
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FASTER CASCADES VIA SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Cascades and speculative decoding are two common approaches to improving lan-
guage models’ inference efficiency. Both approaches involve interleaving models
of different sizes, but via fundamentally distinct mechanisms: cascades employ a
deferral rule that invokes the larger model only for “hard” inputs, while speculative
decoding uses speculative execution to primarily invoke the larger model in parallel
verification mode. These mechanisms offer different benefits: empirically, cascades
offer better cost-quality trade-offs, often even outperforming the large model, while
theoretically, speculative decoding offers a guarantee of quality-neutrality. In this
paper, we leverage the best of both these approaches by designing new speculative
cascading techniques that implement their deferral rule through speculative execu-
tion. We characterize the optimal deferral rule for our speculative cascades, and
employ a plug-in approximation to the optimal rule. Experiments with Gemma
and T5 models on a range of language benchmarks show that our approach yields
better cost-quality trade-offs than cascading and speculative decoding baselines.

1 INTRODUCTION

Large language models (LLMs) have yielded significant advances in quality on a range of natural
language processing tasks (Radford et al., 2018; Raffel et al., 2020a; Brown et al., 2020; Black et al.,
2022; Chowdhery et al., 2022; Wei et al., 2022; Chung et al., 2022; Tay et al., 2023; Anil & et al.,
2023; Touvron et al., 2023; Team et al., 2023), at the cost of an increase in inference latency. This has
sparked a growing body of literature on reducing LMs’ inference costs without (overly) compromising
on quality (Elbayad et al., 2020; Pope et al., 2022; Schuster et al., 2022; Leviathan et al., 2023; Chen
et al., 2023a; Sheng et al., 2023; Sun et al., 2024). One such line of work involves constructing a
family of models of various sizes (e.g., a small and large model), and suitably orchestrating amongst
them to make a prediction. Two canonical instantiations of this strategy are model cascading (Wang
et al., 2020; Mamou et al., 2022; Varshney & Baral, 2022; Khalili et al., 2022; Dohan et al., 2022;
Chen et al., 2023b; Gupta et al., 2024; Ding et al., 2024) and speculative decoding (Stern et al., 2018;
Chen et al., 2023a; Leviathan et al., 2023; Sun et al., 2024; Li et al., 2024a; Xia et al., 2024a).

While similar in spirit, cascades and speculative decoding are fundamentally different in details.
Cascades employ a deferral rule to identify “hard” inputs, and only invoke larger models on such
inputs. For example, in a two-model cascade, one first invokes the smaller model, and uses its
associated probability of the generated output to decide whether to defer to the larger model. By
contrast, speculative decoding uses a small model to draft a block of tokens via standard auto-
regressive decoding, which are then verified in parallel by a large model. One then accepts all drafted
tokens until the first “implausible” one, which is rolled back based on the larger LM’s prediction.

Owing to their different mechanisms, both methods have complementary strengths. Cascades seek
to output distributions that have the best quality for a given cost budget, and potentially provide
better cost-quality trade-offs, sometimes even yielding better accuracies than the individual models
they are constructed with (Jitkrittum et al., 2023; Kim et al., 2023) (§3). By contrast, speculative
decoding is theoretically guaranteed to match the output distribution (or a close approximation
thereof (Tran-Thien, 2023)), and are practically observed to provide impressive speed-ups (Stern
et al., 2018; Chen et al., 2023a; Leviathan et al., 2023; Sun et al., 2024). Given the complementary
nature of these two approaches, a natural question arises: can we leverage the best of both techniques?

In this paper, we do so by designing new techniques for two-model cascades that implement their
deferral rule in a speculative manner: we have the smaller model generate drafts auto-regressively,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and the larger model execute in parallel on the drafts to decide whether or not to defer on them. We
show that this speculative cascading approach yields better cost-quality trade-offs than both standard
cascades and speculative decoding. In detail, we make the following contributions:

(i) We introduce a general recipe for speculative execution, where we seek to mimic a general target
distribution that interleaves the drafter’s and verifier’s distributions. Lossy speculative sampling
(Tran-Thien, 2023) is a special case of this recipe for a particular target distribution (§4.1).

(ii) We show how common cascading rules, such as Chow’s rule (Chow, 1970) and confidence-
difference thresholding (Jitkrittum et al., 2023), can be implemented speculatively by plugging in
their target distribution into our framework. We refer to these as speculative cascades (§4.2).

(iii) We characterize the theoretically optimal deferral rule for a speculative cascade, and design a
speculative cascading technique that implements a plug-in estimate to the optimal rule (§4.3,
Lemma 4, Table 1). We also present token-specific variants of our deferral rules (§4.4).

(iv) Through experiments with Gemma (Team et al., 2024) and T5 models (Raffel et al., 2020b) on
a range of benchmark language tasks including summarization, translation, reasoning, coding
and QA, we show that speculative cascades are able to provide better cost-quality trade-offs than
their sequential cascade and speculative decoding counterparts (§6).

2 A TALE OF TWO EFFICIENT LM INFERENCE STRATEGIES

Let V denote a finite vocabulary of tokens, with V∗ denoting the set of all sequences generated by
this vocabulary. Let ∆V denote the set of all probability distributions over tokens in V. Given an
arbitrary length sequence x = x1x2 . . . xL ∈ V∗ and index i ≤ L, denote by x<i = x1x2 . . . xi−1. A
language model (LM) is a probability distribution over V∗. Let P denote the ground-truth probability
distribution over V∗. This could be, for example, a distribution over prompt-response pairs that the
LM may encounter during deployment, or a distribution of sequences used to pre-train the LM. We
will measure the quality of an LM based on how closely it mimics P.

Suppose we are provided two LMs q and p, where p is the larger (more expensive) model. Our goal
is to design an inference strategy that selectively invokes q and p to trade-off between quality and
latency (which may be approximated by the fraction of times that p is invoked). We will denote by
q(xt|x<t) the probability q associates to token xt ∈ V given prefix x<t ∈ Vt−1, and by p(xt|x<t)
the same distribution from model p. Whenever it is clear from context, we will hide the conditioning
on prefix x<t, and use the shorthand pt(·) for p(·|x<t) and qt(·) for q(·|x<t).

Cascades are an effective strategy to trade-off cost and quality by having the smaller model q handle
the “easy” samples, and the larger model p handle the “hard” ones (Gupta et al., 2024; Yue et al.,
2024). A common cascading approach is confidence thresholding or Chow’s rule (Chow, 1970;
Jitkrittum et al., 2023), where we first run q on the input, and defer to p when q’s confidence for its
generated response is sufficiently low. This strategy is typically implemented at the sequence-level,
where for a given prefix x<m we invoke q to generate a complete response xm . . . xm+n. We evaluate
q’s predicted probability for the response, and check whether it falls below a threshold α ∈ [0, 1]:

q(xm . . . xm+n |x<m) < 1− α. (1)

If the above holds, we defer to p to generate a new response; otherwise, we retain q’s response. One
may tune the threshold to achieve a desired cost-quality trade-off. The literature also offers variants
of Chow’s rule that use a more nuanced aggregation of per-token uncertainties (Gupta et al., 2024).

Speculative decoding is an alternate strategy that applies token-level interleaving between q and p,
resulting in provably matching the larger model quality at a reduced inference cost (Stern et al., 2018;
Leviathan et al., 2023). Given a prefix x<t, we draft γ draft tokens xt, . . . , xt+γ−1 via auto-regressive
sampling from q, and verify if these tokens can be accepted by running p in parallel on the γ prefixes
x<t, . . . , x<t+γ−1. We then rollback to the first rejected token t+ j∗ (where j∗ ∈ {0, 1, . . . , γ− 1}),
replace xt+j∗ with a new token, and repeat the process with prefix x<t+j∗+1.

During the verification stage, a draft token xt+j generated by q is accepted with probability

min
(

1,
pt+j(xt+j)
qt+j(xt+j)

)
and rejected otherwise, recalling the shorthand qt+j(·) = q(·|x<t+j) and

pt+j(·) = p(·|x<t+j). A rejected token is then replaced by a new token sampled from a modi-
fied distribution norm (max {0, pt+j(·)− qt+j(·)}) , where norm(·) denotes normalization to sum

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Target distributions associated with different inference algorithms, where α is a free
parameter and β ≥ 1− α depends on α, q and p. The last column indicates whether the execution is
sequential (Algorithm 2), via an oracle (Algorithm 3), or speculative (Algorithm 5) (Leviathan et al.,
2023). See (6) for details on δ. The third row presents a variant of the BiLD algorithm of Kim et al.
(2023), where D(q, p) is a measure of discrepancy between q and p; the original algorithm differs in
the use of a deterministic speculative decoding procedure with a dynamic draft window (see §5).

Inference strategy Deferral decision δ(q, p) Target distribution π(x) Execution

SpecDecoding (Leviathan et al., 2023) - p(x) Speculative

Lossy SpecDecoding (Tran-Thien, 2023) - max{min{q(x), p(x)
1−α},

p(x)
β } Speculative

BiLD* (Kim et al., 2023) 1
(
D(q, p) > α

)
(1− δ) · q(x) + δ · p(x) Speculative

TokenCascade [Chow] (Chow, 1970) 1
(

maxv q(v) < 1− α
)

(1− δ) · q(x) + δ · p(x) Sequential
Oracle [Diff] (Jitkrittum et al., 2023) 1

(
maxv q(v) < maxv p(v)− α

)
(1− δ) · q(x) + δ · p(x) Oracle

SpecCascade [Chow] 1
(

maxv q(v) < 1− α
)

(1− δ) · q(x) + δ · p(x) Speculative
SpecCascade [Diff] 1

(
maxv q(v) < maxv p(v)− α

)
(1− δ) · q(x) + δ · p(x) Speculative

SpecCascade [OPT] 1
(

maxv q(v) < maxv p(v)− α ·DTV(p, q)
)

(1− δ) · q(x) + δ · p(x) Speculative

to 1. This sampling process is provably equivalent to sampling γ tokens auto-regressively from p for
prefix x<t (Leviathan et al., 2023). We summarize this speculative sampling procedure in Algorithm
1. Each invocation of this algorithm generates at most γ + 1 next tokens (and at least one) for a given
prefix x<t. One may run this algorithm multiple times to generate a complete output sequence.

In practice, one may employ a lossy variant (Tran-Thien, 2023) of the above sampling that allows
some deviation from verifier’s distribution p. In this case, a draft token xt+j is accepted with

probability min
(

1,
pt+j(xt+j)

(1−α)·qt+j(xt+j)

)
, where α ∈ [0, 1) is a strictness parameter, with higher values

indicating greater deviation from p. A rejected token may then be replaced by a token sampled from
the residual distribution norm

(
max

{
0, 1

β · pt+j(·)− qt+j(·)
})

, where β ≥ 1− α is a parameter
that depends on α, q and p. A common heuristic is to simply set β = 1 (Zhou et al., 2024).

3 CASCADES MEET SPECULATIVE DECODING

Both cascades and speculative decoding interleave models of different sizes to reduce inference cost,
but fundamentally differ in the mechanisms they use. As a step towards comparing the strengths and
weaknesses of these approaches, we first describe how one may design a token-level cascade.

3.1 WARM-UP: TOKEN-LEVEL CASCADES

It is straightforward to extend the sequence-level Chow’s rule from §2 to form a token-level cascade
between q and p. For a prefix x<t, we first compute the smaller model’s distribution q(·|x<t), and
check whether maxv∈V q(v|x<t) is below a pre-chosen threshold. if so, we evaluate p(·|x<t), and
sample xt ∼ p(·|x<t); otherwise, we sample xt ∼ q(·|x<t).

