
Under review as submission to TMLR

Contextual Combinatorial Bandits With Changing Action
Sets Via Gaussian Processes

Anonymous authors
Paper under double-blind review

Abstract

We consider a contextual bandit problem with a combinatorial action set and time-varying
base arm availability. At the beginning of each round, the agent observes the set of available
base arms and their contexts and then selects an action that is a feasible subset of the set
of available base arms to maximize its cumulative reward in the long run. We assume that
the mean outcomes of base arms are samples from a Gaussian Process (GP) indexed by
the context set X , and the expected reward is Lipschitz continuous in expected base arm
outcomes. For this setup, we propose an algorithm called Optimistic Combinatorial Learning
and Optimization with Kernel Upper Confidence Bounds (O’CLOK-UCB) and prove that it
incurs Õ(

√
λ∗(K)KTγKT (∪t≤TXt)) regret with high probability, where γKT (∪t≤TXt) is the

maximum information gain associated with the sets of base arm contexts Xt that appeared
in the first T rounds, K is the maximum cardinality of any feasible action over all rounds
and λ∗(K) is the maximum eigenvalue of all covariance matrices of selected actions up to
time T , which is a function of K. To dramatically speed up the algorithm, we also propose a
variant of O’CLOK-UCB that uses sparse GPs. Finally, we experimentally show that both
algorithms exploit inter-base arm outcome correlation and vastly outperform the previous
state-of-the-art UCB-based algorithms in realistic setups.

1 Introduction

The multi-armed bandit problem is the primary example of the reinforcement learning paradigm, where an
agent repeatedly makes decisions and refines its beliefs in order to maximize its cumulative reward (Auer
et al., 2002b; Bubeck & Cesa-Bianchi, 2012; Auer et al., 2002a). Two variants of the problem, namely
contextual bandits and combinatorial semi-bandits, attracted significant attention due to their wide range
of applications, ranging from recommender systems to personalized medicine. In contextual bandits, at the
beginning of each round, the agent observes side information about the outcomes it will encounter in that
round (Lu et al., 2010; Langford & Zhang, 2007; Slivkins, 2011; Chu et al., 2011). In combinatorial semi-
bandits, in each round, the agent selects a subset of base arms and observes the outcomes of each selected
base arm afterward (Cesa-Bianchi & Lugosi, 2012; Chen et al., 2013; 2016a; Kveton et al., 2015c;a; Zong
et al., 2016; Hiranandani et al., 2020). In both problems, the set of available arms may also change between
rounds, known as changing action sets (Chakrabarti et al., 2008; Li et al., 2019; Bnaya et al., 2013; Kleinberg
et al., 2010).

This paper considers contextual combinatorial multi-armed bandits with changing action sets (C3-MAB),
which models the repeated interaction between an agent and its dynamically changing environment. In each
round t, the agent observes the available base arms and their contexts, selects a subset of the available
base arms, which is called a super arm, collects a reward, and observes noisy outcomes of the selected
base arms. We consider the scenario when the base arm availability in each round changes in an arbitrary
fashion. Therefore, we analyze the regret under any given sequence of base arm availabilities. On the other
hand, given a particular base arm and its context, the outcome of the base arm is assumed to come from a
fixed distribution parameterized by the arm’s context. The goal is to maximize the cumulative reward in a
given number of rounds without knowing future context arrivals and the function that maps the contexts to

1

Under review as submission to TMLR

base arm outcomes. Achieving this goal requires careful tuning of exploration and exploitation by adapting
decisions in real time based on the problem structure and past history.

When the set of possible contexts is large, it is impossible to learn the reward-maximizing super arm for each
round without any structural assumptions on the outcome function. The smoothness encoded by the GPs
put sufficient structure on the problem such that it is efficiently learnable while still capturing a wide range
of functions of practical interest (Contal et al., 2013). This motivates us to model the base arm outcome
function as a sample from a GP with a known kernel.

GP-based bandit algorithms have been commonly used to address the exploration-exploitation dilemma
since the pioneering work of Srinivas et al. (2012). The closed-form expressions for their posterior mean and
variance give rise to high probability confidence bounds on the expected value of the function to be learned,
thereby inducing an optimal balance between exploration and exploitation. An interesting feature that
grants GP-UCB superiority to the classical UCB algorithm is its ability to give high probability estimates
to actions that have not been played before due to the posterior’s smoothness. In a bandit setting with
time-varying action sets, this feature proves extremely useful; it inherently encodes the necessary structural
properties needed for learning.

