Protection in Deep Learning. The IP protection in DRL is still in its infancy, whereas research
on IP protection in Supervised Learning (SL) has made significant progress. In SL, the research
can be divided into three main categories: digital watermarking, backdoor and fingerprint Xue et al.
(2021); Fkirin et al. (2022). Digital watermarking involves embedding robust digital watermarks into
SL models to protect the model IP rights Uchida et al. (2017). The side effect of digital watermarking
that reduces the model prediction abilities is optimized from two aspects by backdoor Adi et al.
(2018) and fingerprint Zhao et al. (2020). In DRL, some attack techniques are proposed to change
the model output Behzadan & Munir (2017); Chen et al. (2021b), which shows that it is urgent
to study countermeasures of IP infringement on DRL models Ilahi et al. (2021). Similar to the
SL methods, some research in DRL also embeds watermarks into the target policy for ownership
verification Behzadan & Hsu (2019); Chen et al. (2021a).

Different from the watermarking-based methods above, transfer-controllable learning restricts the
generalization ability of the model on target domains while preserving its performance on source
domains. The first approach of non-transfer learning was proposed in SL Wang et al. (2022). How-
ever, in DRL, the transfer-controllable learning problem has yet to be studied, and there are still
many issues to be addressed in order to protect model IP. Compared to the large model size and
stable training dataset in SL, the DRL model size is relatively small, and the dataset during training
is unstable.
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3 MOTIVATION

Unlike SL, policy model initialization in DRL is crucial Yi et al. (2023). Online DRL faces two
major challenges: the exploration-exploitation dilemma and sparse rewards. The former requires
balancing between using existing policies for rewards and exploring with stochastic policies; GoEx-
plore addresses this by storing environmental states in an archive buffer Ecoffet et al. (2021). The
latter occurs when agents need extended action sequences for non-zero rewards, which can be mit-
igated through immediate intrinsic rewards, as demonstrated with the 11 distinct rewards designed
for a bipedal robot Duan et al. (2021). Addressing these challenges demands substantial resources
in terms of funding, hardware, and training time.

However, if we have a better initial policy model before training, these difficulties can be alleviated
Tirinzoni et al. (2019); Van Baar et al. (2019); Dennis et al. (2020); Abdolshah et al. (2021). A good
initial model can perform correct actions, reducing the need for extensive exploration in the target
environment to obtain sparse rewards Barreto et al. (2017); Wulfmeier et al. (2017); Riedmiller et al.
(2018); Li et al. (2019); Guo et al. (2022).

Training a transfer-controllable policy model can resist transfer attacks and protect model IP rights.
This raises two key questions: (1) Is training such a model necessary? (2) What are the specific
challenges in training transfer-controllable models in DRL compared to SL? Given that a well-
initialized policy model can reduce DRL training difficulty through transfer learning, answering
these questions is significant.

A

B C

Unauthorized
Target

Authorized
Target Dissimilar

Target

Source

D

Similar

(a) (b)

Figure 2: Preliminary Experiment. (a) We assume a green area exists where the source-domain
policy model A can transfer to models B and C. Due to the policy overfitting in DRL, this green area
is usually thought non-existent, meaning model A hardly transfers to model D. (b) The experimental
results verify the existence of the green area. The Source, Target(Authorized), Target(Unauthorized),
and Target(Dissimilar) curves correspond to policy models A, B, C, and D respectively.

Necessity of Training Transfer-controllable Model. To tackle Question (1), we first consider
whether the policy model space contains similar regions. Such similarity is key as it enables a
well-trained source-domain policy to transfer smoothly to certain target domains. In DRL, policies
typically overfit to the source-domain environment, hindering their transfer to target domains. As
shown in the dissimilar target domain in Fig. 2(a), transferring Policy A to Policy D is difficult. We
assume there are similar target domains where the source-trained Policy A can quickly transfer to
Policies B and C, as marked by the green area in Fig. 2(a).

To test our hypothesis, an experiment is conducted on the MuJoCo Hopper robot (Fig. 4(b)). The
source domain featured Hopper parameters (torso, thigh, foot) of (0.05, 0.05, 0.06). Target domains,
authorized, unauthorized, and dissimilar, have parameters (0.10, 0.05, 0.06), (0.05, 0.10, 0.06),
and (0.2, 0.05, 0.06), respectively. Policy A, trained in the source domain, is transferred to these
target domains. Results (Fig. 2(b)) show Policy A achieved 2000 reward in the source domain. In
target domains with altered torso (Policy B) or thigh (Policy C) sizes, performance quickly reaches
2000. However, in the dissimilar target domain (Policy D) with a large torso change, Policy A’s
overfitting to the source domain hinders transfer. Results show training a transfer-controllable policy
is essential. The source-domain trained policy has some transferability. We must prevent its transfer
to unauthorized domains, while ensuring transfer to authorized ones for future scalability.

Different Research Points on SL and DRL. For Question (2), the research interests of transfer-
controllable learning technology in DRL are distinct from those in SL. In SL, the main problem
is how to overfit the source domain model to limit its generalization ability on the target do-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

main Sadashivaiah et al.. The parameter space of the SL model is large, thus providing many
directions for its optimization, making it easier to control the direction of overfitting while still
ensuring the model’s generalization on the target domain is limited. Furthermore, the datasets in SL
are usually huge and stable, which makes the training process more stable and further reduces the
difficulty of controlling the direction of overfitting. However, policy overfitting in DRL can limit
the transfer of source domain policy models to certain target domain environments. However, in
other target domain environments, the small model size of DRL models and the changing dataset
distribution during its training process, bring more diverse problems in the DRL field. Therefore, it
is necessary to conduct research on training transfer-controllable policy models.

4 METHODOLOGY

4.1 PRELIMINARY

In DRL, the agent learn from interaction with the environment, and the learning process is mod-
eled with the Markov Decision Process (MDP) defined by a tuple (S,A, P, r, γ). At each step t,
the agent samples an action at ∈ A from a policy distribution πθ(at|st) where st ∈ S is the ob-
served state from the environment and θ is the policy model parameter. After passing the action at
into the environment, the environment transmits into the next state st+1 with the transition distribu-
tion p(st+1|st, at) ∈ P , and the agent receives a reward rt(st, at). Appendix A provides detailed
explanations of each variable and foundational background on DRL.

Transferable-Controllable TrainingEnvironment Randomization

Source Domain

Unauthorized Target Domain

Value Net

Actor

Critic

MMD 
Loss

𝑠𝑆

Actor 
Loss

KL 
Loss

𝑠𝑇

z𝑆 𝑧𝑇

𝑧𝑆 𝑧𝑇

𝑎𝑆

𝑎𝑇

source data flow unauthorized target data flow

Randomize

Feature 
Net

Feature 
Net

Policy Net

MMD 
Loss

Critic 
Loss

Authorized Target Domain

Dissimilar Environment

Policy Net

Figure 3: The main TCRL framework consists of Environment Randomization and Transfer-
Controllable Training. The Environment Randomization module is used to randomly generate the
unauthorized target domain environments and train some policy nets on authorized target domain en-
vironments, while the TCRL Training module trains the transfer-controllable policy model through
a specific transfer-controllable loss function. The solid line represents the data interaction between
the TCRL model and the environments, where the interaction targets of the red and green lines are
the source domain and the unauthorized target domain environments, respectively.

4.2 TCRL FRAMEWORK

This paper introduces the TCRL framework (Fig. 3). The Environment Randomization module
generates unauthorized target domains, uses user-provided authorized domains to train policies, and
provides data for transfer-controllable training. The Transfer-Controllable Training module uses
this output to train the transfer-controllable policy. Interactive source and unauthorized target data
(Fig. 3) from source and generated target domains enable reverse transfer training, which limits
transfer to unauthorized environments Also, the authorized-domain policy uses KL divergence for
scalability.