More generally, we may design a token-level deferral rule r : Vt−1 → {0, 1} that takes the prefix
x<t as input and outputs a binary decision, with r(x<t) = 1 indicating that we defer to p (i.e., draw
a sample from p rather than q). For example, token-level Chow’s rule can be written as:

rChow(x<t) = 1 ⇐⇒ maxv∈V q(v|x<t) < 1− α, (2)

where α is a threshold parameter; the higher the value, the lower is the frequency of deferral to p.
One may also use other confidence measures than the maximum probability, such as the entropy
of the small model’s probability distribution. We elaborate in §B that the choice of confidence
measure would depend on the evaluation metric of interest; Equation 2 is typically prescribed when
the cascade’s quality is evaluated in terms of its accuracy against the ground-truth distribution on
individual tokens, whereas entropy is prescribed when the metric of interest is the cross-entropy loss.

3.2 OPTIMAL TOKEN-LEVEL CASCADE DEFERRAL

While Chow’s rule equation 2 is easy to implement, it can be sub-optimal if the smaller model’s
max-token probability is not reflective of which of the two models are better equipped to predict the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

next token for a given prefix (Jitkrittum et al., 2023). Given this, it is natural to ask what the optimal
deferral rule r for a token-cascade looks like, and whether we can reasonably approximate this rule.

For this, we must first specify an objective to minimize at each step t. Following the prior cascade
literature (Jitkrittum et al., 2023; Gupta et al., 2024), a reasonable objective to minimize is the
expected loss from the deferral rule against the ground-truth distribution P, with an added cost for
deferring to the larger model. We state this below for a fixed prefix x<t, using as before the short-hand
qt(·) for q(·|x<t) and pt(·) for p(·|x<t):

Ldef(r;x<t) = Ev∼P(·|x<t)

[(
1− r(x<t)

)
· `(v, qt) + r(x<t) ·

(
`(v, pt) + α

)]
, (3)

for a cost penalty α ≥ 0 and loss function ` : V×∆V → R+. Common choices for ` include the 0-1
loss `0-1(v, qt) = 1 (v 6= arg maxv′ qt(v

′)) and the log loss `log(v, qt) = − log (qt(v)) .

Lemma 1 (Optimal deferral for token-level cascades (Jitkrittum et al., 2023)). The minimizer of
equation 3 is of the form:

r∗(x<t) = 1 ⇐⇒ Ev∼P(·|x<t) [`(v, qt)] > Ev∼P(·|x<t) [`(v, pt)] + α. (4)

Intuitively, we compare the expected loss from q with the expected cost of invoking p, and decide
to defer when the latter is smaller. We note here that this optimization problem is set up for a fixed
prefix x<t. One may also consider the coupled optimization problem across all positions.

Plug-in estimator for equation 4. The optimal rule in equation 4 requires computing expectations
over the ground-truth distribution P(·|x>t), which is not available during inference time. A common
approach in the cascades literature is to replace the expected losses with the models’ confidence
estimates (Jitkrittum et al., 2023). For example, when ` = `0-1, it may be reasonable to use
1−maxv qt(v) as an estimate of the expected 0-1 loss Ext∼P(·|x<t) [`0-1(xt, qt)] and 1−maxv pt(v)
as an estimate of Ext∼P(·|x<t) [`0-1(xt, qt)]. The extent to which these estimates are accurate depend
on how well q and p are calibrated (Guo et al., 2017). The resulting plug-in estimator for (4) thresholds
the difference of confidence estimates from both distributions:

r̂Diff(x<t) = 1 ⇐⇒ maxv qt(v) < maxv pt(v)− α. (5)

Similarly, when ` = `log, we may use the entropy −
∑
v qt(v) · log(qt(v)) from qt as an estimate of

its expected log-loss, and similarly for pt (see Appendix C).
Remark 1 (Oracle deferral rules). For efficiency reasons, r̂Diff cannot be directly used in a token-
level cascade, as it needs the large model to be invoked at every step t. However, it serves as an oracle
that allows to analyze the head-room available to improve upon Chow’s rule. See also Remark 2.

3.3 CONTRASTING TOKEN-LEVEL CASCADE AND SPECULATIVE DECODING TRADE-OFFS

Token-level cascades and speculative decoding differ in the distribution over tokens they seek to
mimic. Speculative decoding seeks to mimic the large model’s output distribution, and is usually used
when one wants to match the quality of the large model. On the other hand, token-level cascades seek
to output distributions that closely approximate the ground-truth label distribution and potentially
offer good cost-quality trade-offs, sometimes yielding better quality than even the large model.

Cascades are useful when the draft model fares better than the verifier on some inputs, and one may
want to retain the drafter’s predictions even when it disagrees with the verifier. Even in cases where
both the drafter and verifier fare poorly on some inputs (e.g., due to label noise), one may want to
ignore the disagreement between the drafter and verifier to avoid triggering unnecessary roll-backs.

As a concrete example, we consider token-level cascades of T5 models (Raffel et al., 2020b) of
two different sizes finetuned on a WMT EN→ DE translation Bojar et al. (2014b) and an extreme
summarization (XSum) task (Narayan et al., 2018). We construct these cascades using both (token-
level) Chow’s rule in equation 2 and the oracle Diff rule in equation 5, and also apply speculative
decoding with the smaller (larger) model as the drafter (verifier). In Figure 1, we plot quality as a
function of fraction of samples deferred to the large model (number of deferrals divided by number
of generated tokens), as we vary the cost parameter α. Note that with speculative decoding, each
verification step verifies γ tokens in parallel, but is counted as a single deferral to the large model.
While speculative decoding matches the quality of the large model (right-most point), the oracle yields

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
#large-model deferrals / #tokens generated

15

16

17

18

BL
EU

WMT: Small Large

Cascade [Chow]
Oracle [Diff]
SpecDecoding

0.0 0.2 0.4 0.6 0.8 1.0
#large-model deferrals / #tokens generated

11

12

13

14

RO
UG

E-
2

XSum: Base Large

Cascade [Chow]
Oracle [Diff]
SpecDecoding

Figure 1: Plots of quality as a function of the number of deferrals to the larger model divided by
the total number of generated tokens for cascades constructed from T5 models (under temperature
sampling with T = 1). The left-most point represents the small model and the right-most represents
the large model. We compare token-level cascades constructed with Chow’s rule (Chow) and an oracle
deferral rule (Diff), and speculative decoding with block size γ = 5. With a cascade, each call to the
large model yields exactly one token, whereas with speculative decoding, a single call scores γ draft
tokens in parallel. While speculative decoding matches the quality of the large model (see dashed
horizontal line), the oracle deferral rule yields significantly better quality on a range of deferral rates;
this however comes at the cost of higher number of deferrals to the large model.

significantly better cost-qualty trade-offs. Even Chow’s rule, which is sub-optimal for cascading
(Jitkrittum et al., 2023), offers better trade-offs, and outperforms speculative decoding in a small
region. As noted by Kim et al. (2023), this may be attributed to the ensembling effect in a cascade.

However, as also evident from the plots, token-level cascades require a significantly larger number
of deferrals to the large model to achieve the same quality. This is because token-level cascades
are executed sequentially: whenever q defers, we execute p once to generate one next token for the
prefix accumulated so far, and the control transfers back to q. In contrast, speculative decoding runs
p in scoring mode to verify γ draft tokens from q in parallel. Moreover, the stochastic verification
algorithm in speculative decoding often results in fewer tokens from q getting rejected compared to
the deterministic deferral rules used in a cascade. These observations motivate a natural question:
given their complementary strengths, how can we leverage the best of both these techniques?

4 SPECULATIVE CASCADES: LEVERAGING THE BEST OF BOTH WORLDS

In addressing the above question, we present our main contribution: a principled approach to
combining the better trade-offs cascades offer with the faster execution of speculative decoding.

4.1 SPECULATIVE DECODING WITH GENERAL TARGET DISTRIBUTIONS

We begin by considering a generic version of speculative sampling that seeks to mimic a general target
distribution derived from the drafter’s and verifier’s distributions. In the proposed sampling procedure
outlined in Algorithm 4, we sample tokens auto-regressively as before from the drafter’s distribution.
During the verification step, however, we do not compare the drafter’s token probabilities against the
verifier’s distribution. Instead, we use a user-specified target distribution π = T(q, p) ∈ ∆V derived
from the drafter’s and verifier’s distributions at position t, for some function T(·, ·) that is inexpensive
to compute. We accept a draft token xt when q(xt) ≤ π(xt) and reject it otherwise with probability
1− π(xt)

q(xt)
. Upon rejection, we re-sample from the residual distribution norm (max{0, π(·)− q(·)}).

This general procedure not only encompasses standard speculative decoding (Leviathan et al., 2023)
for T(q, p) = p, but also includes lossy speculative decoding (Tran-Thien, 2023) as a special case:

Lemma 2. Algorithm 4 reduces to the lossy speculative sampling procedure in (Tran-Thien, 2023)
with parameters α and β when T(q, p)(v) = max{min{q(v), p(v)

1−α},
p(v)
β }.

4.2 FROM SEQUENTIAL TO SPECULATIVE CASCADES

Equipped with Algorithm 4, we now propose new cascading techniques that implement their deferral
rule in a speculative manner. Recall from §3.1 that a token-level cascade of two models q and p is
defined by a deferral rule r : Vt−1 → {0, 1}. For a prefix x<t, the next-token distribution at position

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 SpecDecode

Input: Models q, p, Prefix x<t, Block size γ
T(q, p) .

= p
Output: GenSpecSample(q, p,T, x<t, γ)

Algorithm 2 TokenCascade

Input: Models q, p, Deferral logic δ, Prefix x<t
qt(·)

.
= q(·|x<t)

if δ(qt, ∅) = 0 then
Sample xt ∼ qt(·)

else
pt(·)

.
= p(·|x<t); Sample xt ∼ pt(·)

end if
Output: xt

Algorithm 3 OracleCascade

Input: Models q, p, Deferral logic δ, Prefix x<t
qt(·)

.
= q(·|x<t); pt(·)

.
= p(·|x<t)

if δ(qt, pt) = 0 then
Sample xt ∼ qt(·)

else
Sample xt ∼ pt(·)

end if
Output: xt

Algorithm 4 GenSpecSample

Input: Models q, p, Target distr. T, Prefix x<t, Block size γ
[γ] ≡ {0, . . . , γ}
Sample γ tokens auto-regressively from q
for j = 0 to γ − 1 do

qt+j(·)
.
= q(·|x<t+j); xt+j ∼ qt+j(·)

end for
Run p in parallel to score γ draft tokens
pt+j(·)

.
= p(·|x<t+j), ∀j ∈ [γ]

πt+j = T(qt+j , pt+j)
Find the earliest draft token that gets rejected

aj ∼ Ber
(
min

{
1,

πt+j(xt+j)

qt+j(xt+j)

})
, ∀j ∈ [γ − 1]; aγ = 0

j∗ = min{j ∈ [γ] : aj = 0}
Sample a new token from residual distribution

pres(·) =

{
norm(max {0, πt+j∗(·)− qt+j∗(·)}) if j∗ < γ

πt+γ(·) else
Sample xt+j∗ ∼ pres(·)

Output: xt, . . . , xt+j∗

Algorithm 5 SpecCascade

Input: Models q, p, Deferral logic δ, Prefix x<t, Block size γ
Tδ(q, p)

.
= (1− δ(q, p)) · q + δ(q, p) · p

Output: GenSpecSample(q, p,Tδ, x<t, γ)

t modeled by this cascade can be written as:

π(v) = (1− r(x<t)) · qt(v) + r(x<t) · pt(v).

In fact, for all the deferral rules described in §2, the resulting distribution can be described by a target
distribution function Tδ of the form:

Tδ(q, p)(v) = (1− δ(q, p)) · q(v) + δ(q, p) · p(v), (6)

for some function δ : ∆V ×∆V → {0, 1} that maps distributions (q, p) to a binary decision. For
example, for Chow, δ(q, p) = 1

(
maxv q(v) < 1 − α

)
, and for Diff, δ(q, p) = 1

(
maxv q(v) <

maxv p(v)− α
)
. See Table 1 for a summary of target distributions for different deferral rules.

