Under review as a conference paper at ICLR 2026

TRANSFER-CONTROLLABLE POLICY FOR MODEL
PROTECTION IN DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Online deep reinforcement learning (DRL) suffers from sample inefficiency. This
inefficiency challenges the training of effective policy models for complex tasks
and demands substantial time and computing resources. As trained policy models
can be transferred to other applications, protecting their intellectual property (IP)
has become a pressing issue. To address this, we need to prevent unauthorized
transfers for IP protection while maintaining transferability for future scalabil-
ity. We propose the first Transfer-Controllable Reinforcement Learning (TCRL)
framework. It has two key components: the Environment Randomization module
generates unauthorized target-domain environments randomly, and the Transfer-
Controllable module trains a policy model using source-domain and these unau-
thorized target-domain environments. This model resists transfer in unauthorized
settings yet remains transferable in authorized ones. We validated the framework’s
effectiveness across various DRL environments and algorithms. The TCRL pol-
icy model is hard to transfer to similar unauthorized target-domain environments,
but achieves source-domain-like performance in authorized ones. In the MuJoCo
environment, our trained policy model attains 98.78% of the source-domain per-
formance in authorized target-domain environments, and only 50.38% in unau-
thorized ones.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) techniques have thrived in various Al fields, like video games
Nie et al.| (2024)), board games |Schrittwieser et al.| (2020), and robot control Han et al. (2024);
Haarnoja et al.| (2024). However, significant expertise is needed to ensure their proper operation
Miki et al.|(2022). For example, by creating 8 different reward functions, including torque and joint
speed costs, and adopting curriculum learning, researchers enabled legged robots to learn animal-
like dynamic maneuvers Hwangbo et al.[|(2019). Also, training the AlphaGo policy model requires
tens of millions of dollars and thousands of GPUs Silver et al.|(2016)). Given the high investment in
time, resources, and expertise, protecting the intellectual property (IP) of policy models is crucial.

target2

unsafeorevilusage environment (target2) environment (target1) _2uthorizedt
save money

Figure 1: Training a policy model from scratch is time-consuming and costly. However, this model
can be seamlessly transferred to similar scenarios, substantially reducing training expenses. To safe-
guard against theft by malicious actors, any transfer to unauthorized environments must be strictly
prohibited. Simultaneously, to guarantee the model’s scalability in future applications, its transfer-
ability within authorized environments should be maintained.

DRL policy models risk theft and unauthorized transfer. Their relatively small model size (Fig.[T) fa-
cilitates easy theft and quick transfer to similar domains. During policy training Silver et al.|(2016),
these models learn from observations and generate actions, storing valuable knowledge, making

Under review as a conference paper at ICLR 2026

them more vulnerable to theft than large datasets. Training a policy model from scratch is extremely
time-consuming and costly, while using a pre-trained model can boost efficiency. Since policy mod-
els hold environment-related knowledge, it can be transferred to target domains via methods like
learning from demonstrations, representation transfer, and inter-task mapping |Yi et al.|(2023). This
transferability, however, also makes them prone to abuse.

Competitors may misuse obtained policy models by transferring them to similar scenarios, violating
IP rights. For example, if a trained gameplay robot’s policy model leaks, it could be used for illegal
activities like poaching through transfer learning, as depicted in Fig. [1 However, completely ban-
ning model transfer across different environments would harm the open-source community and limit
legitimate applications. With the growing use of DRL techniques, protecting policy model IP has be-
come an urgent issue. To address this, we propose the first Transfer-Controllable Reinforcement
Learning (TCRL) framework. This framework aims to balance model IP protection and usability
in authorized environments. It has two main modules: the Environment Randomization module,
which randomly generates unauthorized target-domain environments, and the Transfer-Controllable
Training module. The latter optimizes data from the source and authorized domains and performs
reverse optimization on unauthorized target-environment data. We also design a new policy-model
objective to stabilize the training process. In our experiment, the transfer difficulty of all environ-
ments is set equally to ensure consistent experimental conditions. Our main contributions are as
follows:

* We propose a new transfer-controllable task in DRL and validate its existence.
* We propose a preliminary TCRL framework to address this transfer-controllable task.

» Experimental results show policy models from our framework are controllably transferable:
readily transferring to authorized target domains, yet struggling with unauthorized ones.

2 RELATED WORKS

Policy Transfer in DRL. Our work is the opposite of the goal of policy transfer. Policy transfer
uses the knowledge learned on the source domain to help the policy training on the target domain
Zhu et al| (2023). In policy distillation, the algorithms learn a student policy 7, by minimizing
the divergence of action distributions between the teacher policy 7y, and the student policy 7y
according to trajectories 7. These studies can be further divided into two categories: teacher distil-
lation |Allen et al.| (2021)); Xu et al.|(2019); Zhu et al.| (2022) and student distillation [D’Eramo et al.
(2024); Schmitt et al.| (2018). The difference between them is that 7 is sampled from teacher policy:
T ~ mp, in teacher distillation and student policy: 7 ~ 7y, in student distillation. In policy reuse,
the algorithms reuse a set of teacher policies by the means of m-reuse exploration strategy, which
defines the trade-off among exploitation of the student policy, exploitation of the teacher policies,
and exploration of random actions using the evaluation of the teacher policies’ performance on the
target domain. The typical research include [Wu et al.| (2024)); Daoudi et al| (2024); Zhang et al.
(2024); \Gimelfarb et al.|(2021); Tao et al.| (2021)); Y1 et al.| (2023)); Tian et al.| (2023).

IP Protection in Deep Learning. The IP protection in DRL is still in its infancy, whereas research
on IP protection in Supervised Learning (SL) has made significant progress. In SL, the research
can be divided into three main categories: digital watermarking, backdoor and fingerprint | Xue et al.
(2021); [Fkirin et al.| (2022)). Digital watermarking involves embedding robust digital watermarks into
SL models to protect the model IP rights/Uchida et al.|(2017). The side effect of digital watermarking
that reduces the model prediction abilities is optimized from two aspects by backdoor |Adi et al.
(2018) and fingerprint |Zhao et al.| (2020). In DRL, some attack techniques are proposed to change
the model output Behzadan & Munir| (2017); |Chen et al.| (2021b), which shows that it is urgent
to study countermeasures of IP infringement on DRL models [[lahi et al.| (2021). Similar to the
SL methods, some research in DRL also embeds watermarks into the target policy for ownership
verification | Behzadan & Hsu| (2019); (Chen et al.| (2021a).

Different from the watermarking-based methods above, transfer-controllable learning restricts the
generalization ability of the model on target domains while preserving its performance on source
domains. The first approach of non-transfer learning was proposed in SL [Wang et al.|(2022). How-
ever, in DRL, the transfer-controllable learning problem has yet to be studied, and there are still
many issues to be addressed in order to protect model IP. Compared to the large model size and
stable training dataset in SL, the DRL model size is relatively small, and the dataset during training
is unstable.

Under review as a conference paper at ICLR 2026

3 MOTIVATION

Unlike SL, policy model initialization in DRL is crucial |Yi et al.| (2023). Online DRL faces two
major challenges: the exploration-exploitation dilemma and sparse rewards. The former requires
balancing between using existing policies for rewards and exploring with stochastic policies; GoEx-
plore addresses this by storing environmental states in an archive buffer Ecoffet et al|(2021). The
latter occurs when agents need extended action sequences for non-zero rewards, which can be mit-
igated through immediate intrinsic rewards, as demonstrated with the 11 distinct rewards designed
for a bipedal robot Duan et al.| (2021). Addressing these challenges demands substantial resources
in terms of funding, hardware, and training time.

However, if we have a better initial policy model before training, these difficulties can be alleviated
Tirinzonti et al.[(2019);|Van Baar et al.[(2019); Dennis et al.|(2020); Abdolshah et al.[(2021). A good
initial model can perform correct actions, reducing the need for extensive exploration in the target
environment to obtain sparse rewards |Barreto et al.[(2017); Wulfmeier et al.|(2017); Riedmiller et al.
(2018); [L1 et al.| (2019); |Guo et al.| (2022).

Training a transfer-controllable policy model can resist transfer attacks and protect model IP rights.
This raises two key questions: (1) Is training such a model necessary? (2) What are the specific
challenges in training transfer-controllable models in DRL compared to SL? Given that a well-
initialized policy model can reduce DRL training difficulty through transfer learning, answering
these questions is significant.

a0~ Source —— Target(Unauthorized)
—— Target(Authorized) Target(Dissimilar)

A Similar
(0) 3000
N
N
S o 2500
p B2
N
5
N = 2000
@ 2
4 (0] Q . D 1500
Unauthorized Authorized o

Target Target 1000

500 /

0.0 05 1.0

(a) (b)

Figure 2: Preliminary Experiment. (a) We assume a green area exists where the source-domain
policy model A can transfer to models B and C. Due to the policy overfitting in DRL, this green area
is usually thought non-existent, meaning model A hardly transfers to model D. (b) The experimental
results verify the existence of the green area. The Source, Target(Authorized), Target(Unauthorized),
and Target(Dissimilar) curves correspond to policy models A, B, C, and D respectively.

Necessity of Training Transfer-controllable Model. To tackle Question (1), we first consider
whether the policy model space contains similar regions. Such similarity is key as it enables a
well-trained source-domain policy to transfer smoothly to certain target domains. In DRL, policies
typically overfit to the source-domain environment, hindering their transfer to target domains. As
shown in the dissimilar target domain in Fig.[2{a), transferring Policy A to Policy D is difficult. We
assume there are similar target domains where the source-trained Policy A can quickly transfer to
Policies B and C, as marked by the green area in Fig. 2a).

To test our hypothesis, an experiment is conducted on the MuJoCo Hopper robot (Fig. f{b)). The
source domain featured Hopper parameters (torso, thigh, foot) of (0.05, 0.05, 0.06). Target domains,
authorized, unauthorized, and dissimilar, have parameters (0.10, 0.05, 0.06), (0.05, 0.10, 0.06),
and (0.2, 0.05, 0.06), respectively. Policy A, trained in the source domain, is transferred to these
target domains. Results (Fig.[2[b)) show Policy A achieved 2000 reward in the source domain. In
target domains with altered torso (Policy B) or thigh (Policy C) sizes, performance quickly reaches
2000. However, in the dissimilar target domain (Policy D) with a large torso change, Policy A’s
overfitting to the source domain hinders transfer. Results show training a transfer-controllable policy
is essential. The source-domain trained policy has some transferability. We must prevent its transfer
to unauthorized domains, while ensuring transfer to authorized ones for future scalability.