4.2.1 ENVIRONMENT RANDOMIZATION MODULE

As depicted in the left part of Fig. 3, the Environment Randomization module generates unautho-
rized target-domain environments and concurrently creates several authorized policy models based
on the user-provided authorized target domain. Initially, it randomly selects source-domain policy
models to fine-tune the authorized policy models and collects offline datasets during the fine-tuning
process. Subsequently, it randomly generates unauthorized target-domain environments according
to specified rules, such as the two robot environments within the red box. Next, through model fine-
tuning, their transferability is evaluated. Dissimilar target environments, marked with a red cross

4
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Algorithm 1 Environment Randomization Module
Input: environment parameters ρ and Actor model set Pmodel = {πθ} in source domain, parameter adjustment

threshold δ, user-provided authorized target-domain environments EAuth

Output: environment parameter set EUnauth Target = {ρi}Ni=0, authorized target-domain Actor models πAuth

1: Randomly select πθ from Pmodel ▷ Transfer authorized policy
2: Fine-tune πθ on EAuth to get πAuth

3: Initialize i← 0, EUnauth Target ← {}
4: while i ≤ N do ▷ Parameter randomization
5: Randomize parameters ρi in the range [ρ− δ, ρ+ δ]
6: Construct Ei through parameters ρi
7: Randomly select πθ from Pmodel ▷ Model fine-tuning
8: Fine-tune πθ on Ei to get reward rtarget
9: if Converge Time t ≤ Tthreshold then

10: EUnauth Target ← EUnauth Target

⋃
{ρi}, i← i+ 1

11: Calculate the scaling factor fr = rtarget/rsource
12: end if ▷ Screening unauthorized target environments
13: end while

in Fig. 3, are excluded because they deviate significantly from the source-domain environment.
The objective of this paper is to obtain a source-domain policy model that is difficult to transfer in
previously unauthorized target-domain environments. Therefore, this module randomly generates
target-domain environments and selects those that are easily transferable. We derived Theorem 1 to
elucidate the existence of such unauthorized environments in the target domain.

Theorem 1: Let τS and τT represent all optimal trajectories in the source and target domains,
respectively. For a given δ, a state-action pair (st, at, st+1) ∈ τT is considered source-similar if
there exists a state-action pair (s′t, a

′
t, s

′
t+1) ∈ τS such that |st − s′t| < δ and |st+1 − s′t+1| < δ.

Conversely, a state-action pair is considered target-specific if it is not source-similar. Then, an
increase in the number of target-specific state-action pairs makes it more difficult to transfer to the
target domain environment, and the H∆H distance between the source and target domains satisfies

dH∆H(D̃S , D̃T ) ≤ 2 sup
η∈Hd

∣∣PrD̃S
[z : η(z) = 1]− PrD̃T

[z : η(z) = 1]
∣∣ (1)

where z denotes the feature of the state s, D̃S and D̃T represents the dataset on the source and target
domain, respectively. The detailed proof for Theorem 1 is included in the Appendix B.

In detail, the algorithm process can be divided into four main phases: fine-tune authorized policy,
parameter randomization, unauthorized model fine-tuning and screening environment, as shown in
Algorithm 1. More details in the Appendix D.

4.2.2 TRANSFER-CONTROLLABLE TRAINING MODULE

The Transfer-Controllable Training module, illustrated in the right part of Fig. 3, is designed to train
a transfer-controllable policy model in the source domain. This module interacts with the Environ-
ment Randomization module, as depicted in the middle of Fig. 3. During the model training process,
the Actor model receives the source domain states sS and the target domain states sT from the en-
vironments in the Environment Randomization module at each step, and output the corresponding
actions aS and aT . Subsequently, the specific policy model objective is defined as

J
θk,DSource,DUnauth Target,DAuth Target

TCRL (θ) = Jθk,DSource(θ)

− η · LMMD · Jθk,DUnauth Target(θ) + λ · (D̂DAuth Target

KL (πθ(·|st)||πAuth(·|st))) (2)

where Jθk,D(θ) is defined in Eq. (6) and Eq. (7), θk denotes the Actor model parameters after kth
training, DSource and DUnauth Target are data buffers, η represents the learning rate of the reverse
training, λ represents the weighting factors for authorized scalability, and D̂KL is the Kullback-
Leibler divergence function. Meanwhile, the Feature Net in the Actor model outputs the intermediate
features zs and zt, and the maximum mean discrepancy (MMD) loss is computed as

LMMD = min

α, β ·

∥∥∥∥∥
n1∑
i=1

Φ(zs,i)−
n2∑
i=1

Φ(zt,j)

∥∥∥∥∥
2

H

 (3)
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Algorithm 2 Transfer-Controllable Training Module

Input: environment parameter set EUnauth Target = {ρi}Ni=0 in target domain, maximum data buffer size |D|
Output: transfer-controllable Actor model πθ

1: Initialize k ← 0, DSource ← {}, DUnauth Target ← {} ▷ Algorithm prparation
2: Randomize the parameters of Actor πθk and Critic vϕk

3: Construct ESource and {Ek}Lk=1 through EUnauth Target in each domain
4: while k ≤ N do ▷ Data collection
5: while |DSource|+ |DUnauth Target| ≤ |D| do
6: Collect τS by running πθk in source domain
7: Collect τT by running πθk in authorized target domain
8: DSource ← DSource

⋃
{τS}

9: DUnauth Target ← DUnauth Target

⋃
{τT }

10: end while ▷ Auxiliary variable calculation
11: Compute ÂSource

t and ÂUnauth Target
t with Eq. (5)

12: Compute R̂t on DSource and DUnauth Target with R̂t = Ât + vϕk (st)
13: repeat ▷ Model parameter update
14: Randomly choose (st, at, zt) from datasets D
15: Recompute πθ(at|st) and vϕ(st)
16: Compute the MMD loss LMMD with Eq. (3)
17: Update πθk by maximizing J

θk
TCRL(θ) through θk+1 ← θk +∇θJ

θk
TCRL(θ)

18: Update vϕk on LMSE(ϕ) through ϕk+1 ← ϕk +∇ϕLMSE(ϕ)
19: until Dsource is empty
20: k ← k + 1, DSource ← {}, DUnauth Target ← {}
21: end while

where Φ(·) denotes the Gaussian kernel function, H indicates the Hilbert space, and α, β are the
tunable hyperparameters.

The two equations above are essential for achieving anti-transfer training in the unauthorized target-
domain environments while maintaining transferability in the authorized target-domain environ-
ments. In Eq. (2), the first term represents the model training in the source domain environment,
while the second term indicates the reverse model training in the generated unauthorized target do-
main environments. There may be some similar samples on the source domain dataset DSource

and the target domain dataset DUnauth Target. This causes the gradients from the source domain
Jθk,DSource(θ) and the target domain −Jθk,DAuth Target(θ) to be opposite, negatively impacting the
model training on the source domain environment. To address this, factors η and LMMD are intro-
duced to adjust the strength of reverse training on the target domain environments, thus decreasing
the negative impact. Additionally, the term −LMMD could increase the distribution distance be-
tween the source domain feature zs and the target domain feature zt, making it easier to optimize in
different directions on DSource and DUnauth Target, thus reducing the difficulty of reverse training
optimization. In addition, the third term D̂

DAuth Target

KL is used to ensure the transferability of the
policy model in the authorized target-domain environment. Here, DAuth Target is the fixed dataset
obtained in the previous step, which is used to fine-tune the transfer-controllable policy model to the
policy model in the authorized target domain. Since DAuth Target is a fixed and small dataset, it has
little impact on the overall training of the first two terms. From the domain adaptation theory, we
derived Theorem 2 to illustrate the role of the MMD loss as follows

Theorem 2: Assume p(s, a) is the joint distribution of state s and action a. Given δ ∈ [0, 1], let a
partition Ω ⊆ Rn on the H space satisfies Pp(s,a)(s ∈ Ω) = δ, then
(1) there exists a partition ΩDS

and ΩDT
such that

dH∆H(DS , DT ) ≥ 2
∣∣Es∼DS

[A(s) ̸= A′(s)]− Es∼DT
[A(s) ̸= A′(s)]

∣∣ (4)

(2) maximizing the MMD loss is equivalent to increasing the distance dH∆H. The detailed proof for
Theorem 2 is included in the Appendix B.

Concretely, the data processing flow includes four main phases: preparation, data collection, auxil-
iary variable calculation, and model parameter update, as shown in Algorithm 2. More details in the
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Appendix D. The discounted reward R̂t is calculated as

ÂD
t =

∑
D,l

(γλ)l(rt + γvϕk
(st+l+1) + β · LMMD · (− log(π(at|st)) · 1a + ϵ) − vϕk

(st+l)) (5)

where D denotes the data buffer, vϕk
denotes the Critic model, γ and λ are adjustment factors.

5 EXPERIMENTAL RESULT

5.1 EXPERIMENT SETUP

To verify the training effect of our framework and the performance of TCRL model obtained through
training, we conducted experiments on different DRL algorithms and in different test environments.

DRL Algorithms, namely DQN Mnih et al. (2015) and PPO Schulman et al. (2017), are employed
to comprehensively evaluate the performance of these algorithms under various conditions, aiming
to uncover their respective advantages and limitations in solving the targeted problems.

