
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A NEURAL MATERIAL POINT METHOD
FOR PARTICLE-BASED EMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Mesh-free Lagrangian methods are widely used for simulating fluids, solids, and
their complex interactions due to their ability to handle large deformations and
topological changes. These physics simulators, however, require substantial com-
putational resources for accurate simulations. To address these issues, deep learn-
ing emulators promise faster and scalable simulations, yet they often remain ex-
pensive and difficult to train, limiting their practical use. Inspired by the Material
Point Method (MPM), we present NeuralMPM, a neural emulation framework for
particle-based simulations. NeuralMPM interpolates Lagrangian particles onto a
fixed-size grid, computes updates on grid nodes using image-to-image neural net-
works, and interpolates back to the particles. Similarly to MPM, NeuralMPM
benefits from the regular voxelized representation to simplify the computation of
the state dynamics, while avoiding the drawbacks of mesh-based Eulerian meth-
ods. We demonstrate the advantages of NeuralMPM on 6 datasets, including fluid
dynamics and fluid-solid interactions simulated with MPM and Smoothed Parti-
cles Hydrodynamics (SPH). Compared to GNS and DMCF, NeuralMPM reduces
training time from 10 days to 15 hours, memory consumption by 10x-100x, and in-
creases inference speed by 5x-10x, while achieving comparable or superior long-
term accuracy, making it a promising approach for practical forward and inverse
problems. A project page is available at [URL].

1 INTRODUCTION

The Navier-Stokes equations describe the time evolution of fluids and their interactions with solid
materials. As analytical solutions rarely exist, numerical methods are required to approximate the
solutions. On the one hand, Eulerian methods discretize the fluid domain on a fixed grid, simplifying
the computation of the dynamics, but requiring high-resolution meshes to solve small-scale details
in the flow. Lagrangian methods, on the other hand, represent the fluid as virtual moving particles
defining the system’s state, hence maintaining a high level of detail in regions of high density. While
effective at handling deformations and topological changes (Monaghan, 2012), Lagrangian methods
struggle with collisions and interactions with rigid objects (Lind et al., 2020; Vacondio et al., 2021).

Regardless of the discretization strategy, large-scale high-resolution numerical simulations are com-
putationally expensive, limiting their practical use in downstream tasks such as forecasting, inverse
problems, or computational design. To address these issues, deep learning emulators have shown
promise in accelerating simulations by learning an emulator model that can predict the system’s
state at a fraction of the cost. Next to their speed, neural emulators also have the strategic advantage
of being differentiable, enabling their use in inverse problems and optimization tasks (Allen et al.,
2022; Forte et al., 2022; Zhao et al., 2022). Moreover, they have the potential to be learned directly
from real data, bypassing the costly and resource-intensive process of building a simulator (He et al.,
2019; Jumper et al., 2021; Lam et al., 2023; Lemos et al., 2023; Pfaff et al., 2021). In this direction,
particle-based neural emulators (Prantl et al., 2022; Sanchez-Gonzalez et al., 2020; Ummenhofer
et al., 2020) have seen success in accurately simulating fluids and generalizing to unseen environ-
ments. These emulators, however, suffer from the same issues as traditional Lagrangian methods,
with collisions and interactions with rigid objects being particularly challenging. These emulators
may also require long training and inference times, limiting their practical use.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Taking inspiration from the hybrid Material Point Method (MPM) (Nguyen et al., 2023; Sulsky et al.,
1993) that combines the strengths of both Eulerian and Lagrangian methods, we introduce Neu-
ralMPM, a neural emulation framework for particle-based simulations. As in MPM, NeuralMPM
maintains Lagrangian particles to represent the system’s state but models the system dynamics on
voxelized representations. In this way, NeuralMPM benefits from a regular grid structure to simplify
the computation of the state dynamics but avoids the drawbacks of mesh-based Eulerian methods.
By interpolating the particles onto a fixed-size grid, it also bypasses the need to perform an expen-
sive neighbor search at every timestep, substituting it with two interpolation steps based on cheap
voxelization (Xu et al., 2021). By defining the system dynamics on a grid, NeuralMPM can also
leverage well-established grid-to-grid neural architectures. The resulting inductive bias allows the
model to more easily process the global and local structures of the point cloud, instead of having to
discover them, and frees capacity for learning the dynamics of the system represented by the grid.
Compared to previous data-driven approaches (Prantl et al., 2022; Sanchez-Gonzalez et al., 2020;
Ummenhofer et al., 2020), these improvements reduce the training time from days to hours, while
achieving higher or comparable accuracy.

2 COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics simulations can be classified into two broad categories, Eulerian and
Lagrangian, depending on the discretization of the fluid (Rakhsha et al., 2021). In Eulerian simula-
tions, the domain is discretized with a mesh, with state variables ut

i (such as mass or momentum)
maintained at each mesh point i. Well-known examples of Eulerian simulations are the finite differ-
ence method, where the domain is divided into a uniform regular grid (also called an Eulerian grid),
and the finite element method, where the domain is divided into regions, or elements, that may have
different shapes and density, allowing to increase the resolution in only some areas of the domain
(Iserles, 2008; Morton & Mayers, 2005). Lagrangian simulations, on the other hand, discretize the
fluid as a set of virtual moving particles {pti, ut

i}Ni=1, each described by its position pti and state
variables ut

i that include the particle velocity vti . To simulate the fluid, the particles move according
to the dynamics of the system, producing a new set of particles {pt+1

i , ut+1
i }Ni=1 at each timestep.

Simulations in Lagrangian coordinates are particularly useful when the fluid is highly deformable, as
the particles can move freely and adapt to the fluid’s shape. Among Lagrangian methods, Smoothed
Particle Hydrodynamics (SPH) is one of the most popular, where the fluid is represented by a set of
particles that interact with each other through a kernel function that smooths the interactions.

Hybrid Eulerian-Lagrangian methods combine the strengths of both frameworks. Like Lagrangian
methods, they carry the system state information via particles, thereby automatically adjusting the
resolution to the local density of the system. By using a regular grid, however, they simplify gradient
computation, make entity contact detection easier, and prevent cracks from propagating only along
the mesh. Among hybrid methods, the Material Point Method has gained popularity for its ability
to handle large deformations and topological changes. MPM combines a regular Eulerian grid with
moving Lagrangian particles. It does so in four main steps: (1) the quantities carried by the particles
are interpolated onto a regular grid Gt = p2g({pti, ut

i}) using a particle-to-grid (p2g) function, (2)
the equations of motion are solved on the grid, where derivatives and other quantities are easier to
compute, resulting in a new grid state Gt+1 = f(Gt), (3) the resulting dynamics are interpolated
back onto the particles as {ut+1

i } = g2p(Gt+1, {pti}), using a grid-to-particle (g2p) function, (4) the
positions of the particles are updated by computing particle-wise velocities and using an appropriate
integrator, such as Euler, i.e., pt+1

i = pti + ∆tvt+1
i . The grid values are then reset for the next

step. MPM has been used in soft tissue simulations (Ionescu et al., 2005), in molecular dynamics
(Lu et al., 2006), in astrophysics (Li & Liu, 2002), in fluid-membrane interactions (York II et al.,
2000), and in simulating cracks (Daphalapurkar et al., 2007) and landslides (Llano Serna et al.,
2015). MPM is also widely used in the animation industry, perhaps most notably in Disney’s 2013
film Frozen (Stomakhin et al., 2013), where it was used to simulate snow.