1.1 Our contributions

Below we describe the main contributions of this paper.

We propose a new learning algorithm called Optimistic Combinatorial Learning and Optimization with
Kernel Upper Confidence Bounds (O’CLOK-UCB), tailored to solve the C3-MAB problem over com-
pact context spaces under the assumption that the expected base arm outcomes are samples from a
GP and the expected reward is Lipschitz for the expected base arm outcomes. O’CLOK-UCB incurs
Õ
(√

λ∗(K)KTγKT (∪t≤TXt)
)

regret in T rounds in the general case when the feasible action cardinalities
are bounded variables, where γKT (∪t≤TXt) is the maximum information gain with respect to the sequence
of T available context sets Xt, to be explicitly defined later, over the feasible actions with cardinalities upper
bounded by K ∈ N, and λ∗(K) is the maximum eigenvalue of all covariance matrices of the selected actions
up to time T .

Our work resolves new theoretical and technical difficulties introduced as a result of simultaneously taking
into consideration several bandit features.

• The semi-bandit feedback necessitates a batch update of all the base arm indices at once after all
base arms are selected. This, in return, requires a new way of upper-bounding the expected regret,
substantially different from previous related work (Srinivas et al., 2012). In order to account for a
non-identity covariance matrix (due to dependencies among base arms in an action), we leverage
the conditional entropy of Gaussians and properties of eigenvalues (see Lemma 1). Therefore, our
setting is not a straightforward extension of a GP bandit in KT rounds.

• We adapt the classical notion of maximum information gain to the C3-MAB setting (represented by
γKT (∪t≤TXt)), which takes into account time-varying base arm availability, and provide new regret
upper bounds based on this notion of maximum information gain.

• We perform semi-synthetic crowdsourcing simulations on a real-world dataset and compare our
algorithm with the previous state-of-the-art. Moreover, we illustrate how the time complexity of
O’CLOK-UCB can be improved by using the sparse approximation method, where we only use a
subset of the past history of selected contexts to update the posterior. We experimentally show that
our method outperforms the previous state-of-the-art UCB-based algorithms in this setting.

1.2 Related work

The Combinatorial MAB has been widely studied and well understood in the last decade (Cesa-Bianchi &
Lugosi, 2012; Chen et al., 2013; Combes et al., 2015; Kveton et al., 2015c; 2014; Chen et al., 2014), together

2

Under review as submission to TMLR

with its various branches such as cascading bandits (Kveton et al., 2015b), and combinatorial bandits with
probabilistically triggered arms (Chen et al., 2016b; Huyuk & Tekin, 2019).

In recent years, the Contextual Combinatorial Multi-armed Bandit (CCMAB) problem has been attracting
a lot of interest (Chen et al., 2018; Qin et al., 2014). Chen et al. (2018) studies the CCMAB problem
with cascading feedback; that is, the learning agent can observe base arm outcomes of only a prefix of the
played super arm. Their model allows for position discounts and a wide range of reward functions. Under
monotonicity and Lipschitz continuity of the expected reward, their algorithm, C3-UCB, incurs Õ(

√
KT)

regret in T rounds, where K is the maximum cardinality of any feasible super arm.

The contextual combinatorial multi-armed bandits with changing action sets has been studied in (Chen et al.,
2018; Nika et al., 2020). Chen et al. (2018) assumes the expected reward to be submodular, and the expected
base arm outcomes are assumed to be Hölder continuous with respect to their corresponding contexts. Their
proposed algorithm (CCMAB) addresses the changing arm sets over rounds by uniformly discretizing the
context space into a predetermined number of hypercubes (which depends on the time horizon T), thus
utilizing the outcome similarities between nearby contexts. CCMAB incurs Õ(T (2η+D)/(3η+D)) regret where
η is the Hölder constant and D the context space dimension.

A potential drawback of this approach is the fixed discretization of the context space, which implies limited
exploitation of the arms’ similarity information. Nika et al. (2020) addresses this issue by adaptively dis-
cretizing the D-dimensional context space (X , ∥·∥2) following a tree structure, under some mild structural
assumptions on (X , ∥·∥2) (where ∥·∥2 is the Euclidean norm) and Lipschitz continuity assumption both of
the expected reward with respect to the expected base arm outcomes and the latter with respect to their
associated contexts. Their algorithm (ACC-UCB) incurs Õ(T (D̄+1)/(D̄+2)+ϵ) regret for any ϵ > 0, where D̄
is the approximate optimality dimension of the context space X , tailored to capture both the benignness
of the base arm arrivals and the structure of the expected reward under a combinatorial setup. In general,
D̄ ≤ D, implies an improvement of the bound rates to the previous work.

