
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSFER-CONTROLLABLE POLICY FOR MODEL
PROTECTION IN DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Online deep reinforcement learning (DRL) suffers from sample inefficiency. This
inefficiency challenges the training of effective policy models for complex tasks
and demands substantial time and computing resources. As trained policy models
can be transferred to other applications, protecting their intellectual property (IP)
has become a pressing issue. To address this, we need to prevent unauthorized
transfers for IP protection while maintaining transferability for future scalabil-
ity. We propose the first Transfer-Controllable Reinforcement Learning (TCRL)
framework. It has two key components: the Environment Randomization module
generates unauthorized target-domain environments randomly, and the Transfer-
Controllable module trains a policy model using source-domain and these unau-
thorized target-domain environments. This model resists transfer in unauthorized
settings yet remains transferable in authorized ones. We validated the framework’s
effectiveness across various DRL environments and algorithms. The TCRL pol-
icy model is hard to transfer to similar unauthorized target-domain environments,
but achieves source-domain-like performance in authorized ones. In the MuJoCo
environment, our trained policy model attains 98.78% of the source-domain per-
formance in authorized target-domain environments, and only 50.38% in unau-
thorized ones.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) techniques have thrived in various AI fields, like video games
Nie et al. (2024), board games Schrittwieser et al. (2020), and robot control Han et al. (2024);
Haarnoja et al. (2024). However, significant expertise is needed to ensure their proper operation
Miki et al. (2022). For example, by creating 8 different reward functions, including torque and joint
speed costs, and adopting curriculum learning, researchers enabled legged robots to learn animal-
like dynamic maneuvers Hwangbo et al. (2019). Also, training the AlphaGo policy model requires
tens of millions of dollars and thousands of GPUs Silver et al. (2016). Given the high investment in
time, resources, and expertise, protecting the intellectual property (IP) of policy models is crucial.

Figure 1: Training a policy model from scratch is time-consuming and costly. However, this model
can be seamlessly transferred to similar scenarios, substantially reducing training expenses. To safe-
guard against theft by malicious actors, any transfer to unauthorized environments must be strictly
prohibited. Simultaneously, to guarantee the model’s scalability in future applications, its transfer-
ability within authorized environments should be maintained.

DRL policy models risk theft and unauthorized transfer. Their relatively small model size (Fig. 1) fa-
cilitates easy theft and quick transfer to similar domains. During policy training Silver et al. (2016),
these models learn from observations and generate actions, storing valuable knowledge, making

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

them more vulnerable to theft than large datasets. Training a policy model from scratch is extremely
time-consuming and costly, while using a pre-trained model can boost efficiency. Since policy mod-
els hold environment-related knowledge, it can be transferred to target domains via methods like
learning from demonstrations, representation transfer, and inter-task mapping Yi et al. (2023). This
transferability, however, also makes them prone to abuse.

Competitors may misuse obtained policy models by transferring them to similar scenarios, violating
IP rights. For example, if a trained gameplay robot’s policy model leaks, it could be used for illegal
activities like poaching through transfer learning, as depicted in Fig. 1. However, completely ban-
ning model transfer across different environments would harm the open-source community and limit
legitimate applications. With the growing use of DRL techniques, protecting policy model IP has be-
come an urgent issue. To address this, we propose the first Transfer-Controllable Reinforcement
Learning (TCRL) framework. This framework aims to balance model IP protection and usability
in authorized environments. It has two main modules: the Environment Randomization module,
which randomly generates unauthorized target-domain environments, and the Transfer-Controllable
Training module. The latter optimizes data from the source and authorized domains and performs
reverse optimization on unauthorized target-environment data. We also design a new policy-model
objective to stabilize the training process. In our experiment, the transfer difficulty of all environ-
ments is set equally to ensure consistent experimental conditions. Our main contributions are as
follows:

• We propose a new transfer-controllable task in DRL and validate its existence.

• We propose a preliminary TCRL framework to address this transfer-controllable task.

• Experimental results show policy models from our framework are controllably transferable:
readily transferring to authorized target domains, yet struggling with unauthorized ones.

2 RELATED WORKS

Policy Transfer in DRL. Our work is the opposite of the goal of policy transfer. Policy transfer
uses the knowledge learned on the source domain to help the policy training on the target domain
Zhu et al. (2023). In policy distillation, the algorithms learn a student policy πθS by minimizing
the divergence of action distributions between the teacher policy πθT and the student policy πθS
according to trajectories τ . These studies can be further divided into two categories: teacher distil-
lation Allen et al. (2021); Xu et al. (2019); Zhu et al. (2022) and student distillation D’Eramo et al.
(2024); Schmitt et al. (2018). The difference between them is that τ is sampled from teacher policy:
τ ∼ πθT in teacher distillation and student policy: τ ∼ πθS in student distillation. In policy reuse,
the algorithms reuse a set of teacher policies by the means of π-reuse exploration strategy, which
defines the trade-off among exploitation of the student policy, exploitation of the teacher policies,
and exploration of random actions using the evaluation of the teacher policies’ performance on the
target domain. The typical research include Wu et al. (2024); Daoudi et al. (2024); Zhang et al.
(2024); Gimelfarb et al. (2021); Tao et al. (2021); Yi et al. (2023); Tian et al. (2023).

IP Protection in Deep Learning. The IP protection in DRL is still in its infancy, whereas research
on IP protection in Supervised Learning (SL) has made significant progress. In SL, the research
can be divided into three main categories: digital watermarking, backdoor and fingerprint Xue et al.
(2021); Fkirin et al. (2022). Digital watermarking involves embedding robust digital watermarks into
SL models to protect the model IP rights Uchida et al. (2017). The side effect of digital watermarking
that reduces the model prediction abilities is optimized from two aspects by backdoor Adi et al.
(2018) and fingerprint Zhao et al. (2020). In DRL, some attack techniques are proposed to change
the model output Behzadan & Munir (2017); Chen et al. (2021b), which shows that it is urgent
to study countermeasures of IP infringement on DRL models Ilahi et al. (2021). Similar to the
SL methods, some research in DRL also embeds watermarks into the target policy for ownership
verification Behzadan & Hsu (2019); Chen et al. (2021a).

Different from the watermarking-based methods above, transfer-controllable learning restricts the
generalization ability of the model on target domains while preserving its performance on source
domains. The first approach of non-transfer learning was proposed in SL Wang et al. (2022). How-
ever, in DRL, the transfer-controllable learning problem has yet to be studied, and there are still
many issues to be addressed in order to protect model IP. Compared to the large model size and
stable training dataset in SL, the DRL model size is relatively small, and the dataset during training
is unstable.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 MOTIVATION

Unlike SL, policy model initialization in DRL is crucial Yi et al. (2023). Online DRL faces two
major challenges: the exploration-exploitation dilemma and sparse rewards. The former requires
balancing between using existing policies for rewards and exploring with stochastic policies; GoEx-
plore addresses this by storing environmental states in an archive buffer Ecoffet et al. (2021). The
latter occurs when agents need extended action sequences for non-zero rewards, which can be mit-
igated through immediate intrinsic rewards, as demonstrated with the 11 distinct rewards designed
for a bipedal robot Duan et al. (2021). Addressing these challenges demands substantial resources
in terms of funding, hardware, and training time.

However, if we have a better initial policy model before training, these difficulties can be alleviated
Tirinzoni et al. (2019); Van Baar et al. (2019); Dennis et al. (2020); Abdolshah et al. (2021). A good
initial model can perform correct actions, reducing the need for extensive exploration in the target
environment to obtain sparse rewards Barreto et al. (2017); Wulfmeier et al. (2017); Riedmiller et al.
(2018); Li et al. (2019); Guo et al. (2022).

Training a transfer-controllable policy model can resist transfer attacks and protect model IP rights.
This raises two key questions: (1) Is training such a model necessary? (2) What are the specific
challenges in training transfer-controllable models in DRL compared to SL? Given that a well-
initialized policy model can reduce DRL training difficulty through transfer learning, answering
these questions is significant.

A

B C

Unauthorized
Target

Authorized
Target Dissimilar

Target

Source

D

Similar

(a) (b)

Figure 2: Preliminary Experiment. (a) We assume a green area exists where the source-domain
policy model A can transfer to models B and C. Due to the policy overfitting in DRL, this green area
is usually thought non-existent, meaning model A hardly transfers to model D. (b) The experimental
results verify the existence of the green area. The Source, Target(Authorized), Target(Unauthorized),
and Target(Dissimilar) curves correspond to policy models A, B, C, and D respectively.

Necessity of Training Transfer-controllable Model. To tackle Question (1), we first consider
whether the policy model space contains similar regions. Such similarity is key as it enables a
well-trained source-domain policy to transfer smoothly to certain target domains. In DRL, policies
typically overfit to the source-domain environment, hindering their transfer to target domains. As
shown in the dissimilar target domain in Fig. 2(a), transferring Policy A to Policy D is difficult. We
assume there are similar target domains where the source-trained Policy A can quickly transfer to
Policies B and C, as marked by the green area in Fig. 2(a).

To test our hypothesis, an experiment is conducted on the MuJoCo Hopper robot (Fig. 4(b)). The
source domain featured Hopper parameters (torso, thigh, foot) of (0.05, 0.05, 0.06). Target domains,
authorized, unauthorized, and dissimilar, have parameters (0.10, 0.05, 0.06), (0.05, 0.10, 0.06),
and (0.2, 0.05, 0.06), respectively. Policy A, trained in the source domain, is transferred to these
target domains. Results (Fig. 2(b)) show Policy A achieved 2000 reward in the source domain. In
target domains with altered torso (Policy B) or thigh (Policy C) sizes, performance quickly reaches
2000. However, in the dissimilar target domain (Policy D) with a large torso change, Policy A’s
overfitting to the source domain hinders transfer. Results show training a transfer-controllable policy
is essential. The source-domain trained policy has some transferability. We must prevent its transfer
to unauthorized domains, while ensuring transfer to authorized ones for future scalability.

Different Research Points on SL and DRL. For Question (2), the research interests of transfer-
controllable learning technology in DRL are distinct from those in SL. In SL, the main problem
is how to overfit the source domain model to limit its generalization ability on the target do-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

main Sadashivaiah et al.. The parameter space of the SL model is large, thus providing many
directions for its optimization, making it easier to control the direction of overfitting while still
ensuring the model’s generalization on the target domain is limited. Furthermore, the datasets in SL
are usually huge and stable, which makes the training process more stable and further reduces the
difficulty of controlling the direction of overfitting. However, policy overfitting in DRL can limit
the transfer of source domain policy models to certain target domain environments. However, in
other target domain environments, the small model size of DRL models and the changing dataset
distribution during its training process, bring more diverse problems in the DRL field. Therefore, it
is necessary to conduct research on training transfer-controllable policy models.