Different Research Points on SL and DRL. For Question (2), the research interests of transfer-
controllable learning technology in DRL are distinct from those in SL. In SL, the main problem
is how to overfit the source domain model to limit its generalization ability on the target do-

Under review as a conference paper at ICLR 2026

main [Sadashivaiah et al The parameter space of the SL model is large, thus providing many
directions for its optimization, making it easier to control the direction of overfitting while still
ensuring the model’s generalization on the target domain is limited. Furthermore, the datasets in SL
are usually huge and stable, which makes the training process more stable and further reduces the
difficulty of controlling the direction of overfitting. However, policy overfitting in DRL can limit
the transfer of source domain policy models to certain target domain environments. However, in
other target domain environments, the small model size of DRL models and the changing dataset
distribution during its training process, bring more diverse problems in the DRL field. Therefore, it
is necessary to conduct research on training transfer-controllable policy models.

4 METHODOLOGY

4.1 PRELIMINARY

In DRL, the agent learn from interaction with the environment, and the learning process is mod-
eled with the Markov Decision Process (MDP) defined by a tuple (S, A, P,r,~y). At each step ¢,
the agent samples an action a; € A from a policy distribution 7g(a;|s¢) where s, € S is the ob-
served state from the environment and 6 is the policy model parameter. After passing the action a,
into the environment, the environment transmits into the next state s;; with the transition distribu-
tion p(s¢11|st,at) € P, and the agent receives a reward (s, a;). Appendix A provides detailed
explanations of each variable and foundational background on DRL.

Environment Randomization o Transferable-Controllable Training

Source Domain,

as
Policy Net
=

Px 2,

1

-y
MMD
Loss
Actor KL Critic
+ X Loss + Loss Loss
MMD
Loss
—

Dissimilar

Authorized Target Domain

—— source data flow — unauthorized target data flow

Figure 3: The main TCRL framework consists of Environment Randomization and Transfer-
Controllable Training. The Environment Randomization module is used to randomly generate the
unauthorized target domain environments and train some policy nets on authorized target domain en-
vironments, while the TCRL Training module trains the transfer-controllable policy model through
a specific transfer-controllable loss function. The solid line represents the data interaction between
the TCRL model and the environments, where the interaction targets of the red and green lines are
the source domain and the unauthorized target domain environments, respectively.

4.2 TCRL FRAMEWORK

This paper introduces the TCRL framework (Fig. [3). The Environment Randomization module
generates unauthorized target domains, uses user-provided authorized domains to train policies, and
provides data for transfer-controllable training. The Transfer-Controllable Training module uses
this output to train the transfer-controllable policy. Interactive source and unauthorized target data
(Fig. B) from source and generated target domains enable reverse transfer training, which limits
transfer to unauthorized environments Also, the authorized-domain policy uses KL divergence for
scalability.

4.2.1 ENVIRONMENT RANDOMIZATION MODULE

As depicted in the left part of Fig.[3] the Environment Randomization module generates unautho-
rized target-domain environments and concurrently creates several authorized policy models based
on the user-provided authorized target domain. Initially, it randomly selects source-domain policy
models to fine-tune the authorized policy models and collects offline datasets during the fine-tuning
process. Subsequently, it randomly generates unauthorized target-domain environments according
to specified rules, such as the two robot environments within the red box. Next, through model fine-
tuning, their transferability is evaluated. Dissimilar target environments, marked with a red cross

Under review as a conference paper at ICLR 2026

Algorithm 1 Environment Randomization Module

Input: environment parameters p and Actor model set Ppoder = {7 } in source domain, parameter adjustment
threshold 9, user-provided authorized target-domain environments F 4,5,

Output: environment parameter set Eunauth_Target = {p: }l 0, authorized target-domain Actor models gAuth

1: Randomly select 7y from Prodel > Transfer authorized policy
2: Fine-tune mg on E 4.¢n to get rAuth

3: Initialize i <— 0, EUnauth_Target < {}

4: whilei < N do > Parameter randomization
5: Randomize parameters p; in the range [p — J, p + §]

6: Construct E; through parameters p;

7: Randomly select mg from Pmodel > Model fine-tuning
8: Fine-tune g on E; to get reward Ttarget

9: if Converge Time ¢ < Tinhreshold then
10: EUnauth,Target <~ EUnauth,Target U{pz}, 141+1
11: Calculate the scaling factor fr = r'target/Tsource
12: end if > Screening unauthorized target environments

13: end while

in Fig. [3] are excluded because they deviate significantly from the source-domain environment.
The objective of this paper is to obtain a source-domain policy model that is difficult to transfer in
previously unauthorized target-domain environments. Therefore, this module randomly generates
target-domain environments and selects those that are easily transferable. We derived Theorem 1 to
elucidate the existence of such unauthorized environments in the target domain.

Theorem 1: Let 75 and 7 represent all optimal trajectories in the source and target domains,
respectively. For a given J, a state-action pair (s, as, S¢+1) € 77 is considered source-similar if
there exists a state-action pair (s}, ajy, s;, 1) € Ts such that [s; — 5| < 0 and [s,41 — s}, 4| < 0.
Conversely, a state-action pair is considered target-specific if it is not source-similar. Then, an
increase in the number of target-specific state-action pairs makes it more difficult to transfer to the
target domain environment, and the HA?H distance between the source and target domains satisfies

dHAH(DS,DT) <2 suyg ’Prbs [z2:n(z) =1 — Prp_ [z:n(z) = lH (D
neEHq

where z denotes the feature of the state s, lN)S and l~)T represents the dataset on the source and target
domain, respectively. The detailed proof for Theorem 1 is included in the Appendix B.

In detail, the algorithm process can be divided into four main phases: fine-tune authorized policy,
parameter randomization, unauthorized model fine-tuning and screening environment, as shown in
Algorithm[I] More details in the Appendix D.

4.2.2 TRANSFER-CONTROLLABLE TRAINING MODULE

The Transfer-Controllable Training module, illustrated in the right part of Fig. 3] is designed to train
a transfer-controllable policy model in the source domain. This module interacts with the Environ-
ment Randomization module, as depicted in the middle of Fig.[3] During the model training process,
the Actor model receives the source domain states sg and the target domain states s from the en-
vironments in the Environment Randomization module at each step, and output the corresponding
actions ag and ar. Subsequently, the specific policy model objective is defined as

01, Dsource;PDUnauth.Target ;P Auth.Target — 701, Dsour
JreRr, 0)=1J)

— 1+ Lnnp - JO Pumsentsen () 4 X - (D= (g (L) |74 (-]s)) - (2)

where J%P () is defined in Eq. @ and Eq. , 0 denotes the Actor model parameters after kth
training, Dsource aNd Dynauth_Target are data buffers, 1 represents the learning rate of the reverse

training, A represents the weighting factors for authorized scalability, and Drcy, is the Kullback-
Leibler divergence function. Meanwhile, the Feature Net in the Actor model outputs the intermediate
features z; and z;, and the maximum mean discrepancy (MMD) loss is computed as

2

ni na
Lynvip = min | o, 3 - Z D(zs5,) — Z ®(zt,5) 3)
i=1 i=1 H

Under review as a conference paper at ICLR 2026

Algorithm 2 Transfer-Controllable Training Module

Input: environment parameter set Funauth Target = { pi}f\fzo in target domain, maximum data buffer size |D|
Output transfer-controllable Actor model g
: Initialize k < 0, Dsource <— {}, DUnauth.Target < {} > Algorithm prparation
: Randomize the parameters of Actor 7y, and Critic vy,
: Construct Esource and {Ek}ﬁzl through Eunauth_Targes in €ach domain
. while ¥ < N do > Data collection
while |DSource| + ‘DUnauth,Target| < |D| do

Collect 75 by running 7, in source domain

Collect 77 by running 7y, in authorized target domain

Dsource < Dsource U{TS}

IDUnauth,Target — DUnauth,Target U{TT}
10: end while > Auxiliary variable calculation
11: Compute AFoUre® and A7"*h-Tarset wih Bq.

12: Compute R; on Dsource and Dunauth Targes With Ry = A, + v, (s¢)

LRI NH DD

13: repeat > Model parameter update
14: Randomly choose (s¢, at, z¢) from datasets D

15: Recompute g (a¢|s:) and vg(s¢)

16: Compute the MMD loss Lyivp with Eq.

17: Update g, by maximizing Jg’éRL(G) through 041 < 0x + Vng’&RL(G)

18: Update vy, on Luse(¢) through ¢ri1 < ¢r + Vg Lnse(@)

19: until Dsource is empty
20: k< k + L DSource — {}7 DUnauth,Target — {}
21: end while

where ®(-) denotes the Gaussian kernel function, A indicates the Hilbert space, and «, 8 are the
tunable hyperparameters.

The two equations above are essential for achieving anti-transfer training in the unauthorized target-
domain environments while maintaining transferability in the authorized target-domain environ-
ments. In Eq. (2), the first term represents the model training in the source domain environment,
while the second term indicates the reverse model training in the generated unauthorized target do-
main environments. There may be some similar samples on the source domain dataset Dgoyrce
and the target domain dataset Dynauth Target- This causes the gradients from the source domain
JO% Dsource () and the target domain —.J% Pautn-tarser () to be opposite, negatively impacting the
model training on the source domain environment. To address this, factors n and Lyyp are intro-
duced to adjust the strength of reverse training on the target domain environments, thus decreasing
the negative impact. Additionally, the term —Lyryp could increase the distribution distance be-
tween the source domain feature z; and the target domain feature z;, making it easier to optimize in

different directions on Dgsgyrce and Dynauth_Target, thus reducing the difficulty of reverse training

optimization. In addition, the third term DDA“‘h Terset is used to ensure the transferability of the

policy model in the authorized target- domam env1ronment. Here, DAuth_Target 1 the fixed dataset
obtained in the previous step, which is used to fine-tune the transfer-controllable policy model to the
policy model in the authorized target domain. Since Dauth_Target 15 a fixed and small dataset, it has
little impact on the overall training of the first two terms. From the domain adaptation theory, we
derived Theorem 2 to illustrate the role of the MMD loss as follows

Theorem 2: Assume p(s, a) is the joint distribution of state s and action a. Given § € [0, 1], let a
partition 2 C R™ on the H space satisfies Py(s,a) (s € Q) =4, then
(1) there exists a partition {2pg and €2p,. such that

dyan(Ds, Dr) > 2|Eeupg[A(s) # A'(s)] — Esupr[A(s) # A'(s)]] 4

(2) maximizing the MMD loss is equivalent to increasing the distance dy; A . The detailed proof for
Theorem 2 is included in the Appendix B.