Our proposal is to then invoke the speculative sampling procedure in Algorithm 4 with Tδ as the
target distribution function. We outline this generic speculative cascading approach in Algorithm 5,
and contrast it with the sequential execution of a deferral rule in Algorithm 2.

Remark 2 (Exact implementation of oracle deferral rule Diff). In a sequential cascade, the large
model’s distribution p cannot be used at the time the deferral decision is made (see Remark 1), as
this would defeat the purpose of the cascade. With a speculative cascade, however, we can employ
rules like Diff that depend on both q and p. This is because we run the large model p in parallel on
drafts generated by the small model q, allowing us to compute both p(·) and q(·) on every prefix.

So far we have considered deferral rules designed for sequential cascades. In what follows, we derive
the optimal deferral rule r for a speculative cascade, where we sample speculatively from a target
distribution π = (1− r(x<t)) · qt + r(x<t) · pt using qt as the drafter.

4.3 OPTIMAL SPECULATIVE CASCADE DEFERRAL

We seek a deferral rule r : Vt−1 → {0, 1} that trades-off between quality and inference cost. As
with §2, we measure quality in terms of the loss incurred against the ground-truth distribution. The
inference cost, on the other hand, crucially depends on how frequently a draft token is rejected in the
verification phase, triggering a rollback. To this end, we seek to minimize the expected loss from
the deferral rule subject to a constraint on the resulting rejection rate. More specifically, (i) we show

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

that the rejection rate can be computed using a simple closed-form expression (Lemma 3); (ii) we
formulate a constrained optimization objective (7) and the corresponding the Lagrangian (8); (iii)
we derive the optimal deferral rule that minimizes the Lagrangian (Lemma 4), approximate it with a
plug-in rule (10), and provide a regret bound guarantee for the approximation (Lemma 5).
Lemma 3. For a given prefix x<t, and target distribution π = (1− r(x<t)) · qt + r(x<t) · pt, the
probability of a token drawn from draft distribution qt being rejected is equal to: r(x<t) ·DTV(pt, qt),
where DTV(p, q) =

∑
v∈V max{0, p(v)− q(v)} is the TV distance between p and q.

Intuitively, whenever r(x<t) = 0, π(v) = qt(v), and therefore there is no rejection or roll-back;
when r(x<t) = 1, the rejection rate equals DTV(pt, qt).

For a fixed prefix x<t, we formulate the goal of finding a solution to:

min
r

Ev∼P(·|x<t)

[(
1− r(x<t)

)
· `(v, qt) + r(x<t) · `(v, pt)

)]
s.t. r(x<t) ·DTV(pt, qt) ≤ B, (7)

for some budget B > 0. Equivalently, one may minimize an unconstrained objective similar to
equation 3, for suitable cost parameter α > 0 (see §C.4):

Lspec(r;x<t) = Ev∼P(·|x<t)
[(

1− r(x<t)
)
· `(v, qt) + r(x<t) ·

(
`(v, pt) + α ·DTV(pt, qt)

)]
, (8)

Contrasting equation 8 with the deferral risk in equation 3 for a sequential cascade, a key difference
is that the cost of deferring to the larger model is no longer a constant, but depends on the similarity
between qt and pt, as measured by the TV distance between them.

We next derive the optimal deferral rule for equation 8, and construct a feasible estimator for it.
Lemma 4 (Optimal deferral for speculative cascades). The minimizer of equation 8 is of the form:

r∗(x<t) = 1 ⇐⇒ Ev∼P(·|x<t) [`(v, qt)] > Ev∼P(·|x<t) [`(v, pt)] + α ·DTV(pt, qt). (9)

When pt and qt are similar, the rejection rate for qt is low, and hence the deferral decision will depend
largely on which of the two models yields a lower expected loss. When pt and qt are very different,
the optimal decision is to defer to pt only when it yields a substantially lower loss than qt.

Plug-in estimator for equation 9. The optimal rule requires estimating expectations with respect
the ground-truth distribution P(·|x<t). We employ similar plug-in estimators as the ones used with
sequential cascades (§3). When ` = `0-1, we replace the expected 0-1 loss with (one minus) the
maximum probability from the model, giving us:

r̂OPT(x<t) = 1 ⇐⇒ maxv qt(v) < maxv pt(v)− α ·DTV(pt, qt). (10)

The efficacy of the plug-in estimator depends on how closely the individual models approximate the
ground-truth distribution P(·|x<t); this is formalized by the following regret bound:
Lemma 5 (Regret bound for r̂OPT). Suppose ` = `0-1. Then for a fixed prefix x<t:

Lspec(r̂OPT;x<t)−min
r

Lspec(r;x<t) ≤ max
v∈V

∣∣P(v|x<t)− qt(v)
∣∣ + max

v∈V

∣∣P(v|x<t)− pt(v)
∣∣.

One can now run the speculative cascading procedure in Algorithm 5 using equation 10 as the deferral
rule; the corresponding δ(·) is listed in Table 1. See §C.2 for a similar derivation for ` = `log.

4.4 TOKEN-SPECIFIC SPECULATIVE CASCADES

The plug-in deferral rules in (5) and (10) decide between the drafter’s distribution qt(·) and the
verifier’s distribution pt(·) by comparing their maximum token probabilities. A downside to this
approach is that the draft token xt ∼ qt(·) may not maximize qt(·). Thus, even when xt is of poor
quality, we may end up accepting it because qt happens to be more peaked than pt.

To alleviate this problem, we propose the use of token-specific deferral rules r : Vt−1 × V→ {0, 1}
that use both the prefix x<t and a candidate token v to provide a binary decision r(x<t, v) ∈ {0, 1},
with 0 indicating that the token is of acceptable quality. We may then construct a target distribution
of the following form:

πToken(v) = qt(v) · (1− r(x<t, v)) + pt(v) · η, (11)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where η =
∑
v′∈V r(x<t, v

′) · qt(v′) is a normalizing term chosen to ensure that
∑
v πToken(v) = 1.

This target distribution closely mimics qt(·) on tokens that the deferral rule r deems to be of acceptable
quality, and defers to pt(·) otherwise. One can modify the generic speculative sampling algorithm in
Algorithm 4 to use πToken as the target distribution, as shown in Algorithm 6 in §D.

To design r, we propose a heuristic variant of the Diff rule in equation 4 that compares the expected
0-1 loss from the candidate token v with the expected 0-1 loss from distribution pt (in §D, we discuss
deriving a similar variant of the OPT rule in equation 9):

r(x<t, v) = 1 ⇐⇒ 1− P(v|x<t) > Ev∼P(·|x<t) [`0-1(v, pt)] + α, (12)

for a cost parameter α. The following are some simple plug-in approximations to equation 12:

r̂TokenV1(x<t, v) = 1 ⇐⇒ qt(v) < maxv′ pt(v
′)− α

r̂TokenV2(x<t, v) = 1 ⇐⇒ pt(v) < maxv′ pt(v
′)− α

r̂TokenV3(x<t, v) = 1 ⇐⇒ pt(v) < maxv′ pt(v
′) · (1− α),

(13)
(14)
(15)

where we approximate P(v|x<t) with either qt(v) or pt(v). Equation 15 is a multiplicative plug-in
approximation that has similarities to the rejection criterion used by Leviathan et al. (2023) for lossy
speculative greedy decoding, and results in an intuitive target distribution:

πTokenV3(v) = qt(v) · 1
(
v ∈ Topα

)
+ pt(v) ·

∑
v′ /∈Topα

qt(v
′),

where Topα = {v ∈ V : pt(v) ≥ maxv′ pt(v
′) · (1− α)} is the set of top ranked tokens by pt(·).

For these top-ranked tokens, πTokenV3 approximates qt(·); for the rest, it is a re-scaled version of pt(·).

5 FURTHER RELATED WORK AND CONCLUSIONS

There has been a stream of work on improving the draft generation process in speculative decoding;
these include having the drafter and verifier share the same backbone (Stern et al., 2018; Kim et al.,
2024; Cai et al., 2024; Monea et al., 2023; Hooper et al., 2023; Zhang et al., 2023; Elhoushi et al.,
2024; Liu et al., 2024), using multiple small draft models Chen et al. (2023c); Wang et al. (2024),
using tree-structured draft batches (Spector & Re, 2023; Miao et al., 2024), distilling the drafter with
the verifier (Zhou et al., 2024), and leveraging multiple sampled draft candidates Sun et al. (2024).

The work that is most closely related to our specific proposal is the Big Little Decoder (BiLD) (Kim
et al., 2023), which can be seen as another lossy variant of speculative decoding (Leviathan et al.,
2023; Tran-Thien, 2023; Zhou et al., 2024). BiLD has two phases: a fallback phase, during which the
drafter q is run auto-regressively until its maximum predicted probability is sufficiently low; and a
rollback phase, during which the verifier p is run in parallel on the prefixes generated by q and rolls
back to the point where D(q, p) > α, for a metric D that measures discrepancy and threshold α. The
fallback phase implements Chow’s deferral rule in (2), and allows for the draft window size to vary
dynamically based on an estimate of how likely the draft tokens will be accepted; the rollback phase
can be seen as a deterministic variant of the rejection sampling algorithm of Leviathan et al. (2023).

An advantage of BiLD over the rejection sampling algorithm in (Leviathan et al., 2023) is the use
of Chow’s rule to vary the draft window size. However, the final target distribution it seeks to
mimic, TBiLD(q, p)(v) = 1(D(q, p) ≤ α) · q(v) + 1(D(q, p) > α) · p(v), is an approximation to p;
specifically, the target distribution π = TBiLD(q, p) is chosen to satisfy D(π, p) ≤ α. Hence, in cases
where q deviates substantially from p, BiLD would choose p as the target distribution, even when q
offers better quality on a prefix (where quality can be measured using a suitable loss function). In
contrast, our proposed approach in §4 uses speculative decoding to approximate target distributions
that seek to optimally cascade between q and p. In our experiments, we compare the efficacy of using
TBiLD as the target distribution with the target distributions we propose in this paper (see Table 1).

6 EXPERIMENTAL RESULTS

We compare our speculative cascading techniques with both sequential cascades and standard
speculative decoding on a range of language benchmarks, including translation, reasoning, coding,
QA, etc. We evaluate speculative cascades constructed from both the T5 v1.1 family of encoder-
decoder models (Raffel et al., 2020a), and Gemma v2 decoder-only models (Team et al., 2024).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Reduction in latency (T = 1, γ = 5) when matching the quality of the large model (cols
2–7), and the best quality metric without exceeding the latency of the large model (cols 8–13). Quality
is measured in terms of the BLEU for WMT and ROUGE-2 for XSum and CNNDM. See Figure 2
for T = 0.5 and §E.2 for T = 0. We have the baselines in rows 1–4, the proposed method with old
deferral rules (§3) in rows 5–6, and the proposed method with new deferral rules (§4) in rows 7–8.