4 METHODOLOGY

4.1 PRELIMINARY

In DRL, the agent learn from interaction with the environment, and the learning process is mod-
eled with the Markov Decision Process (MDP) defined by a tuple (S,A, P, r, γ). At each step t,
the agent samples an action at ∈ A from a policy distribution πθ(at|st) where st ∈ S is the ob-
served state from the environment and θ is the policy model parameter. After passing the action at
into the environment, the environment transmits into the next state st+1 with the transition distribu-
tion p(st+1|st, at) ∈ P , and the agent receives a reward rt(st, at). Appendix A provides detailed
explanations of each variable and foundational background on DRL.

Transferable-Controllable TrainingEnvironment Randomization

Source Domain

Unauthorized Target Domain

Value Net

Actor

Critic

MMD
Loss

𝑠𝑆

Actor
Loss

KL
Loss

𝑠𝑇

z𝑆 𝑧𝑇

𝑧𝑆 𝑧𝑇

𝑎𝑆

𝑎𝑇

source data flow unauthorized target data flow

Randomize

Feature
Net

Feature
Net

Policy Net

MMD
Loss

Critic
Loss

Authorized Target Domain

Dissimilar Environment

Policy Net

Figure 3: The main TCRL framework consists of Environment Randomization and Transfer-
Controllable Training. The Environment Randomization module is used to randomly generate the
unauthorized target domain environments and train some policy nets on authorized target domain en-
vironments, while the TCRL Training module trains the transfer-controllable policy model through
a specific transfer-controllable loss function. The solid line represents the data interaction between
the TCRL model and the environments, where the interaction targets of the red and green lines are
the source domain and the unauthorized target domain environments, respectively.

4.2 TCRL FRAMEWORK

This paper introduces the TCRL framework (Fig. 3). The Environment Randomization module
generates unauthorized target domains, uses user-provided authorized domains to train policies, and
provides data for transfer-controllable training. The Transfer-Controllable Training module uses
this output to train the transfer-controllable policy. Interactive source and unauthorized target data
(Fig. 3) from source and generated target domains enable reverse transfer training, which limits
transfer to unauthorized environments Also, the authorized-domain policy uses KL divergence for
scalability.

4.2.1 ENVIRONMENT RANDOMIZATION MODULE

As depicted in the left part of Fig. 3, the Environment Randomization module generates unautho-
rized target-domain environments and concurrently creates several authorized policy models based
on the user-provided authorized target domain. Initially, it randomly selects source-domain policy
models to fine-tune the authorized policy models and collects offline datasets during the fine-tuning
process. Subsequently, it randomly generates unauthorized target-domain environments according
to specified rules, such as the two robot environments within the red box. Next, through model fine-
tuning, their transferability is evaluated. Dissimilar target environments, marked with a red cross

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Environment Randomization Module
Input: environment parameters ρ and Actor model set Pmodel = {πθ} in source domain, parameter adjustment

threshold δ, user-provided authorized target-domain environments EAuth

Output: environment parameter set EUnauth Target = {ρi}Ni=0, authorized target-domain Actor models πAuth

1: Randomly select πθ from Pmodel ▷ Transfer authorized policy
2: Fine-tune πθ on EAuth to get πAuth

3: Initialize i← 0, EUnauth Target ← {}
4: while i ≤ N do ▷ Parameter randomization
5: Randomize parameters ρi in the range [ρ− δ, ρ+ δ]
6: Construct Ei through parameters ρi
7: Randomly select πθ from Pmodel ▷ Model fine-tuning
8: Fine-tune πθ on Ei to get reward rtarget
9: if Converge Time t ≤ Tthreshold then

10: EUnauth Target ← EUnauth Target

⋃
{ρi}, i← i+ 1

11: Calculate the scaling factor fr = rtarget/rsource
12: end if ▷ Screening unauthorized target environments
13: end while

in Fig. 3, are excluded because they deviate significantly from the source-domain environment.
The objective of this paper is to obtain a source-domain policy model that is difficult to transfer in
previously unauthorized target-domain environments. Therefore, this module randomly generates
target-domain environments and selects those that are easily transferable. We derived Theorem 1 to
elucidate the existence of such unauthorized environments in the target domain.

Theorem 1: Let τS and τT represent all optimal trajectories in the source and target domains,
respectively. For a given δ, a state-action pair (st, at, st+1) ∈ τT is considered source-similar if
there exists a state-action pair (s′t, a

′
t, s

′
t+1) ∈ τS such that |st − s′t| < δ and |st+1 − s′t+1| < δ.

Conversely, a state-action pair is considered target-specific if it is not source-similar. Then, an
increase in the number of target-specific state-action pairs makes it more difficult to transfer to the
target domain environment, and the H∆H distance between the source and target domains satisfies

dH∆H(D̃S , D̃T) ≤ 2 sup
η∈Hd

∣∣PrD̃S
[z : η(z) = 1]− PrD̃T

[z : η(z) = 1]
∣∣ (1)

where z denotes the feature of the state s, D̃S and D̃T represents the dataset on the source and target
domain, respectively. The detailed proof for Theorem 1 is included in the Appendix B.

In detail, the algorithm process can be divided into four main phases: fine-tune authorized policy,
parameter randomization, unauthorized model fine-tuning and screening environment, as shown in
Algorithm 1. More details in the Appendix D.

4.2.2 TRANSFER-CONTROLLABLE TRAINING MODULE

The Transfer-Controllable Training module, illustrated in the right part of Fig. 3, is designed to train
a transfer-controllable policy model in the source domain. This module interacts with the Environ-
ment Randomization module, as depicted in the middle of Fig. 3. During the model training process,
the Actor model receives the source domain states sS and the target domain states sT from the en-
vironments in the Environment Randomization module at each step, and output the corresponding
actions aS and aT . Subsequently, the specific policy model objective is defined as

J
θk,DSource,DUnauth Target,DAuth Target

TCRL (θ) = Jθk,DSource(θ)

− η · LMMD · Jθk,DUnauth Target(θ) + λ · (D̂DAuth Target

KL (πθ(·|st)||πAuth(·|st))) (2)

where Jθk,D(θ) is defined in Eq. (6) and Eq. (7), θk denotes the Actor model parameters after kth
training, DSource and DUnauth Target are data buffers, η represents the learning rate of the reverse
training, λ represents the weighting factors for authorized scalability, and D̂KL is the Kullback-
Leibler divergence function. Meanwhile, the Feature Net in the Actor model outputs the intermediate
features zs and zt, and the maximum mean discrepancy (MMD) loss is computed as

LMMD = min

α, β ·

∥∥∥∥∥
n1∑
i=1

Φ(zs,i)−
n2∑
i=1

Φ(zt,j)

∥∥∥∥∥
2

H

 (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Transfer-Controllable Training Module

Input: environment parameter set EUnauth Target = {ρi}Ni=0 in target domain, maximum data buffer size |D|
Output: transfer-controllable Actor model πθ

1: Initialize k ← 0, DSource ← {}, DUnauth Target ← {} ▷ Algorithm prparation
2: Randomize the parameters of Actor πθk and Critic vϕk

3: Construct ESource and {Ek}Lk=1 through EUnauth Target in each domain
4: while k ≤ N do ▷ Data collection
5: while |DSource|+ |DUnauth Target| ≤ |D| do
6: Collect τS by running πθk in source domain
7: Collect τT by running πθk in authorized target domain
8: DSource ← DSource

⋃
{τS}

9: DUnauth Target ← DUnauth Target

⋃
{τT }

10: end while ▷ Auxiliary variable calculation
11: Compute ÂSource

t and ÂUnauth Target
t with Eq. (5)

12: Compute R̂t on DSource and DUnauth Target with R̂t = Ât + vϕk (st)
13: repeat ▷ Model parameter update
14: Randomly choose (st, at, zt) from datasets D
15: Recompute πθ(at|st) and vϕ(st)
16: Compute the MMD loss LMMD with Eq. (3)
17: Update πθk by maximizing J

θk
TCRL(θ) through θk+1 ← θk +∇θJ

θk
TCRL(θ)

18: Update vϕk on LMSE(ϕ) through ϕk+1 ← ϕk +∇ϕLMSE(ϕ)
19: until Dsource is empty
20: k ← k + 1, DSource ← {}, DUnauth Target ← {}
21: end while

where Φ(·) denotes the Gaussian kernel function, H indicates the Hilbert space, and α, β are the
tunable hyperparameters.

The two equations above are essential for achieving anti-transfer training in the unauthorized target-
domain environments while maintaining transferability in the authorized target-domain environ-
ments. In Eq. (2), the first term represents the model training in the source domain environment,
while the second term indicates the reverse model training in the generated unauthorized target do-
main environments. There may be some similar samples on the source domain dataset DSource

and the target domain dataset DUnauth Target. This causes the gradients from the source domain
Jθk,DSource(θ) and the target domain −Jθk,DAuth Target(θ) to be opposite, negatively impacting the
model training on the source domain environment. To address this, factors η and LMMD are intro-
duced to adjust the strength of reverse training on the target domain environments, thus decreasing
the negative impact. Additionally, the term −LMMD could increase the distribution distance be-
tween the source domain feature zs and the target domain feature zt, making it easier to optimize in
different directions on DSource and DUnauth Target, thus reducing the difficulty of reverse training
optimization. In addition, the third term D̂

DAuth Target

KL is used to ensure the transferability of the
policy model in the authorized target-domain environment. Here, DAuth Target is the fixed dataset
obtained in the previous step, which is used to fine-tune the transfer-controllable policy model to the
policy model in the authorized target domain. Since DAuth Target is a fixed and small dataset, it has
little impact on the overall training of the first two terms. From the domain adaptation theory, we
derived Theorem 2 to illustrate the role of the MMD loss as follows

Theorem 2: Assume p(s, a) is the joint distribution of state s and action a. Given δ ∈ [0, 1], let a
partition Ω ⊆ Rn on the H space satisfies Pp(s,a)(s ∈ Ω) = δ, then
(1) there exists a partition ΩDS

and ΩDT
such that

dH∆H(DS , DT) ≥ 2
∣∣Es∼DS

[A(s) ̸= A′(s)]− Es∼DT
[A(s) ̸= A′(s)]

∣∣ (4)

(2) maximizing the MMD loss is equivalent to increasing the distance dH∆H. The detailed proof for
Theorem 2 is included in the Appendix B.