Notwithstanding the success of numerical simulators, they remain expensive, slow, and, most of the
time, non-differentiable. In recent years, differentiable neural emulators have shown great promise
in accelerating fluid simulations, most notably in a series of works to emulate SPH simulations
in a fully data-driven manner. Graph network-based simulators (GNS) (Sanchez-Gonzalez et al.,
2020) use a graph neural network (GNN) and a graph built from the local neighborhood of the
particles to predict the acceleration of the system. The approach requires building a graph out

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

of the point cloud at every timestep to obtain structural information about the cloud, which is an
expensive operation. In addition, the GNN needs to extract global information from its nodes, which
is only possible with a high number of message-passing steps, resulting in a large computational
graph and long training and inference times. This large computational graph, along with repeated
construction, makes fully autoregressive training over long rollouts impractical, as the gradients need
to backpropagate all the way back to the first step. Cheaper strategies exist, like the push-forward
trick (Brandstetter et al., 2022b), but they have been shown to be inferior to fully backpropagating
through trajectories (List et al., 2024; Sharabi & Louppe, 2023). As autoregressive training is not
available, the stability of the learned dynamics can be compromised, making the model prone to
diverging or oscillating. Noise injection training strategies can be used to increase the stability
of the rollouts, but the magnitude of the noise becomes a critical parameter. Han et al. (2022)
introduce improvements to GNS to make them subequivariant to certain transformations. They show
increased accuracy on simulations involving solid objects. An alternative approach is the continuous
convolution (CConv) (Ummenhofer et al., 2020; Winchenbach & Thuerey, 2024), an extension of
convolutional networks to point clouds. In this method, a convolutional kernel is applied to each
particle by interpolating the values of the kernel at the positions of its neighbors, which are found via
spatial hashing on GPU, a cheaper alternative to tree-based searches that allows for autoregressive
training. In (Prantl et al., 2022), Deep Momentum Conserving Fluids (DMCF) build upon CConv to
design a momentum-conserving architecture. Nevertheless, to account for long-range interactions,
the authors introduce different branches, with different receptive fields, into their network. The
number of branches, and their hyperparameters, need to be tuned to capture global dependencies,
leading to long training times even with optimized CUDA kernels. Finally, Zhang et al. (2020),
propose an approach that uses nearest neighbors to construct the local features of each particle.
Those local features are then averaged onto a regular grid. Like GNS, this method suffers from
the need to repeat the neighbor search at every simulation timestep. Ultimately, the performance of
point cloud-based simulators is tightly linked to the method used to process the spatial structure of
the cloud. Brute force neighbour search is O(N2), K-d trees are O(N logN), and voxelization and
hashing are O(N) (Hastings & Mesit, 2005; Xu et al., 2021).

An alternative to data-driven modeling is the use of hybrid models, where parts of a classical solver
are replaced with learned components. For instance, Yin et al. (2021) employ a neural network to
learn unknown physics, which is then integrated into a simulator. Similarly, Li et al. (2024) use
a neural network to bypass computational bottlenecks in MPM simulators, while Ma et al. (2023)
learn general constitutive laws, allowing for one-shot trajectory learning. These approaches achieve
impressive results by leveraging extensive physics knowledge, but this reliance also limits their
applicability. Hybrid models inherit both the strengths and weaknesses of classical and ML methods.

3 NEURALMPM

We consider a Lagrangian system evolving in time and defined by the positions pti and velocities vti
of a set of N particles i = 1, ..., N . We denote with P t and V t the set of positions and velocities
of all particles at time t and with St = (P t, V t) the full state of the system. In a more complex
setting, the state of the system can include other local properties, such as pressure or elastic stiffness
of materials, and global properties, such as an external force. In this work, for simplicity, we let
the network learn the relevant simulation parameters implicitly. The evolution of the particles is
described by a function f mapping the current state of the system to its next state St+1 = f(St).
Given a starting system S0 = (P 0, V 0), its full trajectory, or rollout, is denoted by S1:T . Our goal
is to build an emulator f̂θ(·) capable of predicting a full rollout f̂1:T

θ (S0) of T timesteps from the
initial state S0. Following MPM, NeuralMPM operates in four steps, as illustrated in Figure 1:

Step 1: Voxelization. Using the particle positions P t, the velocities V t are interpolated onto
a regular fixed-size grid. This interpolation is performed through voxelization, which divides the
domain into regular volumes (voxels). Each grid node is identified as the center of a voxel (e.g.,
square in 2D) in the domain, and the velocities of the particles in the voxel are averaged to give
the node’s velocity. Similarly, the density is computed as the normalized number of particles in the
voxel. This results in the grid tensor Gt that contains the grid velocities V t

g and density Dt
g .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Voxelization

Processing

Update
velocities

Update
velocities

Update
velocities

Update
positions

Update
positions

Update
positions

Figure 1: NeuralMPM works in 4 steps. (1) The positions P t and velocities V t of the particles are
used to compute the velocity V t

g and density Dt
g of each grid node through voxelization. (2) From

this grid, the processor neural network predicts the grid velocities at the next m timesteps. The
next m positions are computed iteratively by (3) performing bilinear interpolation of the predicted
velocities onto the previous positions and (4) updating the positions using the predicted velocities.

Step 2: Processing. Taking advantage of the regular grid representation of the cloud, the grid
velocities {V̂ i}t+m

i=t+1 of the next m timesteps are predicted using a neural network. We chose a U-
Net (Ronneberger et al., 2015) as it is a well-established image-to-image model, known to perform
well in various tasks, including physical applications. The combination of kernels applied with
different receptive fields (from smaller to larger) allows the U-Net to efficiently extract both local
and global information. Nonetheless, any grid-to-grid architecture could be used. We experiment
with the FNO (Li et al., 2021) architecture in Appendix B and find it to underperform, leading us
to keep the U-Net. A fully convolutional U-Net and an FNO have the additional advantage of being
able to generalize to different domain shapes, a desirable property (Section 4.3).

Step 3: Update of particle velocities. The predicted velocities V̂ t+1 at the next timestep are then
interpolated back to the particle level onto the positions P t using bilinear interpolation. The velocity
of each particle is computed as a weighted average of the four surrounding grid velocities, based on
its Euclidean distance to each of them.