Test Environments. The main body of the text primarily presents the experimental results of our
framework in the Maze Environment and the MuJoCo Environment Todorov et al. (2012). The
configuration examples of these environments are illustrated in Fig. 4. In the experiments conducted
in the Maze Environment, we test the effectiveness of the DQN algorithm within our framework.
Meanwhile, in the experiments carry out in the MuJoCo Environment, we examine the performance
of the PPO algorithm within the same framework. Additional experimental results under various
settings are available in Appendix E.

Agent

Trap

Goal

Torso:

0.05,0.2

Thigh:

0.05,0.2

Foot:

0.06,0.2

Torso:

0.10,0.2

Thigh:

0.05,0.2

Foot:

0.06,0.2

Torso:

0.05,0.2

Thigh:

0.05,0.2

Foot:

0.06,0.3

Torso:

0.05,0.2

Thigh:

0.10,0.2

Foot:

0.06,0.2

Torso:

0.05,0.2

Thigh:

0.05,0.4

Foot:

0.06,0.2

Source Domain

Authorized Target Domain

Unauthorized Target Domain

(a) Maze Environment

(b) MuJoCo Environment

Figure 4: Overview of Experiment Setup. (a) Maze Environment. It consists of the Agent, Trap,
and Goal. In the source domain, there are two Goals, one on the right and one at the bottom. The
authorized target domain has a single Goal on the right, while the unauthorized target domain has
only one Goal at the bottom. In independent experiments, the positions of the Agent, Trap, and
Goal vary; (b) MuJoCo Environment. It encompasses MuJoCo robots with diverse configurations.
In the authorized target domain, users set the configurations based on the subsequent scalability re-
quirements of the model. In contrast, configurations in the unauthorized target domain are randomly
generated by the Environment Randomization module. In this example, users primarily specify the
Torso and Foot configurations of the Hopper robot, while the Thigh configuration is generated by
the Environment Randomization module.

5.2 PERFORMANCE OF DQN ON MAZE ENVIRONMENT

In this experiment, Agent receives a final reward of 60 upon reaching Goal and -10 if it enters
Trap by mistake. A single experiment terminates when Agent reaches the Goal or the environment
runs for more than 200 steps. As shown in Fig. 5(a), both the original DQN (blue curve) and
TCRL DQN (orange curve) can achieve a reward value of around 50 during training in the source
domain, indicating that the trained Agents can complete the tasks. This implies that our method has
little impact on the performance of the source-domain policy model during training.

Fig. 5(b) reveals that in the policy model transfer experiment, the transfer-controllable policy model
trained by the TCRL framework (orange curve) can complete the task in the authorized environment
but struggles to do so in the unauthorized environment. Here, TCRL Trans Unauth 1 (green curve)
and TCRL Trans Unauth 2 (red curve) correspond to the two experimental settings in the red box
of Fig. 4(a) respectively. The red curve shows that even when the number of Traps is significantly
reduced, the transfer-controllable policy model still fails to complete the task. This demonstrates
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Figure 5: Experiment of DQN on Maze Environment.

that the policy model obtained through our training exhibits strong reverse transfer ability in the
unauthorized environment.
5.3 TRAINING PERFORMANCE OF PPO ON MUJOCO ENVIRONMENT

In this experiment, we aim to verify the effect of the TCRL algorithm on the training performance
of the baseline algorithm. To do so, we used 32 copies of the same source domain environment to
train the benchmark PPO algorithm in parallel, and employ the same 32 source domain environment
copies, as well as 32 unauthorized target domain environments, to train the TCRL algorithm in
parallel. The convergence of the reward curve is used as the evaluation criteria.
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Figure 6: Training performance of the baseline PPO algorithm and our TCRL algorithm. The blue
PPO Source and orange TCRL PPO Source curves denote the performance of PPO and TCRL
on the source domain, while the green TCRL PPO Unauth curves indicate the performance of
TCRL on the unathorized target domains.

The experimental results show that during training, TCRL can achieve a performance similar to
PPO in the source domain. Meanwhile, it can significantly degrade the performance of the policy
model in the unauthorized target domain. In Fig. 6, for the HalfCheetah, Hopper, and Ant tasks,
the TCRL PPO Source curve converges to an average reward value close to that of the PPO Source
curve, though with a slightly larger variance. This indicates that our method may slightly increase
the training difficulty of the algorithm, but has minimal impact on the final training outcome, as
both can yield effective policy models. On the other hand, the TCRL PPO Unath curve is limited
to a very low value in the unauthorized target domain environment. This demonstrates that our
method restricts the policy model’s performance in such environments, laying the groundwork for
subsequent transfer experiments.
5.4 TRANSFERRING PERFORMANCE OF PPO ON MUJOCO ENVIRONMENT

In this experiment, we aim to verify the effectiveness of the obtained transfer-controllable policy
model in preventing the transfer of the source domain to the unauthorized target domain. To do
so, we use the trained PPO and TCRL policy models to transfer on 8 authorized and 32 unautho-
rized target domain environments, respectively. Additionally, a random initialized policy model was
trained under the same target domain environment as a benchmark. Subsequently, the policy models
were tested on 8 authorized and 8 unauthorized target domain environments to verify the average
transfer-controllable ability during training process. The convergence of the reward curve was then
used as the evaluation criterion for transfer performance.

Based on the experimental results, it is evident that the TCRL policy model can effectively impede
the transferability of the source-domain policy model to the unauthorized target domain. As depicted
in Fig. 7, the reward values achieved by the TCRL PPO Trans Unauth curve are substantially lower
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Figure 7: Comparing the transfer performance between the PPO and TCRL policy models. The
PPO Trans Auth curve denotes the PPO model and the TCRL PPO Trans Auth curve de-
notes the TCRL model on authorized target domain, while the PPO Trans Unauth curve denotes
the PPO model and the TCRL PPO Trans Unauth curve denotes the TCRL model on unautho-
rized target domain. The green PPO Random curve, trained with a random initialized model,
serves as the baseline.

Table 1: Transferring performance on MuJoCo environment. PPO Random denotes the average
rewards in authorized and unauthorized target-domain environments. TCRL Trans Auth and
TCRL Trans Unauth represent the average rewards of TCRL policy model transfer to authorized
and unauthorized target-domain environments, respectively.

HalfCheetah-v3 Hopper-v3 Ant-v3 Mean
PPO Random 4123.66 2057.22 2598.95 -
TCRL Trans Auth 4207.33 2075.46 2427.83 -
Ratio 102.03% 100.89% 93.42% 98.78%
TCRL Trans Unauth 2516.65 1028.16 1043.02 -
Ratio 61.03% 49.98% 40.13% 50.38%

than those of the PPO Trans Unauth curve. This implies that the TCRL policy model encounters
significant difficulties in migrating to the unauthorized target-domain environment, thereby demon-
strating a robust anti-transfer capacity. The PPO Random curve represents the average reward values
obtained through training from the initial state in each task environment. The convergence values of
the PPO Trans Unauth curve are comparable to those of the PPO Random curve. This indicates that
the original PPO algorithm is essentially incapable of preventing the source-domain policy model
from transferring to the unauthorized target-domain environment.

Meanwhile, Fig. 7 clearly demonstrates that TCRL policy model preserves its transferability within
the authorized target domain, thereby providing an avenue for subsequent model expansion. The
convergence values of the TCRL PPO Trans Auth curve exhibit minimal divergence from those of
the PPO Trans Auth curve and closely approximate the reward values of the PPO Random. This
observation implies that our proposed policy model retains a high-level of transferability.

As indicated in Table 1, the TCRL policy model derived from our training regimen not only sustains
a transfer performance of 98.78% in the authorized target domain but also effectively restricts the
transfer performance of the policy model to the unauthorized target domain to 50.38%.

6 CONCLUSION AND LIMITATION

In this paper, we have introduced a new task of training transfer-controllable policies in DRL and
presented an original framework to address this task. Firstly, we have examined the necessity
of transfer-controllable learning in DRL and identified potential challenges that may arise. Sub-
sequently, we proposed the TCRL framework for transfer-controllable training and theoretically
demonstrated its feasibility. Moreover, we applied this framework to obtain a transfer-controllable
policy model and empirically validated its efficacy in safeguarding against transfer attacks on the
policy model. However, the TCRL framework’s major limitation is that it consumes approximately
twice the computational resources of conventional DRL training, mainly because of the high com-
putational cost of stochastically generating suitable unauthorized target domain.
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A USE OF LLMS

This paper did not use any LLMs during the research, writing, and other related processes.