Concretely, the data processing flow includes four main phases: preparation, data collection, auxil-
iary variable calculation, and model parameter update, as shown in Algorithm 2. More details in the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Appendix D. The discounted reward R̂t is calculated as

ÂD
t =

∑
D,l

(γλ)l(rt + γvϕk
(st+l+1) + β · LMMD · (− log(π(at|st)) · 1a + ϵ) − vϕk

(st+l)) (5)

where D denotes the data buffer, vϕk
denotes the Critic model, γ and λ are adjustment factors.

5 EXPERIMENTAL RESULT

5.1 EXPERIMENT SETUP

To verify the training effect of our framework and the performance of TCRL model obtained through
training, we conducted experiments on different DRL algorithms and in different test environments.

DRL Algorithms, namely DQN Mnih et al. (2015) and PPO Schulman et al. (2017), are employed
to comprehensively evaluate the performance of these algorithms under various conditions, aiming
to uncover their respective advantages and limitations in solving the targeted problems.

Test Environments. The main body of the text primarily presents the experimental results of our
framework in the Maze Environment and the MuJoCo Environment Todorov et al. (2012). The
configuration examples of these environments are illustrated in Fig. 4. In the experiments conducted
in the Maze Environment, we test the effectiveness of the DQN algorithm within our framework.
Meanwhile, in the experiments carry out in the MuJoCo Environment, we examine the performance
of the PPO algorithm within the same framework. Additional experimental results under various
settings are available in Appendix E.

Agent

Trap

Goal

Torso:

0.05,0.2

Thigh:

0.05,0.2

Foot:

0.06,0.2

Torso:

0.10,0.2

Thigh:

0.05,0.2

Foot:

0.06,0.2

Torso:

0.05,0.2

Thigh:

0.05,0.2

Foot:

0.06,0.3

Torso:

0.05,0.2

Thigh:

0.10,0.2

Foot:

0.06,0.2

Torso:

0.05,0.2

Thigh:

0.05,0.4

Foot:

0.06,0.2

Source Domain

Authorized Target Domain

Unauthorized Target Domain

(a) Maze Environment

(b) MuJoCo Environment

Figure 4: Overview of Experiment Setup. (a) Maze Environment. It consists of the Agent, Trap,
and Goal. In the source domain, there are two Goals, one on the right and one at the bottom. The
authorized target domain has a single Goal on the right, while the unauthorized target domain has
only one Goal at the bottom. In independent experiments, the positions of the Agent, Trap, and
Goal vary; (b) MuJoCo Environment. It encompasses MuJoCo robots with diverse configurations.
In the authorized target domain, users set the configurations based on the subsequent scalability re-
quirements of the model. In contrast, configurations in the unauthorized target domain are randomly
generated by the Environment Randomization module. In this example, users primarily specify the
Torso and Foot configurations of the Hopper robot, while the Thigh configuration is generated by
the Environment Randomization module.

5.2 PERFORMANCE OF DQN ON MAZE ENVIRONMENT

In this experiment, Agent receives a final reward of 60 upon reaching Goal and -10 if it enters
Trap by mistake. A single experiment terminates when Agent reaches the Goal or the environment
runs for more than 200 steps. As shown in Fig. 5(a), both the original DQN (blue curve) and
TCRL DQN (orange curve) can achieve a reward value of around 50 during training in the source
domain, indicating that the trained Agents can complete the tasks. This implies that our method has
little impact on the performance of the source-domain policy model during training.

Fig. 5(b) reveals that in the policy model transfer experiment, the transfer-controllable policy model
trained by the TCRL framework (orange curve) can complete the task in the authorized environment
but struggles to do so in the unauthorized environment. Here, TCRL Trans Unauth 1 (green curve)
and TCRL Trans Unauth 2 (red curve) correspond to the two experimental settings in the red box
of Fig. 4(a) respectively. The red curve shows that even when the number of Traps is significantly
reduced, the transfer-controllable policy model still fails to complete the task. This demonstrates

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps (×105)

 (a)

150

100

50

0

50

Ep
is

od
ic

 R
et

ur
n

Training Performance

DQN
TCRL_DQN

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps (×105)

 (b)

150

100

50

0

50

Transferring Performance

TCRL_Trans_Auth
TCRL_Trans_Unauth_1
TCRL_Trans_Unauth_2

Figure 5: Experiment of DQN on Maze Environment.

that the policy model obtained through our training exhibits strong reverse transfer ability in the
unauthorized environment.
5.3 TRAINING PERFORMANCE OF PPO ON MUJOCO ENVIRONMENT

In this experiment, we aim to verify the effect of the TCRL algorithm on the training performance
of the baseline algorithm. To do so, we used 32 copies of the same source domain environment to
train the benchmark PPO algorithm in parallel, and employ the same 32 source domain environment
copies, as well as 32 unauthorized target domain environments, to train the TCRL algorithm in
parallel. The convergence of the reward curve is used as the evaluation criteria.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0

1

2

3

4

5

6

R
ew

ar
ds

1e3

(a) HalfCheetah-v3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.5

1.0

1.5

2.0

2.5

3.0

R
ew

ar
ds

1e3

(b) Hopper-v3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0

1

2

3

4

R
ew

ar
ds

1e3

(c) Ant-v3

PPO_Source TCRL_PPO_Source TCRL_PPO_Unauth

Figure 6: Training performance of the baseline PPO algorithm and our TCRL algorithm. The blue
PPO Source and orange TCRL PPO Source curves denote the performance of PPO and TCRL
on the source domain, while the green TCRL PPO Unauth curves indicate the performance of
TCRL on the unathorized target domains.

The experimental results show that during training, TCRL can achieve a performance similar to
PPO in the source domain. Meanwhile, it can significantly degrade the performance of the policy
model in the unauthorized target domain. In Fig. 6, for the HalfCheetah, Hopper, and Ant tasks,
the TCRL PPO Source curve converges to an average reward value close to that of the PPO Source
curve, though with a slightly larger variance. This indicates that our method may slightly increase
the training difficulty of the algorithm, but has minimal impact on the final training outcome, as
both can yield effective policy models. On the other hand, the TCRL PPO Unath curve is limited
to a very low value in the unauthorized target domain environment. This demonstrates that our
method restricts the policy model’s performance in such environments, laying the groundwork for
subsequent transfer experiments.
5.4 TRANSFERRING PERFORMANCE OF PPO ON MUJOCO ENVIRONMENT

In this experiment, we aim to verify the effectiveness of the obtained transfer-controllable policy
model in preventing the transfer of the source domain to the unauthorized target domain. To do
so, we use the trained PPO and TCRL policy models to transfer on 8 authorized and 32 unautho-
rized target domain environments, respectively. Additionally, a random initialized policy model was
trained under the same target domain environment as a benchmark. Subsequently, the policy models
were tested on 8 authorized and 8 unauthorized target domain environments to verify the average
transfer-controllable ability during training process. The convergence of the reward curve was then
used as the evaluation criterion for transfer performance.

Based on the experimental results, it is evident that the TCRL policy model can effectively impede
the transferability of the source-domain policy model to the unauthorized target domain. As depicted
in Fig. 7, the reward values achieved by the TCRL PPO Trans Unauth curve are substantially lower

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e6

0

1

2

3

4

5

R
ew

ar
ds

1e3

(a) HalfCheetah-v3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e6

0.5

1.0

1.5

2.0

2.5

R
ew

ar
ds

1e3

(b) Hopper-v3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ew

ar
ds

1e3

(c) Ant-v3

PPO_Random PPO_Trans_Auth PPO_Trans_Unauth TCRL_PPO_Trans_Auth TCRL_PPO_Trans_Unauth

Figure 7: Comparing the transfer performance between the PPO and TCRL policy models. The
PPO Trans Auth curve denotes the PPO model and the TCRL PPO Trans Auth curve de-
notes the TCRL model on authorized target domain, while the PPO Trans Unauth curve denotes
the PPO model and the TCRL PPO Trans Unauth curve denotes the TCRL model on unautho-
rized target domain. The green PPO Random curve, trained with a random initialized model,
serves as the baseline.

Table 1: Transferring performance on MuJoCo environment. PPO Random denotes the average
rewards in authorized and unauthorized target-domain environments. TCRL Trans Auth and
TCRL Trans Unauth represent the average rewards of TCRL policy model transfer to authorized
and unauthorized target-domain environments, respectively.

HalfCheetah-v3 Hopper-v3 Ant-v3 Mean
PPO Random 4123.66 2057.22 2598.95 -
TCRL Trans Auth 4207.33 2075.46 2427.83 -
Ratio 102.03% 100.89% 93.42% 98.78%
TCRL Trans Unauth 2516.65 1028.16 1043.02 -
Ratio 61.03% 49.98% 40.13% 50.38%

than those of the PPO Trans Unauth curve. This implies that the TCRL policy model encounters
significant difficulties in migrating to the unauthorized target-domain environment, thereby demon-
strating a robust anti-transfer capacity. The PPO Random curve represents the average reward values
obtained through training from the initial state in each task environment. The convergence values of
the PPO Trans Unauth curve are comparable to those of the PPO Random curve. This indicates that
the original PPO algorithm is essentially incapable of preventing the source-domain policy model
from transferring to the unauthorized target-domain environment.

Meanwhile, Fig. 7 clearly demonstrates that TCRL policy model preserves its transferability within
the authorized target domain, thereby providing an avenue for subsequent model expansion. The
convergence values of the TCRL PPO Trans Auth curve exhibit minimal divergence from those of
the PPO Trans Auth curve and closely approximate the reward values of the PPO Random. This
observation implies that our proposed policy model retains a high-level of transferability.

As indicated in Table 1, the TCRL policy model derived from our training regimen not only sustains
a transfer performance of 98.78% in the authorized target domain but also effectively restricts the
transfer performance of the policy model to the unauthorized target domain to 50.38%.