Step 4: Update of particle positions. Finally, the positions of the particles are updated with Euler
integration using the next velocities and known current positions of the particles, that is P̂ t+1 =

P t +∆tV̂ t+1. Steps 3 and 4 are performed m times to compute the next m positions from the set
of grid velocities computed at step 2.

Additional features of the individual particles can be included in the grid tensor Gt by interpolating
them in the same way as the velocities. Local, such as boundary conditions, or global, such as gravity
or external forces, features are represented as grid channels. For simulations with multiple types of
particles, the features of each material are interpolated independently and stacked as channels in Gt.

NeuralMPM is trained end-to-end on a set of trajectories S0:T to minimize the mean squared error
||P t+1 − P̂ t+1

θ (St)||22 between the ground-truth and predicted next positions of the particles. At
inference time, the model is exposed to much longer sequences, which requires carefully stabiliz-
ing the rollout procedure to prevent the accumulation of large errors over time. To address this,
we first make use of autoregressive training (Prantl et al., 2022; Ummenhofer et al., 2020), where
the model is unrolled K times on its own predictions, producing a sequence of Ŝk = f̂θ(Ŝ

k−1)

for k = 1, ...,K and initial input Ŝ0 = S0, before backpropagating the error through the entire
rollout. Unlike more costly methods that require alternative stabilization strategies, such as noise
injection (Sanchez-Gonzalez et al., 2020), NeuralMPM’s efficiency makes autoregressive training

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

possible. Nevertheless, to further stabilize the training, we couple autoregressive training with time
bundling (Brandstetter et al., 2022b), resulting in a training strategy where the model predicts m

steps Ŝ1:m at once from a single initial state, inside an outer autoregressive loop of K steps of
length m. We show in Section 4 that this training strategy leads to more accurate rollouts.

4 EXPERIMENTS

We conduct a series of experiments to demonstrate the accuracy, speed, and generalization capa-
bilities of NeuralMPM. Specifically, we examine its robustness to hyperparameter and architectural
choices through an ablation study (4.1). We compare NeuralMPM to GNS and DMCF in terms of
accuracy, training time, convergence, and inference speed (4.2). We also evaluate the generalization
capabilities of NeuralMPM (4.3) and illustrate how its differentiability can be leveraged to solve
an inverse design problem (4.4). Through these experiments, we demonstrate that NeuralMPM is a
flexible, accurate, and fast method for emulating complex particle-based simulations. The baselines
established by Winchenbach & Thuerey (2024) and hybrid simulators (Li et al., 2024; Ma et al.,
2023) have promising results. However, we do not compare against them as they either use differ-
ent benchmarks or are specifically tailored for certain physical domains, requiring material-specific
knowledge. In contrast, NeuralMPM, like GNS and DMCF, requires only particle positions without
being restricted to any particular domain.

Data. We consider 6 datasets with variable sequence lengths, numbers of particles, and materials.
The first three datasets, WATERRAMPS, SANDRAMPS, and GOOP, contain a single material, wa-
ter, sand, and goop, respectively, with different material properties. The first two datasets contain
random ramp obstacles to challenge the model’s generalization capacity. The fourth dataset, MULTI-
MATERIAL, mixes the three materials together in the same simulations. These four datasets are taken
from Sanchez-Gonzalez et al. (2020) and were simulated using the Taichi-MPM simulator (Hu et al.,
2018b). They each contain 1000 trajectories for training and 30 (GOOP) or 100 (WATERRAMPS,
SANDRAMPS, MULTIMATERIAL) for validation and testing. The fifth dataset, DAM BREAK 2D,
was generated using SPH and contains 50 trajectories for learning, and 25 for validation and testing.
The last dataset, VARIABLEGRAVITY, was also generated using Taichi-MPM. It consists of simu-
lations with variable gravity of a water-like material, and contains 1000 trajectories for training and
100 for validation and testing.

Protocol. NeuralMPM is trained on trajectories with varying initial conditions and number of
particles. The training batches are sampled randomly in time and across sequences. We use
Adam (Kingma & Ba, 2014) with the following learning rate schedule: a linear warm-up over
100 steps from 10−5 to 10−3, 900 steps at 10−3, then a cosine annealing (Loshchilov & Hutter,
2017) for 100, 000 iterations. We use a batch size of 128, K = 4 autoregressive steps per iteration,
bundle m = 8 timesteps per model call (resulting in 24 predicted states), and a grid size of 64× 64.
For most of our experiments, we use a U-Net (Ronneberger et al., 2015) with three downsampling
blocks with a factor of 2, 64 hidden channels, a kernel size of 3, and MLPs with three hidden lay-
ers of size 64 for pixel-wise encoding and decoding into a latent space. For a fair comparison, we
ran training and inference for NeuralMPM, DMCF, and GNS on the exact same hardware. GNS
and DMCF were trained until convergence (a maximum of 120 and 240 hours, respectively), while
NeuralMPM required 20 hours or less to converge. For WATERRAMPS, SANDRAMPS, GOOP, and
MULTIMATERIAL, we use the same parameters as those reported by authors. We hyperparameter
search DMCF for DAM BREAK 2D and both GNS and DMCF for VARIABLEGRAVITY and report
the best performance obtained for a budget of 60 GPU-days per dataset. Further details on training
can be found in Appendix A.

4.1 ABLATION STUDY

To study the robustness of NeuralMPM to hyperparameter and architectural choices, we start with
the default architecture and hyperparameters and ablate its components individually to examine their
impact on performance. We vary the number K of autoregressive steps with and without noise, the
number of bundled timesteps m predicted by a single model call, and the depth and number of
hidden channels of the network. We also investigate adding noise to stabilize rollouts, either directly
to the particles’ positions or to the grid-level representation after voxelization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

WATERRAMPS SANDRAMPS GOOP MULTIMATERIAL DAM BREAK 2D
In

iti
al

Pr
ed

ic
tio

ns
G

ro
un

d
Tr

ut
h

Figure 2: Example snapshots. We train and evaluate NeuralMPM on WATERRAMPS, SAN-
DRAMPS and GOOP, each consisting of a single material, on MULTIMATERIAL that mixes water,
sand and goop, and on DAM BREAK 2D, a rectangular-shaped SPH dataset. NeuralMPM is able to
learn various kinds of materials, their interactions, and their interactions with solid obstacles. De-
spite being inspired by MPM, it is not limited to data showing MPM-like behaviour.