Latency↓ when matching large model’s quality Best quality without exceeding large model’s latency

Small→ Large Small→ XL Small→ Large Small→ XL

Method WMT XSum CNNDM WMT XSum CNNDM WMT XSum CNNDM WMT XSum CNNDM
SeqCascade [Chow] 1.55× 0.84× 0.98× 2.46× 0.93× 0.94× 16.56 12.97 9.91 16.29 16.40 11.18
TokenCascade [Chow] 1.03× 0.93× 1.40× 1.46× 0.82× 1.51× 16.52 13.30 10.36 16.65 17.09 11.44
SpecDecode [Lossy] 1.61× 1.10× 1.57× 2.17× 1.28× 2.07× 17.26 13.90 10.43 16.94 17.36 11.53
BiLD∗ 1.34× 1.04× 1.38× 1.85× 1.28× 1.84× 16.49 13.81 10.14 15.90 17.35 11.35
SpecCascade [Chow] 1.43× 1.04× 1.41× 2.01× 1.28× 1.97× 17.76 13.82 10.28 16.35 17.36 11.39
SpecCascade [Diff] 1.79× 1.17× 1.75× 2.44× 1.30× 2.15× 18.04 14.00 10.64 18.07 17.37 11.67

SpecCascade [OPT] 1.95× 1.17× 1.80× 2.61× 1.34× 2.21× 18.33 14.10 10.86 18.09 17.48 11.85
SpecCascade [Token] 1.85× 1.18× 1.89× 2.50× 1.40× 1.89× 22.50 15.85 12.63 22.70 18.79 12.63

0.50 0.55 0.60 0.65 0.70
Relative latency

24.0

24.5

25.0

25.5

26.0

26.5

27.0

BL
EU

WMT: Small Large (T=0.5)

0.5 0.6 0.7
Relative latency

12.5

13.0

13.5

14.0

14.5

15.0

15.5
RO

UG
E-

2
CNNDM: Small Large (T=0.5)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]
TokenCascade [Chow]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]

Figure 2: Latency-quality trade-off plots for methods that interleave T5-small with T5-large (γ = 5).
Latency is measured relative to that of calling T5-large on all inputs. The horizontal dotted line
denotes the quality of T5-large. §E.3–E.4 contain more plots with varying temperatures and γ.

Cascades versus SpecDecode evaluation. Our evaluation protocol is markedly different from the
standard evaluation of speculative decoding algorithms, where the goal is to speed up inference
with a large model while preserving its output distribution. In contrast, our focus is on trading-off
quality for lower inference costs by cascading two models of different sizes. We also do not claim
to develop a new state-of-the-art method for fast LM inference. Furthermore, the speculative
cascades we design build on the original speculative decoding algorithm Leviathan et al. (2023).
While one could potentially also adapt our proposal to other recent variants of speculative decoding
(Cai et al., 2024; Li et al., 2024b), these involve a wholly orthogonal suite of techniques to what we
propose (such as architectural changes, allowing for multiple drafts, distillation, and so on; see §5).

Proposed methods and baselines. We evaluate our proposed speculative cascades with four deferral
rules: (i) Chow in (2), (ii) Diff in (5), (iii) OPT in (10), and (iv) the Token-specific rule in (15). Of
these, (i) and (ii) are existing deferral rules, while (iii) and (iv) are new rules we propose. We also
present results for the V1 and V2 variants of the token-specific rules in §E.7.

We compare these with the following cascading and speculative decoding baselines:

(i) Sequence-level cascade (Jitkrittum et al., 2023; Gupta et al., 2024) based on sequence-level
Chow’s rule in equation 1 (SeqCascade [Chow]).

(ii) Token-level cascade outlined in Algorithm 2, with token-level Chow’s rule in equation 2 used for
deferral (Chow, 1970; Gupta et al., 2022) (TokenCascade [Chow]).

(iii) Lossy speculative decoding described in §2, with both β = 1 (Leviathan et al., 2023; Zhou et al.,
2024) (SpecDecode [Lossy]) and β tuned using the procedure in Tran-Thien (2023) (Lossy?).

(iv) Big-Little Decoder approach (Kim et al., 2023), with both the original deterministic version
(BiLD), and the variant where we apply Algorithm 4 to the target distribution TBiLD in §5 (BiLD∗).

Fine-tuned T5 cascades. Our experiments on T5 models are based on the setup in Zhou et al. (2024);
see §E.1 for details. We use T5-small (77M) as the small model, and either T5-large (800M) or T5-XL
(3B) as the large model. In each case, we supervised fine-tune these models on three tasks: WMT

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Rejection rate

10

15

20

25

BL
EU

WMT 5-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

17

18

19

20

21

Ro
ug

e-
L

CNNDM 5-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Rejection rate

0.4

0.5

0.6

0.7

Ex
ac

t M
at

ch

GSM8K 8-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

0.24

0.26

0.28

0.30

0.32

F1

WebQ 1-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.00 0.05 0.10 0.15
Rejection rate

0.2

0.3

0.4

0.5

Pa
ss

@
1

MBPP 3-shot: 2B 27B [PT] (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.0 0.1 0.2 0.3 0.4
Rejection rate

0.15

0.20

0.25

0.30

0.35

F1

NaturalQA 1-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

Figure 3: Plots of quality vs. rejection rate for methods that interleave Gemma 2B with Gemma 27B
(γ = 1). We use instruction-tuned models; for MBPP we report additional results with pre-trained
models. See §E.7 for remaining plots, comparison to (13–14) and results on 2B→ 9B cascades.

EN→DE translation (Bojar et al., 2014a), CNN/DM summarization (Hermann et al., 2015), and
XSum abstractive summarization (Narayan et al., 2018). We use temperatures T = 0, 0.1, 0.5, 1.0,
and block sizes γ = 3, 5, 7 (full results in §E). Following the protocol in Leviathan et al. (2023);
Zhou et al. (2024), to measure latency, we evaluate the wall-clock decoding time with batch size 1.

In Figure 2, we present plots of quality vs. latency for the different methods. In each case, we
vary the lenience parameter α, and plot either the BLEU or ROUGE-2 metric as a function of the
relative latency to the larger model. For brevity, we include the three main baselines; in §E.5–E.6,
we compare to SpecDecode [Lossy?] (Tran-Thien, 2023) and the original BiLD algorithm Kim et al.
(2023). Methods that use speculative execution are considerably faster than sequential token-level
cascades (TokenCascade [Chow]), although sequential cascades do have an advantage in the low-
latency regimes. This is because unlike speculative approaches, which always call the large model
after every γ steps, a sequential cascade only invokes the large model when the small model defers.

In Table 2, we report (i) the reduction in latency from T5 cascades when matching the quality of the
large model, and (ii) the best quality that each method can deliver without exceeding the latency of
the large model. SpecCascade [Token] often yields the highest speed-up and the best quality metrics,
with OPT coming in second. The cascading approaches are often seen to fare poorly on both quality
and latency metrics, with the exception of WMT, where SeqCascade yields non-trivial speed-ups.
The reason the Token-specific rule fares better than OPT and Diff is because the latter compute their
deferral decisions based on which of qt(·) and pt(·) is more peaked; this can be a disadvantage
when the sampled token is not close to the distribution mode, which is likely to happen with higher
temperatures. As shown in §E.3, with lower temperatures, the gap between these rules diminishes.

Few-shot Gemma cascades. To evaluate the Gemma model cascades, we use few-shot prompting
with 8 language benchmarks: WMT, CNN/DM, GSM8K, MBPP, SQuAD 2.0, WebQuestions,
NaturalQA and TriviaQA; many of these feature in the SpecBench suite (Xia et al., 2024b). Figure 3
presents plots of quality vs. rejection rate with a 2B drafter and 27B verifier for γ = 1. For brevity,
we only compare the methods that fare the best in the previous experiments. With the exception of
TriviaQA, SpecCascade [Token] is able to both match the 27B’s quality at a lower rejection rate
and yield the best overall quality, often better than 27B. Since all three methods use the exact same
implementation for speculative execution, a lower rejection rate directly translates to a lower latency.

Interestingly, OPT is not as effective as with T5. We attribute this to the differences in distributions
between the two setups: with T5, the maximum token probability served as a good indicator of token
accuracy for both q and p; with Gemma, we expect the large model to have a closer alignment with
the ground-truth distribution (due to it being several billion parameters apart from the smaller model),
and hence using the large model probabilities to measure confidence for both the small and large
model (15) yields better trade-offs than comparing the modes from the two model distributions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil and et al. PaLM 2 technical report, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, Usvsn Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-
20B: An open-source autoregressive language model. In Angela Fan, Suzana Ilic, Thomas Wolf,
and Matthias Gallé (eds.), Proceedings of BigScience Episode #5 – Workshop on Challenges
& Perspectives in Creating Large Language Models, pp. 95–136, virtual+Dublin, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.bigscience-1.9. URL https:
//aclanthology.org/2022.bigscience-1.9.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore,
Maryland, USA, June 2014a. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/W/W14/W14-3302.

Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al. Findings of the 2014
workshop on statistical machine translation. In Proceedings of the ninth workshop on statistical
machine translation, pp. 12–58, 2014b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple LLM inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models while
reducing cost and improving performance, 2023b.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Jie Huang, and Kevin Chen-Chuan Chang.
Cascade speculative drafting for even faster LLM inference. arXiv preprint arXiv:2312.11462,
2023c.

C Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information theory,
16(1):41–46, 1970.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam

11

https://aclanthology.org/2022.bigscience-1.9
https://aclanthology.org/2022.bigscience-1.9
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. PaLM: Scaling language modeling with pathways, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu,
Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022. URL https://arxiv.org/abs/2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=02f3mUtqnM.

David Dohan, Winnie Xu, Aitor Lewkowycz, Jacob Austin, David Bieber, Raphael Gontijo Lopes,
Yuhuai Wu, Henryk Michalewski, Rif A. Saurous, Jascha Sohl-dickstein, Kevin Murphy, and
Charles Sutton. Language model cascades, 2022. URL https://arxiv.org/abs/2207.10342.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In
International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=SJg7KhVKPH.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pp. 1321–1330. JMLR.org, 2017.

Neha Gupta, Jamie Smith, Ben Adlam, and Zelda E Mariet. Ensembles of classifiers: a bias-variance
perspective. Transactions of Machine Learning Research, 2022. URL https://openreview.net/
forum?id=lIOQFVncY9.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=KgaBScZ4VI.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami,
and Sophia Shao. Speed: Speculative pipelined execution for efficient decoding. arXiv preprint
arXiv:2310.12072, 2023.

Wittawat Jitkrittum, Neha Gupta, Aditya K Menon, Harikrishna Narasimhan, Ankit Rawat, and Sanjiv
Kumar. When does confidence-based cascade deferral suffice? Advances in Neural Information
Processing Systems, 36, 2023.

12

https://arxiv.org/abs/2210.11416
https://openreview.net/forum?id=02f3mUtqnM
https://arxiv.org/abs/2207.10342
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=lIOQFVncY9
https://openreview.net/forum?id=lIOQFVncY9
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–
1611, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/
v1/P17-1147. URL https://aclanthology.org/P17-1147.

Leila Khalili, Yao You, and John Bohannon. Babybear: Cheap inference triage for expensive language
models, 2022. URL https://arxiv.org/abs/2205.11747.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Taehyeon Kim, Ananda Theertha Suresh, Kishore Papineni, Michael Riley, Sanjiv Kumar, and Adrian
Benton. Towards fast inference: Exploring and improving blockwise parallel drafts. arXiv preprint
arXiv:2404.09221, 2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 19274–19286. PMLR,
23–29 Jul 2023. URL https://proceedings.mlr.press/v202/leviathan23a.html.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE: Speculative sampling requires
rethinking feature uncertainty. In International Conference on Machine Learning, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024b.

Fangcheng Liu, Yehui Tang, Zhenhua Liu, Yunsheng Ni, Kai Han, and Yunhe Wang. Kangaroo:
Lossless self-speculative decoding via double early exiting. arXiv preprint arXiv:2404.18911,
2024.

Jonathan Mamou, Oren Pereg, Moshe Wasserblat, and Roy Schwartz. TangoBERT: Reducing
inference cost by using cascaded architecture, 2022. URL http://arxiv.org/abs/2204.06271.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large
language model serving with tree-based speculative inference and verification. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024.

Giovanni Monea, Armand Joulin, and Edouard Grave. Pass: Parallel speculative sampling. arXiv
preprint arXiv:2311.13581, 2023.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 1797–1807, 2018.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
transformer inference, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving lan-
guage understanding by generative pre-training. https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf, 2018.