6 CONCLUSION AND LIMITATION

In this paper, we have introduced a new task of training transfer-controllable policies in DRL and
presented an original framework to address this task. Firstly, we have examined the necessity
of transfer-controllable learning in DRL and identified potential challenges that may arise. Sub-
sequently, we proposed the TCRL framework for transfer-controllable training and theoretically
demonstrated its feasibility. Moreover, we applied this framework to obtain a transfer-controllable
policy model and empirically validated its efficacy in safeguarding against transfer attacks on the
policy model. However, the TCRL framework’s major limitation is that it consumes approximately
twice the computational resources of conventional DRL training, mainly because of the high com-
putational cost of stochastically generating suitable unauthorized target domain.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Majid Abdolshah, Hung Le, Thommen Karimpanal George, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. A new representation of successor features for transfer across dissimilar environments.
In International Conference on Machine Learning, pp. 1–9. PMLR, 2021.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pp. 1615–1631, 2018.

Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state ab-
stractions for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:8229–8241, 2021.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Vahid Behzadan and William Hsu. Sequential triggers for watermarking of deep reinforcement
learning policies. arXiv preprint arXiv:1906.01126, 2019.

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction
attacks. In International Conference on Machine Learning and Data Mining in Pattern Recogni-
tion, pp. 262–275. Springer, 2017.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151–175,
2010.

Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu. Temporal watermarks
for deep reinforcement learning models. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 314–322, 2021a.

Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. Stealing deep reinforce-
ment learning models for fun and profit. In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, pp. 307–319, 2021b.

Paul Daoudi, Bogdan Robu, Christophe Prieur, Ludovic Dos Santos, and Merwan Barlier. Enhancing
reinforcement learning agents with local guides. arXiv preprint arXiv:2402.13930, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowl-
edge in multi-task deep reinforcement learning. arXiv preprint arXiv:2401.09561, 2024.

Helei Duan, Jeremy Dao, Kevin Green, Taylor Apgar, Alan Fern, and Jonathan Hurst. Learning task
space actions for bipedal locomotion. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1276–1282. IEEE, 2021.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Alaa Fkirin, Gamal Attiya, Ayman El-Sayed, and Marwa A Shouman. Copyright protection of deep
neural network models using digital watermarking: a comparative study. Multimedia Tools and
Applications, 81(11):15961–15975, 2022.

Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Contextual policy transfer in reinforcement
learning domains via deep mixtures-of-experts. In Uncertainty in Artificial Intelligence, pp. 1787–
1797. PMLR, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yijie Guo, Qiucheng Wu, and Honglak Lee. Learning action translator for meta reinforcement
learning on sparse-reward tasks. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 6792–6800, 2022.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022,
2024.

Lei Han, Qingxu Zhu, Jiapeng Sheng, Chong Zhang, Tingguang Li, Yizheng Zhang, He Zhang,
Yuzhen Liu, Cheng Zhou, Rui Zhao, et al. Lifelike agility and play in quadrupedal robots using
reinforcement learning and generative pre-trained models. Nature Machine Intelligence, 6(7):
787–798, 2024.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua, Ala Al-Fuqaha, Dinh Thai
Hoang, and Dusit Niyato. Challenges and countermeasures for adversarial attacks on deep rein-
forcement learning. IEEE Transactions on Artificial Intelligence, 3(2):90–109, 2021.

Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
with advantage-based auxiliary rewards. Advances in Neural Information Processing Systems,
32, 2019.

Xingyu Liu, Deepak Pathak, and Kris M Kitani. Revolver: Continuous evolutionary models for
robot-to-robot policy transfer. In International Conference on Machine Learning, 2022.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Buqing Nie, Jingtian Ji, Yangqing Fu, and Yue Gao. Improve robustness of reinforcement learn-
ing against observation perturbations via lipschitz policy networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 14457–14465, 2024.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017a.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, volume 30, 2017b.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International conference on machine learning, pp. 4344–4353.
PMLR, 2018.

Vijay Sadashivaiah, Keerthiram Murugesan, Ronny Luss, Pin-Yu Chen, Chris Sims, James Hendler,
and Amit Dhurandhar. To transfer or not to transfer: Suppressing concepts from source represen-
tations. Transactions on Machine Learning Research.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstart-
ing deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Yunzhe Tao, Sahika Genc, Jonathan Chung, Tao Sun, and Sunil Mallya. Repaint: Knowledge
transfer in deep reinforcement learning. In International Conference on Machine Learning, pp.
10141–10152. PMLR, 2021.

Zikang Tian, Ruizhi Chen, Xing Hu, Ling Li, Rui Zhang, Fan Wu, Shaohui Peng, Jiaming Guo,
Zidong Du, Qi Guo, et al. Decompose a task into generalizable subtasks in multi-agent rein-
forcement learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of samples in policy search via
multiple importance sampling. In International Conference on Machine Learning, pp. 6264–
6274. PMLR, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pp. 269–277, 2017.

Jeroen Van Baar, Alan Sullivan, Radu Cordorel, Devesh Jha, Diego Romeres, and Daniel Nikovski.
Sim-to-real transfer learning using robustified controllers in robotic tasks involving complex dy-
namics. In 2019 International Conference on Robotics and Automation (ICRA), pp. 6001–6007.
IEEE, 2019.

Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu. Non-transferable learning: A new
approach for model ownership verification and applicability authorization. In International Con-
ference on Learning Representations, 2022.

Chengjie Wu, Pingzhong Tang, Jun Yang, Yujing Hu, Tangjie Lv, Changjie Fan, and Chongjie
Zhang. Conservative offline policy adaptation in multi-agent games. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. Mutual alignment transfer learning. In
Conference on Robot Learning, pp. 281–290. PMLR, 2017.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

Mingfu Xue, Yushu Zhang, Jian Wang, and Weiqiang Liu. Intellectual property protection for deep
learning models: Taxonomy, methods, attacks, and evaluations. IEEE Transactions on Artificial
Intelligence, 1(01):1–1, 2021.

Qi Yi, Rui Zhang, Shaohui Peng, Jiaming Guo, Yunkai Gao, Kaizhao Yuan, Ruizhi Chen, Siming
Lan, Xing Hu, Zidong Du, et al. Online prototype alignment for few-shot policy transfer. arXiv
preprint arXiv:2306.07307, 2023.

Gengzhi Zhang, Liang Feng, Yu Wang, Min Li, Hong Xie, and Kay Chen Tan. Reinforcement
learning with adaptive policy gradient transfer across heterogeneous problems. IEEE Transactions
on Emerging Topics in Computational Intelligence, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International conference on machine learning, pp. 7404–7413. PMLR,
2019.

Jingjing Zhao, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Mohammad Mehedi Has-
san. Afa: Adversarial fingerprinting authentication for deep neural networks. Computer Commu-
nications, 150:488–497, 2020.

Jinhua Zhu, Yingce Xia, Lijun Wu, Jiajun Deng, Wengang Zhou, Tao Qin, Tie-Yan Liu, and
Houqiang Li. Masked contrastive representation learning for reinforcement learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45(3):3421–3433, 2022.

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

A USE OF LLMS

This paper did not use any LLMs during the research, writing, and other related processes.

B FOUNDATIONAL BACKGROUND ON DRL

B.1 DQN AND PPO OBJECTIVES AND CRITIC LOSS

In this paper, both the deep Q-network (DQN) and the proximal policy optimization (PPO) Schul-
man et al. (2017) algorithms are used to train the policy model. The main objectives of DQN and
PPO are:

Jθk,Dk

DQN (θ) = Êt,Dk

{[
Q(st, at; θ)− rt(st, at)− γmax

a′
Q(st+1, a

′; θk)

]2}
, (6)

and

Jθk,Dk

PPO (θ) = Êt,Dk

{
min

[
πθ(at|st)
πθk(at|st)

Ât, clip

(
πθ(at|st)
πθk(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

]}
, (7)

where Q represents the action-value function, θk indicates the network parameters of the old pol-
icy model at the kth training epoch, Dk denotes the data buffer at the kth training epoch, ϵ is a
hyperparameter, and Ât indicates the advantage estimates.

The Critic loss LMSE is defined as

LMSE(ϕ) = Êt,Dk
[(Vϕ(st)− R̂t)

2] (8)

where Dk indicates the data buffer of the chosen (st, at, zt) pairs from DSource and DUnauth Target.

B.2 SYMBOL DEFINITIONS

The symbols used in this paper and their corresponding meanings are shown in Table below.

C THEORY PROOFS

Theorem 1: Let τDS
and τDT

represent all optimal trajectories in the source and target domains,
respectively. For a given δ, a state-action pair (st, at, st+1) ∈ τDT

is considered source-similar if
there exists a state-action pair (s′t, a

′
t, s

′
t+1) ∈ τDS

such that |st − s′t| < δ and |st+1 − s′t+1| < δ.
Conversely, a state-action pair is considered target-specific if it is not source-similar. Then, an
increase in the number of target-specific state-action pairs makes it more difficult to transfer to the
target domain environment, and the H∆H distance between the source and target domains satisfies

dH∆H(D̃S , D̃T) ≤ 2 sup
η∈Hd

|PrD̃S
[z : η(z) = 1]− PrD̃T

[z : η(z) = 1]| (9)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Symbol Definitions

Symbol Notation

t The current time step
k The kth training epoch
S ∈ Rm The state space
A ∈ Rn The action space
H The Hilbert space
P : S ×A× S → R+ The state transition distribution
r : S ×A→ R The reward function
γ ∈ [0, 1] The discounted factor
st ∈ S The observed state from the environment at time step t
at ∈ A The agent action at time step t
Ω ⊆ Rn The partition on theH space
zt, ft The feature of the state st
p(st+1|st, at) ∈ P The transition distribution at time step t
rt(st, at) The environment reward at time step t
(st, at, st+1) The state-action pair at time step t
θ The policy model parameter
ϕ The value network parameter
θk The policy model parameter at kth training epoch
ϕk The value network parameter at kth training epoch
πθ(at|st) The policy distribution at time step t with model parameter θ
rt(θ) The policy probability ratio with model parameter θ
Dk The data buffer at the kth training epoch
Ât The advantage estimates at time step t
Jθk,Dk (θ) The main optimized objective of the PPO and the DQN algorithm
J
θk,DSource,DUnauth Target

TCRL (θ) The specific policy model optimized objective of the TCRL algorithm
LMMD The maximum mean discrepancy loss
τS , τT The optimal trajectories in the source and target domains, respectively
D̃S , D̃T The dataset on the source and target domain, respectively
DSource The data buffer on the source domain
DUnauth Target The data buffer on the unauthorize target domain
ΩDS ,ΩDT The partition on source and target domain dataset, respectively
ρ The environment parameters
ϵ, δ The hyperparameters representing small values
α, β The tunable hyperparameters
min(·) The minimize function
clip(·) The clip function
E(·) The expected function
U(·) The uniform distribution
Φ(·) The Gaussian kernel function
Pr(·) The probability function

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where z denotes the feature of the state s, D̃S and D̃T represents the dataset on the source and target
domain, respectively.