B FOUNDATIONAL BACKGROUND ON DRL

B.1 DQN AND PPO OBJECTIVES AND CRITIC LOSS

In this paper, both the deep Q-network (DQN) and the proximal policy optimization (PPO) Schul-
man et al. (2017) algorithms are used to train the policy model. The main objectives of DQN and
PPO are:

Jθk,Dk

DQN (θ) = Êt,Dk

{[
Q(st, at; θ)− rt(st, at)− γmax

a′
Q(st+1, a

′; θk)

]2}
, (6)

and

Jθk,Dk

PPO (θ) = Êt,Dk

{
min

[
πθ(at|st)
πθk(at|st)

Ât, clip

(
πθ(at|st)
πθk(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

]}
, (7)

where Q represents the action-value function, θk indicates the network parameters of the old pol-
icy model at the kth training epoch, Dk denotes the data buffer at the kth training epoch, ϵ is a
hyperparameter, and Ât indicates the advantage estimates.

The Critic loss LMSE is defined as

LMSE(ϕ) = Êt,Dk
[(Vϕ(st)− R̂t)

2] (8)

where Dk indicates the data buffer of the chosen (st, at, zt) pairs from DSource and DUnauth Target.

B.2 SYMBOL DEFINITIONS

The symbols used in this paper and their corresponding meanings are shown in Table below.

C THEORY PROOFS

Theorem 1: Let τDS
and τDT

represent all optimal trajectories in the source and target domains,
respectively. For a given δ, a state-action pair (st, at, st+1) ∈ τDT

is considered source-similar if
there exists a state-action pair (s′t, a

′
t, s

′
t+1) ∈ τDS

such that |st − s′t| < δ and |st+1 − s′t+1| < δ.
Conversely, a state-action pair is considered target-specific if it is not source-similar. Then, an
increase in the number of target-specific state-action pairs makes it more difficult to transfer to the
target domain environment, and the H∆H distance between the source and target domains satisfies

dH∆H(D̃S , D̃T ) ≤ 2 sup
η∈Hd

|PrD̃S
[z : η(z) = 1]− PrD̃T

[z : η(z) = 1]| (9)
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Table 2: Symbol Definitions

Symbol Notation

t The current time step
k The kth training epoch
S ∈ Rm The state space
A ∈ Rn The action space
H The Hilbert space
P : S ×A× S → R+ The state transition distribution
r : S ×A→ R The reward function
γ ∈ [0, 1] The discounted factor
st ∈ S The observed state from the environment at time step t
at ∈ A The agent action at time step t
Ω ⊆ Rn The partition on theH space
zt, ft The feature of the state st
p(st+1|st, at) ∈ P The transition distribution at time step t
rt(st, at) The environment reward at time step t
(st, at, st+1) The state-action pair at time step t
θ The policy model parameter
ϕ The value network parameter
θk The policy model parameter at kth training epoch
ϕk The value network parameter at kth training epoch
πθ(at|st) The policy distribution at time step t with model parameter θ
rt(θ) The policy probability ratio with model parameter θ
Dk The data buffer at the kth training epoch
Ât The advantage estimates at time step t
Jθk,Dk (θ) The main optimized objective of the PPO and the DQN algorithm
J
θk,DSource,DUnauth Target

TCRL (θ) The specific policy model optimized objective of the TCRL algorithm
LMMD The maximum mean discrepancy loss
τS , τT The optimal trajectories in the source and target domains, respectively
D̃S , D̃T The dataset on the source and target domain, respectively
DSource The data buffer on the source domain
DUnauth Target The data buffer on the unauthorize target domain
ΩDS ,ΩDT The partition on source and target domain dataset, respectively
ρ The environment parameters
ϵ, δ The hyperparameters representing small values
α, β The tunable hyperparameters
min(·) The minimize function
clip(·) The clip function
E(·) The expected function
U(·) The uniform distribution
Φ(·) The Gaussian kernel function
Pr(·) The probability function
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where z denotes the feature of the state s, D̃S and D̃T represents the dataset on the source and target
domain, respectively.

Proof: Firstly, the RL transfer problem needs to be transformed into an SL optimization problem.

Assume that a trajectory τ is randomly selected from the set of target domain trajectories τDT
. If

any state-action pair (st, at, st+1) ∈ τ is source-similar, the optimal actions at and a′t satisfies that
|at − a′t| < ∆ as the state assumption conditions that |st − s′t| < δ and |st+1 − s′t+1| < δ. That is,
if the state-action pairs on the target domain are all source-similar, then these optimal actions at and
a′t can be divided into different categories.

Moreover, if a state-action pair (st, at, st+1) ∈ τ is target-specific, suppose that |st − s′t| < δ and
|st+1−s′t+1| < 2δ, then there exists a state-action pair (s′′t , a

′′
t , s

′′
t+1) satisifies that |s′′t −s′t| < δ and

|s′′t+1 − s′t+1| < 2δ. Then, the optimal actions satifies that |a′′t − a′t| < ∆ and |a′′t − at| < ∆, and it
means that |at − a′t| < 2∆. Furthermore, if there are few target-specific points in the target domain,
these optimal actions at and a′t can be divided into different categories through the auxiliary action
a′′t .

For the optimal trajectories τDS
(si) = [s0, a

opt
0 , ..., aopti−1, si], given the Markov property, optimizing

τDS
in the source domain is equivalent to the existence of a classifier from state si to action ai as

ADS
(si) = aopti . Similarly, for the target domain, the optimal trajectories τDT

is equivalent to the
optimal classifier ADT

(si) = aopti from state si to action ai.

Then, we derive the H∆H distance between the source and target domain.

Let the action space be A. Since the action category space ADS
and ADT

are subsets of the action
spaceA, and both the source domain classifier ADS

and the target domain classifier ADT
satisfy

ADS
⊆ ADS

= A and ADT
⊆ ADT

= A (10)
the attribute of ADS

and ADT
is the same. Considering the network architecture of the policy model

πθ, assume the feature extraction function fDS
of the Feature Net statisfies fDS

(si) = zi ∈ Z ⊆
Rm. As all classification problems can be transformed into binary classificationGoodfellow et al.
(2016), only the binary categories will be taken into consideration as h : Z → {0, 1}. Based on the
domain adaptation theoryBen-David et al. (2010), for the classifier A = h ◦ f , the error of the given
classifier h(z) on the target domain DT is

ϵDT
(h) < ϵDS

(h) +
1

2
dH∆H(D̃S , D̃T ) + λ (11)

where ϵDT
(h) and ϵDS

(h) denote the error of the given classifier h(z) on the source and target
domain, respectively. The variable dH∆H represents the generalized distance between data buffer
D̃S and D̃T on the specific H space. Meanwhile, the const parameter λ satisfies that

λ = ϵDS
(h⋆) + ϵDT

(h⋆), h⋆ = argmin
h∈H

ϵDS
(h) + ϵDT

(h) (12)

where h⋆ indicates the best classifier with the lowest error sum λ of the source error ϵDS
and the

target error ϵDT
on the H space. Meanwhile, the space H∆H satisfies

H∆H = {η : η(z⋆) = 1} (13)
where define the variable z⋆ as

z⋆ = {z : h1(z)⊕ h2(z), h1, h2 ∈ H} (14)
where ⊕ indicates the XOR operator.

Therefore, regarding the problem of transferring the source domain policy model πθ into the target
domain, it is equivalent to minimizing variables ϵDS

(h) and dH∆H. For minimizing the generalized
distance dH∆H, we derive as follows

dH∆H(D̃S , D̃T ) = 2 sup
h1,h2∈H

∣∣PrD̃S
[{z : h1(z) ̸= h2(z)}]− PrD̃T

[{z : h1(z) ̸= h2(z)}]
∣∣

= 2 sup
η∈H∆H

∣∣PrD̃S
[{z : η(z) = 1}]− PrD̃T

[{z : η(z) = 1}]
∣∣

≤ 2 sup
η∈Hd

∣∣PrD̃S
[z : η(z) = 1]− PrD̃T

[z : η(z) = 1]
∣∣ (15)
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where H⌈ denotes the trained classfier space such that h1, h2 ∈ H.