1 2 3 4
0

1

2

3

4

5

6

7

M
S

E
(1

0−
3)

K without noise

1 2 3 4

K with noise

1 2 4 8 16 32

Time bundle m

32 64 128

Grid size

0.005 0.001 0
0

1

2

3

4

5

6

7

M
S

E
(1

0−
3)

Grid noise

0.001 0.0006 0.0003 0

Particle noise

2 3 4 5

Depth

32 64 128

Width

Figure 3: Ablation results. Mean squared error (MSE) of full rollouts on unseen test data for
GOOP. The default parameters are in blue. The dotted orange line (2.4 × 10−3) indicates the MSE
we obtained for GNS after 240 hours (20M training steps). The dotted red line is the MSE for DMCF
after the same amount of time (5.25×10−3). NeuralMPM is robust to hyperparameter changes, with
the biggest effects coming from the number of timesteps bundled together (m) and grid noise. For a
rollout of length T , the model is called T/m times, meaning lower values of m require maintaining
stability for longer. Autoregressive training coupled with time bundling is sufficient to stabilize the
model, eliminating the need for noise injection. Although GNS reportedly outperforms NeuralMPM
by a small margin, these results could not be reproduced in our experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Time

G
ro

un
d

Tr
ut

h
O

ur
s

G
N

S
D

M
C

F

Figure 4: Example VARIABLEGRAVITY trajectory against baselines. Each method is unrolled
starting from the initial conditions of a random test trajectory not seen during training.

Figure 3 summarizes the ablation results. A larger number K of autoregressive steps yields more
accurate rollouts without the need to add noise. Indeed, injecting noise does not improve accuracy
and is even detrimental for K = 4. Individually tuning the noise levels for grids and particles
can modestly lower error rates, but is either very sensitive or negligible. The model performs bet-
ter when bundling more timesteps, enabling faster rollouts as a single forward pass predicts more
steps. We found m = 8 to be optimal with the other default hyperparameters, outperforming larger
bundling. This is because more network capacity is needed to extract information for the next 16 or
32 timesteps from a single state. Instead, we opted for a shallower and narrower network to balance
speed and memory footprint with performance gains. In terms of network architecture, we chose a
U-Net. We experiment with an FNO (Li et al., 2021) in Appendix B and find it to underperform,
leading us to keep the U-Net architecture. We find the U-Net’s width and depth to have a minor
impact on performance, confirming that a larger network is not needed. The grid size, however, is
critical. A low resolution loses fine details, while a high resolution turns meaningful structures, such
as liquid blobs or walls, into isolated voxels.

4.2 COMPARISON WITH PREVIOUS WORK

We compare NeuralMPM against GNS and DMCF. We use the official implementations and train-
ing instructions to assess training times, inference times, as well as accuracy. We compare against
both GNS and DMCF on WATERRAMPS, SANDRAMPS, GOOP, DAM BREAK 2D, and VARIABEL-
GRAVITY. We also compare against GNS on MULTIMATERIAL, but not against DMCF since it
does not support multiple materials.

Accuracy. We report quantitative results comparing the long-term accuracy in Table 1 and show
trajectories of NeuralMPM in Figure 2, as well as comparisons against baselines on WATERRAMPS
in Figure 4. On the mono-material datasets WATERRAMPS, SANDRAMPS, and GOOP, NeuralMPM
performs competitively with GNS and better than DMCF in terms of mean squared error (MSE). For
MULTIMATERIAL, NeuralMPM reduces the MSE by almost half, which we attribute to it being a
hybrid method, known to better handle interactions, mixing, and collisions between different materi-
als. In DAM BREAK 2D, NeuralMPM outperforms both baselines, despite the data being simulated
using SPH. Finally, NeuralMPM surpasses the performance of DMCF in VARIABLEGRAVITY, even

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Data (Simulator) N T NeuralMPM GNS DMCF
MSE↓ EMD↓ MSE↓ EMD↓ MSE↓ EMD↓

WATERRAMPS (MPM) 2.3k 600 13.92 68 11.75 90 20.45 105
SANDRAMPS (MPM) 3.3k 400 3.12 61 3.11 84 6.22 91

GOOP (MPM) 1.9k 400 2.18 55 2.4 73 5.25 85
MULTIMATERIAL (MPM) 2k 1000 9.6 66 14.79 105 - -
DAM BREAK 2D (SPH) 5k 401 29.07 348 87.04 384 74.77 381

VARIABLEGRAVITY (MPM) 600 1000 14.48 92 134 350 28.77 97

Table 1: Full rollout MSE & EMD (both ×10−3) for NeuralMPM and the baselines on each dataset,
with the maximum number of particles N and sequence length T . Each method was trained until
full convergence (NeuralMPM: 15h, GNS: 240h, DMCF: 120h), and the best model was used.

0 1 2 3 4 5 10 20 40 60 100 150 240
Time [h]

11
13
15

20

30

60

80

100

M
S

E
(1

0−
3)

NeuralMPM

DMCF

GNS

1 Hour 5 Hours 15 Hours Best
Ground
Truth

O
ur

s
G

N
S

D
M

C
F

Figure 5: Training convergence. (Left) NeuralMPM trains and converges much faster than GNS
and DMCF. Note the log scale on both axes. (Right) Snapshots of models trained for increasing
durations then unrolled until the same timestep on a held-out simulation. For a fair comparison,
out-of-bounds particles in GNS and DMCF were clamped.

though the latter accounts for gravity explicitly. In terms of Earth Mover’s Distance (EMD), Neu-
ralMPM outperforms both baselines across all benchmarks, suggesting that NeuralMPM is better at
capturing the spatial distribution of the particles.

Training. In Figure 5, we report the evolution of the mean squared error of full emulated rollouts
on the held-out test set during training, for each method, along with predicted snapshots at increas-
ing training durations. NeuralMPM converges significantly faster than both baselines while reaching
lower error rates. Furthermore, the convergence of the training procedure and quality of the archi-
tecture can be assessed much earlier during training, effectively saving compute and enabling the
development of more refined final models. Moreover, NeuralMPM is also more memory-efficient,
which enables the use of higher batch sizes of 128, as opposed to only 2 in GNS and DMCF.