Proof: Firstly, the RL transfer problem needs to be transformed into an SL optimization problem.

Assume that a trajectory τ is randomly selected from the set of target domain trajectories τDT
. If

any state-action pair (st, at, st+1) ∈ τ is source-similar, the optimal actions at and a′t satisfies that
|at − a′t| < ∆ as the state assumption conditions that |st − s′t| < δ and |st+1 − s′t+1| < δ. That is,
if the state-action pairs on the target domain are all source-similar, then these optimal actions at and
a′t can be divided into different categories.

Moreover, if a state-action pair (st, at, st+1) ∈ τ is target-specific, suppose that |st − s′t| < δ and
|st+1−s′t+1| < 2δ, then there exists a state-action pair (s′′t , a

′′
t , s

′′
t+1) satisifies that |s′′t −s′t| < δ and

|s′′t+1 − s′t+1| < 2δ. Then, the optimal actions satifies that |a′′t − a′t| < ∆ and |a′′t − at| < ∆, and it
means that |at − a′t| < 2∆. Furthermore, if there are few target-specific points in the target domain,
these optimal actions at and a′t can be divided into different categories through the auxiliary action
a′′t .

For the optimal trajectories τDS
(si) = [s0, a

opt
0 , ..., aopti−1, si], given the Markov property, optimizing

τDS
in the source domain is equivalent to the existence of a classifier from state si to action ai as

ADS
(si) = aopti . Similarly, for the target domain, the optimal trajectories τDT

is equivalent to the
optimal classifier ADT

(si) = aopti from state si to action ai.

Then, we derive the H∆H distance between the source and target domain.

Let the action space be A. Since the action category space ADS
and ADT

are subsets of the action
spaceA, and both the source domain classifier ADS

and the target domain classifier ADT
satisfy

ADS
⊆ ADS

= A and ADT
⊆ ADT

= A (10)
the attribute of ADS

and ADT
is the same. Considering the network architecture of the policy model

πθ, assume the feature extraction function fDS
of the Feature Net statisfies fDS

(si) = zi ∈ Z ⊆
Rm. As all classification problems can be transformed into binary classificationGoodfellow et al.
(2016), only the binary categories will be taken into consideration as h : Z → {0, 1}. Based on the
domain adaptation theoryBen-David et al. (2010), for the classifier A = h ◦ f , the error of the given
classifier h(z) on the target domain DT is

ϵDT
(h) < ϵDS

(h) +
1

2
dH∆H(D̃S , D̃T) + λ (11)

where ϵDT
(h) and ϵDS

(h) denote the error of the given classifier h(z) on the source and target
domain, respectively. The variable dH∆H represents the generalized distance between data buffer
D̃S and D̃T on the specific H space. Meanwhile, the const parameter λ satisfies that

λ = ϵDS
(h⋆) + ϵDT

(h⋆), h⋆ = argmin
h∈H

ϵDS
(h) + ϵDT

(h) (12)

where h⋆ indicates the best classifier with the lowest error sum λ of the source error ϵDS
and the

target error ϵDT
on the H space. Meanwhile, the space H∆H satisfies

H∆H = {η : η(z⋆) = 1} (13)
where define the variable z⋆ as

z⋆ = {z : h1(z)⊕ h2(z), h1, h2 ∈ H} (14)
where ⊕ indicates the XOR operator.

Therefore, regarding the problem of transferring the source domain policy model πθ into the target
domain, it is equivalent to minimizing variables ϵDS

(h) and dH∆H. For minimizing the generalized
distance dH∆H, we derive as follows

dH∆H(D̃S , D̃T) = 2 sup
h1,h2∈H

∣∣PrD̃S
[{z : h1(z) ̸= h2(z)}]− PrD̃T

[{z : h1(z) ̸= h2(z)}]
∣∣

= 2 sup
η∈H∆H

∣∣PrD̃S
[{z : η(z) = 1}]− PrD̃T

[{z : η(z) = 1}]
∣∣

≤ 2 sup
η∈Hd

∣∣PrD̃S
[z : η(z) = 1]− PrD̃T

[z : η(z) = 1]
∣∣ (15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where H⌈ denotes the trained classfier space such that h1, h2 ∈ H.

Besides, as the number of target-specific state-action pairs increases, the difficulty of transferring
the policy model from the source domain to the target domain increases from a geometric multiple.
According to the Generalization Bound theoremZhang et al. (2019), we have

ϵDT
(f) < ϵ

(ρ)
DS

(f) + d
(ρ)
f,F (D̃S , D̃T) + λ+ 2

√
log 2

δ

2n
+

√
log 2

δ

2m

+
2k2

ρ
Rn,DS

(Π1F) +
2k

ρ
Rn,DS

(ΠHF) +
2k

ρ
Rm,DT

(ΠHF)

(16)

where f denotes all scoring functions, k represents the number of categories for classification prob-
lems in the source and target domains, ρ is a given const parameter, λ is a constant independent of
f , R represents the Rademacher complexity, and Π1F is defined as

Π1F = {x → f(x, y)|y ∈ Y, f ∈ F} (17)

It can be seen from the above theorem that the increase of the number of categories k will lead to the
increase of generalization error in the target domain. In our derivation, more target-specific state-
action pairs mean more classification of action categories in both the source and target domains.
That is to say, as the difference between the source domain and the target domain becomes larger,
the generalization error between the source domain and the target domain will continue to increase.
Furthermore, we can get that the increase of target-specific state-action pairs will make it more
difficult for the policy model to transfer from the source domain to the target domain environment.

□

Theorem 2: Assume p(s, a) is the joint distribution of state s and action a. Given δ ∈ [0, 1], let a
partition Ω ⊆ Rn on the H space satisfies Pp(s,a)(s ∈ Ω) = δ, then
(1) there exists a partition ΩDS

and ΩDT
such that

dH∆H(DS , DT) ≥ 2
∣∣∣Es∼DS

[A(s) ̸= A
′
(s)]− Es∼DT

[A(s) ̸= A
′
(s)]

∣∣∣ (18)

(2) maximizing the MMD loss is equivalent to increasing the distance dH∆H.

Proof: First, we prove that there exists a large upper bound of dH∆H that satisfies the transfer
learning constraints for the transfer error ϵDT

.

Let p(s, a) be the joint distribution of the state s and action a. A partition Ω ⊆ Rn is constructed
such that all states s in this partition Ω satisfies that

Pp(s,a)(s ∈ Ω) = δ (19)

where the variable δ ∈ [0, 1]. Given a classifier h, a classification method k(z) = 1 is generated on
it, where z ∈ {z|h(z) > 0.5}. When δ = 1, the partition Ω uniquely corresponds to a classifier k.
In this case, the generalization error is

ϵ(Ω) = ϵ(k) = E(|a−A(s)|) (20)

The optimal partition of the probability distribution p is denoted as

Ω⋆
p = argmin

Ω⊆Rn

ϵ(Ω) (21)

For the transfer problem on the target domain DT , it is equivalent to the optimization problem

min
f,h

ϵDS
(h ◦ f), s.t. f(sDS

) = f(sDT
) (22)

For the transferred classifier Atran, it belongs to the set of classifiers A⋆ that satisfy

ϵDS
(hAtran ◦ fAtran) ≤ ϵDS

(Ω⋆
DS

) (23)

fAtran(sDS
) = fAtran(sDT

) (24)

Consider the feature function fΩ(s) defined as follows: for a given partition Ω,

fΩ(s) =

{
1m, s ∈ (SDS

∩ Ω⋆
DS

) ∨ (SDT
∩ Ω)

0m, otherwise
(25)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where the parameter m denotes the dimensions of the feature vector. Let the classifier be h(1m) = 1.
Obviously, A = h ◦ fΩ(s) ∈ A⋆. Construct that

Ω̂ = argmax
Ω⊆Rn

ϵDT
(Ω) s.t. PDT

(s ∈ Ω) = PDS
(s ∈ Ω⋆

DS
) (26)

the generalization error of the classifier

Â = h ◦ fΩ̂(s) ∈ A⋆ (27)

corresponding to this partition is

ϵDT
(Â) = max

A∈A⋆
ϵDT

(A) (28)

Define that

Ssame = {s|s ∈ SDS
∩ SDT

} and Sdiff = {s|s /∈ SDS
∩ SDT

} (29)

Assume that
PDT

(s ∈ Ω⋆
DT

) = PDS
(s ∈ Ω⋆

DS
) = 0.5 (30)

and s ∈ Sdiff ∩ Ω̂, this approach still achieves optimization of source domain error while mapping
DS and DT to the same distribution. In this case, it holds that

max
A∈A

ϵDT
(A) ≥ (1− |Ssame|

|SDS
∪ SDT

|
)(1− ϵDT

(Ω⋆
DT

)) ≥ 1− ϵDT
(Ω⋆

DT
) (31)

When Ssame = ∅, it degenerates to

max
A∈A

ϵDT
(A) ≥ 1− ϵDT

(Ω⋆
DT

) (32)

This implies the existence of worst-case solutions that satisfy the original transfer learning condi-
tions.

A worst-case classifier can be constructed as follows: Let ΩDS
and ΩDT

be chosen such that s has
an equal probability of occurring in both the source and target domains and Ssame = ∅. Define the
feature function

f(s) = 1m if s ∈ (SDS
∩ ΩDS

) ∨ (SDT
∩ ΩDT

) (33)

f
′
(s) = 1m if s ∈ (SDS

∩ ΩDS
) ∨ (SDT

∩ (Rn\ΩDT
)) (34)

and let the classifier be h(1m) = 1. For the classifiers A = h ◦ f and A
′
= h ◦ f ′

, both belong to
classifiers that satisfy the transfer conditions, but there exists a H∆H lower bound of

dH∆H ≥ 2|Es∼DS
[A(s) ̸= A

′
(s)]− Es∼DT

[A(s) ̸= A
′
(s)]| = 2 (35)

the maximum value of H∆H is achieved in this case.