Besides, as the number of target-specific state-action pairs increases, the difficulty of transferring
the policy model from the source domain to the target domain increases from a geometric multiple.
According to the Generalization Bound theoremZhang et al. (2019), we have

ϵDT
(f) < ϵ

(ρ)
DS

(f) + d
(ρ)
f,F (D̃S , D̃T ) + λ+ 2

√
log 2

δ

2n
+

√
log 2

δ

2m

+
2k2

ρ
Rn,DS

(Π1F) +
2k

ρ
Rn,DS

(ΠHF) +
2k

ρ
Rm,DT

(ΠHF)

(16)

where f denotes all scoring functions, k represents the number of categories for classification prob-
lems in the source and target domains, ρ is a given const parameter, λ is a constant independent of
f , R represents the Rademacher complexity, and Π1F is defined as

Π1F = {x → f(x, y)|y ∈ Y, f ∈ F} (17)

It can be seen from the above theorem that the increase of the number of categories k will lead to the
increase of generalization error in the target domain. In our derivation, more target-specific state-
action pairs mean more classification of action categories in both the source and target domains.
That is to say, as the difference between the source domain and the target domain becomes larger,
the generalization error between the source domain and the target domain will continue to increase.
Furthermore, we can get that the increase of target-specific state-action pairs will make it more
difficult for the policy model to transfer from the source domain to the target domain environment.

□

Theorem 2: Assume p(s, a) is the joint distribution of state s and action a. Given δ ∈ [0, 1], let a
partition Ω ⊆ Rn on the H space satisfies Pp(s,a)(s ∈ Ω) = δ, then
(1) there exists a partition ΩDS

and ΩDT
such that

dH∆H(DS , DT ) ≥ 2
∣∣∣Es∼DS

[A(s) ̸= A
′
(s)]− Es∼DT

[A(s) ̸= A
′
(s)]

∣∣∣ (18)

(2) maximizing the MMD loss is equivalent to increasing the distance dH∆H.

Proof: First, we prove that there exists a large upper bound of dH∆H that satisfies the transfer
learning constraints for the transfer error ϵDT

.

Let p(s, a) be the joint distribution of the state s and action a. A partition Ω ⊆ Rn is constructed
such that all states s in this partition Ω satisfies that

Pp(s,a)(s ∈ Ω) = δ (19)

where the variable δ ∈ [0, 1]. Given a classifier h, a classification method k(z) = 1 is generated on
it, where z ∈ {z|h(z) > 0.5}. When δ = 1, the partition Ω uniquely corresponds to a classifier k.
In this case, the generalization error is

ϵ(Ω) = ϵ(k) = E(|a−A(s)|) (20)

The optimal partition of the probability distribution p is denoted as

Ω⋆
p = argmin

Ω⊆Rn

ϵ(Ω) (21)

For the transfer problem on the target domain DT , it is equivalent to the optimization problem

min
f,h

ϵDS
(h ◦ f), s.t. f(sDS

) = f(sDT
) (22)

For the transferred classifier Atran, it belongs to the set of classifiers A⋆ that satisfy

ϵDS
(hAtran ◦ fAtran) ≤ ϵDS

(Ω⋆
DS

) (23)

fAtran(sDS
) = fAtran(sDT

) (24)

Consider the feature function fΩ(s) defined as follows: for a given partition Ω,

fΩ(s) =

{
1m, s ∈ (SDS

∩ Ω⋆
DS

) ∨ (SDT
∩ Ω)

0m, otherwise
(25)
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where the parameter m denotes the dimensions of the feature vector. Let the classifier be h(1m) = 1.
Obviously, A = h ◦ fΩ(s) ∈ A⋆. Construct that

Ω̂ = argmax
Ω⊆Rn

ϵDT
(Ω) s.t. PDT

(s ∈ Ω) = PDS
(s ∈ Ω⋆

DS
) (26)

the generalization error of the classifier

Â = h ◦ fΩ̂(s) ∈ A⋆ (27)

corresponding to this partition is

ϵDT
(Â) = max

A∈A⋆
ϵDT

(A) (28)

Define that

Ssame = {s|s ∈ SDS
∩ SDT

} and Sdiff = {s|s /∈ SDS
∩ SDT

} (29)

Assume that
PDT

(s ∈ Ω⋆
DT

) = PDS
(s ∈ Ω⋆

DS
) = 0.5 (30)

and s ∈ Sdiff ∩ Ω̂, this approach still achieves optimization of source domain error while mapping
DS and DT to the same distribution. In this case, it holds that

max
A∈A

ϵDT
(A) ≥ (1− |Ssame|

|SDS
∪ SDT

|
)(1− ϵDT

(Ω⋆
DT

)) ≥ 1− ϵDT
(Ω⋆

DT
) (31)

When Ssame = ∅, it degenerates to

max
A∈A

ϵDT
(A) ≥ 1− ϵDT

(Ω⋆
DT

) (32)

This implies the existence of worst-case solutions that satisfy the original transfer learning condi-
tions.

A worst-case classifier can be constructed as follows: Let ΩDS
and ΩDT

be chosen such that s has
an equal probability of occurring in both the source and target domains and Ssame = ∅. Define the
feature function

f(s) = 1m if s ∈ (SDS
∩ ΩDS

) ∨ (SDT
∩ ΩDT

) (33)

f
′
(s) = 1m if s ∈ (SDS

∩ ΩDS
) ∨ (SDT

∩ (Rn\ΩDT
)) (34)

and let the classifier be h(1m) = 1. For the classifiers A = h ◦ f and A
′
= h ◦ f ′

, both belong to
classifiers that satisfy the transfer conditions, but there exists a H∆H lower bound of

dH∆H ≥ 2|Es∼DS
[A(s) ̸= A

′
(s)]− Es∼DT

[A(s) ̸= A
′
(s)]| = 2 (35)

the maximum value of H∆H is achieved in this case.

Next, we aim to prove that increasing the MMD leads to an increase in the transfer error ϵDT
. The

MMD distance is defined as

MMD(X,Y ) = ∥ 1
n

n∑
i

ϕ(xi)−
1

m

m∑
j

ϕ(yj)∥2H

= ∥ 1

n2

n∑
i

n∑
i′

ϕ(xi)ϕ(xi′ )−
2

nm

n∑
i

m∑
j

ϕ(xi)ϕ(yj) +
1

m2

m∑
j

m∑
j′

ϕ(yj)ϕ(yj′ )∥H

= ∥ 1

n2

n∑
i

n∑
i′

k(xi, xi′ )−
2

nm

n∑
i

m∑
j

k(xi, yj) +
1

m2

m∑
j

m∑
j′

k(yj , yj′ )∥

= ∥E(k(xi, xi′ ))− 2E(k(xi, yj)) + E(k(yj , yj′ ))∥
(36)

where xi ∼ X and yj ∼ Y , and the Gaussian kernel function is

k(u, v) = e−
∥u−v∥2

σ (37)
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Consider these extreme scenarios:
i) When fixing E(k(xi, xi′ )) = 1 and E(k(yj , yj′ )) = 1, maximizing the MMD is equivalent to
setting E(k(xi, yj)) = 0. By using the kernel function k(u, v), we have

E(k(xi, yj)) = e−
E(∥xi−yj∥

2)

σ = 0 (38)

which is equivalent to E(∥xi − yj∥2) → +∞. Furthermore,

E(∥xi − yj∥2) = E(∥xi∥2 − 2∥xi∥∥yj∥+ ∥yj∥2)
= E(∥xi∥2)− 2E(∥xi∥∥yj∥) + E(∥yj∥2)
= E2(∥xi∥)− 2E(∥xi∥)E(∥yj∥)− 2∥Cov(X,Y )∥+ E2(∥yj∥)
= (E(∥xi∥)− E(∥yj∥))2 − 2||Cov(X,Y )∥
∼ +∞

(39)

This is equivalent to that ∥x− y∥ → +∞.

ii) When fixing E(k(xi, yj)) = 0, maximizing the MMD is equivalent to setting E(k(xi, xi′ )) = 1
and E(k(yj , yj′ )) = 1. As before, this is equivalent to E(∥xi − xi′∥) → 0 and E(∥yj − yj′∥) → 0.
Without loss of generality, we can assume that ∥xi∥ ≥ ∥xi′∥ for xi, xi′ ∼ X . We consider the
following on X:

E(∥xi − xi′∥
2) = E(∥xi∥2 − 2∥xi∥∥xi′∥+ ∥xi′∥

2)

= Ei(Ei′ (∥xi∥2)− 2Ei′ (∥xi∥∥xi′∥) + Ei′ (∥xi′∥
2))

= Ei(∥xi∥2 − 2∥xi∥Ei′ (∥xi′∥) + Ei′ (∥xi′∥
2))

= E(∥xi∥2 − 2x∥xi∥+ E(∥x∥2))
= 2(E(X2)− E2(X))

= 2D(X)

→ 0

(40)

This is equivalent to D(X) → 0 and D(Y ) → 0.