Concretely, the data processing flow includes four main phases: preparation, data collection, auxil-
iary variable calculation, and model parameter update, as shown in Algorithm[2] More details in the

Under review as a conference paper at ICLR 2026

Appendix D. The discounted reward Ry is calculated as

AP = Z(’Y/\)Z(Tt + Y (St4141) + B+ Lmmp - (—log(m(ae[st)) - 1o 4 €) — vg, (5¢41)) ()
D

where D denotes the data buffer, v4, denotes the Critic model, vy and A are adjustment factors.
5 EXPERIMENTAL RESULT

5.1 EXPERIMENT SETUP

To verify the training effect of our framework and the performance of TCRL model obtained through
training, we conducted experiments on different DRL algorithms and in different test environments.

DRL Algorithms, namely DQN Mnih et al.[(2015) and PPO |Schulman et al.|(2017), are employed
to comprehensively evaluate the performance of these algorithms under various conditions, aiming
to uncover their respective advantages and limitations in solving the targeted problems.

Test Environments. The main body of the text primarily presents the experimental results of our
framework in the Maze Environment and the MuJoCo Environment [Todorov et al.| (2012). The
configuration examples of these environments are illustrated in Fig.[d] In the experiments conducted
in the Maze Environment, we test the effectiveness of the DQN algorithm within our framework.
Meanwhile, in the experiments carry out in the MuJoCo Environment, we examine the performance
of the PPO algorithm within the same framework. Additional experimental results under various
settings are available in Appendix E.

(b) MuJoCo Environment

Figure 4: Overview of Experiment Setup. (a) Maze Environment. It consists of the Agent, Trap,
and Goal. In the source domain, there are two Goals, one on the right and one at the bottom. The
authorized target domain has a single Goal on the right, while the unauthorized target domain has
only one Goal at the bottom. In independent experiments, the positions of the Agent, Trap, and
Goal vary; (b) MuJoCo Environment. It encompasses MuJoCo robots with diverse configurations.
In the authorized target domain, users set the configurations based on the subsequent scalability re-
quirements of the model. In contrast, configurations in the unauthorized target domain are randomly
generated by the Environment Randomization module. In this example, users primarily specify the
Torso and Foot configurations of the Hopper robot, while the Thigh configuration is generated by
the Environment Randomization module.

5.2 PERFORMANCE OF DQN ON MAZE ENVIRONMENT

In this experiment, Agent receives a final reward of 60 upon reaching Goal and -10 if it enters
Trap by mistake. A single experiment terminates when Agent reaches the Goal or the environment
runs for more than 200 steps. As shown in Fig. Eka), both the original DQN (blue curve) and
TCRL_DQN (orange curve) can achieve a reward value of around 50 during training in the source
domain, indicating that the trained Agents can complete the tasks. This implies that our method has
little impact on the performance of the source-domain policy model during training.

Fig.[5(b) reveals that in the policy model transfer experiment, the transfer-controllable policy model
trained by the TCRL framework (orange curve) can complete the task in the authorized environment
but struggles to do so in the unauthorized environment. Here, TCRL _Trans_Unauth_1 (green curve)
and TCRL_Trans_Unauth_2 (red curve) correspond to the two experimental settings in the red box
of Fig. @) respectively. The red curve shows that even when the number of Traps is significantly
reduced, the transfer-controllable policy model still fails to complete the task. This demonstrates

Under review as a conference paper at ICLR 2026

Training Performance Transferring Performance
£ 50 TP s 50
E o
] o L 0 LG e e
o
s = [N
_8 -100 -100 TCRL_Trans_Auth
o — DON -150 —— TCRL_Trans_Unauth_1
W -150 TCRL_DQN —— TCRL_Trans_Unauth_2
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps (x10°) Steps (x10%)
a) (b)

Figure 5: Experiment of DQN on Maze Environment.

that the policy model obtained through our training exhibits strong reverse transfer ability in the
unauthorized environment.

5.3 TRAINING PERFORMANCE OF PPO ON MUJOCO ENVIRONMENT

In this experiment, we aim to verify the effect of the TCRL algorithm on the training performance
of the baseline algorithm. To do so, we used 32 copies of the same source domain environment to
train the benchmark PPO algorithm in parallel, and employ the same 32 source domain environment
copies, as well as 32 unauthorized target domain environments, to train the TCRL algorithm in
parallel. The convergence of the reward curve is used as the evaluation criteria.

—— PPO_Source TCRL_PPO_Source —— TCRL_PPO_Unauth

1e3 1e3 1e3
6 4

V/\/g”y/\”w\ WMA fﬂw, / MMW

o

Rewards
Rewards
Rewards

o

V2 4/ ANVV \ A~
PN |

o V

00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 30
Steps 1e6 Steps 1e6 Steps 1e6
(a) HalfCheetah-v3 (b) Hopper-v3 (c) Ant-v3

Figure 6: Training performance of the baseline PPO algorithm and our TCRL algorithm. The blue
PPO _Source and orange TC'RL_P PO _Source curves denote the performance of PPO and TCRL
on the source domain, while the green TC RL_P PO _Unauth curves indicate the performance of
TCRL on the unathorized target domains.

The experimental results show that during training, TCRL can achieve a performance similar to
PPO in the source domain. Meanwhile, it can significantly degrade the performance of the policy
model in the unauthorized target domain. In Fig. 6, for the HalfCheetah, Hopper, and Ant tasks,
the TCRL_PPO_Source curve converges to an average reward value close to that of the PPO_Source
curve, though with a slightly larger variance. This indicates that our method may slightly increase
the training difficulty of the algorithm, but has minimal impact on the final training outcome, as
both can yield effective policy models. On the other hand, the TCRL_PPO_Unath curve is limited
to a very low value in the unauthorized target domain environment. This demonstrates that our
method restricts the policy model’s performance in such environments, laying the groundwork for
subsequent transfer experiments.

5.4 TRANSFERRING PERFORMANCE OF PPO ON MUJOCO ENVIRONMENT

In this experiment, we aim to verify the effectiveness of the obtained transfer-controllable policy
model in preventing the transfer of the source domain to the unauthorized target domain. To do
so, we use the trained PPO and TCRL policy models to transfer on 8 authorized and 32 unautho-
rized target domain environments, respectively. Additionally, a random initialized policy model was
trained under the same target domain environment as a benchmark. Subsequently, the policy models
were tested on 8 authorized and 8 unauthorized target domain environments to verify the average
transfer-controllable ability during training process. The convergence of the reward curve was then
used as the evaluation criterion for transfer performance.

Based on the experimental results, it is evident that the TCRL policy model can effectively impede
the transferability of the source-domain policy model to the unauthorized target domain. As depicted
in Fig.[/| the reward values achieved by the TCRL_PPO _Trans_Unauth curve are substantially lower

Under review as a conference paper at ICLR 2026

— PPO_Random —— PPO_Trans_Auth —— PPO_Trans_Unauth TCRL_PPO_Trans_Auth ~ —— TCRL_PPO_Trans_Unauth
1e3 1e3 1e3

25 30

5
4 %MM *
RS
VA N
,/H ! A\ /\j AV =N

Rewards
Rewards

00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
Steps. 1e6 Steps 1e6 Steps. 1e6
(a) HalfCheetah-v3 (b) Hopper-v3 (c) Ant-v3

Figure 7: Comparing the transfer performance between the PPO and TCRL policy models. The
PPO_Trans_Auth curve denotes the PPO model and the TCRL_PPO _Trans_Auth curve de-
notes the TCRL model on authorized target domain, while the PPO_Trans_Unauth curve denotes
the PPO model and the TC'RL_PPO _Trans_-Unauth curve denotes the TCRL model on unautho-
rized target domain. The green PPO_Random curve, trained with a random initialized model,
serves as the baseline.

Table 1: Transferring performance on MuJoCo environment. PPO_Random denotes the average
rewards in authorized and unauthorized target-domain environments. T'C RL_Trans_Auth and
TCRL_Trans_Unauth represent the average rewards of TCRL policy model transfer to authorized
and unauthorized target-domain environments, respectively.

HalfCheetah-v3 Hopper-v3 Ant-v3 Mean
PPO_Random 4123.66 2057.22 2598.95 -
TCRL_Trans_Auth 4207.33 2075.46 2427.83 -
Ratio 102.03% 100.89% 93.42% | 98.78%
TCRL_Trans_Unauth 2516.65 1028.16 1043.02 -
Ratio 61.03% 49.98% 40.13% | 50.38%

than those of the PPO_Trans_Unauth curve. This implies that the TCRL policy model encounters
significant difficulties in migrating to the unauthorized target-domain environment, thereby demon-
strating a robust anti-transfer capacity. The PPO_Random curve represents the average reward values
obtained through training from the initial state in each task environment. The convergence values of
the PPO_Trans_Unauth curve are comparable to those of the PPO_Random curve. This indicates that
the original PPO algorithm is essentially incapable of preventing the source-domain policy model
from transferring to the unauthorized target-domain environment.

Meanwhile, Fig. /| clearly demonstrates that TCRL policy model preserves its transferability within
the authorized target domain, thereby providing an avenue for subsequent model expansion. The
convergence values of the TCRL_PPO_Trans_Auth curve exhibit minimal divergence from those of
the PPO_Trans_Auth curve and closely approximate the reward values of the PPO_Random. This
observation implies that our proposed policy model retains a high-level of transferability.

As indicated in Table[I] the TCRL policy model derived from our training regimen not only sustains
a transfer performance of 98.78% in the authorized target domain but also effectively restricts the
transfer performance of the policy model to the unauthorized target domain to 50.38%.