Inference time and memory. In Figure 6, we display the time and memory performance of Neu-
ralMPM, the two baselines GNS and DMCF, and the reference solver Taichi-MPM. In terms of
speed, NeuralMPM strongly outperforms all three methods, partly thanks to time bundling, which
considerably reduces the number of model calls required for a given number of frames to emulate.
In terms of memory, although NeuralMPM remains inferior to Taichi-MPM, which is highly opti-
mized, it can emulate tens of millions of particles on a single GPU, while GNS and DMCF struggle
to reach half a million.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

102 103 104 105 106 107

Number of particles

1

5
10
25

100
250
500

1000

FP
S

(F
ra

m
es

 p
er

 se
co

nd
)

Taichi-MPM
NeuralMPM
DMCF
GNS

102 103 104 105 106 107

Number of particles

100MB

1GB

5GB
10GB
20GB

G
PU

 M
em

or
y

U
sa

ge

Figure 6: Time and memory performance. Average FPS (left) and GPU VRAM usage (right)
for increasing numbers of particles for a traditional solver (Taichi-MPM (Hu et al., 2018a)), Neu-
ralMPM, and the two baselines. The two baselines quickly require very large amounts of memory
and become very slow. Although Taichi-MPM is more memory efficient for high numbers of parti-
cles, NeuralMPM remains much faster, emulating 30 million particles at 25FPS. For the low particle
count regime (< 10K) we used the NeuralMPM and baselines WaterRamps models. For the high
particle count regime we used untrained models and measured the throughput. The figures measures
just FPS, and not the real simulation time. Taichi-MPM needs a much smaller step size than the
three neural emulators (2× 10−4s vs 2.5× 10−3s), and is therefore likely slower than all of them

4.3 GENERALIZATION

WATERDROP-XL Larger rectangular domains

In
iti

al
Initial

Pr
ed

ic
tio

ns
Predictions

t
1

G
ro

un
d

Tr
ut

h Predictions
t
2

Figure 7: Generalization. (Left) NeuralMPM generalizes to domains with more particles (∼ 4×
here) with minimal inference time overhead due to the processing of the voxelized representation.
(Right) A NeuralMPM model trained on a square domain can naturally generalize to larger rectan-
gular domains (twice as wide here) when using a fully convolutional U-Net.

One notable advantage of NeuralMPM is that the processor is invariant to the number of particles, as
the transition model only processes the voxelized representation, while both p2g and g2p scale lin-
early. To demonstrate this, we train a model on WATERRAMPS, which contains about 2.3k particles
and 600 timesteps, and evaluate it on WATERDROP-XL, which features about four times more par-
ticles, 1000 timesteps, and no obstacles. An example snapshot is displayed in Figure 7. The larger
number of particles only affects interpolation steps between the grid and particles, resulting in a neg-
ligible impact on total inference time, making the model nearly as fast despite 4 times more particles.
We also validate generalization quantitatively by comparing the error rates on WATERDROP-XL of
a model trained directly on it and the model trained solely on WATERRAMPS. With the same train-
ing budget, the latter achieves a lower MSE at 20.92×10−3 against 28.09×10−3. More trajectories
are displayed in Figure 22.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

If a domain-agnostic processor architecture is used, such as a fully convolutional U-Net or an FNO,
then NeuralMPM can generalize to different domain shapes without retraining, as shown in Fig 7.
We demonstrate this ability by considering a model solely trained on WATERRAMPS, a square do-
main of size 0.84 × 0.84 mapped to 64 × 64 grids. Without retraining, we perform inference with
this model on larger unseen environments of size 1.68× 0.84, and change the grid size to 128× 64.
The unseen environments were built by merging and modifying initial conditions of held-out test
trajectories from WATERRAMPS. NeuralMPM emulates particles in this larger and rectangular do-
main despite being trained on a smaller square domain with a smaller grid, showing that a U-Net
can generalize to other domains. No ground truth is displayed as Sanchez-Gonzalez et al. (2020)
provide no information about the data generation. More trajectories are shown in Figure 23.

4.4 INVERSE DESIGN PROBLEM

Finally, we demonstrate the application of NeuralMPM for inverse problems on a toy inverse design
task that consists in optimizing the direction of a ramp to make the particles reach a target location,
similar to (Allen et al., 2022). We place a blob of water at different starting locations, and we then
place a ramp at some location, with a random initial angle α. The goal is to spin the ramp by tuning
α in order to make the water end up at a desired location. The main challenges of this task are the
long-range time horizon of the goal and the presence of nonlinear physical dynamics. We proceed
by selecting the point where we want the water to end up and compute the average distance between
the point and particles at the last simulation frame. We then minimize the distance via gradient
descent, leveraging the differentiability of NeuralMPM to solve this inverse design problem. We
show am example optimization in Figure 8, and additional examples in Appendix B.

Initial Unoptimized Optimized

α

Figure 8: Inverse design problem. We exploit NeuralMPM’s differentiability to optimize the angle
α of a ramp, anchored at the red dot, in order to get the water close to the red square region.

5 CONCLUSION

Summary. We presented NeuralMPM, a neural emulation framework for particle-based simula-
tions inspired by the hybrid Eulerian-Lagrangian Material Point Method. We have shown its ef-
fectiveness in simulating a variety of materials and interactions, its ability to generalize to larger
systems and its use in inverse problems. Crucially, NeuralMPM trains in 6% of the time it takes to
train GNS and DMCF to comparable accuracy, and is 5x-10x faster at inference time. By interpo-
lating particles onto a fixed-size grid, global information is distilled into a voxelized representation
that is easier to learn and process with powerful image-to-image models. The use of voxelization
allows NeuralMPM to bypass expensive graph constructions, and the interpolation leads to easier
generalization to a larger number of particles and constant runtime. The lack of expensive graph
construction and message passing also allows for more autoregressive steps and parallel rollouts.

Limitations. Like other approaches, NeuralMPM is limited by the computation used to process
the structure of the point cloud. In our case, voxelization means we cannot deal with particles that
lie outside of the domain and are limited to regular grids. Additionally, the size of the voxels is
directly related to the number of particles within a given volume. If the voxels are too large, the
model will fail to capture finer details. Conversely, if they are too small, the model may struggle
due to insufficient local structure. Similarly, performance can degrade in very sparse domains.
Compressible fluids might also present challenges, though this requires further verification.

Future work. Our work is only a first step towards hybrid Eulerian-Lagrangian neural emulators,
leaving many avenues for future research. Extending NeuralMPM to 3D systems is a natural contin-
uation of this work. Future studies could also explore alternative particle-to-grid and grid-to-particle

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

functions, like the non-uniform Fourier transform (Fessler & Sutton, 2003), or more sophisticated
interpolation methods from classical MPM literature (Nguyen et al., 2023). A less traditional di-
rection is to make NeuralMPM probabilistic and encode richer distributional information about the
particles in the grid nodes, instead of maintaining only a mean value. This could potentially im-
prove NeuralMPM’s ability to resolve subgrid phenomena. Finally, advances in Lagrangian Particle
Tracking (Schröder & Schanz, 2023) will eventually make it possible to create datasets from real-
world data, enabling the training of NeuralMPM directly from data without the need for the costly
design process of a numerical simulator.

REFERENCES

Kelsey Allen, Tatiana Lopez-Guevara, Kimberly L Stachenfeld, Alvaro Sanchez Gonzalez, Peter
Battaglia, Jessica B Hamrick, and Tobias Pfaff. Inverse design for fluid-structure interactions
using graph network simulators. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 13759–
13774. Curran Associates, Inc., 2022.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geomet-
ric and physical quantities improve e(3) equivariant message passing. In International Conference
on Learning Representations, 2022a.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers.
In International Conference on Learning Representations, 2022b.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Nitin P. Daphalapurkar, Hongbing Lu, Demir Coker, and Ranga Komanduri. Simulation of dynamic
crack growth using the generalized interpolation material point (gimp) method. International
Journal of Fracture, 143(1):79–102, 01 2007.