13

https://aclanthology.org/P17-1147
https://arxiv.org/abs/2205.11747
https://aclanthology.org/Q19-1026
https://proceedings.mlr.press/v202/leviathan23a.html
http://arxiv.org/abs/2204.06271
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020a. URL http://jmlr.org/papers/
v21/20-074.html.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020b.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/
D16-1264.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=uLYc4L3C81A.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Re, Ion Stoica, and Ce Zhang. FlexGen: High-throughput generative inference of
large language models with a single GPU. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pp. 31094–31116. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
v202/sheng23a.html.

Benjamin Spector and Chris Re. Accelerating LLM inference with staged speculative decoding.
arXiv preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. CoRR, abs/1811.03115, 2018. URL http://arxiv.org/abs/1811.03115.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024.

Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Dara Bahri, Tal Schuster, Steven Zheng, Denny Zhou, Neil Houlsby, and Donald Metzler.
UL2: Unifying language learning paradigms. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=6ruVLB727MC.

Gemini Team, Rohan Anil, and et al. Gemini: A family of highly capable multimodal models, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Vivien Tran-Thien. An optimal lossy variant of speculative decoding, 2023. URL https:
//vivien000.github.io... Unsupervised Thoughts (Blog). URL: https://github.com/
vivien000/mentored_decoding.

Neeraj Varshney and Chitta Baral. Model cascading: Towards jointly improving efficiency and
accuracy of nlp systems. arXiv preprint arXiv:2210.05528, 2022.

14

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
https://openreview.net/forum?id=uLYc4L3C81A
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
http://arxiv.org/abs/1811.03115
https://openreview.net/forum?id=6ruVLB727MC
https://vivien000.github.io...
https://vivien000.github.io...
https://github.com/vivien000/mentored_decoding
https://github.com/vivien000/mentored_decoding

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Siqi Wang, Hailong Yang, Xuezhu Wang, Tongxuan Liu, Pengbo Wang, Xuning Liang, Kejie Ma,
Tianyu Feng, Xin You, Yongjun Bao, et al. Minions: Accelerating large language model inference
with adaptive and collective speculative decoding. arXiv preprint arXiv:2402.15678, 2024.

Xiaofang Wang, Dan Kondratyuk, Eric Christiansen, Kris M Kitani, Yair Alon, and Elad Eban.
Wisdom of committees: An overlooked approach to faster and more accurate models. arXiv
preprint arXiv:2012.01988, 2020.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
gEZrGCozdqR.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding, 2024a.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. Unlocking efficiency in large language model inference: A comprehensive survey of
speculative decoding, 2024b.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades
with mixture of thought representations for cost-efficient reasoning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
6okaSfANzh.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft &
verify: Lossless large language model acceleration via self-speculative decoding. arXiv preprint
arXiv:2309.08168, 2023.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative decoding
via knowledge distillation. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=rsY6J3ZaTF.

15

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=6okaSfANzh
https://openreview.net/forum?id=6okaSfANzh
https://openreview.net/forum?id=rsY6J3ZaTF

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF LEMMA 1

Proof. Expanding the loss in equation 3, we have:

Ldef(r;x<t) =
(
1− r(x<t)

)
· Ext∼P(·|x<t) [`(xt, qt)] + r(x<t) ·

(
Ext∼P(·|x<t) [`(xt, pt)] + α

)
= r(x<t) ·

(
Ext∼P(·|x<t) [`(xt, pt)] + α− Ext∼P(·|x<t) [`(xt, qt)]

)
+ Ext∼P(·|x<t) [`(xt, qt)]

This objective is minimized by a deferral rule r : Vt−1 → {0, 1} that minimizes, for each prefix x<t,
the term within the parenthesis. Therefore the minimizer r∗(x<t) = 1 whenever the term within the
parenthesis is negative:

Ext∼P(·|x<t) [`(xt, pt)] + α− Ext∼P(·|x<t) [`(xt, qt)] < 0,

and r∗(x<t) = 0 otherwise. Re-arranging the terms completes the proof.

A.2 PROOF OF LEMMA 2

Proof. The proof follows straight-forwardly from the results in (Tran-Thien, 2023). Recall from §2
that the lossy speculative decoding procedure of (Tran-Thien, 2023) accepts a draft token x with
probability:

κ(x) = min

{
1,

p(x)

(1− α) · q(x)

}
, (16)

and replaces a rejected draft token with a token sampled from the residual distribution:

pres(x) = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
, (17)

for parameters α ∈ [0, 1) and β ≥ 1− α.

We need to show that running Algorithm 4 with the target distribution:

π(x) = max

{
min

{
q(x),

p(x)

1− α

}
,
p(x)

β

}
results in the same acceptance probability equation 16 and residual distribution equation 17.

The acceptance probability for a draft token x when running Algorithm 4 on π is given by:

κπ(x) = min

{
1,
π(x)

q(x)

}
.

The corresponding residual distribution is given by:

pπres(x) = norm (max {0, π(x)− q(x)}) .

We consider three possible cases:

Case (i): q(x) > 1
1−α · p(x) ≥ 1

β · p(x). In this case, π(x) = 1
1−α · p(x). As a result:

κπ(x) = min

{
1,

p(x)

(1− α) · q(x)

}
= κ(x);

pπres(x) = norm

(
max

{
0,

1

1− α
· p(x)− q(x)

})
= 0 = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
= pres(x).

Case (ii): 1
1−α · p(x) ≥ 1

β · p(x) > q(x). In this case, π(x) = 1
β · p(x). As a result:

κπ(x) = min

{
1,

p(x)

β · q(x)

}
= 1 = min

{
1,

p(x)

(1− α) · q(x)

}
= κ(x);

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

pπres(x) = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
= pres(x).

Case (iii): 1
1−α · p(x) ≥ q(x) ≥ 1

β · p(x). In this case, π(x) = q(x). As a result:

κπ(x) = 1 = min

{
1,

p(x)

(1− α) · q(x)

}
= κ(x);

pπres(x) = 0 = norm

(
max

{
0,

1

β
· p(x)− q(x)

})
= pres(x).

In all three cases, the acceptance probabilities and residual distributions are identical.

A.3 PROOF OF LEMMA 3

Proof. Under a target distribution πt, the probability of a draft token drawn from qt being is rejected
is given by (Leviathan et al., 2023):

rejection probability =
∑
v∈V

qt(v) ·
(

1−min

{
1,
πt(v)

qt(v)

})
= 1−

∑
v∈V

min {qt(v), πt(v)}

=
∑
v∈V

πt(v)−
∑
v∈V

min {qt(v), πt(v)}

=
∑
v∈V

max {0, πt(v)− qt(v)} .

Expanding π, the rejection probability becomes:

rejection probability =
∑
v∈V

max {0, (1− r(x<t)) · qt(v) + r(x<t) · pt(v)− qt(v)}

When r(x<t) = 1, we have:

rejection probability =
∑
v∈V

min {0, pt(v)− qt(v)} = DTV(pt, qt) = r(x<t) ·DTV(pt, qt).

When r(x<t) = 0, we have:

rejection probability = 0 = r(x<t) ·DTV(pt, qt),

as desired.

A.4 PROOF OF LEMMA 4

Proof. Expanding the deferral risk in equation 8, we have:

Lspec(r;x<t) = r(x<t) ·
(
Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)]

)
+ Ext∼P(·|x<t) [`(xt, qt)] .

This objective is minimized by a deferral rule r : Vt−1 → {0, 1} that minimizes, for each prefix x<t,
the term within the parenthesis. Therefore the minimizer r∗(x<t) = 1 whenever the term within the
parenthesis is negative:

Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)] < 0,

and r∗(x<t) = 0 otherwise. Re-arranging the terms completes the proof.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 PROOF OF LEMMA 5

For a fixed prefix x<t, we can write the deferral risk in equation 8 as:

Lspec(r;x<t) = r(x<t) ·
(
Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)]

)
+ C,

where C is a term independent of the deferral rule r. Let r∗ : Vt−1 → {0, 1} denote the optimal
deferral rule that minimizes Lspec for any prefix x<t. We then have:

Lspec (r̂OPT;x<t)− Lspec (r∗;x<t)

= (r̂OPT(x<t)− r∗(x<t)) ·
(
Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt)− Ext∼P(·|x<t) [`(xt, qt)]

)
.

Adding and subtracting maxv qt(v)−maxv pt(v) to the term within the second parenthesis, we get:

Lspec (r̂OPT;x<t)− Lspec (r∗;x<t)

= (r̂OPT(x<t)− r∗(x<t)) ·
(

max
v

qt(v) + α ·DTV(pt, qt)−max
v

pt(v)
)

+ (r̂OPT(x<t)− r∗(x<t)) ·
(
Ext∼P(·|x<t) [`(xt, pt)]− Ext∼P(·|x<t) [`(xt, qt)]−max

v
qt(v) + max

v
pt(v)

)
= (r̂OPT(x<t)− r∗(x<t)) ·

(
max
v

pt(v) + α ·DTV(pt, qt)−max
v

qt(v)
)

+ (r̂OPT(x<t)− r∗(x<t)) ·
(
Ext∼P(·|x<t) [`(xt, pt)]− 1 + max

v
pt(v)

)
+ (r̂OPT(x<t)− r∗(x<t)) ·

(
1−max

v
qt(v)− Ext∼P(·|x<t) [`(xt, qt)]

)
= (r̂OPT(x<t)− r∗(x<t)) ·

(
max
v

pt(v) + α ·DTV(pt, qt)−max
v

qt(v)
)

+ |r̂OPT(x<t)− r∗(x<t)| ·
∣∣∣Ext∼P(·|x<t) [`(xt, pt)]− 1 + max

v
pt(v)

∣∣∣
+ |r̂OPT(x<t)− r∗(x<t)| ·

∣∣∣1−max
v

qt(v)− Ext∼P(·|x<t) [`(xt, qt)]
∣∣∣

= (r̂OPT(x<t)− r∗(x<t)) ·
(

max
v

pt(v) + α ·DTV(pt, qt)−max
v

qt(v)
)

︸ ︷︷ ︸
term1

+
∣∣∣Ext∼P(·|x<t) [`(xt, pt)]− 1 + max

v
pt(v)

∣∣∣︸ ︷︷ ︸
term2

+
∣∣∣1−max

v
qt(v)− Ext∼P(·|x<t) [`(xt, qt)]

∣∣∣︸ ︷︷ ︸
term3

(18)

where we have used the fact that |r̂OPT(x<t)− r∗(x<t)| ≤ 1.

We bound each term separately. For the first term, consider two cases: (i) maxv pt(v) + α ·
DTV(pt, qt)−maxv qt(v) ≤ 0 and (ii) maxv pt(v) + α ·DTV(pt, qt)−maxv qt(v) > 0. When (i)
holds, r̂OPT(x<t) = 1; so irrespective of whether r∗(x<t) is 0 or 1,

term1 ≤ max
v

pt(v) + α ·DTV(pt, qt)−max
v

qt(v) ≤ 0

When (ii) holds, r̂OPT(x<t) = 0; so irrespective of whether r∗(x<t) is 0 or 1,

term1 ≤ −
(

max
v

pt(v) + α ·DTV(pt, qt)−max
v

qt(v)
)
< 0.