Next, we aim to prove that increasing the MMD leads to an increase in the transfer error ϵDT
. The

MMD distance is defined as

MMD(X,Y) = ∥ 1
n

n∑
i

ϕ(xi)−
1

m

m∑
j

ϕ(yj)∥2H

= ∥ 1

n2

n∑
i

n∑
i′

ϕ(xi)ϕ(xi′)−
2

nm

n∑
i

m∑
j

ϕ(xi)ϕ(yj) +
1

m2

m∑
j

m∑
j′

ϕ(yj)ϕ(yj′)∥H

= ∥ 1

n2

n∑
i

n∑
i′

k(xi, xi′)−
2

nm

n∑
i

m∑
j

k(xi, yj) +
1

m2

m∑
j

m∑
j′

k(yj , yj′)∥

= ∥E(k(xi, xi′))− 2E(k(xi, yj)) + E(k(yj , yj′))∥
(36)

where xi ∼ X and yj ∼ Y , and the Gaussian kernel function is

k(u, v) = e−
∥u−v∥2

σ (37)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Consider these extreme scenarios:
i) When fixing E(k(xi, xi′)) = 1 and E(k(yj , yj′)) = 1, maximizing the MMD is equivalent to
setting E(k(xi, yj)) = 0. By using the kernel function k(u, v), we have

E(k(xi, yj)) = e−
E(∥xi−yj∥

2)

σ = 0 (38)

which is equivalent to E(∥xi − yj∥2) → +∞. Furthermore,

E(∥xi − yj∥2) = E(∥xi∥2 − 2∥xi∥∥yj∥+ ∥yj∥2)
= E(∥xi∥2)− 2E(∥xi∥∥yj∥) + E(∥yj∥2)
= E2(∥xi∥)− 2E(∥xi∥)E(∥yj∥)− 2∥Cov(X,Y)∥+ E2(∥yj∥)
= (E(∥xi∥)− E(∥yj∥))2 − 2||Cov(X,Y)∥
∼ +∞

(39)

This is equivalent to that ∥x− y∥ → +∞.

ii) When fixing E(k(xi, yj)) = 0, maximizing the MMD is equivalent to setting E(k(xi, xi′)) = 1
and E(k(yj , yj′)) = 1. As before, this is equivalent to E(∥xi − xi′∥) → 0 and E(∥yj − yj′∥) → 0.
Without loss of generality, we can assume that ∥xi∥ ≥ ∥xi′∥ for xi, xi′ ∼ X . We consider the
following on X:

E(∥xi − xi′∥
2) = E(∥xi∥2 − 2∥xi∥∥xi′∥+ ∥xi′∥

2)

= Ei(Ei′ (∥xi∥2)− 2Ei′ (∥xi∥∥xi′∥) + Ei′ (∥xi′∥
2))

= Ei(∥xi∥2 − 2∥xi∥Ei′ (∥xi′∥) + Ei′ (∥xi′∥
2))

= E(∥xi∥2 − 2x∥xi∥+ E(∥x∥2))
= 2(E(X2)− E2(X))

= 2D(X)

→ 0

(40)

This is equivalent to D(X) → 0 and D(Y) → 0.

In summary, when optimizing the MMD, as it approaches the limit, we have

lim
MMD→max

x− y = +∞ (41)

lim
MMD→max

D(x) = 0 (42)

lim
MMD→max

D(y) = 0 (43)

Considering the properties of limits, it is necessary that there exists a real number λ such that when
MMD > λ, x− y increases monotonically and D(x) and D(y) decrease monotonically. This means
that there is a critical step after which the MMD training always descends the gradient towards the
optimization of x− y, D(x), and D(y).

Considering with the Equation (31), when fixing other conditions and only considering the increase
of f(sDS

)− f(sDT
), it is equivalent to a decrease in |Ssame|, which leads to an increase in ϵDT

(A).

Consider the feature extraction function fΩ(s) = 1m for a given partition, where s ∈ (SDS
∩

Ω⋆
DS

) ∨ (SDT
∩ Ω). When fixing other conditions and considering the decrease of D(f(sDS

)) and
D(f(sDT

)), we consider the conditions (SDS
∩Ω⋆

DS
)∨ (SDT

∩Ω⋆
DT

) and (SDS
∩Ω⋆

DS
)∨ (SDT

∩
(Rn\Ω⋆

DT
)) To minimize the variance and achieve the optimal partition in the source domain, while

ensuring that |Ω⋆
DT

∩ Ω⋆
DS

| approaches |Rn\Ω⋆
DT

∩ Rn\Ω⋆
DS

|, the positive samples in the source
domain and negative samples in the target domain are constrained to a point in the feature space.
Similarly, this is also true for the negative samples in the source domain and positive samples in the
target domain. Therefore, there exist only the optimal classifiers for DS and DT respectively in this
feature space, and there does not exist a classifier that is optimal for both domains. Moreover, the
partition boundary between the source and target classifiers is orthogonal.

In a word, maximizing the MMD loss is equivalent to increasing the distance dH∆H.

□

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURE

To build the Actor and Critic models, we use a three-layer MLP structure on the MuJoCo environ-
ment. The first two MLP layers act as feature extractors, while the last MLP layer is used as either
the Policy Net or Value Net. The first two MLP layers are followed by a tanh activation function
layer. The output of the last MLP layer of the Actor model is the mean value of the output policy,
and the output of the last MLP layer of the Critic model is the estimated value of the current state.

D.2 HYPER PARAMETERS

In the Environment Randomization module, the scale parameter c is set to 1.5 for body mass, body
inertia, and geom friction, and 1.3 for dof damping in the MuJoCo environment. For the tunable
hyperparameters ϵ1 and ϵ2 are set to 0.1, ϵ3, and ϵ4, ϵ1, ϵ2, and ϵ3 are set to 0.5 for each experiment,
while ϵ4 is set to 1 for the HalfCheetah-v3 and Hopper-v3 experiments and 3 for the Ant-v3 exper-
iment. The tunable hyperparameter τ is set to 0.7 for the HalfCheetah-v3 and Ant-v3 experiments,
and 0.8 for the Hopper-v3 experiment.

In the Transfer-Controllable Training module, the learning rate of the normal training is set to 3e-
4, and the learning rate of the reverse training is set to 3e-5 for each experiment. The total buffer
size is set to 4096, with the source domain dataset and the target domain dataset each being 2048,
respectively. The step per epoch is set to 30000, and the step per collect is set to 2048. The batch
size is set to 64, and the repeat per collect is set to 10. The thread number for collecting data is set
to 64 during the model training process.

For the PPO algorithm, we employ both reward normalization and observation normalization tech-
niques. In the loss function, the value function coefficient is set to 0.25, the entropy coefficient is set
to 0.0, and the GAE lambda parameter is set to 0.95. Additionally, the epsilon clip parameter is set
to 0.2.

D.3 UNAUTHORIZED TARGET DOMAIN ENVIRONMENTS ON TRAINING PROCESS

In the experiment, we use 32 threads to collect the state-action pair data on the source domain envi-
ronment, while using 32 threads to collect the corresponding data on the unauthorized target domain
environment. In order to ensure the diversity of data collected on the target domain environments,
every 4 threads collect the state-action pair data obtained on the target domain environments with
the same parameter configuration in parallel. In the subsequent supplementary experimental results
section, we demonstrate that using this configuration for can achieve better training performance.

E ALGORITHM DETAILS

E.1 ENVIRONMENT RANDOMIZATION

As indicated in the main text of the paper, the process of Algorithm 1 can be divided into four main
phases: fine-tune authorized model, parameter randomization, unauthorized model fine-tuning and
screening environment.

In the phase of fine-tuning the authorized model, randomly select one from the source-domain policy
models and transfer it to the authorized target domain environment given by the user, as shown in
lines 1-2 of Algorithm 1.

In the parameter randomization phase, an unauthorized target domain environment is generated
according to some custom randomization rules, as shown in lines 5-6 in Algorithm 1. This phase
is mainly to randomize the relevant parameters in the source domain environment according to the
characteristics of the source domain environment, so as to obtain the target domain environments
similar to the MDP of the source domain environment.

In the unauthorized model fine-tuning phase, an Actor model πθ is randomly selected from the
source domain model set Pmodel for transfer learning, as shown in lines 7-8 in Algorithm 1. Then,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

we retrain the Actor model initialized by πθ in the generated target domain environments. In the Mu-
JoCo environment used in the verification of this paper, this simple fine-tune method has been able
to verify the availability of our framework. In practice, the appropriate transfer learning algorithm
could be selected according to the environment characteristics.

In the screening environment phase, the unauthorized target domain environments are selected
through the given custom rules, as shown in lines 10-11 in Algorithm 1. In this paper, we use
the converge time and the source domain rewards to judge whether a target domain environment is
easy to transfer. It is a simple and effective method to select the suitable target domain environments.

E.2 TRANSFER-CONTROLLABLE TRAINING

As indicated in the main text of the paper, the data processing flow of Algorithm 2 includes four main
phases: algorithm preparation, data collection, auxiliary variable calculation, and model parameter
update.

In the preparation phase, it mainly completes the construction of the environments and the initial-
ization of related variables, as shown in lines 1-3 in Algorithm 2. The initial parameters of the target
domain environments come from the result of Algorithm 1.

In the data collection phase, the Actor model πθk is used to collect trajectories on the source domain
environment E and the target domain environments {Ek}Lk=1 respectively, as shown in lines 5-10
in Algorithm 2. When the sum of the capacities of the data buffer DSource and DUnauth Target is
greater than the maximum threshold |D|, the data collection phase ends.

In the auxiliary variable calculation phase, the discounted reward R̂t and the advantage estimates
Ât required for the subsequent training phase are calculated, as shown in lines 11-12 in Algorithm
2. Calculate ÂD

t using the generalized advantage estimation method on the data buffers DSource and
DUnauth Target.

In the model parameter update phase, the four loss functions, shown in Fig. 3, are used to update the
model parameters, and the specific process is shown in lines 15-23 in Algorithm 2. In lines 14-15,
the preparations before model training is completed. Then the MMD loss LMMD and the Actor loss
Jθk
TCRL(θ) are calculated through Eq. (4) and Eq. (3), respectively. Next, the Critic loss is calculated

through Eq. (9). Finally, the model parameters of the Actor network πθk and the Critic network vϕk

are updated using the gradient ascent method, as shown in lines 16-18.