In summary, when optimizing the MMD, as it approaches the limit, we have

lim
MMD→max

x− y = +∞ (41)

lim
MMD→max

D(x) = 0 (42)

lim
MMD→max

D(y) = 0 (43)

Considering the properties of limits, it is necessary that there exists a real number λ such that when
MMD > λ, x− y increases monotonically and D(x) and D(y) decrease monotonically. This means
that there is a critical step after which the MMD training always descends the gradient towards the
optimization of x− y, D(x), and D(y).

Considering with the Equation (31), when fixing other conditions and only considering the increase
of f(sDS

)− f(sDT
), it is equivalent to a decrease in |Ssame|, which leads to an increase in ϵDT

(A).

Consider the feature extraction function fΩ(s) = 1m for a given partition, where s ∈ (SDS
∩

Ω⋆
DS

) ∨ (SDT
∩ Ω). When fixing other conditions and considering the decrease of D(f(sDS

)) and
D(f(sDT

)), we consider the conditions (SDS
∩Ω⋆

DS
)∨ (SDT

∩Ω⋆
DT

) and (SDS
∩Ω⋆

DS
)∨ (SDT

∩
(Rn\Ω⋆

DT
)) To minimize the variance and achieve the optimal partition in the source domain, while

ensuring that |Ω⋆
DT

∩ Ω⋆
DS

| approaches |Rn\Ω⋆
DT

∩ Rn\Ω⋆
DS

|, the positive samples in the source
domain and negative samples in the target domain are constrained to a point in the feature space.
Similarly, this is also true for the negative samples in the source domain and positive samples in the
target domain. Therefore, there exist only the optimal classifiers for DS and DT respectively in this
feature space, and there does not exist a classifier that is optimal for both domains. Moreover, the
partition boundary between the source and target classifiers is orthogonal.

In a word, maximizing the MMD loss is equivalent to increasing the distance dH∆H.

□
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D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURE

To build the Actor and Critic models, we use a three-layer MLP structure on the MuJoCo environ-
ment. The first two MLP layers act as feature extractors, while the last MLP layer is used as either
the Policy Net or Value Net. The first two MLP layers are followed by a tanh activation function
layer. The output of the last MLP layer of the Actor model is the mean value of the output policy,
and the output of the last MLP layer of the Critic model is the estimated value of the current state.

D.2 HYPER PARAMETERS

In the Environment Randomization module, the scale parameter c is set to 1.5 for body mass, body
inertia, and geom friction, and 1.3 for dof damping in the MuJoCo environment. For the tunable
hyperparameters ϵ1 and ϵ2 are set to 0.1, ϵ3, and ϵ4, ϵ1, ϵ2, and ϵ3 are set to 0.5 for each experiment,
while ϵ4 is set to 1 for the HalfCheetah-v3 and Hopper-v3 experiments and 3 for the Ant-v3 exper-
iment. The tunable hyperparameter τ is set to 0.7 for the HalfCheetah-v3 and Ant-v3 experiments,
and 0.8 for the Hopper-v3 experiment.

In the Transfer-Controllable Training module, the learning rate of the normal training is set to 3e-
4, and the learning rate of the reverse training is set to 3e-5 for each experiment. The total buffer
size is set to 4096, with the source domain dataset and the target domain dataset each being 2048,
respectively. The step per epoch is set to 30000, and the step per collect is set to 2048. The batch
size is set to 64, and the repeat per collect is set to 10. The thread number for collecting data is set
to 64 during the model training process.

For the PPO algorithm, we employ both reward normalization and observation normalization tech-
niques. In the loss function, the value function coefficient is set to 0.25, the entropy coefficient is set
to 0.0, and the GAE lambda parameter is set to 0.95. Additionally, the epsilon clip parameter is set
to 0.2.

D.3 UNAUTHORIZED TARGET DOMAIN ENVIRONMENTS ON TRAINING PROCESS

In the experiment, we use 32 threads to collect the state-action pair data on the source domain envi-
ronment, while using 32 threads to collect the corresponding data on the unauthorized target domain
environment. In order to ensure the diversity of data collected on the target domain environments,
every 4 threads collect the state-action pair data obtained on the target domain environments with
the same parameter configuration in parallel. In the subsequent supplementary experimental results
section, we demonstrate that using this configuration for can achieve better training performance.

E ALGORITHM DETAILS

E.1 ENVIRONMENT RANDOMIZATION

As indicated in the main text of the paper, the process of Algorithm 1 can be divided into four main
phases: fine-tune authorized model, parameter randomization, unauthorized model fine-tuning and
screening environment.

In the phase of fine-tuning the authorized model, randomly select one from the source-domain policy
models and transfer it to the authorized target domain environment given by the user, as shown in
lines 1-2 of Algorithm 1.

In the parameter randomization phase, an unauthorized target domain environment is generated
according to some custom randomization rules, as shown in lines 5-6 in Algorithm 1. This phase
is mainly to randomize the relevant parameters in the source domain environment according to the
characteristics of the source domain environment, so as to obtain the target domain environments
similar to the MDP of the source domain environment.

In the unauthorized model fine-tuning phase, an Actor model πθ is randomly selected from the
source domain model set Pmodel for transfer learning, as shown in lines 7-8 in Algorithm 1. Then,
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we retrain the Actor model initialized by πθ in the generated target domain environments. In the Mu-
JoCo environment used in the verification of this paper, this simple fine-tune method has been able
to verify the availability of our framework. In practice, the appropriate transfer learning algorithm
could be selected according to the environment characteristics.

In the screening environment phase, the unauthorized target domain environments are selected
through the given custom rules, as shown in lines 10-11 in Algorithm 1. In this paper, we use
the converge time and the source domain rewards to judge whether a target domain environment is
easy to transfer. It is a simple and effective method to select the suitable target domain environments.

E.2 TRANSFER-CONTROLLABLE TRAINING

As indicated in the main text of the paper, the data processing flow of Algorithm 2 includes four main
phases: algorithm preparation, data collection, auxiliary variable calculation, and model parameter
update.

In the preparation phase, it mainly completes the construction of the environments and the initial-
ization of related variables, as shown in lines 1-3 in Algorithm 2. The initial parameters of the target
domain environments come from the result of Algorithm 1.

In the data collection phase, the Actor model πθk is used to collect trajectories on the source domain
environment E and the target domain environments {Ek}Lk=1 respectively, as shown in lines 5-10
in Algorithm 2. When the sum of the capacities of the data buffer DSource and DUnauth Target is
greater than the maximum threshold |D|, the data collection phase ends.

In the auxiliary variable calculation phase, the discounted reward R̂t and the advantage estimates
Ât required for the subsequent training phase are calculated, as shown in lines 11-12 in Algorithm
2. Calculate ÂD

t using the generalized advantage estimation method on the data buffers DSource and
DUnauth Target.

In the model parameter update phase, the four loss functions, shown in Fig. 3, are used to update the
model parameters, and the specific process is shown in lines 15-23 in Algorithm 2. In lines 14-15,
the preparations before model training is completed. Then the MMD loss LMMD and the Actor loss
Jθk
TCRL(θ) are calculated through Eq. (4) and Eq. (3), respectively. Next, the Critic loss is calculated

through Eq. (9). Finally, the model parameters of the Actor network πθk and the Critic network vϕk

are updated using the gradient ascent method, as shown in lines 16-18.

F SUPPLEMENTARY EXPERIMENTAL RESULTS

F.1 ABLATION STUDIES ON EACH COMPONENT

To comprehensively evaluate the contribution of each key component within our proposed TCRL
framework, we conducted additional ablation studies on the HalfCheetah-v3 benchmark. The re-
sults, presented in Table 3, quantify the impact of environment randomization and the transfer-
controllable training module (specifically, the MMD loss).

Table 3: Ablation Studies on Environment Randomization and Transfer-Controllable Training Mod-
ule. w/o Env Filtering refers to the variant where the process of screening and excluding unau-
thorized target environments during training is removed. w/o MMD indicates the removal of the
Maximum Mean Discrepancy (MMD) loss from the policy model’s objective function.

Reward w/o Env Filtering w/o MMD TCRL (full)
Unauthorized 1918 3012 2516
Authorized 3098 3985 4207

The experimental results highlight the significance of both components:

Impact of Environment Filtering: When Environment Filtering is omitted (”w/o Env Filtering”),
the model’s performance degrades substantially. The reward in authorized scenarios drops from
4207 (TCRL full) to 3098. Concurrently, the reward in unauthorized scenarios is the lowest at
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1918. This outcome aligns with our hypothesis: without environment filtering, the training process
is exposed to unauthorized domains that may include dissimilar target environments. Such expo-
sure negatively impacts the model’s ability to learn an effective policy for authorized tasks and to
generalize appropriately.