J.A. Fessler and B.P. Sutton. Nonuniform fast fourier transforms using min-max interpolation. IEEE
Transactions on Signal Processing, 51(2):560–574, 2003.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Antonio Elia Forte, Paul Z. Hanakata, Lishuai Jin, Emilia Zari, Ahmad Zareei, Matheus C. Fer-
nandes, Laura Sumner, Jonathan Alvarez, and Katia Bertoldi. Inverse design of inflatable soft
membranes through machine learning. Advanced Functional Materials, 32(16):2111610, 2022.

Jiaqi Han, Wenbing Huang, Hengbo Ma, Jiachen Li, Josh Tenenbaum, and Chuang Gan. Learning
physical dynamics with subequivariant graph neural networks. Advances in Neural Information
Processing Systems, 35:26256–26268, 2022.

Erin Hastings and Jaruwan Mesit. Optimization of large-scale, real-time simulations by spatial
hashing. January 2005.

Siyu He, Yin Li, Yu Feng, Shirley Ho, Siamak Ravanbakhsh, Wei Chen, and Barnabás Póczos.
Learning to predict the cosmological structure formation. Proceedings of the National Academy
of Sciences, 116(28):13825–13832, June 2019.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Transactions on Graphics (TOG), 37(4):150, 2018a.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Trans. Graph., 37(4), 07 2018b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Irina Ionescu, James Guilkey, Martin Berzins, Robert M Kirby, and Jeffrey Weiss. Computational
simulation of penetrating trauma in biological soft tissues using the material point method. Stud
Health Technol Inform, 111:213–218, 2005.

Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts
in Applied Mathematics. Cambridge University Press, 2 edition, 2008.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Se-
bastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Push-
meet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 8 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mo-
hamed, and Peter Battaglia. Learning skillful medium-range global weather forecasting. Science,
382(6677):1416–1421, 2023.

Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, and Peter Battaglia. Rediscovering orbital
mechanics with machine learning. Machine Learning: Science and Technology, 4(4):045002, 10
2023.

Jin Li, Yang Gao, Ju Dai, Shuai Li, Aimin Hao, and Hong Qin. Mpmnet: A data-driven mpm
framework for dynamic fluid-solid interaction. IEEE Transactions on Visualization and Computer
Graphics, 30(8):4694–4708, August 2024. ISSN 2160-9306. doi: 10.1109/tvcg.2023.3272156.
URL http://dx.doi.org/10.1109/TVCG.2023.3272156.

Shaofan Li and Wing Kam Liu. Meshfree and particle methods and their applications. Applied
Mechanics Reviews, 55(1):1–34, 01 2002.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

Steven J. Lind, Benedict D. Rogers, and Peter K. Stansby. Review of smoothed particle hydro-
dynamics: towards converged lagrangian flow modelling. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 476(2241):20190801, 2020.

Bjoern List, Li-Wei Chen, Kartik Bali, and Nils Thuerey. How temporal unrolling supports neural
physics simulators, 2024. URL https://arxiv.org/abs/2402.12971.

Marcelo Alejandro Llano Serna, Márcio Muniz-de Farias, and Hernán Eduardo Martínez-Carvajal.
Numerical modelling of alto verde landslide using the material point method. DYNA, 82(194):
150–159, 11 2015.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017.

Hongbing Lu, Nitin Daphalapurkar, B. Wang, Samit Roy, and Ranga Komanduri. Multiscale simu-
lation from atomistic to continuum – coupling molecular dynamics (md) with the material point
method (mpm). Philosophical Magazine, 86:2971–2994, 2006.

12

http://dx.doi.org/10.1109/TVCG.2023.3272156
https://arxiv.org/abs/2402.12971

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B. Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics, 2023. URL https://arxiv.org/abs/2304.14369.

J.J. Monaghan. Smoothed particle hydrodynamics and its diverse applications. Annual Review of
Fluid Mechanics, 44(Volume 44, 2012):323–346, 2012.

K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations: An Introduc-
tion. Cambridge University Press, 2 edition, 2005.

Vinh Phu Nguyen, Alban de Vaucorbeil, and Stéphane Bordas. The Material Point Method: Theory,
Implementations and Applications (Scientific Computation) 1st ed. 2023 Edition. 02 2023. ISBN
3031240693.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International Conference on Learning Representations, 2021.

Lukas Prantl, Benjamin Ummenhofer, Vladlen Koltun, and Nils Thuerey. Guaranteed conservation
of momentum for learning particle-based fluid dynamics. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 6901–6913. Curran Associates, Inc., 2022.

Milad Rakhsha, Christopher E. Kees, and Dan Negrut. Lagrangian vs. eulerian: An analysis of two
solution methods for free-surface flows and fluid solid interaction problems. Fluids, 6(12), 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 8459–8468. PMLR, 7 2020.

Andreas Schröder and Daniel Schanz. 3d lagrangian particle tracking in fluid mechanics. Annual
Review of Fluid Mechanics, 55(Volume 55, 2023):511–540, 2023. ISSN 1545-4479.

Omer Rochman Sharabi and Gilles Louppe. Trick or treat? evaluating stability strategies in
graph network-based simulators. 2023. URL https://api.semanticscholar.org/
CorpusID:268033249.

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. A material
point method for snow simulation. ACM Trans. Graph., 32(4), 07 2013.

Deborah Sulsky, Zhen Chen, and Howard L. Schreyer. A particle method for history-dependent
materials. Computer Methods in Applied Mechanics and Engineering, 118:179–196, 1993.

Artur Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus Adams. Lagrangebench:
A lagrangian fluid mechanics benchmarking suite. Advances in Neural Information Processing
Systems, 36, 2024.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In International Conference on Learning Representations,
2020.

Renato Vacondio, Corrado Altomare, Matthieu De Leffe, Xiangyu Hu, David Le Touzé, Steven Lind,
Jean-Christophe Marongiu, Salvatore Marrone, Benedict D. Rogers, and Antonio Souto-Iglesias.
Grand challenges for smoothed particle hydrodynamics numerical schemes. Computational Par-
ticle Mechanics, 8(3):575–588, 5 2021.

13

https://arxiv.org/abs/2304.14369
https://api.semanticscholar.org/CorpusID:268033249
https://api.semanticscholar.org/CorpusID:268033249

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rene Winchenbach and Nils Thuerey. Symmetric basis convolutions for learning lagrangian fluid
mechanics, 2024. URL https://arxiv.org/abs/2403.16680.