Adaptive discretization has been utilized in the GP bandit setting by Shekhar et al. (2018) for black-box
function optimization. Under the same structural assumptions of the arm space, (X , d) as in (Nika et al.,
2020) (where d is a general metric associated with X), and under some Hölder continuity assumptions on
their covariance function, they propose a tree-based algorithm whose aim is to maximize the cumulative
reward given a fixed budget of samples. They provide both near-optimality dimension type and information
type regret bounds. It is worth mentioning that when the context space is very large, and the arm set is
time-varying, adaptive discretization has proved to be an efficient technique, yielding optimal regret bounds
(Bubeck et al., 2011). Nevertheless, if we further assume that the number of arms that come in a round
is finite, imposing a GP prior on the base arm outcomes removes both the need for adaptive discretization
and Lipschitz continuity of the expected base arm outcomes. The posterior’s smoothness encodes enough
information to estimate with high probability the outcomes of any available base arm, regardless of its
history of arrivals. In light of this, we approach the C3-MAB problem using a simple procedure under mild
assumptions.

The main difference between adaptive discretization, and our GP-based method is that, while adaptive
discretization discretizes the search space into regions and maintains statistics over each region, GPs offer
a functional approach. Such an approach allows us to retrieve point-wise statistical information in a fine-
grained way just by evoking the posterior mean and variance. On the other hand, adaptive discretization
operates on a lower resolution, maintaining the same statistical information for all points in the same region.
Consequently, adaptive discretization uses less computational resources, since it focuses only on ‘relevant’
regions and adaptively refines them based on historical information, while sacrificing resolution. In contrast,
GPs offer a high-resolution picture of all relevant statistics over the search space, thus allowing for a more
precise inference, with an additional computational cost. We have resolved this latter issue by proposing
a practical version of our algorithm. Furthermore, we have provided an experimental comparison between
GPs and adaptive discretization, thus showcasing the benefit of using GPs as opposed to the latter.

More recently, Elahi et al. (2023) extended the C3-MAB setting by incorporating group constraints. In their
work, base arms belong to groups, and the selected super arm must satisfy constraints based on rewards
associated with these groups. They utilize a multi-output Gaussian Process to model distinct outcomes for

3

Under review as submission to TMLR

Table 1: Comparison with related works. Below, K represents the fixed cardinality of a feasible super arm;
λ∗(K) denotes the maximum eigenvalue of all covariance matrices of selected actions up to time T ; D is the
approximate optimality dimension introduced in (Nika et al., 2020) and their bounds hold for any ϵ > 0; η
is the Hölder constant and ν is the Matérn parameter. The bounds are shown up to polylog factors.

Work Context Function Smoothness Oracle Contextual & Regret bounds
space assumption (approx.) Changing action sets

(Chen et al., 2013) Finite Lipschitz Explicit (α, β) No Õ
(√

KT
)

(Chen et al., 2018) Infinite Submodular Explicit (1− 1/e) Yes Õ
(
KT (D+2η)/(D+3η))

(Nika et al., 2020) Compact Lipschitz Explicit α Yes Õ
(

KT (D+1)/(D+2)+ϵ
)

Ours (Linear kernel) Compact Lipschitz GP-induced α Yes Õ
(√

λ∗(K)KDT
)

Ours (RBF kernel) Compact Lipschitz GP-induced α Yes Õ

(√
λ∗(K)KDT logD T

)
Ours (Matérn kernel) Compact Lipschitz GP-induced α Yes Õ

(
λ∗(K)T (D+ν)/(D+2ν))

the primary super arm reward and the group constraint evaluation. Their proposed TCGP-UCB algorithm
uses a double-UCB approach to explicitly balance reward maximization and group constraint satisfaction.
While tackling a different objective involving constraint satisfaction, their work also leverages GPs for C3-
MAB and arrives at a regret bound form similar to ours.