Impact of MMD Loss: Removing the MMD loss (”w/o MMD”) while retaining environment filter-
ing also leads to a noticeable performance decline compared to the full TCRL model. The authorized
reward decreases to 3985 from 4207, and the unauthorized reward increases to 3012 from 2516.
The MMD loss is designed to encourage the policy to learn domain-invariant representations of
state-action pairs, thereby helping to distinguish and adapt behaviors between authorized and unau-
thorized domains. Without it, the model struggles to effectively capture these crucial state-action
differences, leading to suboptimal performance in authorized settings and increased undesirable be-
havior in unauthorized ones.

In contrast, the TCRL (full) model, which integrates both Environment Filtering and the MMD loss,
achieves the highest reward (4207) in authorized environments while maintaining a comparatively
lower reward (2516) in unauthorized environments. This demonstrates the synergistic effect of these
components in enabling robust and controllable transfer learning.

F.2 DIFFERENT TARGET DOMAIN ENVIRONMENT CONFIGURATIONS ON TCRL TRAINING

In this experiment, we mainly verify the impact of different unauthorized target domain environ-
ment number configurations on model performance during the training process. It mainly includes
changes in the total number of authorized target domain environments and changes in the proportion
of environments with the same configuration in the total target domain environments. In all these
experiments, we use 32 threads to collect data from the source domain.
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Figure 8: Training performance of different unauthorized target domain environment con-
figurations on the HalfCheetah-v3 environment. The variables TCRL x Source and
TCRL x Unauth Target represent the training performance of the TCRL algorithm on the source
and unauthorized target domains, respectively. (a) In this experiment, x refers to the number of
threads utilized for data collection in the target domain environments. Specifically, every 4 threads
were assigned to use the unauthorized target domain environments having an identical configuration.
(b) In this experiment, x denotes that every group of x threads was allocated to collect data from a
target domain environment having the identical configuration. In all these experiments, we use 32
threads to collect data on the source domain.

In the Total Target Environment Number experiment, we change the total number of target do-
main environments, as shown in the left part of Fig. 8. The TCRL 32 Source curve and the
TCRL 32 Unauth Target curve represent the default TCRL algorithm training configuration. Com-
paring the TCRL 32 Unauth Target curve with the TCRL 16 Unauth Target curve, it can be seen
that reducing the total number of target domain environments will increase the reward value achieved
by TCRL in the target domain, which also means that reducing the total number of target domain en-
vironments reduces the effectiveness of TCRL algorithm in suppressing target domain performance.
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Comparing the TCRL 32 Source curve with the TCRL 48 Source curve, it can be seen that increas-
ing the total number of target domain environments will reduce the reward value obtained by TCRL
in the source domain. This means that increasing the total number of target domain environments
will reduce TCRL’s performance in the source domain. Overall, the default configuration of the total
number of target domain environments is a more suitable training parameter configuration.

In the Similar Target Environment Number experiment, we change the proportion of environments
with identical configuration in the total target domain environments, as shown in the right part of
Fig. 8. TheTCRL 4 Source curve and the TCRL 4 Unauth Target curve represent the default train-
ing configuration of the TCRL algorithm. In the source domain, different configurations achieve
similar reward values, with similar trends for the TCRL 4 Source curve, the TCRL 2 Source
curve and the TCRL 8 Source curve. In the target domain, the reward value obtained by the
TCRL 2 Unauth Target curve is higher than that of the other two dotted lines, which means that
this configuration weakens the performance suppression effect of TCRL on the target domain. That
is to say, the training performance is poor when the target domain environment where data is col-
lected by every two threads is the same. Overall, the default configuration of the identical target
environment proportion in the total target domain environments is a more suitable training parame-
ter configuration.

F.3 REWARD SCALE FOR TARGET DOMAIN ENVIRONMENTS

In this experiment, we mainly aim to verify the impact of target domain environments with different
random parameters on the final reward value obtained by the policy model. As shown in Fig. 9, the
final reward value obtained by the policy model in the randomized target domain environment using
the same randomization control parameters has a significant variance. To ensure the objectivity of
the experimental results, we scale the reward values based on the final reward values obtained in the
source and target domains.
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Figure 9: The impact of target domain environment with different randomization parameters on the
final reward value. The Soure line represents the reward curve on the source domain environment,
and the other three lines Target seedx indicate the reward curves on the different randomized target
domain environments.

F.4 HYPERPARAMETER SENSITIVITY

We conducted experiments on the HalfCheetah-v3 environment to analyze the sensitivity of key
hyperparameters in our framework:

δ for environment perturbation. Since δ is determined through iterative optimization as described
in our Q2 response, we tested how reducing this parameter affects protection capability:

Table 4: Sensitivity to environment perturbation δ. “orig.” refers to the original reward.

Perf. δ (orig.) δ/2 δ/4 PPO Trans

HalfCheetah-v3 2516 2558 2617 4115

TCRL maintains effective protection even with reduced perturbation amplitude.
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Tthreshold for quick transfer. This parameter defines the time threshold for identifying quickly
transferable environments (20% of training time from scratch). Testing variations of this threshold
shows:

Table 5: Sensitivity to quick transfer threshold Tthreshold.

Perf. 0.8Tthreshold Tthreshold 1.2Tthreshold

Unauth 2461 2516 2671
Auth 4195 4207 4015

The parameter exhibits moderate sensitivity without substantially impacting protection.

MMD loss weight η. This parameter balances feature distribution separation between domains.
Testing values around our default (3e-5):

Table 6: Sensitivity to MMD loss weight η.

Perf. 1e-5 3e-5 5e-5

Unauth 2608 2516 2497
Auth 4224 4207 4195

Results show low sensitivity within this range.

KL divergence weight λ. This parameter controls the influence of authorized policy behavior:

Table 7: Sensitivity to KL divergence weight λ.

Perf. 1e-2 1e-3 1e-4

Unauth 2647 2516 2623
Auth 3872 4207 4007

λ shows higher sensitivity than other parameters. Our default value (1e-3) provides optimal balance
between maintaining authorized performance while limiting unauthorized performance.

Most parameters show low to moderate sensitivity, with λ requiring the most careful tuning.

F.5 EXPERIMENTAL RESULTS OF OTHER MUJOCO ENVIRONMENTS

The experimental results of the other three MuJoCo environments, such as InvertedDoublePendu-
lum, Walker2d and Humanoid, as shown in Fiugre 10 and Fig. 11.

In Fig. 10, the baseline PPO algorithm and our TCRL algorithm can achieve similar rewards in the
source domain. During the training process, the rewards obtained in the target domain are much
less than the rewards in the source domain. In particular, in the Humanoid environment, the green
reward curve of the target domain has basically no upward trend.

In Fig. 11, the orange reward curves initialized by our TCRL model achieve the worst results, which
means that the TCRL model can prevent the migration of the policy model from the source domain
to the unauthorized target domain to a certain extent. Meanwhile, the blue reward curves intialized
by the original PPO model can obtain similar results with the green reward curves of random in-
tialization. It means that the original PPO model cannot prevent the source domain policy models
transfer to the target domain.

In general, these experimental results are similar to those of the three mujoco environment experi-
ments in the main text, which can support the relevant statements in the main text.

F.6 EXPERIMENTAL RESULTS ON HAND MANIPULATION SUITE ENVIRONMENT

In this experiment, we are examining the impact of two transfer reinforcement learning algorithms,
namely the DAPG algorithmRajeswaran et al. (2017a) and the REvolveR algorithmLiu et al. (2022),
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(a) InvertedDoublePendulum-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

1

2

3

4

R
ew

ar
ds

1e3

(b) Walker2d-v3
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Figure 10: Training performance of the baseline PPO algorithm and our TCRL algorithm. The blue
PPO Source and orange TCRL PPO Source solid curves denote the performance of PPO and
TCRL on the source domain, while the green TCRL PPO Unauth Target dotted curves indicate
the performance of TCRL on the target domains.
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(a) InvertedDoublePendulum-v2
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(b) Walker2d-v3
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Figure 11: Comparing the transfer performance of the PPO and TCRL models on the tar-
get domain, the blue PPO Trans Unauth curve denotes the PPO model and the orange
TCRL PPO Trans Unauth curve denotes the TCRL model. The blue PPO Random curve,
trained with a random initialized model, serves as the baseline.

on the transfer-controllability of the TCRL model. The objective is to evaluate the effectiveness of
these algorithms in attacking the transfer-controllability of the TCRL model. In these experiments,
we replaced the PPO algorithm in the main text with the NPG algorithm.