Yusheng Xu, Xiaohua Tong, and Uwe Stilla. Voxel-based representation of 3d point clouds: Meth-
ods, applications, and its potential use in the construction industry. Automation in Construction,
126:103675, 2021.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel de Bézenac, Ibrahim Ayed, Nicolas Thome,
and Patrick Gallinari. Augmenting physical models with deep networks for complex dynamics
forecasting*. Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124012, De-
cember 2021. ISSN 1742-5468. doi: 10.1088/1742-5468/ac3ae5. URL http://dx.doi.
org/10.1088/1742-5468/ac3ae5.

Allen R. York II, Deborah Sulsky, and Howard L. Schreyer. Fluid–membrane interaction based on
the material point method. International Journal for Numerical Methods in Engineering, 48(6):
901–924, 2000.

Yalan Zhang, Xiaojuan Ban, Feilong Du, and Wu Di. Fluidsnet: End-to-end learning for lagrangian
fluid simulation. Expert Systems with Applications, 152:113410, 2020. ISSN 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2020.113410. URL https://www.sciencedirect.com/
science/article/pii/S0957417420302347.

Qingqing Zhao, David B Lindell, and Gordon Wetzstein. Learning to solve PDE-constrained in-
verse problems with graph networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 26895–
26910. PMLR, 7 2022.

14

https://arxiv.org/abs/2403.16680
http://dx.doi.org/10.1088/1742-5468/ac3ae5
http://dx.doi.org/10.1088/1742-5468/ac3ae5
https://www.sciencedirect.com/science/article/pii/S0957417420302347
https://www.sciencedirect.com/science/article/pii/S0957417420302347

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A TRAINING DETAILS

Hardware. We run all our experiments using the same hardware: 4 CPUs, 24GB of RAM, and an
NVIDIA RTX A5000 GPU with 24GB of VRAM. For reproducing the results of DMCF, we kept
the A5000 GPU but it required up to 96GB of RAM for training.

Data Preprocessing. Similar to Prantl et al. (2022), we slightly alter the original MPM datasets
to add boundary particles, as the original data from Sanchez-Gonzalez et al. (2020) does not have
them. We define the velocity at a timestep to be vt = vt − vt−1. We therefore skip the first step
during training for which no velocity is available.

Implementation. Our implementation, training scripts, experiment configurations, and instruc-
tions for reproducing results are publicly available at [URL]. We implement NeuralMPM using
PyTorch (Paszke et al., 2019), and use PyTorch Geometric (Fey & Lenssen, 2019) for implement-
ing efficient particle-to-grid functions, more specifically from the Scatter and Cluster modules. For
memory efficiency, we do not store all (up to) 1,000 training trajectories in memory, and rather use a
buffer of about 16 trajectories over which several epochs are performed before loading a new buffer
of random trajectories.

Baselines. We use the official implementations and training instructions of GNS (Sanchez-
Gonzalez et al., 2020) and DMCF (Prantl et al., 2022) to reproduce their results and conduct new
experiments. More specifically, we train GNS as instructed for 20M steps on all four datasets, using
their provided configuration. For DMCF, we follow their default configurations and train for 400K
iterations for each dataset. In datasets that were not used by the original authors, VARIABLEGRAV-
ITY and DAM BREAK 2D, we performed hyperparameter search. GNS and DMCF both were trained
for a total budget of 60 GPU-days per dataset, and the best performance was reported.

Normalization. We normalize the input of the model over each channel individually. We investi-
gated computing the statistics across a buffer, resembling (Ioffe & Szegedy, 2015), and precomput-
ing them on the whole training set and found no difference in performance. During inference, we
use the precomputed statistics.

Code. The code, together with additional videos, is available at the project’s website [URL].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY RESULTS

Additional results on DamBreak2D We have also compared the accuracy and inference speed
of NeuralMPM against a different implementation of GNS, and one of SEGNN, both provided by
(Toshev et al., 2024), in Tables 2 and 3. As in Table 1, NeuralMPM outperforms both by a margin
baselines.

MSE↓ EMD↓
Ours 20.76 2.88
GNS 114.40 224.1

SEGNN 124.39 268.4

Table 2: Full-trajectory MSE (×10−3) and Sinkhorn distance (EMD) (×10−4) for NeuralMPM,
GNS, and SEGNN Brandstetter et al. (2022a) on the DAM BREAK 2D dataset from LagrangeBench.
The two latter models are baselines provided by LagrangeBench.

Single call (T = 1) Rollout (T = 401)
Ours 7.41 193.50
GNS 20.46 8,170.47

SEGNN 46.04 18,194.10

Table 3: Inference time (in ms) of NeuralMPM, GNS, and SEGNN Brandstetter et al. (2022a) on
the DAM BREAK 2D dataset from LagrangeBench. Times were averaged over all test trajectories.
NeuralMPM predicts 16 frames in a single model call and still outperforms the two baselines per
call, which further widens the gap for the total rollout time.

Evaluation. In Table 4, we report the numerical MSE rollout values that were reported in the bar
plots depicted in Figure 3 for GOOP. Also, Figures 11 and 10 displays the error when rolling out a
model for each dataset, both in terms of MSE and EMD. For both metrics, the error starts low and
slowly accumulates over time. For the EMD, we use the Sinkhorn algorithm provided by (Cuturi
et al., 2022).

Parameter Value MSE (×10−3)

K (No noise)

1 3.2
2 3.3
3 2.4
4 2.2

K (With noise)

1 3.5
2 2.5
3 2.4
4 3.0

Time bundling m

1 6.6
2 4.5
4 3.5
8 2.1
16 2.9
32 3.5

Grid size
32 5.5
64 2.4
128 7.1

Parameter Value MSE (×10−3)

Grid noise
0 3.2

0.001 2.4
0.005 6.9

Particle noise

0 2.2
0.0003 2.4
0.0006 2.4
0.001 2.1

U-Net Depth

2 3.3
3 3.0
4 2.4
5 2.3

U-Net Width
32 2.6
64 2.3
128 2.2

Table 4: Ablation results for GOOP.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 500
Timestep

0

5

10

15

20

25

30

35
M

S
E

10
− 3

MultiMaterial

0 500
Timestep

0

25

50

75

100

125

150

175

VariableGravity

0 200 400
Timestep

0

5

10

15

20

25

30

35

40

WaterRamps

0 200 400
Timestep

0

50

100

150

200

250

300

350

DamBreak2D

0 200
Timestep

0

2

4

6

8

10

12

14

SandRamps

0 200
Timestep

0

2

4

6

8

10

Goop

NeuralMPM DMCF GNS

Figure 9: MSE propagation during rollout. We show the 25th, 50th and 75th percentile of the
MSE, computed over particles and simulations, at each timestep during the rollout for each model
and dataset. The accuracy decreases as errors accumulate. While training in 5% of the time, Neu-
ralMPM outperform the baselines on all datasets, except WaterRamps, where it is slightly worse
than GNS.