Thus we have:

term1 ≤ 0. (19)

We next move to the second term. Since ` = `0-1, we have:

term2 =
∣∣∣Ext∼P(·|x<t) [`(xt, pt)]− 1 + max

v
pt(v)

∣∣∣
=

∣∣∣∣Ext∼P(·|x<t)

[
1

(
xt 6= arg max

v
pt(v)

)]
− 1 + max

v
pt(v)

∣∣∣∣
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Inference strategy Deferral decision δ(q, p) Target distribution π(x) Execution

SpecDecoding Leviathan et al. (2023) - p(x) Speculative

Lossy SpecDecoding (Tran-Thien, 2023) - max{min{p(x), q(x)
1−α},

q(x)
β } Speculative

BiLD* (Kim et al., 2023) 1
(
D(q, p) > α

)
(1− δ) · q(x) + δ · p(x) Speculative

Cascade [Chow] (Chow, 1970) 1
(

maxv q(v) < 1− α
)

(1− δ) · q(x) + δ · p(x) Sequential
Cascade [ChowLog] 1

(
entropy(q) > α

)
(1− δ) · q(x) + δ · p(x) Sequential

Oracle [Diff] (Jitkrittum et al., 2023) 1
(

maxv q(v) < maxv p(v)− α
)

(1− δ) · q(x) + δ · p(x) Oracle
Oracle [DiffLog] 1

(
entropy(p) < entropy(q)− α

)
(1− δ) · q(x) + δ · p(x) Oracle

SpecCascade [Chow] 1
(

maxv q(v) < 1− α
)

(1− δ) · q(x) + δ · p(x) Speculative
SpecCascade [ChowLog] 1

(
entropy(q) > α

)
(1− δ) · q(x) + δ · p(x) Speculative

SpecCascade [Diff01] 1
(

maxv q(v) < maxv p(v)− α
)

(1− δ) · q(x) + δ · p(x) Speculative
SpecCascade [DiffLog] 1

(
entropy(p) < entropy(q)− α

)
(1− δ) · q(x) + δ · p(x) Speculative

SpecCascade [OPT01] 1
(

maxv q(v) < maxv p(v)− α ·DTV(p, q)
)

(1− δ) · q(x) + δ · p(x) Speculative
SpecCascade [OPTLog] 1

(
entropy(p) < entropy(q)− α ·DTV(p, q)

)
(1− δ) · q(x) + δ · p(x) Speculative

Table 3: Target distributions associated with different inference algorithms, where α is a free
parameter and β ≥ 1− α is a parameter dependent on q, p and α. The last column indicates whether
the execution is sequential (Algorithm 2), via an oracle (Algorithm 3), or speculative (Algorithm
5) (Leviathan et al., 2023). The third row presents a variant of the BiLD algorithm of Kim et al.
(2023), where D(q, p) is a measure of discrepancy between q and p; the original algorithm differs
from (Leviathan et al., 2023) in the use of a deterministic speculative decoding procedure with a
dynamic draft window (see §5).

=

∣∣∣∣∣max
v

pt(v)−
∑
xt

P(xt|x<t) · 1
(
xt = arg max

v
pt(v)

)∣∣∣∣∣
Suppose v∗ ∈ arg maxv pt(v), then:

term2 = |pt(v∗)− P(v∗|x<t)| ≤ max
v
|pt(v)− P(v|x<t)| . (20)

Similarly, we can show that:

term3 ≤ max
v
|qt(v)− P(v|x<t)| . (21)

Substituting equation 19–equation 21 in equation 18 completes the proof.

B DERIVATION OF CHOW’S RULE

We show below that Chow’s rule is a plug-in estimator to the optimal solution to the following
objective

Lrej(r;x<t) = Ext∼P(·|x<t)

[(
1− r(x<t)

)
· `(xt, qt) + r(x<t) · α

]
, (22)

where the deferral rule is penalized with a constant penalty α ∈ [0, 1] for choosing to defer to the
large model.

Following the same steps as Lemma 1, it is easy to show:

Lemma 6. The minimizer of equation 22 is of the form:

r∗(x<t) = 1 ⇐⇒ Ext∼P(·|x<t) [`(xt, qt)] > α. (23)

If ` = `0-1, one may employ a plug-in estimator to equation 23 by replacing the expected 0-1 loss
over qt with 1 −maxv qt(v), giving us r̂Chow(x<t) in equation 2. If ` = `log, one may replace the
expected log loss over qt with the entropy of qt, giving us:

r̂ChowLog(x<t) = 1 ⇐⇒ entropy
(
q(·|x<t)

)
> α, (24)

where entropy(q) = −
∑
v∈V q(v) · log(q(v)).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C OPTIMAL DEFERRAL: ADDITIONAL DISCUSSION

We provide additional discussion for the optimal deferral rules derived in §3 and §4.

C.1 OPTIMAL SEQUENTIAL DEFERRAL WHEN ` = `log

Recall that the optimal deferral rule for a sequential cascade in Lemma 1 takes the form:

r∗(x<t) = 1 ⇐⇒ Ext∼P(·|x<t) [`(xt, qt)] > Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt).

When ` = `log, we may use the entropy−
∑
v qt(v) · log(qt(v)) from qt as an estimate of its expected

log-loss, and similarly for pt, giving us the plug-in estimator:

r̂DiffLog(x<t) = 1 ⇐⇒
∑
v qt(v) · log(qt(v)) <

∑
v pt(v) · log(pt(v))− α. (25)

C.2 OPTIMAL SPECULATIVE DEFERRAL WHEN ` = `log

Recall that the optimal deferral rule for a speculative cascade in Lemma 4 takes the form:

r∗(x<t) = 1 ⇐⇒ Ext∼P(·|x<t) [`(xt, qt)] > Ext∼P(·|x<t) [`(xt, pt)] + α ·DTV(pt, qt).

When ` = `log, one may construct a plug-in estimator for the above rule by replacing the expected
log loss with the entropy from the distribution:

r̂OPTLog(x<t) = 1 ⇐⇒
∑
v qt(v) · log(qt(v)) <

∑
v pt(v) · log(pt(v))− α ·DTV(pt, qt). (26)

Lemma 7 (Regret bound for r̂OPTLog). Suppose ` = `log. Suppose for a fixed x<t, | log(q(v))| ≤ Bq
and | log(p(v))| ≤ Bp, ∀v ∈ V, for some Bq, Bp > 0. Then:

Lspec(rOPT;x<t)−min
r
Lspec(r;x<t) ≤ Bq·

∑
v∈V

∣∣P(v|x<t)−qt(v)
∣∣+Bp·

∑
v∈V

∣∣P(v|x<t)−pt(v)
∣∣.

Proof. The proof follows similar steps to that for Lemma 5, except in bounding the resulting term2

and term3 for the log loss. In this case,

term2 =

∣∣∣∣∣Ext∼P(·|x<t) [log(pt(xt))]−
∑
v

pt(v) · log(pt(v))

∣∣∣∣∣
=

∣∣∣∣∣∑
v

P(v|x<t) · log(pt(v))−
∑
v

pt(v) · log(pt(v))

∣∣∣∣∣
≤
∑
v

∣∣∣∣∣P(v|x<t)−
∑
v

pt(v)

∣∣∣∣∣ · log(pt(v))

≤ Bp ·
∑
v

∣∣∣∣∣P(v|x<t)−
∑
v

pt(v)

∣∣∣∣∣ .
Similarly,

term3 ≤
∑
v

∣∣∣∣∣P(v|x<t)−
∑
v

pt(v)

∣∣∣∣∣ · log(pt(v))

≤ Bq ·
∑
v

∣∣∣∣∣P(v|x<t)−
∑
v

qt(v)

∣∣∣∣∣ .
Plugging these bounds into the equivalent of equation 18 in Lemma 5 for the log-loss completes the
proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.3 OPTIMAL SPECULATIVE DEFERRAL FOR GREEDY DECODING

Lemma 8. When T → 0, running Algorithm 5 with r̃OPT as the deferral rule and q̃t as the drafter is
equivalent to running it with r̂Diff in equation 5 as the deferral rule and q̃t as the drafter.

Proof. Note that under greedy inference, q̃t p̃t are one-hot encodings of arg maxv qt(v) and
arg maxv pt(v) respectively. As a result,

DTV(q̃t, p̃t) = 1

(
arg max

v
qt(v) 6= arg max

v
pt(v)

)
.

When running Algorithm 5 with r̃OPT as the deferral rule, we will accept a draft token v with
probability:

κ(v) = min

{
1,

(1− δOPT(q, p)) · q̃(v) + δOPT(q, p) · p̃(v)

q̃(v)

}
where δOPT(q, p) = 1 (maxv q(v) < maxv p(v)− α · 1 (arg maxv q(v) 6= arg maxv p(v))).
When arg maxv q(v) = arg maxv p(v), then q̃ = p̃, and irrespective of the outcome of δ(q, p),
we have that π(v) = 1. When arg maxv q(v) 6= arg maxv p(v), then

π(v) = 1− δOPT(q, p) = 1
(

max
v

q(v) ≥ max
v

p(v)− α
)

= 1− δDiff(q, p).

When a token gets rejected, we sample a new token from the residual distribution:

pres(v) ∝ min{0, (1−δOPT(q, p))·q̃(v)+δOPT(q, p)·p̃(v)−q̃(v)} = δOPT(q, p)·min{0, p̃(v)−q̃(v)}

When arg maxv q(v) = arg maxv p(v), pres(v) = 0. When arg maxv q(v) 6= arg maxv p(v),

pres(v) ∝ δOPT(q, p) ·min{0, p̃(v)− q̃(v)} = δDiff(q, p) ·min{0, p̃(v)− q̃(v)}.

Thus both the acceptance probability and the residual distribution are the same as the one we would
have used had we run Algorithm 5 with r̂Diff as the deferral rule.

C.4 EQUIVALENCE BETWEEN EQUATION 7 AND EQUATION 8

Since the prefix x<t is fixed in equation 7, the constrained optimization we seek to solve is of
essentially of the following form:

min
r∈{0,1}

(1− r) · c0 + r · c1 s.t. r · c2 ≤ B,

for some coefficients c0, c1, c2 > 0. Since r is a binary variable, we may formulate an equivalent
unconstrained problem with the same minimizer:

min
r∈{0,1}

(1− r) · c0 + r · c1 + α · r · c2,

where we choose α = 0 when c2 ≤ B and choose an α > 1
c2
·(c0−c1) otherwise. This unconstrained

optimization problem is of the form in equation 8.

D TOKEN-SPECIFIC SPECULATIVE CASCADE

We provide a modification of Algorithm 5 to accommodate the token-specific deferral rules in §4.4.

Algorithm 6 TokenSpecCascade

Input: Models q, p, Token-specific deferral rule r, Prefix x<t, Block size γ
TToken(q, p)(v)

.
= q(v) · (1− r(x<t, v)) + p(v) ·

∑
v′∈V r(x<t, v

′) · q(v′)
Output: GenSpecSample(q, p,TToken, x<t, γ)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.6 0.7 0.8 0.9 1.0
Relative latency

8

9

10

11

12

13

14

RO
UG

E-
2

XSum: Small Large (T=1)

0.35 0.40 0.45 0.50 0.55 0.60
Relative latency

14

15

16

17

18

BL
EU

WMT: Small XL (T=1)

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Relative latency

8

10

12

14

16

RO
UG

E-
2

XSum: Small XL (T=1)

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
Relative latency

8

9

10

11

12

RO
UG

E-
2

CNNDM: Small XL (T=1)

TokenCascade [Chow]
SpecDecode [Lossy]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]
SpecCascade [OPT]

Figure 4: Plots of quality vs. latency for T5 models with temperature T = 1 and block size γ = 5.
We include T5 plots not included in Figure 2 in the main text. Each method interleaves T5-small
with T-large (or T5-XL). The x-axis tracks the latency relative to that of calling the large model on
all inputs. The horizontal dotted line denotes the quality of the large model.

Optimal token-specific deferral. Similar to §4.3, we may consider deriving the optimal token-
specific deferral rule. We start by formulating a similar optimization objective. For a fixed prefix x<t,
this would look like:

min
r

Ev∼P(·|x<t)

[
`(v, πToken)

)]
(27)

s.t. DTV(πToken, qt) ≤ B,

where πToken(v)
.
= (1 − r(x<t, v)) · qt(v) + η · pt(v) is the target distribution resulting from the

choice of r, η =
∑
v′∈V r(x<t, v

′) · qt(v′) is a normalization term, and B > 0 is a budget parameter.

However, unlike §4.3, the above constrained optimization problem does not lend itself to a simple
closed-form solution. In some highly simplistic special cases, we may be able to derive a solution. For
example, suppose ` = `0-1, and the mode of qt coincides with that of P(·|x<t), i.e., arg maxv qt(v) =
arg maxv P(v|x<t); then the optimal token-specific rule is given by r(x<t, v) = 0, for all v ∈ V.