F.6.1 HAND MANIPULATION SUITE ENVIRONMENT

This part of the experiment is carried out on the hand manipulation suite environmentLiu et al.
(2022). This environment is constructed based on the ADROIT platformRajeswaran et al. (2017a),
as shown in Fig. 12.

In Fig. 12, the ADROIT platform is a 24-DoF anthropomorphic platform designed for addressing
challenges in dynamic and dexterous manipulation. The first, middle, and ring fingers have 4 degrees
of freedom (DoF). Little finger and thumb have 5 DoF, while the wrist has 2 DoF. Each DoF is
actuated using position control and is equipped with a joint angle sensor. In this experiment, we use
two kinds of these tasks, the object relocation task and the door opening task. As shwon in Fig. 12
(a), the goal of the object relocation task is to move the blue ball to the green target. As shwon in
Fig. 12 (b), the goal of the door opening task is to undo the latch and swing the door open.

The hand manipulation suite environmentLiu et al. (2022) is designed to make some evolving trans-
ferable environments for transfer reinforcement learning, as shown in Fig. 13. The evolutionary
generation process of the transferable five-finger dexterous hand robot is shown in Fig. 13 (c). In
the beginning, the hand robot had five dexterous fingers. In the process of continuous evolution, the
middle finger, ring finger, and little finger of the robot are getting shorter and shorter. In the end, the
hand robot only retained two fingers such as the thumb and index finger, and only had 1 DoF.

Next, we can construct the transferable learning tasks as shown in Fig. 13 (a) and (b). In the object
relocation transfer task, the objective of the source domain task is to move a blue ball to the green
target using the original five-finger dexterous hand robot. However, in this case, the robot is substi-
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(a) Object Relocation Task

(b) Door Opening Task

Figure 12: The five-finger dexterous hand provided in the ADROIT platformRajeswaran et al.
(2017a).

tuted with a simpler two-finger robot in the target domain. Similarly, in the door opening transfer
task, the robot configuration remains unchanged, but the objective is modified to opening the door.

F.6.2 EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results are shown in Table 8 and Table 9 below. In these tables, ”From Scratch”
means training the policy model from scratch on the target domain, while ”Direct Finetune” means
using a pre-trained policy model from the source domain for transfer learning. There are two kinds
of pre-trained policy model, the ”NPG” modelRajeswaran et al. (2017b) and our ”TCRL” model.
Then, two kinds of transfer reinforcement learning algorithms, the ”DAPG” algorithmRajeswaran
et al. (2017a) and the ”REvolveR” algorithmLiu et al. (2022), are applied to attack the transfer-
controllability of the TCRL model. In the ”Sparse Reward” setting, only task completion is re-
warded. In the ”Dense Reward” setting, a distance reward is provided at every step.

In the REvolveR algorithmLiu et al. (2022) and the DAPG algorithmRajeswaran et al. (2017a), an
adaptive training scheduling strategy is employed to enhance training efficiency. Consequently, it is
not possible to predefine the total number of RL iterations in order to compare performance fairly
under the same number of iterations. Instead, the REvolveR algorithmLiu et al. (2022) compares the
number of RL optimization steps required to achieve a 90% success rate on the tasks. In this paper,
we continue to use the above evaluation method.

From Table 8, none of the transfer learning algorithms initialized with the TCRL model could con-
verge within 100K iterations. The reason may be that the five-finger robot and the two-finger robot
grab the blue ball in completely different ways, as shown in Fig. 13 (a). In the TCRL model, due
to the reverse training on positive samples in the evolutionary training process, it becomes challeng-
ing for transfer reinforcement learning algorithms to obtain positive samples of grasping the blue
ball in the target domain. This significantly amplifies the training difficulty for the two-finger robot
in the target domain. As a result, the training speed of transfer reinforcement learning using the
TCRL model as the initialization model is significantly slowed down in the object relocation task.
In other words, the TCRL model has hindered the transfer progress of the DAPG algorithm and the
REvolveR algorithm.

From Table 9, the convergence speed of the transfer learning algorithm initialized with the TCRL
model is significantly reduced. Compared with the object relocation task, in the door opening task,
the execution process of pushing the door handle is similar for the five-fingered robot and the two-
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(a) Object Relocation (b) Door Opening

(c) Transferable Robot Environments

Figure 13: The transferable tasks on hand manipulation suiteLiu et al. (2022).

Table 8: The experimental results of the target transfer task

Dense Reward Sparse Reward

From Scratch >100K ∞
Initialized Model NPG TCRL NPG TCRL

Direct Finetune 43.5K >100K ∞ -

DAPGRajeswaran et al. (2017a) 23.3K >100K ∞ -

REvolveRLiu et al. (2022) - >100K 18.1K >100K
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fingered robot, as shown in Fig. 13 (b). Therefore, in this task, even with the initialization of the
TCRL model, the REvolveE algorithmLiu et al. (2022) can still achieve the goal of a success rate
exceeding 90%. However, our TCRL model can still significantly slow down the convergence speed
of the REvolveE algorithm, which can still generate certain value in practical applications.

Table 9: The experimental results of the door opening transfer task

Dense Reward Sparse Reward

From Scratch - ∞
Initialized Model NPG TCRL NPG TCRL

Direct Finetune 7.6K 82.5K ∞ -

DAPGRajeswaran et al. (2017a) 5.4K 48.3K ∞ -

REvolveRLiu et al. (2022) - 45.4K 2.6K 58.7K

Overall, the above experimental results demonstrate that the TCRL model provides a certain level of
protection for the intellectual property of the policy model when facing attacks from certain transfer
reinforcement learning algorithms.

F.7 COMPARISON WITH DOMAIN RANDOMIZATION

While traditional domain randomization (e.g., MAML) aims to enhance generalization, TCRL se-
lectively restricts transfer to unauthorized domains. Our supplementary experiments demonstrate
TCRL’s superior performance:

Table 10: Performance comparison of MAML and TCRL across different domains and environ-
ments. Values represent rewards.

Method Domain HalfCheetah-v3 Hopper-v3 Ant-v3

MAML Unauthorized 2916 1475 1387
Authorized 3972 1837 1678

TCRL Unauthorized 2516 1028 1043
Authorized 4207 2075 2427

These results confirm that directly applying domain randomization techniques to our task would lead
to suboptimal outcomes. Our approach with MMD loss and KL divergence constraints achieves the
desired balance: limiting performance in unauthorized domains while maintaining or improving it
in authorized ones.

G DISCUSSION

Question1: To protect the policy model, it is advisable to conceal the model parameters and strictly
restrict access to an API interface specifically designed for querying policy decisions based on the
observed state. Given this approach, is it still necessary to implement a transfer-controllable policy?

Answer: Yes, it is still necessary. Suppose Company A has designed a robot RA and trained the
corresponding baseline policy model πA. At the same time, Company B has replicated a robot RB

with similar dynamic characteristics and obtained the API of Company A’s robot’s policy model
πA. In this case, Company B can use the API to collect the motion trajectories Tr of robot RB and
then use relevant methods of offline reinforcement learning to obtain an approximate version of the
policy model π̂A. By applying transfer learning to the π̂A model, Company B can obtain a suitable
policy model πB for robot RB .

However, when Company A trains the baseline policy model πA using the TCRL algorithm, if
Company B tries to use the same API, they would only collect poor-quality motion trajectories. As
a result, subsequent offline reinforcement learning and transfer learning processes cannot be carried
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out. Therefore, training a transfer-controllable policy model becomes necessary in order to mitigate
this issue.

Question2: In the paper, the unauthorized target domain environments are designed by randomizing
some parameters in the environments. However, it would be quite rare that the real target application
is only a few parameters different from the source environments while all other settings are the same.

Answer: Yes, perhaps such cases are quite rare. However, if Company B intends to steal the intel-
lectual property of Company A’s policy model, they would need to take certain steps to construct
a series of similar target domain environments. For example, as shown in Fig. 13 (c), Company B
can create a series of intermediate robots that allow Company A’s five-finger hand robot to transition
naturally to Company B’s two-finger hand robot. In general, by using transfer learning algorithms,
Company B can avoid some of the errors that Company A would encounter when training from
scratch.

Question3: The environment randomization module can be time-consuming and may not be suitable
for all scenarios.

Answer: No single method can be universally applicable to all scenarios, and the environment
randomization module is merely a simple preliminary solution. This paper aims to raise awareness
about the issue of protecting policy model intellectual property and propose a general solution. In
practical applications, various more efficient environment randomization schemes can be designed
for this module.
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