6 CONCLUSION AND LIMITATION

In this paper, we have introduced a new task of training transfer-controllable policies in DRL and
presented an original framework to address this task. Firstly, we have examined the necessity
of transfer-controllable learning in DRL and identified potential challenges that may arise. Sub-
sequently, we proposed the TCRL framework for transfer-controllable training and theoretically
demonstrated its feasibility. Moreover, we applied this framework to obtain a transfer-controllable
policy model and empirically validated its efficacy in safeguarding against transfer attacks on the
policy model. However, the TCRL framework’s major limitation is that it consumes approximately
twice the computational resources of conventional DRL training, mainly because of the high com-
putational cost of stochastically generating suitable unauthorized target domain.

Under review as a conference paper at ICLR 2026

REFERENCES

Majid Abdolshah, Hung Le, Thommen Karimpanal George, Sunil Gupta, Santu Rana, and Svetha
Venkatesh. A new representation of successor features for transfer across dissimilar environments.
In International Conference on Machine Learning, pp. 1-9. PMLR, 2021.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pp. 1615-1631, 2018.

Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state ab-

stractions for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:8229-8241, 2021.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Vahid Behzadan and William Hsu. Sequential triggers for watermarking of deep reinforcement
learning policies. arXiv preprint arXiv:1906.01126, 2019.

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction
attacks. In International Conference on Machine Learning and Data Mining in Pattern Recogni-
tion, pp. 262-275. Springer, 2017.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151-175,
2010.

Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu. Temporal watermarks
for deep reinforcement learning models. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 314-322, 2021a.

Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. Stealing deep reinforce-
ment learning models for fun and profit. In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, pp. 307-319, 2021b.

Paul Daoudi, Bogdan Robu, Christophe Prieur, Ludovic Dos Santos, and Merwan Barlier. Enhancing
reinforcement learning agents with local guides. arXiv preprint arXiv:2402.13930, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049-13061, 2020.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Sharing knowl-
edge in multi-task deep reinforcement learning. arXiv preprint arXiv:2401.09561, 2024.

Helei Duan, Jeremy Dao, Kevin Green, Taylor Apgar, Alan Fern, and Jonathan Hurst. Learning task
space actions for bipedal locomotion. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1276-1282. IEEE, 2021.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580-586, 2021.

Alaa Fkirin, Gamal Attiya, Ayman El-Sayed, and Marwa A Shouman. Copyright protection of deep
neural network models using digital watermarking: a comparative study. Multimedia Tools and
Applications, 81(11):15961-15975, 2022.

Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Contextual policy transfer in reinforcement
learning domains via deep mixtures-of-experts. In Uncertainty in Artificial Intelligence, pp. 1787—
1797. PMLR, 2021.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

10

Under review as a conference paper at ICLR 2026

Yijie Guo, Qiucheng Wu, and Honglak Lee. Learning action translator for meta reinforcement
learning on sparse-reward tasks. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 6792-6800, 2022.

Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H Huang, Dhruva Tirumala, Jan Humplik, Markus
Wulfmeier, Saran Tunyasuvunakool, Noah Y Siegel, Roland Hafner, et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022,
2024.

Lei Han, Qingxu Zhu, Jiapeng Sheng, Chong Zhang, Tingguang Li, Yizheng Zhang, He Zhang,
Yuzhen Liu, Cheng Zhou, Rui Zhao, et al. Lifelike agility and play in quadrupedal robots using
reinforcement learning and generative pre-trained models. Nature Machine Intelligence, 6(7):
787-798, 2024.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua, Ala Al-Fugaha, Dinh Thai
Hoang, and Dusit Niyato. Challenges and countermeasures for adversarial attacks on deep rein-
forcement learning. IEEE Transactions on Artificial Intelligence, 3(2):90-109, 2021.

Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
with advantage-based auxiliary rewards. Advances in Neural Information Processing Systems,
32,2019.

Xingyu Liu, Deepak Pathak, and Kris M Kitani. Revolver: Continuous evolutionary models for
robot-to-robot policy transfer. In International Conference on Machine Learning, 2022.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Buging Nie, Jingtian Ji, Yangqing Fu, and Yue Gao. Improve robustness of reinforcement learn-
ing against observation perturbations via lipschitz policy networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 14457-14465, 2024.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017a.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V. Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, volume 30, 2017b.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Wiele,
Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving sparse
reward tasks from scratch. In International conference on machine learning, pp. 4344—4353.
PMLR, 2018.

Vijay Sadashivaiah, Keerthiram Murugesan, Ronny Luss, Pin-Yu Chen, Chris Sims, James Hendler,
and Amit Dhurandhar. To transfer or not to transfer: Suppressing concepts from source represen-
tations. Transactions on Machine Learning Research.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M

Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstart-
ing deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

11

Under review as a conference paper at ICLR 2026

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604—-609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Yunzhe Tao, Sahika Genc, Jonathan Chung, Tao Sun, and Sunil Mallya. Repaint: Knowledge
transfer in deep reinforcement learning. In International Conference on Machine Learning, pp.
10141-10152. PMLR, 2021.

Zikang Tian, Ruizhi Chen, Xing Hu, Ling Li, Rui Zhang, Fan Wu, Shaohui Peng, Jiaming Guo,
Zidong Du, Qi Guo, et al. Decompose a task into generalizable subtasks in multi-agent rein-
forcement learning. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of samples in policy search via
multiple importance sampling. In International Conference on Machine Learning, pp. 6264—

6274. PMLR, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pp. 269-277, 2017.

Jeroen Van Baar, Alan Sullivan, Radu Cordorel, Devesh Jha, Diego Romeres, and Daniel Nikovski.
Sim-to-real transfer learning using robustified controllers in robotic tasks involving complex dy-
namics. In 2019 International Conference on Robotics and Automation (ICRA), pp. 6001-6007.
IEEE, 2019.

Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and Qi Zhu. Non-transferable learning: A new
approach for model ownership verification and applicability authorization. In International Con-
ference on Learning Representations, 2022.

Chengjie Wu, Pingzhong Tang, Jun Yang, Yujing Hu, Tangjie Lv, Changjie Fan, and Chongjie
Zhang. Conservative offline policy adaptation in multi-agent games. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. Mutual alignment transfer learning. In
Conference on Robot Learning, pp. 281-290. PMLR, 2017.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

Mingfu Xue, Yushu Zhang, Jian Wang, and Weiqgiang Liu. Intellectual property protection for deep
learning models: Taxonomy, methods, attacks, and evaluations. IEEE Transactions on Artificial
Intelligence, 1(01):1-1, 2021.

Qi Yi, Rui Zhang, Shaohui Peng, Jiaming Guo, Yunkai Gao, Kaizhao Yuan, Ruizhi Chen, Siming
Lan, Xing Hu, Zidong Du, et al. Online prototype alignment for few-shot policy transfer. arXiv
preprint arXiv:2306.07307, 2023.

Gengzhi Zhang, Liang Feng, Yu Wang, Min Li, Hong Xie, and Kay Chen Tan. Reinforcement

learning with adaptive policy gradient transfer across heterogeneous problems. /EEE Transactions
on Emerging Topics in Computational Intelligence, 2024.

12

Under review as a conference paper at ICLR 2026

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael Jordan. Bridging theory and algorithm
for domain adaptation. In International conference on machine learning, pp. 7404-7413. PMLR,
2019.

Jingjing Zhao, Qingyue Hu, Gaoyang Liu, Xiaogiang Ma, Fei Chen, and Mohammad Mehedi Has-
san. Afa: Adversarial fingerprinting authentication for deep neural networks. Computer Commu-
nications, 150:488—-497, 2020.

Jinhua Zhu, Yingce Xia, Lijun Wu, Jiajun Deng, Wengang Zhou, Tao Qin, Tie-Yan Liu, and
Hougiang Li. Masked contrastive representation learning for reinforcement learning. /EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45(3):3421-3433, 2022.

Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

A USE OF LLMSs

This paper did not use any LL.Ms during the research, writing, and other related processes.

B FOUNDATIONAL BACKGROUND ON DRL

B.1 DQN AND PPO OBJECTIVES AND CRITIC LOSS

In this paper, both the deep @Q-network (DQN) and the proximal policy optimization (PPO) Schul-
man et al.| (2017) algorithms are used to train the policy model. The main objectives of DQN and
PPO are:

2
Jg’b’g"' 9) = Et,Dk{ {Q(st, ag;0) — re(se, ar) — ’ynta/xQ(stH, a’; Gk)} }, (6)

and
Jg’f)’gk (9) = EtaDk { min |:7T0(a/t|St)Ata Chp (M? 1- €, 1 + 6) At:| }7 (7)

7o, (atlst) 7o, (at|st
where () represents the action-value function, 6 indicates the network parameters of the old pol-
icy model at the kth training epoch, Dy denotes the data buffer at the kth training epoch, € is a
hyperparameter, and A, indicates the advantage estimates.

The Critic loss Lysk is defined as
Luse(¢) = Eip, [(Ve(se) — Re)?] (®)

where Dj, indicates the data buffer of the chosen (s, as, 2;) pairs from Dsource a0d Dunaush_Target-

B.2 SYMBOL DEFINITIONS

The symbols used in this paper and their corresponding meanings are shown in Table below.