Other works which are closest to ours include (Sandberg et al., 2025). The problem they consider, namely
the combinatorial volatile Gaussian process semi-bandit problem, is the same as ours. In addition to regret
bounds which have similar dependence, we also adapt the classical notion of information gain to the C3MAB
setting. Moreover, while they consider the notion of expected (Bayesian cumulative) regret, we provide
high-probability upper bounds on the notion of α-approximation regret. Additionally, (Accabi et al., 2018)
and (Nuara et al., 2022) propose algorithms with a similar rationale to O’CLOK-UCB. However, while our
algorithm is provably no-regret in the C3-MAB setting with (potentially) infinitely many context-dependent
time-varying arms, the setting considered in (Accabi et al., 2018) and (Nuara et al., 2022) is a standard
combinatorial semi-bandit setting with a context-free time-invariant finite arm set.

In Table 1, we compare characteristics and regret bounds between our work and previous work when the
cardinality of feasible super arms is constant. Note that we achieve a substantial improvement from (Nika
et al., 2020) and (Chen et al., 2018) on the order T in the case of linear and squared exponential kernels.

The rest of the paper is organized as follows. In Section 2 we lay down our setup and recall some definitions of
Gaussian processes and their properties; in Section 3 we introduce our proposed algorithm and explain how
it works; in Section 4 we provide the regret bounds for O’CLOK-UCB; Section 5 contains the experimental
results, and we conclude in Section 6.

2 Problem formulation

We first introduce the general notation to be used throughout the paper. Let us fix a positive integer K ≥ 1
and a D-dimensional vector space X . We write [K] = {1, 2, . . . , K}. Vectors are denoted by bold lowercase
letters. Furthermore, given N ∈ N, IN denotes the identity matrix in RN×N and I(·) denotes the indicator
function.

2.1 Base arms and their outcomes, super arms and their rewards

Our setup involves base arms that are defined by their contexts, x, belonging to the context set X . Let r(x)
represent the random outcome generated by the base arm with context x. We assume that there exists a
function f : X → R, such that we have r(x) = f(x) + η, for every x ∈ X , where η ∼ N (0, σ2). We assume
that η is mutually independent across base arms and observations.

A super arm S is a feasible subset of the base arm set and it is defined by the contexts of its base
arms. Consider a super arm S associated with the context tuple x = [x1, . . . , x|S|]T such that xm ∈ X ,

4

Under review as submission to TMLR

∀m ∈ {1, . . . , |S|}. The corresponding outcome and expected outcome vectors (the latter is also called the
expectation vector) are denoted by r(x) = [r(x1), . . . , r(x|S|)]T and f(x) = [f(x1), . . . , f(x|S|)]T . We assume
that the reward received from playing this super arm is a non-negative random variable denoted by U(r(x)).
Moreover, we assume that the expected reward of playing any super arm is a function only of the set of
arms and the mean vector, and we define u(f(x)) = E[U(r(x))|f]. Again, this assumption is standard in
combinatorial bandits (Chen et al., 2013). In addition, we impose the following mild assumptions on u,
which allow for a very large class of functions to fit our model such as multi-armed bandit with multiple
plays, maximum weighted bipartite matching, and probabilistic maximum coverage (Chen et al., 2013).
Assumption 1. (Monotonicity) Let S be a feasible super arm. For any f = [f1, . . . , f|S|]T ∈ R|S| and
f ′ = [f ′

1, . . . , f ′
|S|]T ∈ R|S|, if fm ≤ f ′

m, ∀m ∈ {1, . . . , |S|}, then u(f) ≤ u(f ′).
Assumption 2. (Lipschitz continuity of the expected reward in expected outcomes) ∃B > 0 such that for
any feasible super arm S, f = [f1, . . . , f|S|]T ∈ R|S| and f ′ = [f ′

1, . . . , f ′
|S|]T ∈ R|S|, we have |u(f)− u(f ′)| ≤

B
∑|S|

i=1|fi − f ′
i |.

Assumption 1 states that the expected reward is monotonically non-decreasing with respect to the expected
outcome vector. Assumption 2 implies that the expected reward varies smoothly as a function of expected
base arm outcomes.

2.2 The optimization and learning problems

We consider a sequential decision-making problem with time-varying base arms that proceeds over T rounds
indexed by t ∈ [T]. The agent knows u perfectly but does not know f beforehand. In each round t, Mt

base arms indexed by the set Mt = [Mt] are available. We assume maxt≥1 Mt ≤ M , for some integer M .
The context of base arm m ∈ Mt is represented by xt,m ∈ X . We denote by Xt = {xt,m}m∈Mt the set of
available contexts and by ft = [f(xt,m)]Tm∈Mt

the vector of expected outcomes of the available base arms in
round t. We denote by St the set of feasible super arms in round t and S = ∪t≥1St the overall feasible set
of super arms. Note that St depends on the structure of the optimization problem which is known by the
learner, and if S ∈ St, then S ⊆ Mt. Furthermore, we assume that the budget (maximum number of base
arms in a super arm) does not exceed some fixed integer K ∈ N, that is, for any S ∈ S, we have |S| ≤ K.
At the beginning of round t, the agent first observes Mt and Xt. Then, it selects a super arm St from St.