F SUPPLEMENTARY EXPERIMENTAL RESULTS

F.1 ABLATION STUDIES ON EACH COMPONENT

To comprehensively evaluate the contribution of each key component within our proposed TCRL
framework, we conducted additional ablation studies on the HalfCheetah-v3 benchmark. The re-
sults, presented in Table 3, quantify the impact of environment randomization and the transfer-
controllable training module (specifically, the MMD loss).

Table 3: Ablation Studies on Environment Randomization and Transfer-Controllable Training Mod-
ule. w/o Env Filtering refers to the variant where the process of screening and excluding unau-
thorized target environments during training is removed. w/o MMD indicates the removal of the
Maximum Mean Discrepancy (MMD) loss from the policy model’s objective function.

Reward w/o Env Filtering w/o MMD TCRL (full)
Unauthorized 1918 3012 2516
Authorized 3098 3985 4207

The experimental results highlight the significance of both components:

Impact of Environment Filtering: When Environment Filtering is omitted (”w/o Env Filtering”),
the model’s performance degrades substantially. The reward in authorized scenarios drops from
4207 (TCRL full) to 3098. Concurrently, the reward in unauthorized scenarios is the lowest at

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

1918. This outcome aligns with our hypothesis: without environment filtering, the training process
is exposed to unauthorized domains that may include dissimilar target environments. Such expo-
sure negatively impacts the model’s ability to learn an effective policy for authorized tasks and to
generalize appropriately.

Impact of MMD Loss: Removing the MMD loss (”w/o MMD”) while retaining environment filter-
ing also leads to a noticeable performance decline compared to the full TCRL model. The authorized
reward decreases to 3985 from 4207, and the unauthorized reward increases to 3012 from 2516.
The MMD loss is designed to encourage the policy to learn domain-invariant representations of
state-action pairs, thereby helping to distinguish and adapt behaviors between authorized and unau-
thorized domains. Without it, the model struggles to effectively capture these crucial state-action
differences, leading to suboptimal performance in authorized settings and increased undesirable be-
havior in unauthorized ones.

In contrast, the TCRL (full) model, which integrates both Environment Filtering and the MMD loss,
achieves the highest reward (4207) in authorized environments while maintaining a comparatively
lower reward (2516) in unauthorized environments. This demonstrates the synergistic effect of these
components in enabling robust and controllable transfer learning.

F.2 DIFFERENT TARGET DOMAIN ENVIRONMENT CONFIGURATIONS ON TCRL TRAINING

In this experiment, we mainly verify the impact of different unauthorized target domain environ-
ment number configurations on model performance during the training process. It mainly includes
changes in the total number of authorized target domain environments and changes in the proportion
of environments with the same configuration in the total target domain environments. In all these
experiments, we use 32 threads to collect data from the source domain.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0

1

2

3

4

5

6

R
ew

ar
ds

1e3

TCRL_32_Source
TCRL_32_Unauth_Target
TCRL_16_Source

TCRL_16_Unauth_Target
TCRL_48_Source
TCRL_48_Unauth_Target

(a) Total Target Environment Number

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

1

2

3

4

5

6

R
ew

ar
ds

1e3

TCRL_4_Source
TCRL_4_Unauth_Target
TCRL_2_Source

TCRL_2_Unauth_Target
TCRL_8_Source
TCRL_8_Unauth_Target

(b) Similar Target Environment Number

Figure 8: Training performance of different unauthorized target domain environment con-
figurations on the HalfCheetah-v3 environment. The variables TCRL x Source and
TCRL x Unauth Target represent the training performance of the TCRL algorithm on the source
and unauthorized target domains, respectively. (a) In this experiment, x refers to the number of
threads utilized for data collection in the target domain environments. Specifically, every 4 threads
were assigned to use the unauthorized target domain environments having an identical configuration.
(b) In this experiment, x denotes that every group of x threads was allocated to collect data from a
target domain environment having the identical configuration. In all these experiments, we use 32
threads to collect data on the source domain.

In the Total Target Environment Number experiment, we change the total number of target do-
main environments, as shown in the left part of Fig. 8. The TCRL 32 Source curve and the
TCRL 32 Unauth Target curve represent the default TCRL algorithm training configuration. Com-
paring the TCRL 32 Unauth Target curve with the TCRL 16 Unauth Target curve, it can be seen
that reducing the total number of target domain environments will increase the reward value achieved
by TCRL in the target domain, which also means that reducing the total number of target domain en-
vironments reduces the effectiveness of TCRL algorithm in suppressing target domain performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Comparing the TCRL 32 Source curve with the TCRL 48 Source curve, it can be seen that increas-
ing the total number of target domain environments will reduce the reward value obtained by TCRL
in the source domain. This means that increasing the total number of target domain environments
will reduce TCRL’s performance in the source domain. Overall, the default configuration of the total
number of target domain environments is a more suitable training parameter configuration.

In the Similar Target Environment Number experiment, we change the proportion of environments
with identical configuration in the total target domain environments, as shown in the right part of
Fig. 8. TheTCRL 4 Source curve and the TCRL 4 Unauth Target curve represent the default train-
ing configuration of the TCRL algorithm. In the source domain, different configurations achieve
similar reward values, with similar trends for the TCRL 4 Source curve, the TCRL 2 Source
curve and the TCRL 8 Source curve. In the target domain, the reward value obtained by the
TCRL 2 Unauth Target curve is higher than that of the other two dotted lines, which means that
this configuration weakens the performance suppression effect of TCRL on the target domain. That
is to say, the training performance is poor when the target domain environment where data is col-
lected by every two threads is the same. Overall, the default configuration of the identical target
environment proportion in the total target domain environments is a more suitable training parame-
ter configuration.

F.3 REWARD SCALE FOR TARGET DOMAIN ENVIRONMENTS

In this experiment, we mainly aim to verify the impact of target domain environments with different
random parameters on the final reward value obtained by the policy model. As shown in Fig. 9, the
final reward value obtained by the policy model in the randomized target domain environment using
the same randomization control parameters has a significant variance. To ensure the objectivity of
the experimental results, we scale the reward values based on the final reward values obtained in the
source and target domains.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0

2

4

6

8

R
ew

ar
ds

1e3

Source
Target_Seed0
Target_Seed1
Target_Seed2

Figure 9: The impact of target domain environment with different randomization parameters on the
final reward value. The Soure line represents the reward curve on the source domain environment,
and the other three lines Target seedx indicate the reward curves on the different randomized target
domain environments.

F.4 HYPERPARAMETER SENSITIVITY

We conducted experiments on the HalfCheetah-v3 environment to analyze the sensitivity of key
hyperparameters in our framework:

δ for environment perturbation. Since δ is determined through iterative optimization as described
in our Q2 response, we tested how reducing this parameter affects protection capability:

Table 4: Sensitivity to environment perturbation δ. “orig.” refers to the original reward.

Perf. δ (orig.) δ/2 δ/4 PPO Trans

HalfCheetah-v3 2516 2558 2617 4115

TCRL maintains effective protection even with reduced perturbation amplitude.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Tthreshold for quick transfer. This parameter defines the time threshold for identifying quickly
transferable environments (20% of training time from scratch). Testing variations of this threshold
shows:

Table 5: Sensitivity to quick transfer threshold Tthreshold.

Perf. 0.8Tthreshold Tthreshold 1.2Tthreshold

Unauth 2461 2516 2671
Auth 4195 4207 4015

The parameter exhibits moderate sensitivity without substantially impacting protection.

MMD loss weight η. This parameter balances feature distribution separation between domains.
Testing values around our default (3e-5):

Table 6: Sensitivity to MMD loss weight η.

Perf. 1e-5 3e-5 5e-5

Unauth 2608 2516 2497
Auth 4224 4207 4195

Results show low sensitivity within this range.

KL divergence weight λ. This parameter controls the influence of authorized policy behavior:

Table 7: Sensitivity to KL divergence weight λ.

Perf. 1e-2 1e-3 1e-4

Unauth 2647 2516 2623
Auth 3872 4207 4007

λ shows higher sensitivity than other parameters. Our default value (1e-3) provides optimal balance
between maintaining authorized performance while limiting unauthorized performance.

Most parameters show low to moderate sensitivity, with λ requiring the most careful tuning.

F.5 EXPERIMENTAL RESULTS OF OTHER MUJOCO ENVIRONMENTS

The experimental results of the other three MuJoCo environments, such as InvertedDoublePendu-
lum, Walker2d and Humanoid, as shown in Fiugre 10 and Fig. 11.

In Fig. 10, the baseline PPO algorithm and our TCRL algorithm can achieve similar rewards in the
source domain. During the training process, the rewards obtained in the target domain are much
less than the rewards in the source domain. In particular, in the Humanoid environment, the green
reward curve of the target domain has basically no upward trend.

In Fig. 11, the orange reward curves initialized by our TCRL model achieve the worst results, which
means that the TCRL model can prevent the migration of the policy model from the source domain
to the unauthorized target domain to a certain extent. Meanwhile, the blue reward curves intialized
by the original PPO model can obtain similar results with the green reward curves of random in-
tialization. It means that the original PPO model cannot prevent the source domain policy models
transfer to the target domain.

In general, these experimental results are similar to those of the three mujoco environment experi-
ments in the main text, which can support the relevant statements in the main text.

F.6 EXPERIMENTAL RESULTS ON HAND MANIPULATION SUITE ENVIRONMENT

In this experiment, we are examining the impact of two transfer reinforcement learning algorithms,
namely the DAPG algorithmRajeswaran et al. (2017a) and the REvolveR algorithmLiu et al. (2022),

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0

2

4

6

8

R
ew

ar
ds

1e3

(a) InvertedDoublePendulum-v2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

1

2

3

4

R
ew

ar
ds

1e3

(b) Walker2d-v3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Steps 1e6

0.2

0.4

0.6

0.8

1.0

R
ew

ar
ds

1e3

(c) Humanoid-v3

PPO_Source TCRL_PPO_Source TCRL_PPO_Unauth_Target

Figure 10: Training performance of the baseline PPO algorithm and our TCRL algorithm. The blue
PPO Source and orange TCRL PPO Source solid curves denote the performance of PPO and
TCRL on the source domain, while the green TCRL PPO Unauth Target dotted curves indicate
the performance of TCRL on the target domains.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e6

0

2

4

6

8

R
ew

ar
ds

1e3

(a) InvertedDoublePendulum-v2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e6

1

2

3

4

R
ew

ar
ds

1e3

(b) Walker2d-v3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e6

2

3

4

5

6

7

8

R
ew

ar
ds

1e2

(c) Humanoid-v3

PPO_Random PPO_Trans_Unauth TCRL_PPO_Trans_Unauth

Figure 11: Comparing the transfer performance of the PPO and TCRL models on the tar-
get domain, the blue PPO Trans Unauth curve denotes the PPO model and the orange
TCRL PPO Trans Unauth curve denotes the TCRL model. The blue PPO Random curve,
trained with a random initialized model, serves as the baseline.

on the transfer-controllability of the TCRL model. The objective is to evaluate the effectiveness of
these algorithms in attacking the transfer-controllability of the TCRL model. In these experiments,
we replaced the PPO algorithm in the main text with the NPG algorithm.