C THEORY PROOFS

Theorem 1: Let 7p, and 7p, represent all optimal trajectories in the source and target domains,
respectively. For a given 0, a state-action pair (¢, at, S¢41) € Tp, is considered source-similar if
there exists a state-action pair (s, a}, s},,) € Tpg such that [s; — s;| < § and [s;41 — ;4| < 6.
Conversely, a state-action pair is considered target-specific if it is not source-similar. Then, an
increase in the number of target-specific state-action pairs makes it more difficult to transfer to the
target domain environment, and the HA?H distance between the source and target domains satisfies

dyan(Ds,Dr) < 2 Su?-? |Prp [z :n(z) = 1] = Prp_[2:n(z) = 1]| 9)
neHtaq

13

Under review as a conference paper at ICLR 2026

Table 2: Symbol Definitions

Symbol Notation

t The current time step

k The kth training epoch

SeR™ The state space

AeR"” The action space

H The Hilbert space

P:SxAxS—R" The state transition distribution

r:SxA—-R The reward function

v € 1[0,1] The discounted factor

st €8 The observed state from the environment at time step ¢

ar € A The agent action at time step ¢

QCR" The partition on the H space

zt, ft The feature of the state s;

p(st+1lst,a:) € P The transition distribution at time step ¢

re(Se, ar) The environment reward at time step ¢

(st, at, St+1) The state-action pair at time step ¢

0 The policy model parameter

10} The value network parameter

O The policy model parameter at kth training epoch

Dk The value network parameter at kth training epoch

o (at|st) The policy distribution at time step ¢ with model parameter 0

r+(0) The policy probability ratio with model parameter 6

D The data buffer at the kth training epoch

A, The advantage estimates at time step ¢

Jo% Pk () The main optimized objective of the PPO and the DQN algorithm

Ji"é’gﬁ”“m’DU“‘““th’T‘"‘“gEt () The specific policy model optimized objective of the TCRL algorithm
MMD The maximum mean discrepancy loss

TS, TT The optimal trajectories in the source and target domains, respectively

Dg, Dy The dataset on the source and target domain, respectively

Dsource The data buffer on the source domain

DUnauth_Target The data buffer on the unauthorize target domain

Qpg, by The partition on source and target domain dataset, respectively

p The environment parameters

€0 The hyperparameters representing small values

a, B The tunable hyperparameters

min(-) The minimize function

clip(-) The clip function

E() The expected function

U(-) The uniform distribution

D() The Gaussian kernel function

Pr(+) The probability function

14

Under review as a conference paper at ICLR 2026

where z denotes the feature of the state s, Dg and Dy represents the dataset on the source and target
domain, respectively.

Proof: Firstly, the RL transfer problem needs to be transformed into an SL optimization problem.

Assume that a trajectory 7 is randomly selected from the set of target domain trajectories 7p,.. If
any state-action pair (s;, at, S+4+1) € T is source-similar, the optimal actions a; and a; satisfies that
la; — aj| < A as the state assumption conditions that |s; — s;| < 6 and |s;41 — 57, ;| < 0. That is,
if the state-action pairs on the target domain are all source-similar, then these optimal actions a; and
a; can be divided into different categories.

Moreover, if a state-action pair (s, as, s¢11) € T is target-specific, suppose that |s; — s;| < ¢ and
|si+1—s;,1| < 20, then there exists a state-action pair (s{, af, s{/, ;) satisifies that |s}’ —s}| < ¢ and
|s{\1 — st;1| < 20. Then, the optimal actions satifies that |a} — a}| < A and |a} — a;| < A, and it
means that |a; — a}| < 2A. Furthermore, if there are few target-specific points in the target domain,
these optimal actions a; and a} can be divided into different categories through the auxiliary action
ay.

For the optimal trajectories 7 (s;) = [s0, ag’", ..., a?",, si], given the Markov property, optimizing
Tp, in the source domain is equivalent to the existence of a classifier from state s; to action a; as
Apg(si) = ai® *. Similarly, for the target domain, the optimal trajectories Tp, 1S equivalent to the

i
optimal classifier Ap, (s;) = a;” ' from state s; to action a;.

Then, we derive the HA7H distance between the source and target domain.

Let the action space be .A. Since the action category space Ap, and Ap,. are subsets of the action
space.A, and both the source domain classifier Ap and the target domain classifier Ap,,. satisfy
Aps CApy=A and Ap, CAp,=A (10)

the attribute of Ap, and Ap.,. is the same. Considering the network architecture of the policy model
7, assume the feature extraction function fp, of the Feature Net statisfies fp(s;) = z; € Z C
R™. As all classification problems can be transformed into binary classificationGoodfellow et al.
(2016), only the binary categories will be taken into consideration as h : Z — {0, 1}. Based on the
domain adaptation theoryBen-David et al.| (2010), for the classifier A = h o f, the error of the given
classifier h(z) on the target domain Dy is

1 _
€Dr (h) < €Dg (h) + gd’HA”H(DSa DT) + A (11D

where €p..(h) and epg (h) denote the error of the given classifier 4(z) on the source and target
domain, respectively. The variable dy A represents the generalized distance between data buffer
Dg and D on the specific H space. Meanwhile, the const parameter A satisfies that

A=eps (W) 4+ epp(h*), h* =argminep,(h)+ ep,(h) (12)
heH

where h* indicates the best classifier with the lowest error sum A of the source error €p, and the
target error €p,. on the H space. Meanwhile, the space HA?H satisfies

HAH = {n:n(z*) =1} (13)
where define the variable z* as
2* ={z:hi1(z) ® ha(z), h1,ha € H} (14)
where & indicates the XOR operator.
Therefore, regarding the problem of transferring the source domain policy model 7y into the target

domain, it is equivalent to minimizing variables ep (h) and dy a3 . For minimizing the generalized
distance dy A, we derive as follows

dyan(Ds, Dr) = 2h sup [Prp [{z: hi(2) # ha(2)}] = Prp_[{z : hi(z) # ha(2)}]]

- 21768732% ‘PYDS {z:n(z) =1} — Prp_ {z:n(z) = 1}]| (15)

<2 sup |PrDS[z :n(z) =1] = Prp_[z:n(z) = 1”
neHaq

15

Under review as a conference paper at ICLR 2026

where H[denotes the trained classfier space such that by, ho € H.

Besides, as the number of target-specific state-action pairs increases, the difficulty of transferring
the policy model from the source domain to the target domain increases from a geometric multiple.
According to the Generalization Bound theoremZhang et al.|(2019)), we have

[log 2 lo
(p)) (P D 9] 285)
eDT(f)<6Ds(f)+df,]-'(S T)+)‘+ m + om (16)
2k 2k 2k
+ Tmn’DS (I F) + ?mn,Ds (g F) + ?mm,DT(H’H‘F)

SN

where f denotes all scoring functions, k represents the number of categories for classification prob-
lems in the source and target domains, p is a given const parameter, \ is a constant independent of
f, PR represents the Rademacher complexity, and I1; F is defined as

IWF={z = f(z,y)lyed,f €T} (17)

It can be seen from the above theorem that the increase of the number of categories k£ will lead to the
increase of generalization error in the target domain. In our derivation, more target-specific state-
action pairs mean more classification of action categories in both the source and target domains.
That is to say, as the difference between the source domain and the target domain becomes larger,
the generalization error between the source domain and the target domain will continue to increase.
Furthermore, we can get that the increase of target-specific state-action pairs will make it more
difficult for the policy model to transfer from the source domain to the target domain environment.

O

Theorem 2: Assume p(s, a) is the joint distribution of state s and action a. Given ¢ € [0,1], let a
partition 2 C R™ on the H space satisfies (5 4)(s € 2) = 6, then
(1) there exists a partition 2p, and 2p,. such that

dyan(Ds, Dr) > 2 |Boups[A(s) # A'(5)] = Esupy[A(s) # A'(s)] (18)
(2) maximizing the MMD loss is equivalent to increasing the distance dya.

Proof: First, we prove that there exists a large upper bound of dy a3 that satisfies the transfer
learning constraints for the transfer error €p,..

Let p(s, a) be the joint distribution of the state s and action a. A partition 2 C R™ is constructed
such that all states s in this partition (2 satisfies that

Pp(s,a)(s S Q) =4 (19)
where the variable ¢ € [0, 1]. Given a classifier h, a classification method k(z) = 1 is generated on

it, where z € {z|h(z) > 0.5}. When § = 1, the partition 2 uniquely corresponds to a classifier k.
In this case, the generalization error is

e(Q) = e(k) =E(Ja — A(s)]) (20)
The optimal partition of the probability distribution p is denoted as
Q) = argmine(Q) 1)
QCR”
For the transfer problem on the target domain Dy, it is equivalent to the optimization problem
I?igleDs(hOf), s.t. f(sps) = f(sDy) (22)
For the transferred classifier A", it belongs to the set of classifiers A* that satisfy
€Dg (hAtran O fAtran) S EDS(*DS) (23)
fAtmn (SDS) = fAtran(SDT) (24)

Consider the feature function f(s) defined as follows: for a given partition §2,

. 1,,, s€ (SDS OQ*DS) \Y (SDT QQ)
fals) = {Om, otherwise 25

16

Under review as a conference paper at ICLR 2026

where the parameter m denotes the dimensions of the feature vector. Let the classifier be A(1,,) = 1.
Obviously, A = h o fq(s) € A*. Construct that

) = argmaxep, () st. Pp,(s€Q)=Pp,(secQp,) (26)
QCR»

the generalization error of the classifier

A=ho fows) €A (27)
corresponding to this partition is
€Dy (A) = E?/gi €Dy (A) (28)
Define that
gsame — f5ls € Sp, N Spy} and SYT = {s|s ¢ Sp, N Sp,} (29)
Assume that
Pp,(s€Qp,) = Pps(s €Qp,) =05 (30)

and s € ST N (), this approach still achieves optimization of source domain error while mapping
Dg and D7 to the same distribution. In this case, it holds that

e * *
IE?KGDT(A) >(1- m)(l —€ep () 21 —€ep (p,) (3D
When §%2™¢ = &, it degenerates to
maxep,(A) > 1 —ep,.(2p,.) (32)

AcA

This implies the existence of worst-case solutions that satisfy the original transfer learning condi-
tions.

A worst-case classifier can be constructed as follows: Let 2p and {2p,. be chosen such that s has
an equal probability of occurring in both the source and target domains and S**™¢ = &. Define the
feature function

f(S):].m ifSG(SDSﬁQDS)\/(SDTﬁQDT) (33)

F(s)=1m ifse(SpsNQp,)V (Sp, N (RMNQp,)) (34)

and let the classifier be h(1,,) = 1. For the classifiers A = h o f and A" = ho f', both belong to
classifiers that satisfy the transfer conditions, but there exists a HAH lower bound of

dyar > 2| EaupslA(s) # A (s)] — Espr[A(s) # A ()] = 2 (35)
the maximum value of HAH is achieved in this case.