2.2.1 The optimization problem

For a moment, consider the hypothetical situation where f is known beforehand. Then the agent would have
selected an optimal super arm given by S∗

t ∈ argmaxS∈St
u(f(xt,S)), and subsequently obtained an expected

reward of opt(ft) = maxS∈Stu(f(xt,S)). However, it is known that, in general, combinatorial optimization is
NP-hard (Wolsey & Nemhauser, 2014), and thus, efficient computation of S∗

t is not possible, even if f were
known. Fortunately, for many combinatorial optimization problems of interest, there exist computationally
efficient approximation oracles. Thus, we assume that the agent obtains St from an α-approximation oracle,
which when given as input ft and the specific structure of the particular optimization problem, returns a
super arm Oracle(ft)1 such that u(f(xt,Oracle(ft))) ≥ α× opt(ft).

2.2.2 The learning problem

Since the agent does not know f in our case, it calls the approximation oracle in each round t with an
Mt-dimensional parameter vector θt to get St = Oracle(θt). Here, θt is an approximation to ft calculated
based on the history of observations. We will show in Section 3 that our learning algorithm uses upper
confidence bounds (UCBs) based on GP posterior mean and variances as θt. It is important to note here
that St is an α-optimal solution under θt but not necessarily under ft. At the end of round t, the agent
collects the reward U(r(xt,St)) where xt,St = [xt,st,1 , . . . , xt,st,|St|]T is the set of context vectors associated
with super arm St and r(xt,St

) = [r(xt,st,1), . . . , r(xt,st,|St|)]T is the outcome vector of super arm St. It also
observes r(xt,St

) as a part of the semi-bandit feedback. The goal of the agent is to maximize its expected
cumulative reward in the long run.

1Note that Oracle also takes as input the feasible set St, but this is omitted from the notation for brevity.

5

Under review as submission to TMLR

To measure the loss of the agent in this setting by round T for a given sequence of base arm availability
{Xt}T

t=1, we use the standard notion of α-approximation regret (referred to as the regret hereafter), which
is given as Rα(T) = α

∑T
t=1 opt(ft)−

∑T
t=1 u(f(xt,St

)).

2.3 Example applications of C3-MAB

In this section, we detail somce applications of C3-MAB.

Dynamic maximum weighted bipartite matching. Let Gt = (Lt, R, Et) represent the bipartite graph
in round t, where Lt and R are the set of nodes that form the parts of the graph such that |Lt| ≥ K and
|R| = K (here, K represents the budget), and Et is the set of edges. Here, each edge (i, j) ∈ Et, such that
i ∈ Lt and j ∈ R, represents a base arm. Weight of edge (i, j) ∈ Et is given by f(xt,(i,j)). In this problem,
St corresponds to the set of K-element matchings of Gt. Hence, given S ∈ St, U(r(xt,S)) =

∑
m∈S r(xt,m)

and u(f(xt,S)) =
∑

m∈S f(xt,m). S∗
t can be computed by the Hungarian algorithm or its variants (Kuhn,

1955) in polynomial computation time, and hence, α = 1. This problem can model the dynamic assignment
of |R| resources to |Lt| available users in round t, where each resource can be assigned to at most one user.
One example application is multi-user multi-channel communication (Gai et al., 2012).

Dynamic probabilistic maximum coverage. Let Gt = (Ut, Vt, Et) represent the bipartite graph in
round t, where Ut and Vt are the set of nodes that form the parts of the graph, and Et is the set of edges
such that |Ut| ≥ K. Each edge (i, j) ∈ Et has a context-dependent activation probability given as f(xt,(i,j)),
i.e., when a node i ∈ Ut is chosen, it activates its neighbor j with probability f(xt,(i,j)) independent of the
other neighbors of j. Here, the goal is to choose a subset of K nodes in Ut that maximizes the expected
number of activated nodes in Vt. While it is known that this problem is NP-hard (Chen et al., 2016a), there
exists a deterministic α = (1− 1/e)-approximation oracle (Nemhauser et al., 1978).