0 500 1000
Timestep

0

20

40

60

80

100

120

140

E
M

D
10
− 3

MultiMaterial

0 500
Timestep

0

100

200

300

400

500

600
VariableGravity

0 500
Timestep

0

20

40

60

80

100

120

WaterRamps

0 200 400
Timestep

0

50

100

150

200

250

300

350

400

DamBreak2D

0 200 400
Timestep

0

20

40

60

80

100
SandRamps

0 200 400
Timestep

0

20

40

60

80

100

Goop

NeuralMPM DMCF GNS

Figure 10: EMD propagation during rollout. We show the 25th, 50th and 75th percentile of the
EMD, computed over particles and simulations, at each timestep during the rollout for each model
dataset daset. The accuracy decreases as errors accumulate. While training in 5% of the time,
NeuralMPM outperform the baselines on all datasets.

0 200 400 600 800
Timestep

0

20

40

60

80

M
S

E
10
− 3

WDXL

NeuralMPM GNS

Figure 11: MSE propagation during rollout for the generalization task WaterDrop-XL. We
show the 25th, 50th and 75th percentile of the MSE, computed over particles and simulations, at
each timestep during the rollout for each model and daset. The accuracy decreases as errors accu-
mulate. The models used were trained on WaterRamps and tested on WaterDrop-XL to evaluate
their generalization. NeuralMPM performs better despite having a slightly worse MSE on Water-
Ramps than GNS.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Grid-to-grid network. Although we have used a U-Net architecture for the grid-to-grid proces-
sor, NeuralMPM can be used with any grid-to-grid processor and is not limited to that network. For
example, in Figure 12 and Table 5 we present qualitative and quantitative ablation results, respec-
tively, for NeuralMPM using an FNO network (Li et al., 2021) as the grid-to-grid processor. Results
show that the FNO processor is slightly worse than the U-Net processor.

Goop SandRamps WaterRamps
0

5

10

15

M
S

E
(1

0−
3)

Without noise

Goop SandRamps WaterRamps

With noise

Figure 12: FNO processor. NeuralMPM with an FNO processor and default architecture. Rollout
MSE (×10−3) for different datasets.

Data FNO with noise FNO without noise
WATERRAMPS 16.8 16.3

SANDRAMPS 5.5 3.5
GOOP 4.3 3.8

Table 5: Rollout MSE (×10−3) for NeuralMPM with an FNO processor and default architecture,
with and without noise.

Additional inverse problem examples. We show two additional optimization examples in Fig-
ure 13.

Initial Unoptimized Optimized

Figure 13: Inverse design problem. Additional optimization examples. We exploit NeuralMPM’s
differentiability to optimize the angle α of a ramp, anchored at the red dot, in order to get the water
close to the red square region.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C GALLERY OF PREDICTED TRAJECTORIES

We present additional rollout comparisons in Figures 14 and 15. Further, in addition to the trajec-
tories in Figures 2 and 4, we show additional trajectories emulated with NeuralMPM for all datasets
in Figures 16, 17, 18, 19, 20, 21, 22, and 23. We also release videos in the supplementary mate-
rial, which we recommend watching to better see the details and limitations of NeuralMPM. This
includes 10 videos per dataset of emulated trajectories on held-out test simulations.

Time

G
ro

un
d

Tr
ut

h
O

ur
s

G
N

S

Figure 14: Example MULTIMATERIAL trajectory against baselines. Each method is unrolled
starting from the initial conditions of a random test trajectory not seen during training.

Time

G
ro

un
d

Tr
ut

h
O

ur
s

G
N

S
D

M
C

F

Figure 15: Example WATERRAMPS trajectory against baselines. Each method is unrolled
starting from the initial conditions of a random test trajectory not seen during training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

t = 0 t = 119 t = 239 t = 358 t = 478 t = 598

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 16: Additional WATERRAMPS predicted trajectories. Evenly spaced in time snapshots of
predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

t = 0 t = 79 t = 159 t = 238 t = 318 t = 398

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 17: Additional SANDRAMPS predicted trajectories. Evenly spaced in time snapshots of
predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

t = 0 t = 32 t = 65 t = 97 t = 130 t = 398

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 18: Additional GOOP predicted trajectories. Snapshots of predicted unrolled trajectories
against ground truth. All trajectories are from the held-out test set. Due to GOOP quickly reaching
equilibrium, more snapshots are taken in the first half of the trajectory.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

t = 0 t = 119 t = 239 t = 358 t = 478 t = 598

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 19: Additional MULTIMATERIAL predicted trajectories. Evenly spaced in time snapshots
of predicted unrolled trajectories against ground truth. All trajectories are from the held-out test set.
The first trajectory illustrates a rare failure where the shape of sand particles is not retained, even
though all particles are supposed to maintain the same velocity while airborne, as they are thrown
against the wall.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

t = 0 t = 125 t = 400
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n
G

ro
un

d
Tr

ut
h

Pr
ed

ic
tio

n

Figure 20: Additional DAM BREAK 2D predicted trajectories. Snapshots of predicted trajectories
against ground truth. All trajectories come from the held-out test set. To better show the differences
of these longer sequences, we select the following timesteps not even in time: t ∈ {0, 125, 400}. In
the last trajectory, NeuralMPM struggles to follow the gravity direction and breaks down over time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

t = 0 t = 100 t = 150 t = 250 t = 500 t = 999

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 21: Additional VARIABLYGRAVITY predicted trajectories. Snapshots of predicted trajec-
tories against ground truth. All trajectories come from the held-out test set.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

t = 0 t = 75 t = 125 t = 200 t = 400 t = 997

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 22: Generalization to more particles on WATERDROP-XL. Snapshots of predicted trajec-
tories emulated using a model trained solely on WATERRAMPS, against ground truth. All trajectories
come from the held-out test set of WATERDROP-XL. To better show the differences of these longer
sequences, we select the following timesteps not even in time: t ∈ {0, 75, 125, 200, 400, 999}. We
can observe that the generalizing model struggles to retain the shape of water while it’s falling.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Initial Conditions Snapshot 1 Snapshot 2

Figure 23: Generalization to larger and non-square domains. We train a model on the square
domains in WATERRAMPS using 64 × 64 input grids to the U-Net, and then perform inference
on manually generated non-square environments that are twice as wide and use a 128 × 64 input
grid to the same U-Net. NeuralMPM flawlessly generalizes and emulates particles in these new
environments. Note: no ground truth is available because the authors of GNS did not provide the
physical parameters for simulating WATERRAMPS using Taichi. Chosen time steps are 0, 150, 575.
We recommend watching the videos in the supplementary material for more detailed evaluation.

27

	Introduction
	Computational Fluid Dynamics
	NeuralMPM
	Experiments
	Ablation study
	Comparison with previous work
	Generalization
	Inverse design problem

	Conclusion
	Training details
	Supplementary results
	Gallery of predicted trajectories