Next, we aim to prove that increasing the MMD leads to an increase in the transfer error ep,.. The
MMD distance is defined as

MMDOEY) = 3 3D 6e) = 36wy
Z J
== ZZM xf—%ZZm (1)) QZZM Sy

m m

1 2
:Hﬁzzk(x“ i')_nmzzk(mi,% QZZky]’yJ
P i g

= [[E(k(zi, 7)) — 2E(k(2i, y5)) + E(k(y;, y;)l
(36)
where z; ~ X and y; ~ Y, and the Gaussian kernel function is

Jlu—w?

k(u,v) =e " =& 37

17

Under review as a conference paper at ICLR 2026

Consider these extreme scenarios:
i) When fixing E(k(z;,;)) = 1 and E(k(y;,y;,)) = 1, maximizing the MMD is equivalent to
setting E(k(z;,y;)) = 0. By using the kernel function k(u, v), we have

_E(lwi—y;11*)

E(k(z;,y;)) =e¢— =+ =0 (38)
which is equivalent to E(||z; — y;||*) — +oo. Furthermore,
E(lz: — y;11*) = E(llzill* = 2llllly;ll + ly;11*)
= E([lill*) — 2E(l|2s] lly;1) +Elly;1%)
= E*([lz:]l) — 2E(llas DE(ly;) — 2l Cov(X, V)l + E*(llysl) 39
= (E(llzill) = E(lly;1))* = 2I| Cov(X, V)|
~ +00
This is equivalent to that |7 — || — +oo.

ii) When fixing E(k(x;, y;)) = 0, maximizing the MMD is equivalent to setting E(k(x;,z;)) =1
and E(k(y;,y;/)) = 1. As before, this is equivalent to E(||z; — z[|) — 0 and E([ly; —y;[) — 0.
Without loss of generality, we can assume that ||x;|| > ||z, || for z;,z, ~ X. We consider the
following on X:

E(llz; — @y 1*) = E(llz:l* = 2llwillllz | + 1o %)
=Ei(Ey (lz]1*) — 2By (|lzillllz 1) + By (1))
= Ei(llz:l” — 2l By (2 1) + By (2]*))

= E(||zil® - 27|zl + E(|l2]%)) (40)
= 2(E(X?) - E*(X))

= 2D(X)

—0

This is equivalent to D(X) — 0 and D(Y') — 0.

In summary, when optimizing the MMD, as it approaches the limit, we have

MM]131§maa:$ Y= +oo (41)
MM]lDlglmazD(x) =0 (42)
MMIl)lglmamD(y) =0 (43)

Considering the properties of limits, it is necessary that there exists a real number A such that when
MMD > A, T — ¥ increases monotonically and D(x) and D(y) decrease monotonically. This means
that there is a critical step after which the MMD training always descends the gradient towards the
optimization of T — 7, D(x), and D(y).

Considering with the Equation (31)), when fixing other conditions and only considering the increase
of f(sps) — f(spy,), itis equivalent to a decrease in |S%™¢|, which leads to an increase in €p,,. (A).

Consider the feature extraction function fq(s) = 1,, for a given partition, where s € (Sp, N
Qh.) V (Sp, N Q). When fixing other conditions and considering the decrease of D(f(sps)) and
D(f(sp;)), we consider the conditions (Sps N Q) V (Sp, MO},) and (Sps MO)V (Spy N
(R™\Q%,)) To minimize the variance and achieve the optimal partition in the source domain, while
ensuring that [}, N QF_| approaches [R™\Qp, N R™\Q7F, |, the positive samples in the source
domain and negative samples in the target domain are constrained to a point in the feature space.
Similarly, this is also true for the negative samples in the source domain and positive samples in the
target domain. Therefore, there exist only the optimal classifiers for Dg and D respectively in this
feature space, and there does not exist a classifier that is optimal for both domains. Moreover, the
partition boundary between the source and target classifiers is orthogonal.

In a word, maximizing the MMD loss is equivalent to increasing the distance dy a7 .

18

Under review as a conference paper at ICLR 2026

D IMPLEMENTATION DETAILS

D.1 NETWORK ARCHITECTURE

To build the Actor and Critic models, we use a three-layer MLP structure on the MuJoCo environ-
ment. The first two MLP layers act as feature extractors, while the last MLP layer is used as either
the Policy Net or Value Net. The first two MLP layers are followed by a tanh activation function
layer. The output of the last MLP layer of the Actor model is the mean value of the output policy,
and the output of the last MLP layer of the Critic model is the estimated value of the current state.

D.2 HYPER PARAMETERS

In the Environment Randomization module, the scale parameter c is set to 1.5 for body mass, body
inertia, and geom friction, and 1.3 for dof damping in the MuJoCo environment. For the tunable
hyperparameters €; and €5 are set to 0.1, €3, and €4, €1, €2, and €3 are set to 0.5 for each experiment,
while €4 is set to 1 for the HalfCheetah-v3 and Hopper-v3 experiments and 3 for the Ant-v3 exper-
iment. The tunable hyperparameter 7 is set to 0.7 for the HalfCheetah-v3 and Ant-v3 experiments,
and 0.8 for the Hopper-v3 experiment.

In the Transfer-Controllable Training module, the learning rate of the normal training is set to 3e-
4, and the learning rate of the reverse training is set to 3e-5 for each experiment. The total buffer
size is set to 4096, with the source domain dataset and the target domain dataset each being 2048,
respectively. The step per epoch is set to 30000, and the step per collect is set to 2048. The batch
size is set to 64, and the repeat per collect is set to 10. The thread number for collecting data is set
to 64 during the model training process.

For the PPO algorithm, we employ both reward normalization and observation normalization tech-
niques. In the loss function, the value function coefficient is set to 0.25, the entropy coefficient is set
to 0.0, and the GAE lambda parameter is set to 0.95. Additionally, the epsilon clip parameter is set
to 0.2.

D.3 UNAUTHORIZED TARGET DOMAIN ENVIRONMENTS ON TRAINING PROCESS

In the experiment, we use 32 threads to collect the state-action pair data on the source domain envi-
ronment, while using 32 threads to collect the corresponding data on the unauthorized target domain
environment. In order to ensure the diversity of data collected on the target domain environments,
every 4 threads collect the state-action pair data obtained on the target domain environments with
the same parameter configuration in parallel. In the subsequent supplementary experimental results
section, we demonstrate that using this configuration for can achieve better training performance.

E ALGORITHM DETAILS

E.1 ENVIRONMENT RANDOMIZATION

As indicated in the main text of the paper, the process of Algorithm 1 can be divided into four main
phases: fine-tune authorized model, parameter randomization, unauthorized model fine-tuning and
screening environment.

In the phase of fine-tuning the authorized model, randomly select one from the source-domain policy
models and transfer it to the authorized target domain environment given by the user, as shown in
lines 1-2 of Algorithm 1.

In the parameter randomization phase, an unauthorized target domain environment is generated
according to some custom randomization rules, as shown in lines 5-6 in Algorithm 1. This phase
is mainly to randomize the relevant parameters in the source domain environment according to the
characteristics of the source domain environment, so as to obtain the target domain environments
similar to the MDP of the source domain environment.

In the unauthorized model fine-tuning phase, an Actor model 7y is randomly selected from the
source domain model set P,,,q4¢; for transfer learning, as shown in lines 7-8 in Algorithm 1. Then,

19

Under review as a conference paper at ICLR 2026

we retrain the Actor model initialized by 7g in the generated target domain environments. In the Mu-
JoCo environment used in the verification of this paper, this simple fine-tune method has been able
to verify the availability of our framework. In practice, the appropriate transfer learning algorithm
could be selected according to the environment characteristics.

In the screening environment phase, the unauthorized target domain environments are selected
through the given custom rules, as shown in lines 10-11 in Algorithm 1. In this paper, we use
the converge time and the source domain rewards to judge whether a target domain environment is
easy to transfer. It is a simple and effective method to select the suitable target domain environments.

E.2 TRANSFER-CONTROLLABLE TRAINING

As indicated in the main text of the paper, the data processing flow of Algorithm 2 includes four main
phases: algorithm preparation, data collection, auxiliary variable calculation, and model parameter
update.

In the preparation phase, it mainly completes the construction of the environments and the initial-
ization of related variables, as shown in lines 1-3 in Algorithm 2. The initial parameters of the target
domain environments come from the result of Algorithm 1.

In the data collection phase, the Actor model 7, is used to collect trajectories on the source domain
environment £ and the target domain environments {Ek}ﬁzl respectively, as shown in lines 5-10
in Algorithm 2. When the sum of the capacities of the data buffer Dgource and Dunauth. Target 15
greater than the maximum threshold |D|, the data collection phase ends.

In the auxiliary variable calculation phase, the discounted reward Ry and the advantage estimates
Ay required for the subsequent training phase are calculated, as shown in lines 11-12 in Algorithm
2. Calculate AtD using the generalized advantage estimation method on the data buffers Dgoyrce and
DUnauth,Target .

In the model parameter update phase, the four loss functions, shown in Fig. [3 are used to update the
model parameters, and the specific process is shown in lines 15-23 in Algorithm 2. In lines 14-15,
the preparations before model training is completed. Then the MMD loss Lypvp and the Actor loss
J"%ERL (0) are calculated through Eq. (4) and Eq. (3), respectively. Next, the Critic loss is calculated
through Eq. (9). Finally, the model parameters of the Actor network 7y, and the Critic network v,
are updated using the gradient ascent method, as shown in lines 16-18.

F SUPPLEMENTARY EXPERIMENTAL RESULTS

F.1 ABLATION STUDIES ON EACH COMPONENT

To comprehensively evaluate the contribution of each key component within our proposed TCRL
framework, we conducted additional ablation studies on the HalfCheetah-v3 benchmark. The re-
sults, presented in Table [3] quantify the impact of environment randomization and the transfer-
controllable training module (specifically, the MMD loss).

Table 3: Ablation Studies on Environment Randomization and Transfer-Controllable Training Mod-
ule. w/o Env Filtering refers to the variant where the process of screening and excluding unau-
thorized target environments during training is removed. w/o MMD indicates the removal of the
Maximum Mean Discrepancy (MMD) loss from the policy model’s objective function.