2.4 Putting structure on base arm outcomes via GPs

Since the agent does not have any control over Mt and Xt, the expected outcomes of available base arms
can vary greatly over the rounds. Since how well the learner performs depends on how well it learns the
unknown f , we need to impose regularity conditions on f . In this paper, we model f as a sample from a
Gaussian process, which is defined below.
Definition 1. A Gaussian Process with index set X is a collection (f(x))x∈X of random variables which
satisfies the property that (f(x1), . . . , f(xn)) is a Gaussian random vector for all {x1, . . . , xn} ∈ X and
n ∈ N. The probability law of a GP (f(x))x∈X is uniquely specified by its mean function x 7→ µ(x) = E[f(x)]
and its covariance function (x1, x2) 7→ k(x1, x2) = E[(f(x1)− µ(x1))(f(x2)− µ(x2))].

We assume that for every x ∈ X , we have k(x, x) ≤ 1. This is a general assumption that is widely used in the
GP bandits literature (Srinivas et al., 2012). Now let us recall the closed-form expressions for the posterior
distribution of GP-sampled functions, given a set of observations. Fix N ∈ N. Consider a finite sequence
x[N] = [x1, . . . , xN]T of contexts with the corresponding vector r[N] := r(x[N]) = [r(x1), . . . , r(xN)]T of
outcomes and corresponding vector f[N] = [f(x1), . . . , f(xN)]T of expected outcomes. For every n ≤ N , we
have r(xn) = f(xn) + ηn, where ηn is the noise that corresponds to this particular outcome.

The posterior distribution of f given r[N] is that of a GP with mean function µN and covariance function
kN given by

µN (x) = (k[N](x))T (K[N] + σ2IN)−1r[N], (1)
kN (x, x′) = k(x, x′)− (k[N](x))T (K[N] + σ2IN)−1k[N](x′), (2)

σ2
N (x) = kN (x, x), (3)

where k[N](x) = [k(x1, x), . . . , k(xN , x)]T ∈ RN×1 and K[N] = [k(xi, xj)]Ni=1,j=1. In particular, the posterior
distribution of f(x) is N (µN (x), σ2

N (x)) and that of the corresponding observation r(x) is N (µN (x), σ2
N (x)+

σ2).

6

Under review as submission to TMLR

2.5 Information gain

In Bayesian optimization, the informativeness of a finite sequence x[N] is quantified by the information gain,
defined as I(r[N]; f[N]) = H(r[N])−H(r[N]|f[N]), where H(·) denotes the entropy of a random variable and
H(·|f[N]) denotes the conditional entropy of a random variable with respect to f[N]. The information gain
gives us the decrease in entropy of f[N] given the outcomes r[N]. We define the maximum information gain
as γN = maxx[N] I(r[N]; f[N]).

Note that γN is the maximum information gain associated with any N -tuple of elements of X . For large
(potentially infinite) spaces this quantity can be very large, depending on the chosen kernel. On the other
hand, the dynamically varying base arm availability in our setting does not require such information. We
only need the maximum possible information coming from a fixed sequence of base arm (context) arrivals.
Thus, such a notion becomes redundant in this case. This motivates us to relate the growth rate of the regret
with the information content of the available base arms. Hence, we begin by adapting the definition of the
maximum information gain so that it accommodates base arm availability, and guarantees the tightness of
the regret bounds. Given t ≥ 1, let Zt ⊂ 2Xt be the set of context vectors corresponding to the feasible set
St of super arms. Let zt := xt,S , for some S ∈ St, be an element of Zt and let z[T] = [zT

1 , . . . , zT
T]. We

define the maximum information gain associated with the sequence of context arrivals X1, . . . ,XT as

γKT (XT) = max
z[T]:zt∈Zt,t≤T

I(r(z[T]); f(z[T])) , (4)

where XT := ∪t≤TXt. The information gain from any sequence of T selected super arms is upper bounded
by γKT (XT). Our regret bounds depend on it. Note that γKT (XT) is the usual notion of the maximum
information gain applied onto the union of all available context sets over T rounds.