Under more realistic cases, we may not be able to derive a solution as simple as the OPT rule in
equation 10. Therefore, in our experiments, we employ the three heuristic rules in equations 13–15,
which are motivated by the form of the simpler Diff rule in equation 5.

E ADDITIONAL EXPERIMENTAL DETAILS

We provide additional details about our experimental setup and additional experimental results. We
will release code and an illustrative tutorial notebook along with the final manuscript.

E.1 EXPERIMENTAL SETUP AND HYPER-PARAMETERS

We elaborate on our experimental setup and the hyper-parameters used.

T5 datasets. For the WMT English to German translation task (Bojar et al., 2014a), we use a
validation sample of size 3000 provided with the dataset. We set the maximum input length to 80
and the maximum output length to 80. For the Extreme Summarization (XSum) task (Narayan et al.,
2018), we use a validation sample of size 11305, and set the maximum input length to 1024 and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600
Relative latency

25.5

26.0

26.5

27.0

27.5

BL
EU

WMT: Small Large (T=0)

TokenCascade [Chow]
SpecDecode [Lossy]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]

0.30 0.35 0.40 0.45 0.50
Relative latency

25.5

26.0

26.5

27.0

27.5

28.0

BL
EU

WMT: Small XL (T=0)

TokenCascade [Chow]
SpecDecode [Lossy]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Relative latency

14

15

16

17

18

19

RO
UG

E-
2

XSum: Small Large (T = 0)

TokenCascade [Chow]
SpecDecode [Lossy]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]

0.45 0.50 0.55 0.60 0.65 0.70
Relative latency

14

16

18

20

22

RO
UG

E-
2

XSum: Small XL (T=0)

TokenCascade [Chow]
SpecDecode [Lossy]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]

0.40 0.45 0.50 0.55 0.60 0.65 0.70
Relative latency

13.5

14.0

14.5

15.0

15.5

RO
UG

E-
2

CNNDM: Small Large (T=0)

TokenCascade [Chow]
SpecDecode [Lossy]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]

Figure 5: Plots of quality vs. latency for T5 models with greedy decoding with temperature T = 0
and block size γ = 5. Each method interleaves T5-small with T-large (or T5-XL). The x-axis tracks
the latency relative to that of calling the large model on all inputs. The horizontal dotted line denotes
the quality of the large model.

the maximum output length to 64. For the CNN/Daily Mail summarization task (Hermann et al.,
2015), we use a validation sample of size 13368, and set the maximum input length to 2048 and the
maximum output length to 128. Following (Zhou et al., 2024), we use ROUGE-2 as the evaluation
metric for the summarization tasks.

We note that Kim et al. (2023) report ROUGE-L metrics for CNN/DM, which generally tend
to evaluate to higher values than ROUGE-2. Furthermore, most of their experimental results
are with greedy decoding (T = 0), and hence, the ROUGE-L evaluation metrics they report
in their paper tend to be higher for the same T5 models when compared to our numbers for
ROUGE-2 with temperature sampling.

Gemma datasets. In addition to the WMT EN→DE translation and the CNN/DM summarization
datasets, we use the GSM8K (Cobbe et al., 2021) math reasoning dataset, the MBPP (Austin
et al., 2021) Python programming dataset, and four question-answering datasets: Natural Questions
(Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), WebQuestions (Berant et al., 2013) and
the Stanford Question-Answering Dataset (SQuAD) 2.0 (Rajpurkar et al., 2016). In each case, we
sample 1000 prompts for evaluation. We employ few-shot inference, and set the maximum output
length to 80 for WMT, to 128 for CNN/DM, to 320 for GSM8K and MBPP, and to 5 for all the
question-answering datasets.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Models. We construct cascades from T5 v1.1 family of encoder-decoder models (Raffel et al., 2020a),
of different sizes T5-small (77M), T5-base (250M), T5-large (800M) and T5-XL (3B).1 We follow
the protocol in (Zhou et al., 2024): we initialize with the public checkpoints, pre-train them further
for 100K steps, and supervise finetune pre-trained models on the three respective tasks. We finetune
them for a maximum of 250K steps on WMT, a maximum of 100K steps on XSum and a maximum
of 200K steps on CNNDM.

We construct the Gemma cascades from instruction-tuned decoder-only v2 models. For MBPP alone
we additionally experiment with pre-trained models. We use a 2B drafter, and either a 9B verifier or
a 27B verifier (Team et al., 2024).

Evaluation. For each dataset, we evaluate the quality metrics on the entire validation set. For the
run-time analysis, we adopt the protocol followed in Leviathan et al. (2023); Zhou et al. (2024). We
randomly sample 500 examples from the validation set, and calculate the wall-clock time taken for
decoding with a batch size of 1. We repeat this for three trials and report the average running time.
All methods are run on the same TPUv4 device. The drafter and verifier models are run without
model parallelism.

Hyper-parameters. We set the block-size γ to 5 for all methods that use speculative execution. For
the token-level cascades, we allow the small model to predict for a maximum of 10 tokens (similar
to (Kim et al., 2023)), before invoking the large model. This was needed, as otherwise, the small
model would predict a long sequence, and when it eventually defers to the large model, the large
model is bottle-necked by the pre-filling of the long prefix accumulated by the small model. We vary
the lenience parameter α to vary the latency and plot quality as a function of latency. We vary this
parameter in the range 0 to 1 for all methods where the thresholding is on a probability metric; the
exceptions to this are the BiLD variants, for which, we use a longer range, as detailed below.

BiLD baseline. For the BiLD method, we adopt the same discrepancy metric D as (Kim et al., 2023)
for greedy decoding:

D(q, p) = − log

(
p

(
arg max

v
q(v)

))
,

and pick the value of the threshold α on this metric from the range [0, 10]. For temperature sampling
with a non-zero temperature, we use the following natural analogue to the above D:

D(q, p) = −Ev∼q [log(p(v))] = −
∑
v∈V

q(v) · log(p(v)).

In §E.5, we present comparisons between different implementations of this method.

Lossy speculative decoding. See §E.6 for details.

E.2 ADDITIONAL EXPERIMENTAL PLOTS

In Figures 4 and 5, we provide additional plots of quality vs. latency for different inference strategies
under temperature sampling (T = 1) and greedy decoding respectively.

As noted in §C.3, with greedy decoding, the OPT deferral rule coincides with the Diff deferral rule.
When temperature T → 0, DTV(p̃t, q̃t) = 1 whenever arg maxv pt(v) 6= arg maxv qt(v), and is
zero otherwise. In this case, running Algorithm 5 with r̃OPT as the deferral rule (and q̃t as the drafter)
is equivalent to running it with r̂Diff in equation 5 as the deferral rule. In other words, for greedy
decoding, the optimal deferral rules for a speculative cascade coincides with that for a sequential
cascade.

Note that under greedy decoding, all methods yield better quality metrics compared to their perfor-
mance under temperature sampling.

E.3 COMPARING SPECULATIVE DEFERRAL RULES UNDER DIFFERENT TEMPERATURES

In Figure 6, we present latency-quality trade-off plots for T5 cascades under temperature sampling
with different temperatures. We compare lossy speculative decoding with two speculative cascade

1The pre-trained checkpoints we use are available here.

24

https://console.cloud.google.com/ storage/browser/t5-data/pretrained_models

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Relative latency

14

16

18

20

22

BL
EU

WMT: Small Large (T=1)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.50 0.55 0.60 0.65 0.70
Relative latency

24.0

24.5

25.0

25.5

26.0

26.5

27.0

BL
EU

WMT: Small Large (T=0.5)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.50 0.55 0.60 0.65 0.70
Relative latency

26.0

26.5

27.0

27.5

BL
EU

WMT: Small Large (T=0.1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.6 0.7 0.8 0.9 1.0
Relative latency

10

12

14

16

RO
UG

E-
2

XSum: Small Large (T=1.0)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Relative latency

13

14

15

16

17

18

19

RO
UG

E-
2

XSum: Small Large (T=0.5)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Relative latency

14

15

16

17

18

19

RO
UG

E-
2

XSum: Small Large (T=0.1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.5 0.6 0.7 0.8 0.9
Relative latency

8

9

10

11

12

RO
UG

E-
2

CNNDM: Small Large (T=1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
Relative latency

12.5

13.0

13.5

14.0

14.5

15.0

RO
UG

E-
2

CNNDM: Small Large (T=0.5)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.40 0.45 0.50 0.55 0.60 0.65 0.70
Relative latency

13.5

14.0

14.5

15.0

15.5

RO
UG

E-
2

CNNDM: Small Large (T=0.1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

Figure 6: Plots of quality vs. latency for T5 models with varying temperatures. Each method
interleaves T5-small with T-large. The x-axis tracks the latency relative to that of calling the large
model on all inputs. The horizontal dotted line denotes the quality of the large model.

deferral rules: OPT rule in equation 5 and the Token-specific rule in equation 15. We find that the gap
between OPT and the Token-specific rule diminishes as the temperature decreases.

The reason the Token-specific rule fares better than OPT is because the latter compute their deferral
decisions based on which of qt(·) and pt(·) is more peaked; this can be a disadvantage when the
sampled token is not be close the distribution mode, which is likely to happen with higher temperatures.
With lower temperatures, however, the sampled token is likely to be close the distribution mode, and
as a result, the advantage that the Token-specific rule has over OPT diminishes.

E.4 COMPARING SPECULATIVE DEFERRAL RULES UNDER DIFFERENT BLOCK SIZES γ

In Figure 7, we present latency-quality trade-off plots for T5 cascades under different block sizes γ.
In each case, we find that the proposed speculative cascading techniques outperform lossy speculative
decoding across different latency values. Furthermore, higher values of γ are seen to yield a wider
range of trade-offs, with lower quality operating points shifting to the left, and better quality operating
points shifting to the right. For example, with XSum, SpecDecode [Lossy] with γ = 3 matches the
small model’s quality at 0.64 relative latency, and matches the large model’s quality at 0.85 relative
latency; with γ = 7, it matches the small model’s quality at an even lower latency, but practically
provides no speed-up when matching the larger model’s quality. The reason a larger block size can
hurt speed-up at the higher quality regime is because it can result in frequent rollbacks, thus defeating
the purpose of using speculative execution.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.55 0.60 0.65 0.70 0.75 0.80
Relative latency

14

16

18

20

22

BL
EU

WMT: Small Large (= 3)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Relative latency

14

16

18

20

22

BL
EU

WMT: Small Large (= 5)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.4 0.5 0.6 0.7 0.8 0.9
Relative latency

14

16

18

20

22

BL
EU

WMT: Small Large (= 7)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.65 0.70 0.75 0.80 0.85 0.90
Relative latency

10

12

14

RO
UG

E-
2

XSum: Small Large (= 3)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.6 0.7 0.8 0.9 1.0
Relative latency

10

12

14

16

RO
UG

E-
2

XSum: Small Large (= 5)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.6 0.7 0.8 0.9 1.0
Relative latency

8

10

12

14

16

RO
UG

E-
2

XSum: Small Large (= 7)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Relative latency

9

10

11

12

RO
UG

E-
2

CNNDM: Small Large (= 3)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.5 0.6 0.7 0.8
Relative latency

8

9

10

11

12

RO
UG

E-
2

CNNDM: Small Large (= 5)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

0.4 0.5 0.6 0.7 0.8 0.9
Relative latency

9

10

11

12

RO
UG

E-
2

CNNDM: Small Large (= 7)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [Token]

Figure 7: Plots of quality vs. latency for T5 models with with varying block sizes γ. Each method
interleaves T5-small with T-large. The x-axis tracks the latency relative to that of calling the large
model on all inputs. The horizontal dotted line denotes the quality of the large model.