Reward w/o Env Filtering w/o MMD TCRL (full)
Unauthorized 1918 3012 2516
Authorized 3098 3985 4207

The experimental results highlight the significance of both components:

Impact of Environment Filtering: When Environment Filtering is omitted ("w/o Env Filtering”),
the model’s performance degrades substantially. The reward in authorized scenarios drops from
4207 (TCRL full) to 3098. Concurrently, the reward in unauthorized scenarios is the lowest at

20

Under review as a conference paper at ICLR 2026

1918. This outcome aligns with our hypothesis: without environment filtering, the training process
is exposed to unauthorized domains that may include dissimilar target environments. Such expo-
sure negatively impacts the model’s ability to learn an effective policy for authorized tasks and to
generalize appropriately.

Impact of MMD Loss: Removing the MMD loss ("w/o MMD”) while retaining environment filter-
ing also leads to a noticeable performance decline compared to the full TCRL model. The authorized
reward decreases to 3985 from 4207, and the unauthorized reward increases to 3012 from 2516.
The MMD loss is designed to encourage the policy to learn domain-invariant representations of
state-action pairs, thereby helping to distinguish and adapt behaviors between authorized and unau-
thorized domains. Without it, the model struggles to effectively capture these crucial state-action
differences, leading to suboptimal performance in authorized settings and increased undesirable be-
havior in unauthorized ones.

In contrast, the TCRL (full) model, which integrates both Environment Filtering and the MMD loss,
achieves the highest reward (4207) in authorized environments while maintaining a comparatively
lower reward (2516) in unauthorized environments. This demonstrates the synergistic effect of these
components in enabling robust and controllable transfer learning.

F.2 DIFFERENT TARGET DOMAIN ENVIRONMENT CONFIGURATIONS ON TCRL TRAINING

In this experiment, we mainly verify the impact of different unauthorized target domain environ-
ment number configurations on model performance during the training process. It mainly includes
changes in the total number of authorized target domain environments and changes in the proportion
of environments with the same configuration in the total target domain environments. In all these
experiments, we use 32 threads to collect data from the source domain.

—— TCRL_32_Source —— TCRL_16_Unauth_Target —— TCRL_4_Source —— TCRL_2_Unauth_Target
TCRL_32_Unauth_Target —— TCRL_48_Source TCRL_4_Unauth_Target —— TCRL_8_Source
—— TCRL_16_Source —— TCRL_48_Unauth_Target —— TCRL_2_Source —— TCRL_8_Unauth_Target
1e3 1e3
6 6
5 5
4
g 8¢
© @
= 3 =3
@ i
2 2
1 1
0
0.0 0.5 1.0 1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0
Steps 1e6 Steps 1e6
(a) Total Target Environment Number (b) Similar Target Environment Number

Figure 8: Training performance of different unauthorized target domain environment con-
figurations on the HalfCheetah-v3 environment. The variables T'CRL_x_Source and
TCRL_z_Unauth_Target represent the training performance of the TCRL algorithm on the source
and unauthorized target domains, respectively. (a) In this experiment, = refers to the number of
threads utilized for data collection in the target domain environments. Specifically, every 4 threads
were assigned to use the unauthorized target domain environments having an identical configuration.
(b) In this experiment, x denotes that every group of x threads was allocated to collect data from a
target domain environment having the identical configuration. In all these experiments, we use 32
threads to collect data on the source domain.

In the Total Target Environment Number experiment, we change the total number of target do-
main environments, as shown in the left part of Fig. [§] The TCRL_32_Source curve and the
TCRL_32_Unauth_Target curve represent the default TCRL algorithm training configuration. Com-
paring the TCRL_32_Unauth_Target curve with the TCRL_16_Unauth_Target curve, it can be seen
that reducing the total number of target domain environments will increase the reward value achieved
by TCRL in the target domain, which also means that reducing the total number of target domain en-
vironments reduces the effectiveness of TCRL algorithm in suppressing target domain performance.

21

Under review as a conference paper at ICLR 2026

Comparing the TCRL_32_Source curve with the TCRL_48_Source curve, it can be seen that increas-
ing the total number of target domain environments will reduce the reward value obtained by TCRL
in the source domain. This means that increasing the total number of target domain environments
will reduce TCRL’s performance in the source domain. Overall, the default configuration of the total
number of target domain environments is a more suitable training parameter configuration.

In the Similar Target Environment Number experiment, we change the proportion of environments
with identical configuration in the total target domain environments, as shown in the right part of
Fig. |8l TheTCRL_4_Source curve and the TCRL_4_Unauth_Target curve represent the default train-
ing configuration of the TCRL algorithm. In the source domain, different configurations achieve
similar reward values, with similar trends for the TCRL_4_Source curve, the TCRL_2_Source
curve and the TCRL_8_Source curve. In the target domain, the reward value obtained by the
TCRL_2_Unauth_Target curve is higher than that of the other two dotted lines, which means that
this configuration weakens the performance suppression effect of TCRL on the target domain. That
is to say, the training performance is poor when the target domain environment where data is col-
lected by every two threads is the same. Overall, the default configuration of the identical target
environment proportion in the total target domain environments is a more suitable training parame-
ter configuration.

F.3 REWARD SCALE FOR TARGET DOMAIN ENVIRONMENTS

In this experiment, we mainly aim to verify the impact of target domain environments with different
random parameters on the final reward value obtained by the policy model. As shown in Fig.[9] the
final reward value obtained by the policy model in the randomized target domain environment using
the same randomization control parameters has a significant variance. To ensure the objectivity of
the experimental results, we scale the reward values based on the final reward values obtained in the
source and target domains.

1e3

8 —— Source

Target_Seed0 MA

—— Target_Seed1 AN v

6 —— Target Seed2 |/ |
W

Jvr

|
|

Rewards
>

0.0 0.5 1.0 15 2.0 25 3.0
Steps 1e6

Figure 9: The impact of target domain environment with different randomization parameters on the
final reward value. The Soure line represents the reward curve on the source domain environment,
and the other three lines T'arget_seedx indicate the reward curves on the different randomized target
domain environments.

F.4 HYPERPARAMETER SENSITIVITY

We conducted experiments on the HalfCheetah-v3 environment to analyze the sensitivity of key
hyperparameters in our framework:

0 for environment perturbation. Since is determined through iterative optimization as described
in our Q2 response, we tested how reducing this parameter affects protection capability:

Table 4: Sensitivity to environment perturbation §. “orig.” refers to the original reward.

Perf. 0 (orig.) 6/2 §/4 PPO_Trans
HalfCheetah-v3 2516 2558 2617 4115

TCRL maintains effective protection even with reduced perturbation amplitude.

22

Under review as a conference paper at ICLR 2026

Tinreshola for quick transfer. This parameter defines the time threshold for identifying quickly
transferable environments (20% of training time from scratch). Testing variations of this threshold
shows:

Table 5: Sensitivity to quick transfer threshold T3 eshold-

Perf. 0~8Tth'reshold Tth'reshold 1-2Tth7‘eshold
Unauth 2461 2516 2671
Auth 4195 4207 4015

The parameter exhibits moderate sensitivity without substantially impacting protection.

MMD loss weight 7. This parameter balances feature distribution separation between domains.
Testing values around our default (3e-5):

Table 6: Sensitivity to MMD loss weight 7.

Perf. le-5 3e-5 Se-5

Unauth 2608 2516 2497
Auth 4224 4207 4195

Results show low sensitivity within this range.

KL divergence weight \. This parameter controls the influence of authorized policy behavior:

Table 7: Sensitivity to KL divergence weight \.

Perf. le-2 le-3 le-4

Unauth 2647 2516 2623
Auth 3872 4207 4007

) shows higher sensitivity than other parameters. Our default value (1e-3) provides optimal balance
between maintaining authorized performance while limiting unauthorized performance.

Most parameters show low to moderate sensitivity, with A requiring the most careful tuning.

F.5 EXPERIMENTAL RESULTS OF OTHER MUJOCO ENVIRONMENTS

The experimental results of the other three MuJoCo environments, such as InvertedDoublePendu-
lum, Walker2d and Humanoid, as shown in Fiugre [_115] and Fig. @

In Fig. the baseline PPO algorithm and our TCRL algorithm can achieve similar rewards in the
source domain. During the training process, the rewards obtained in the target domain are much
less than the rewards in the source domain. In particular, in the Humanoid environment, the green
reward curve of the target domain has basically no upward trend.

In Fig.[T1] the orange reward curves initialized by our TCRL model achieve the worst results, which
means that the TCRL model can prevent the migration of the policy model from the source domain
to the unauthorized target domain to a certain extent. Meanwhile, the blue reward curves intialized
by the original PPO model can obtain similar results with the green reward curves of random in-
tialization. It means that the original PPO model cannot prevent the source domain policy models
transfer to the target domain.

In general, these experimental results are similar to those of the three mujoco environment experi-
ments in the main text, which can support the relevant statements in the main text.

F.6 EXPERIMENTAL RESULTS ON HAND MANIPULATION SUITE ENVIRONMENT

In this experiment, we are examining the impact of two transfer reinforcement learning algorithms,
namely the DAPG algorithmRajeswaran et al.|(2017a) and the REvolveR algorithmLiu et al.[(2022),

23

Under review as a conference paper at ICLR 2026

—— PPO_Source TCRL_PPO_Source ~ —— TCRL_PPO_Unauth_Target

13 1e3 1e3
1.0

Rewards
~

” —

00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
Steps 166 Steps 1e6 Steps 1e6

(a) InvertedDoublePendulum-v2 (b) Walker2d-v3 (c) Humanoid-v3
Figure 10: Training performance of the baseline PPO algorithm and our TCRL algorithm. The blue
PPO _Source and orange TC RL_P PO _Source solid curves denote the performance of PPO and

TCRL on the source domain, while the green T’C RL_P PO_Unauth_Target dotted curves indicate
the performance of TCRL on the target domains.

—— PPO_Random —— PPO_Trans_Unauth TCRL_PPO_Trans_Unauth
163 163 1e2

>

Rewards

Rewards

-

2 1

0
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
Steps 1e6 Steps 1e6 Steps 1e6

(a) InvertedDoublePendulum-v2 (b) Walker2d-v3 (c) Humanoid-v3

Figure 11: Comparing the transfer performance of the PPO and TCRL models on the tar-
get domain, the blue PPO_Trans-Unauth curve denotes the PPO model and the orange
TCRL_PPO_Trans_Unauth curve denotes the TCRL model. The blue PPO_Random curve,
trained with a random initialized model, serves as the baseline.

on the transfer-controllability of the TCRL model. The objective is to evaluate the effectiveness of
these algorithms in attacking the transfer-controllability of the TCRL model. In these experiments,
we replaced the PPO algorithm in the main text with the NPG algorithm.