3 The learning algorithm

Our algorithm is called Optimistic Combinatorial Learning and Optimization with Kernel Upper Confidence
Bounds (O’CLOK-UCB), with pseudocode given in Algorithm 1. The procedure is described as follows: At
round t, we observe available base arms and their contexts. For each available base arm, we maintain an
index which is an upper confidence bound on its expected outcome. Let S1, . . . , St−1 be a sequence of super
arms. Given base arm m with its associated context xt,m, we define its index based on the observations
[rT

S1
, . . . , rT

St−1
] as:

it(xt,m) = µJt−1K(xt,m) + β
1/2
t σJt−1K(xt,m) , (5)

where µJt−1K(·) and σ2
Jt−1K(·) stand for the posterior mean and variance (respectively) given the vector

[rT
S1

, . . . , rT
St−1

] of observations up to round t. Furthermore, βt is a parameter that depends on t whose
exact value will be specified later. We denote by it(xt,St) the vector [it(xt,st,1), . . . , it(xt,st,|St|)]T . Note that
our definition of the index of an arm with context x in the beginning of round t depends on µJt−1K(x) and
σJt−1K(x). This is due to the combinatorial nature of the problem. Since, at the beginning of round t, the
algorithm has obtained semi-bandit feedback from

∑t−1
t′=1 |St′ | context selections, the posterior mean and

variance of f calculated at that round will depend on the selected super arms, namely, S1, . . . , St−1.

7

Under review as submission to TMLR

Environment

(e.g., bipartite influence graph for PMC)

 Additional

Problem Structure

Learner

Arms & contexts arrive Compute indices

O'CLOK-UCB Oracle

Arms & Contexts

Random arm outcomes & reward
Expected Arm Outcomes Update posterior

1

3

2

4

5 6

Figure 1: Illustration of the steps of our algorithm for round t. PMC stands for probabilistic maximum
coverage.

Algorithm 1 O’CLOK-UCB
Input: X , K, M ; GP prior: µ0 = µ, k0 = k.

Initialize: µ0 = µ, k0 = k.
for t = 1, . . . , T do

Observe base arms in Mt and their contexts Xt.
for xt,m : m ∈Mt do

Calculate µJt−1K(xt,m) and σJt−1K(xt,m) as in equation 1 and equation 3.
Compute index it(xt,m) as in equation 5.

end for
St ← Oracle(it(xt,1), . . . , it(xt,Mt)).
Observe outcomes of base arms in St and collect the reward.

end for

After the indices of the available base arms (i.e., {it(xt,m)}m∈Mt
) are computed, they are given as input θt

to the approximation oracle in round t to obtain the super arm St = (st,1, . . . , st,|St|) ⊆ Mt that will be
played in round t. Note that St is an (approximately) optimal solution under θt, but not necessarily under
ft. We assume a deterministic oracle in order to guarantee our theoretical results.

After observing the semi-bandit feedback from the selected arms, at the beginning of the next round, we
update the posterior distribution of f based on St according to rules equation 1 and equation 3, which will
be used to compute the indices for the next round. Figure 1 illustrates the steps of our algorithm for round
t.

4 Regret bounds

We start by stating our main result which gives a high probability upper bound on the α-regret in terms of
γKT (XT). Detailed proofs of all the stated results can be found in Appendix A.
Theorem 1. Let δ ∈ (0, 1), T ∈ N. Given βt = 2 log(Mπ2t2/3δ), the regret incurred by O’CLOK-UCB
in T rounds is upper bounded as Rα(T) ≤

√
C(K)KβT TγKT (XT), with probability at least 1 − δ, where

C(K) = 8B2(λ∗(K) + σ2), and λ∗(K) is the maximum eigenvalue of all covariance matrices of selected
actions over T rounds.

To prove Theorem 1, we need to utilize a new result that gives lower bounds on γKT (XT) in terms of
quantities that are similar to those that upper bound the expected regret.

8

Under review as submission to TMLR

Lemma 1. Let zt := xt,St
be the vector of selected contexts at time t ≥ 1. Given T ≥ 1, we have:

I
(
r(z[T]); f(z[T])

)
≥ 1

2(σ−2λ∗(K) + 1)

T∑
t=1

|St|∑
k=1

σ−2σ2
Jt−1K(xt,k) ,

where z[T] = [z1, . . . , zT]T is the vector of all selected contexts until round T and λ∗(K) is the maximum
eigenvalue of matrices (ΣJt−1K(z[t]))T

t=1.
Remark 1. Since, in every round, the outcomes of the selected base arms are observed only after the selection
process is over, we cannot reduce the problem to a sequential decision-making in KT rounds, in which case,
the outcomes would allow for the sequential update of the indices and let us directly use the formula of
the maximum information gain from (Srinivas et al., 2012). We solve this problem by lower bounding the
information gain. Consequently, Lemma 1 takes into account the contextual combinatorial nature of the
problem.