F.6.1 HAND MANIPULATION SUITE ENVIRONMENT

This part of the experiment is carried out on the hand manipulation suite environmentLiu et al.
(2022). This environment is constructed based on the ADROIT platformRajeswaran et al. (2017a),
as shown in Fig. 12.

In Fig. 12, the ADROIT platform is a 24-DoF anthropomorphic platform designed for addressing
challenges in dynamic and dexterous manipulation. The first, middle, and ring fingers have 4 degrees
of freedom (DoF). Little finger and thumb have 5 DoF, while the wrist has 2 DoF. Each DoF is
actuated using position control and is equipped with a joint angle sensor. In this experiment, we use
two kinds of these tasks, the object relocation task and the door opening task. As shwon in Fig. 12
(a), the goal of the object relocation task is to move the blue ball to the green target. As shwon in
Fig. 12 (b), the goal of the door opening task is to undo the latch and swing the door open.

The hand manipulation suite environmentLiu et al. (2022) is designed to make some evolving trans-
ferable environments for transfer reinforcement learning, as shown in Fig. 13. The evolutionary
generation process of the transferable five-finger dexterous hand robot is shown in Fig. 13 (c). In
the beginning, the hand robot had five dexterous fingers. In the process of continuous evolution, the
middle finger, ring finger, and little finger of the robot are getting shorter and shorter. In the end, the
hand robot only retained two fingers such as the thumb and index finger, and only had 1 DoF.

Next, we can construct the transferable learning tasks as shown in Fig. 13 (a) and (b). In the object
relocation transfer task, the objective of the source domain task is to move a blue ball to the green
target using the original five-finger dexterous hand robot. However, in this case, the robot is substi-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) Object Relocation Task

(b) Door Opening Task

Figure 12: The five-finger dexterous hand provided in the ADROIT platformRajeswaran et al.
(2017a).

tuted with a simpler two-finger robot in the target domain. Similarly, in the door opening transfer
task, the robot configuration remains unchanged, but the objective is modified to opening the door.

F.6.2 EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results are shown in Table 8 and Table 9 below. In these tables, ”From Scratch”
means training the policy model from scratch on the target domain, while ”Direct Finetune” means
using a pre-trained policy model from the source domain for transfer learning. There are two kinds
of pre-trained policy model, the ”NPG” modelRajeswaran et al. (2017b) and our ”TCRL” model.
Then, two kinds of transfer reinforcement learning algorithms, the ”DAPG” algorithmRajeswaran
et al. (2017a) and the ”REvolveR” algorithmLiu et al. (2022), are applied to attack the transfer-
controllability of the TCRL model. In the ”Sparse Reward” setting, only task completion is re-
warded. In the ”Dense Reward” setting, a distance reward is provided at every step.

In the REvolveR algorithmLiu et al. (2022) and the DAPG algorithmRajeswaran et al. (2017a), an
adaptive training scheduling strategy is employed to enhance training efficiency. Consequently, it is
not possible to predefine the total number of RL iterations in order to compare performance fairly
under the same number of iterations. Instead, the REvolveR algorithmLiu et al. (2022) compares the
number of RL optimization steps required to achieve a 90% success rate on the tasks. In this paper,
we continue to use the above evaluation method.

From Table 8, none of the transfer learning algorithms initialized with the TCRL model could con-
verge within 100K iterations. The reason may be that the five-finger robot and the two-finger robot
grab the blue ball in completely different ways, as shown in Fig. 13 (a). In the TCRL model, due
to the reverse training on positive samples in the evolutionary training process, it becomes challeng-
ing for transfer reinforcement learning algorithms to obtain positive samples of grasping the blue
ball in the target domain. This significantly amplifies the training difficulty for the two-finger robot
in the target domain. As a result, the training speed of transfer reinforcement learning using the
TCRL model as the initialization model is significantly slowed down in the object relocation task.
In other words, the TCRL model has hindered the transfer progress of the DAPG algorithm and the
REvolveR algorithm.

From Table 9, the convergence speed of the transfer learning algorithm initialized with the TCRL
model is significantly reduced. Compared with the object relocation task, in the door opening task,
the execution process of pushing the door handle is similar for the five-fingered robot and the two-

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) Object Relocation (b) Door Opening

(c) Transferable Robot Environments

Figure 13: The transferable tasks on hand manipulation suiteLiu et al. (2022).

Table 8: The experimental results of the target transfer task

Dense Reward Sparse Reward

From Scratch >100K ∞
Initialized Model NPG TCRL NPG TCRL

Direct Finetune 43.5K >100K ∞ -

DAPGRajeswaran et al. (2017a) 23.3K >100K ∞ -

REvolveRLiu et al. (2022) - >100K 18.1K >100K

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

fingered robot, as shown in Fig. 13 (b). Therefore, in this task, even with the initialization of the
TCRL model, the REvolveE algorithmLiu et al. (2022) can still achieve the goal of a success rate
exceeding 90%. However, our TCRL model can still significantly slow down the convergence speed
of the REvolveE algorithm, which can still generate certain value in practical applications.

Table 9: The experimental results of the door opening transfer task

Dense Reward Sparse Reward

From Scratch - ∞
Initialized Model NPG TCRL NPG TCRL

Direct Finetune 7.6K 82.5K ∞ -

DAPGRajeswaran et al. (2017a) 5.4K 48.3K ∞ -

REvolveRLiu et al. (2022) - 45.4K 2.6K 58.7K

Overall, the above experimental results demonstrate that the TCRL model provides a certain level of
protection for the intellectual property of the policy model when facing attacks from certain transfer
reinforcement learning algorithms.

F.7 COMPARISON WITH DOMAIN RANDOMIZATION

While traditional domain randomization (e.g., MAML) aims to enhance generalization, TCRL se-
lectively restricts transfer to unauthorized domains. Our supplementary experiments demonstrate
TCRL’s superior performance:

Table 10: Performance comparison of MAML and TCRL across different domains and environ-
ments. Values represent rewards.

Method Domain HalfCheetah-v3 Hopper-v3 Ant-v3

MAML Unauthorized 2916 1475 1387
Authorized 3972 1837 1678

TCRL Unauthorized 2516 1028 1043
Authorized 4207 2075 2427

These results confirm that directly applying domain randomization techniques to our task would lead
to suboptimal outcomes. Our approach with MMD loss and KL divergence constraints achieves the
desired balance: limiting performance in unauthorized domains while maintaining or improving it
in authorized ones.

G DISCUSSION

Question1: To protect the policy model, it is advisable to conceal the model parameters and strictly
restrict access to an API interface specifically designed for querying policy decisions based on the
observed state. Given this approach, is it still necessary to implement a transfer-controllable policy?

Answer: Yes, it is still necessary. Suppose Company A has designed a robot RA and trained the
corresponding baseline policy model πA. At the same time, Company B has replicated a robot RB

with similar dynamic characteristics and obtained the API of Company A’s robot’s policy model
πA. In this case, Company B can use the API to collect the motion trajectories Tr of robot RB and
then use relevant methods of offline reinforcement learning to obtain an approximate version of the
policy model π̂A. By applying transfer learning to the π̂A model, Company B can obtain a suitable
policy model πB for robot RB .

However, when Company A trains the baseline policy model πA using the TCRL algorithm, if
Company B tries to use the same API, they would only collect poor-quality motion trajectories. As
a result, subsequent offline reinforcement learning and transfer learning processes cannot be carried

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

out. Therefore, training a transfer-controllable policy model becomes necessary in order to mitigate
this issue.

Question2: In the paper, the unauthorized target domain environments are designed by randomizing
some parameters in the environments. However, it would be quite rare that the real target application
is only a few parameters different from the source environments while all other settings are the same.

Answer: Yes, perhaps such cases are quite rare. However, if Company B intends to steal the intel-
lectual property of Company A’s policy model, they would need to take certain steps to construct
a series of similar target domain environments. For example, as shown in Fig. 13 (c), Company B
can create a series of intermediate robots that allow Company A’s five-finger hand robot to transition
naturally to Company B’s two-finger hand robot. In general, by using transfer learning algorithms,
Company B can avoid some of the errors that Company A would encounter when training from
scratch.

Question3: The environment randomization module can be time-consuming and may not be suitable
for all scenarios.

Answer: No single method can be universally applicable to all scenarios, and the environment
randomization module is merely a simple preliminary solution. This paper aims to raise awareness
about the issue of protecting policy model intellectual property and propose a general solution. In
practical applications, various more efficient environment randomization schemes can be designed
for this module.

28

	Introduction
	Related Works
	Motivation
	Methodology
	Preliminary
	TCRL Framework
	Environment Randomization Module
	Transfer-Controllable Training Module

	Experimental Result
	Experiment Setup
	Performance of DQN on Maze Environment
	Training Performance of PPO on MuJoCo Environment
	Transferring Performance of PPO on MuJoCo Environment

	Conclusion and Limitation
	Use of LLMs
	Foundational Background on DRL
	DQN and PPO Objectives and Critic Loss
	Symbol Definitions

	Theory Proofs
	Implementation Details
	Network Architecture
	Hyper Parameters
	Unauthorized Target Domain Environments on Training Process

	Algorithm Details
	Environment Randomization
	Transfer-Controllable Training

	Supplementary Experimental Results
	Ablation Studies on Each Component
	Different Target Domain Environment Configurations on TCRL Training
	Reward Scale for Target Domain Environments
	Hyperparameter Sensitivity
	Experimental Results of Other MuJoCo Environments
	Experimental Results on Hand Manipulation Suite Environment
	Hand Manipulation Suite Environment
	Experimental Results and Analysis

	Comparison with Domain Randomization

	Discussion