F.6.1 HAND MANIPULATION SUITE ENVIRONMENT

This part of the experiment is carried out on the hand manipulation suite environmentLiu et al.
(2022). This environment is constructed based on the ADROIT platformRajeswaran et al. (2017al),
as shown in Fig.[T2]

In Fig. the ADROIT platform is a 24-DoF anthropomorphic platform designed for addressing
challenges in dynamic and dexterous manipulation. The first, middle, and ring fingers have 4 degrees
of freedom (DoF). Little finger and thumb have 5 DoF, while the wrist has 2 DoF. Each DoF is
actuated using position control and is equipped with a joint angle sensor. In this experiment, we use
two kinds of these tasks, the object relocation task and the door opening task. As shwon in Fig.
(a), the goal of the object relocation task is to move the blue ball to the green target. As shwon in
Fig.|12|(b), the goal of the door opening task is to undo the latch and swing the door open.

The hand manipulation suite environmentLiu et al.|(2022) is designed to make some evolving trans-
ferable environments for transfer reinforcement learning, as shown in Fig. [[3] The evolutionary
generation process of the transferable five-finger dexterous hand robot is shown in Fig. |13 (c). In
the beginning, the hand robot had five dexterous fingers. In the process of continuous evolution, the
middle finger, ring finger, and little finger of the robot are getting shorter and shorter. In the end, the
hand robot only retained two fingers such as the thumb and index finger, and only had 1 DoF.

Next, we can construct the transferable learning tasks as shown in Fig.[I3](a) and (b). In the object
relocation transfer task, the objective of the source domain task is to move a blue ball to the green
target using the original five-finger dexterous hand robot. However, in this case, the robot is substi-

24

Under review as a conference paper at ICLR 2026

..fjglj;:

(a) Object Relocation Task

(b) Door Opening Task

Figure 12: The five-finger dexterous hand provided in the ADROIT platformRajeswaran et al.
(2017a).

tuted with a simpler two-finger robot in the target domain. Similarly, in the door opening transfer
task, the robot configuration remains unchanged, but the objective is modified to opening the door.

F.6.2 EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results are shown in Table 8] and Table 0] below. In these tables, “From Scratch”
means training the policy model from scratch on the target domain, while ~’Direct Finetune” means
using a pre-trained policy model from the source domain for transfer learning. There are two kinds
of pre-trained policy model, the "NPG” modelRajeswaran et al.| (2017b) and our "TCRL” model.
Then, two kinds of transfer reinforcement learning algorithms, the "DAPG” algorithmRajeswaran
et al| (2017a)) and the "REvolveR” algorithmLiu et al.| (2022)), are applied to attack the transfer-
controllability of the TCRL model. In the ”Sparse Reward” setting, only task completion is re-
warded. In the "Dense Reward” setting, a distance reward is provided at every step.

In the REvolveR algorithmLiu et al.| (2022) and the DAPG algorithmRajeswaran et al.| (2017a), an
adaptive training scheduling strategy is employed to enhance training efficiency. Consequently, it is
not possible to predefine the total number of RL iterations in order to compare performance fairly
under the same number of iterations. Instead, the REvolveR algorithmLiu et al.|(2022)) compares the
number of RL optimization steps required to achieve a 90% success rate on the tasks. In this paper,
we continue to use the above evaluation method.

From Table (8] none of the transfer learning algorithms initialized with the TCRL model could con-
verge within 100K iterations. The reason may be that the five-finger robot and the two-finger robot
grab the blue ball in completely different ways, as shown in Fig. [T3] (a). In the TCRL model, due
to the reverse training on positive samples in the evolutionary training process, it becomes challeng-
ing for transfer reinforcement learning algorithms to obtain positive samples of grasping the blue
ball in the target domain. This significantly amplifies the training difficulty for the two-finger robot
in the target domain. As a result, the training speed of transfer reinforcement learning using the
TCRL model as the initialization model is significantly slowed down in the object relocation task.
In other words, the TCRL model has hindered the transfer progress of the DAPG algorithm and the
REvolveR algorithm.

From Table [9] the convergence speed of the transfer learning algorithm initialized with the TCRL
model is significantly reduced. Compared with the object relocation task, in the door opening task,
the execution process of pushing the door handle is similar for the five-fingered robot and the two-

25

Under review as a conference paper at ICLR 2026

By

(a) Object Relocation (b) Door Opening

P O .-

.

R

(c) Transferable Robot Environments

Figure 13: The transferable tasks on hand manipulation suiteLiu et al.|(2022).

Table 8: The experimental results of the target transfer task

Dense Reward Sparse Reward

\
>100K | 00
\

|
From Scratch |
Initialized Model ‘ NPG TCRL NPG TCRL
Direct Finetune | 43.5K >100K | 0o -
DAPGRajeswaran et al|(2017a) | 23.3K >100K | o) -
REvolveRLiu et al|(2022) | : >100K | 18.1K > 100K

26

Under review as a conference paper at ICLR 2026

fingered robot, as shown in Fig. E] (b). Therefore, in this task, even with the initialization of the
TCRL model, the REvolveE algorithmLiu et al.| (2022)) can still achieve the goal of a success rate
exceeding 90%. However, our TCRL model can still significantly slow down the convergence speed
of the REvolveE algorithm, which can still generate certain value in practical applications.

Table 9: The experimental results of the door opening transfer task

| Dense Reward | Sparse Reward
From Scratch | - | 00
Initialized Model | NPG TCRL | NPG TCRL
Direct Finetune | 7.6K 825K | 0o -
DAPGRajeswaran et al|(2017a) | 5.4K 48.3K | 00 -
REvolveRLiu et al.| (2022) ‘ - 45.4K ‘ 2.6K 58.7K

Overall, the above experimental results demonstrate that the TCRL model provides a certain level of
protection for the intellectual property of the policy model when facing attacks from certain transfer
reinforcement learning algorithms.

F.7 COMPARISON WITH DOMAIN RANDOMIZATION

While traditional domain randomization (e.g., MAML) aims to enhance generalization, TCRL se-
lectively restricts transfer to unauthorized domains. Our supplementary experiments demonstrate
TCRL’s superior performance:

Table 10: Performance comparison of MAML and TCRL across different domains and environ-
ments. Values represent rewards.

Method Domain HalfCheetah-v3 Hopper-v3 Ant-v3
Unauthorized 2916 1475 1387
MAML Authorized 3972 1837 1678
Unauthorized 2516 1028 1043
TCRL Aythorized 4207 2075 2427

These results confirm that directly applying domain randomization techniques to our task would lead
to suboptimal outcomes. Our approach with MMD loss and KL divergence constraints achieves the
desired balance: limiting performance in unauthorized domains while maintaining or improving it
in authorized ones.

G DISCUSSION

Question1: To protect the policy model, it is advisable to conceal the model parameters and strictly
restrict access to an API interface specifically designed for querying policy decisions based on the
observed state. Given this approach, is it still necessary to implement a transfer-controllable policy?

Answer: Yes, it is still necessary. Suppose Company A has designed a robot R 4 and trained the
corresponding baseline policy model 7 4. At the same time, Company B has replicated a robot Rp
with similar dynamic characteristics and obtained the API of Company A’s robot’s policy model
7 4. In this case, Company B can use the API to collect the motion trajectories 7;. of robot Rz and
then use relevant methods of offline reinforcement learning to obtain an approximate version of the
policy model 7 4. By applying transfer learning to the 7 4 model, Company B can obtain a suitable
policy model 7 for robot Rp.

However, when Company A trains the baseline policy model 74 using the TCRL algorithm, if
Company B tries to use the same API, they would only collect poor-quality motion trajectories. As
a result, subsequent offline reinforcement learning and transfer learning processes cannot be carried

27

Under review as a conference paper at ICLR 2026

out. Therefore, training a transfer-controllable policy model becomes necessary in order to mitigate
this issue.

Question2: In the paper, the unauthorized target domain environments are designed by randomizing
some parameters in the environments. However, it would be quite rare that the real target application
is only a few parameters different from the source environments while all other settings are the same.

Answer: Yes, perhaps such cases are quite rare. However, if Company B intends to steal the intel-
lectual property of Company A’s policy model, they would need to take certain steps to construct
a series of similar target domain environments. For example, as shown in Fig. 13| (c), Company B
can create a series of intermediate robots that allow Company A’s five-finger hand robot to transition
naturally to Company B’s two-finger hand robot. In general, by using transfer learning algorithms,
Company B can avoid some of the errors that Company A would encounter when training from
scratch.

Question3: The environment randomization module can be time-consuming and may not be suitable
for all scenarios.

Answer: No single method can be universally applicable to all scenarios, and the environment
randomization module is merely a simple preliminary solution. This paper aims to raise awareness
about the issue of protecting policy model intellectual property and propose a general solution. In
practical applications, various more efficient environment randomization schemes can be designed
for this module.

28

	Introduction
	Related Works
	Motivation
	Methodology
	Preliminary
	TCRL Framework
	Environment Randomization Module
	Transfer-Controllable Training Module

	Experimental Result
	Experiment Setup
	Performance of DQN on Maze Environment
	Training Performance of PPO on MuJoCo Environment
	Transferring Performance of PPO on MuJoCo Environment

	Conclusion and Limitation
	Use of LLMs
	Foundational Background on DRL
	DQN and PPO Objectives and Critic Loss
	Symbol Definitions

	Theory Proofs
	Implementation Details
	Network Architecture
	Hyper Parameters
	Unauthorized Target Domain Environments on Training Process

	Algorithm Details
	Environment Randomization
	Transfer-Controllable Training

	Supplementary Experimental Results
	Ablation Studies on Each Component
	Different Target Domain Environment Configurations on TCRL Training
	Reward Scale for Target Domain Environments
	Hyperparameter Sensitivity
	Experimental Results of Other MuJoCo Environments
	Experimental Results on Hand Manipulation Suite Environment
	Hand Manipulation Suite Environment
	Experimental Results and Analysis

	Comparison with Domain Randomization

	Discussion