E.5 BIG LITTLE DECODER (BILD) VARIANTS

In §6, we compared against a version of the Big Little Decoder method (Kim et al., 2023) that applied
Algorithm 4 to the target distribution TBiLD the authors seek to mimic (§5). We now show that this
version performs similarly to the original BiLD algorithm in (Kim et al., 2023).

A key difference to the original algorithm in (Kim et al., 2023) is the use of the fallback phase, where
the drafter is run until its maximum predicted probability maxv q(v) < 1 − αf , for a threshold
αf ∈ [0, 1] (or until a maximum block size of 10 is reached), and the use of a deterministic rollback
policy where the verifier rejects a draft token whenever D(q, p) > α. In our implementation, we
adopt the speculative sampling algorithm from (Leviathan et al., 2023): we do not have the fallback
policy and replace the determinisic rollback policy with the rejection sampling in Algorithm 4.

Figure 8 (top) compares the original version of BiLD with the version we use in §6. We interleave
between a T5-small and T5-large model on WMT, using greedy decoding (T = 0) for inference. As
prescribed by the authors (Kim et al., 2023), we use the following discrepancy metric for greedy
decoding:

D(q, p) = log p

(
arg max

v
q(v)

)
.

We compare our implementation (BiLD∗), where we set the block size 5 (same as our proposed
speculative cascading approaches) with the original BiLD for different choices of maximum block
size γ and different fallback thresholds αf . For both methods, we vary the threshold α on D(q, p) to
vary the latency and plot the resulting BLEU score.

A higher fallback threshold αf results in larger draft generation windows; this gives an advantage
in the low latency regime, where most of the draft tokens are accepted. As a result, BiLD [γ =
10, α = 0.9] yields the lowest latencies, but also yields lower quality. A low fallback threshold results

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.40 0.45 0.50 0.55 0.60 0.65
Relative latency

25.5

26.0

26.5

27.0
BL

EU

WMT: Small Large (T=0)
BiLD*
BiLD (= 5, f = 0.1)
BiLD (= 5, f = 0.3)
BiLD (= 5, f = 0.5)
BiLD (= 5, f = 0.7)
BiLD (= 5, f = 0.9)
BiLD (= 10, f = 0.1)
BiLD (= 10, f = 0.3)
BiLD (= 10, f = 0.5)
BiLD (= 10, f = 0.7)
BiLD (= 10, f = 0.9)

0.00 0.05 0.10 0.15 0.20
Fraction of calls to larger model

14.5

15.0

15.5

16.0

16.5

17.0

BL
EU

WMT: Small Large (T=1)

SpecDecode [Lossy]
SpecCascade [Lossy]

0.00 0.05 0.10 0.15 0.20
Fraction of calls to larger model

9

10

11

12

13

14

RO
UG

E-
2

XSum: Small Large (T=1)
SpecDecode [Lossy]
SpecCascade [Lossy]

Figure 8: Top: Plots of quality vs. latency comparing BiLD∗ with the original BiLD algorithm
in Kim et al. (2023) with varying maximum draft window size γ and fallback confidence threshold
αf . Bottom: Comparison of lossy speculative decoding with β = 1 [Lossy] and β tuned using the
procedure in (Tran-Thien, 2023) [Lossy?].

in very small draft generation windows, and consequently, in higher latencies. This is why BiLD
[γ = 5, α = 0.1] is the slowest but yields high quality metrics.

Our implementation BiLD∗ is seen to perform comparable to the best parameter choices for the
original BiLD algorithm in Figure 8.

Note: It is worth noting that while we view TBiLD as the target distribution that algorithm in (Kim
et al., 2023) seeks to mimic, the presence of the fallback phase could mean that on some inputs a
output response is generated without the verification (or rollback) phase being invoked. In such cases,
the output will be a sample from the drafter even if it turns out that it contains tokens for which
D(qt, pt) > α.

E.6 LOSSY SPECULATIVE DECODING VARIANTS

In §6, we compared against the lossy speculative decoding Tran-Thien (2023); Zhou et al. (2024)
described in §2, with the parameter β set to 1. We now present results for this method with β tuned
according to the procedure in Tran-Thien (2023), and show that choosing β = 1 fares at least as well
as tuning β.

The goal in Tran-Thien (2023) is to choose α and β so as to maximize the acceptance rate for the
draft token, while ensuring that the KL divergence between the resulting target distribution and p
is within an allowable limit R. The authors prescribe specifying R, and for each prefix, tuning α
and β to solve the resulting constrained optimization problem. To be consistent with the rest of
our experimental setup, we vary α to vary the draft acceptance rate (note that each choice of α
corresponds to a particular KL divergence to p), and tune β ≥ 1−α to satisfy the following condition

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

outlined in Tran-Thien (2023):∑
v

max

{
0, q(v)− p(v)

1− α

}
=
∑
v

max

{
0,
p(v)

β
− q(v)

}

We pick β using a grid-search over 1000 values between α and 10. Since this tuning procedure, in
turn, can add to the method’s latency, for a fair comparison, we analyze quality as a function of the
fraction of calls to the large model. In Figure 8 (bottom), we plot these trade-off curves for loss
speculative decoding with β = 1 (Lossy) and for speculative decoding with β tuned using the above
procedure (Lossy?). We compare performances on WMT and XSum, and in each case, interleave a
T5-small model with a T5-large model.

In both cases, setting β = 1 provides trade-offs comparable to or better than using a tuned value
of β. The reason using a tuned value of β fares worse than setting β = 1 might be because we are
measuring quality in terms of BLEU or ROUGE-2, which is different from the KL divergence to p
objective that the tuning procedure in Tran-Thien (2023) seeks to optimize.

E.7 TOKEN-SPECIFIC SPECULATIVE CASCADES

In Figure 9, we present latency-quality trade-off plots for cascades constructed from a T5 small and a
T5 large model. We include in these comparisons, all three token-specific deferral rules in equations
13–15. In Figure 10, we present trade-off plots for cascades constructed from Gemma 2B and Gemma
27B models with all three token-specific rules, and in Figure 11, we include similar plots for cascades
constructed from Gemma 2B and Gemma 9B models. We note that the trends with the 2B→ 9B are
similar to those seen with the 2B→ 27B cascades.

With the T5 models, the results are mixed, with the V1 and V2 variants sometime surpassing the V3
variant (which is the variant we included in the main experiments results in §6) Interestingly, with the
Gemma models, the V3 variant is seen to outperform the others for most rejection rates, with the
exception of the 2B→27B cascade on SQuAD 2.0, where the V2 variant is better.

The reason the V3 variant outperforms V1 and V2 on the Gemma models could be due to the fact that
it uses the larger model’s distribution pt(·) to measure confidence for both the drafter and verifier (see
LHS and RHS in equation 13). We expect this to be particularly helpful when there is a larger gap
in sizes between q and p, and the larger model’s distribution is better aligned with the ground-truth
distribution compared to the smaller model. Furthermore, as noted in §4.4, the multiplicative form of
the rule results in a target distribution that has an intuitive form: it seeks to mimic qt(·) on the top-α
ranked tokens by pt(·) and uses a re-scaled version of pt(·) for the other tokens.

F LIMITATIONS

One of the limitations of our proposal is the use of plug-in estimators to approximate the optimal
rule equation 9. While these approximations are effective in practice, they rely on the individual
models being calibrated. An alternative to the use of plug-in estimators is to use a router model
explicitly trained to mimic the optimal rule using a validation sample drawn from P (Gupta et al.,
2024). Another limitation is that the optimization objectives we seek to minimize are local objectives
that seek to make the best deferral decision at the current position t. In doing so, they ignore the
downstream effects of choosing a particular model in the current step. Devising a global deferral
objective that takes downstream errors into account would be an interesting direction for future work.
More broadly, our paper seeks to improve cost-quality trade-offs in LM inference. It is important
that such improvements do not unfairly advantage one slice of the data or a subset of the population,
at the cost of others. Ensuring that the trade-off gains that our approach offers is equitable across
different slices of the data is another important direction for the future.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Relative latency

14

16

18

20

22

BL
EU

WMT: Small Large (T=1)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
TokenCascade [Chow]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.6 0.7 0.8 0.9 1.0
Relative latency

8

9

10

11

12

13

14

15

16

RO
UG

E-
2

XSum: Small Large (T=1)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
TokenCascade [Chow]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Relative latency

8

9

10

11

12

RO
UG

E-
2

CNNDM: Small Large (T=1)
SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
TokenCascade [Chow]
BiLD*
SpecCascade [Chow]
SpecCascade [Diff]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

Figure 9: Plots of quality vs. latency for T5 models with all three token-specific speculative
cascade deferral rules in equations 13–15. Each method interleaves a T5 small and a T5 large
model. The x-axis tracks the latency relative to that of calling the large model on all inputs. The
horizontal dotted line denotes the quality of the large model.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Rejection rate

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

BL
EU

WMT 5-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

17

18

19

20

21

Ro
ug

e-
L

CNNDM 5-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Rejection rate

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ex
ac

t M
at

ch

GSM8K 8-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

0.46

0.48

0.50

0.52

0.54

F1

SQuAD 1-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

0.24

0.26

0.28

0.30

0.32

F1

WebQ 1-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Rejection rate

0.15

0.20

0.25

0.30

0.35

F1

NaturalQA 1-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Rejection rate

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Pa
ss

@
1

MBPP 3-shot: 2B 27B [IT] (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Rejection rate

0.40

0.45

0.50

0.55

F1

TriviaQA 1-shot: 2B 27B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

Figure 10: Plots of quality vs. rejection rate for Gemma models with all three token-specific
speculative cascade deferral rules in equations 13–15. Each method interleaves a Gemma 2B
drafter with a Gemma 27B verifier. The horizontal dotted line denotes the quality of the large model.
We include all three token-specific speculative cascade deferral rules in equations 13–15.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

BL
EU

WMT 5-shot: 2B 9B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Rejection rate

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ex
ac

t M
at

ch

GSM8K 8-shot: 2B 9B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Rejection rate

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

F1

SQuAD 2.0 1-shot: 2B 9B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25
Rejection rate

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.30

F1

WebQuestions 1-shot: 2B 9B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Rejection rate

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

F1

NaturalQA 1-shot: 2B 9B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

0.00 0.05 0.10 0.15 0.20
Rejection rate

0.375

0.400

0.425

0.450

0.475

0.500

0.525

F1

TriviaQA 1-shot: 2B 9B (T = 1)

SpecDecode [Lossy]
SpecCascade [OPT]
SpecCascade [TokenV3]
SpecCascade [TokenV2]
SpecCascade [TokenV1]

Figure 11: Plots of quality vs. rejection rate with Gemma 2B → 9B speculative cascades. Each
method interleaves a Gemma 2B drafter with a Gemma 9B verifier. The horizontal dotted line denotes
the quality of the large model. We include all three token-specific speculative cascade deferral rules
in equations 13–15.

31

	Introduction
	A Tale of Two Efficient LM Inference Strategies
	Cascades Meet Speculative Decoding
	Warm-up: Token-level cascades
	Optimal token-level cascade deferral
	blackContrasting token-level cascade and speculative decoding trade-offs

	Speculative Cascades: Leveraging the Best of Both Worlds
	Speculative decoding with general target distributions
	From sequential to speculative cascades
	Optimal speculative cascade deferral
	Token-specific speculative cascades

	Further related work and conclusions
	Experimental results
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5

	Derivation of Chow's rule
	Optimal Deferral: Additional Discussion
	Optimal sequential deferral when =log
	Optimal speculative deferral when =log
	Optimal speculative deferral for greedy decoding
	Equivalence between equation 7 and equation 8

	Token-specific Speculative Cascade
	Additional Experimental Details
	Experimental setup and hyper-parameters
	Additional experimental plots
	Comparing speculative deferral rules under different temperatures
	Comparing speculative deferral rules under different block sizes
	Big Little Decoder (BiLD) variants
	Lossy speculative decoding variants
	Token-specific speculative cascades

	Limitations