Finally, using kernel-dependent explicit bounds on γKT (XT) given in (Srinivas et al., 2012; Vakili et al., 2020),
we state a corollary of Theorem 1 which gives similar bounds on the α-regret incurred by O’CLOK-UCB.
Corollary 1. Let δ ∈ (0, 1), T, K ∈ N and let X ⊂ RD be compact and convex. Under the conditions
of Theorem 1 and for the following kernels, the α-regret incurred by O’CLOK-UCB in T rounds is upper
bounded (up to polylog factors) with probability at least 1− δ as follows:

• For the linear kernel we have: Rα(T) ≤ Õ
(√

λ∗(K)DKT
)

.

• For the RBF kernel we have: Rα(T) ≤ Õ

(√
λ∗(K)KT logD T

)
.

• For the Matérn kernel we have: Rα(T) ≤ Õ
(√

λ∗(K)KT (D+ν)/(D+2ν)
)

, where ν > 1 is the Matérn
parameter.

5 Experimental results

We perform simulations on: (i) a crowdsourcing setup with computational time comparisons, (ii) a synthetic
dataset to show how our algorithm exploits arm dependence, and (iii) a real-world movie recommendation
setup. All simulations were run using Python, with source code provided on our anonymous GitHub,2 on a
PC running Ubuntu 16.04 LTS with an Intel Core i7-6800K CPU, an Nvidia GTX 1080Ti GPU, and 32 GB
of 2133 MHz DDR4 RAM.

5.1 Simulation I: Crowdsourcing

We evaluate the performance of O’CLOK-UCB by comparing it with ACC-UCB (Nika et al., 2020) and AOM-
MC (Chen et al., 2018), two UCB-based algorithms. We perform semi-synthetic crowdsourcing simulations
using the Foursquare dataset. The Foursquare dataset (Yang et al., 2015) contains check-in data from New
York City (227,428 check-ins) and Tokyo (573,703 check-ins) for a period of 10 months from April 2012
to February 2013. Each check-in comes with a location tag as well as the time of the check-in. In our
simulations, we use the TKY dataset because its locations are more spread out than the NYC dataset.

5.1.1 Simulation Setup

We perform a crowdsourcing simulation where the goal is to assign workers to arriving tasks. In our sim-
ulation, 250 tasks arrive (i.e., T = 250), each with a location (normalized longitude and latitude) sampled
uniformly at random from [0, 1]2 and a difficulty rating, sampled from [0, 1] (0 is most difficult). Similarly,
each worker also has a 2D location in [0, 1]2, sampled from the TKY dataset, and a battery status, sampled
from [0, 1].

2Link: https://anonymous.4open.science/r/OCLOK-UCB-015A

9

https://anonymous.4open.science/r/OCLOK-UCB-015A

Under review as submission to TMLR

In round t, the agent observes the set of available workers, the expected number of which is sampled from a
Poisson distribution with mean 100. The set is composed of workers whose distance (Euclidean norm) to the
task is less than

√
0.5. Then, each worker-task pair is an arm, with a three-dimensional context comprised

of the scaled distance between the worker and task,3 the task’s difficulty, and the worker’s battery. We also
set a fixed budget constraint of K = 5, which means that 5 workers should be chosen for each task.

Then, given the task-worker joint context (i.e., arm context) x and, noting that x1, x2, and x3 represent
the worker-task distance, task difficulty, and worker battery, respectively, we define the expected outcome of
each base arm as f(x) = E[r(x)] = Ag

(
x1)√x2 · x3, where g is a Gaussian probability density function with

mean 0 and standard deviation 0.4, and A =
√

2π · 0.42 is the scaling constant. Note that g is decreasing
in the worker-task distance and task difficulty, and increasing in the worker’s battery. Then, the random
quality of each worker with joint context x is defined as r(x) = f(x) + η, where η is zero mean noise with a
standard deviation of 0.1.

Finally, in round t and given K chosen workers with joint task-worker context vector x = [x1, . . . , xK], we

define our reward as U(r(x)) = log
(

1 +
K∑

i=1
r(xi)

)
. Notice that the log term reflects the diminishing return

on having multiple workers. Moreover, since log is an increasing function, the Oracle for this setup will be
a greedy one that picks the arms whose contexts have the highest performance estimates.

5.1.2 Algorithms

O’CLOK-UCB: We use the GPflow library (Matthews et al., 2017) for the sampling from and updating
the Gaussian Process. We set δ = 0.05 and use a squared exponential kernel with both variance and
lengthscale set to 1.

SO’CLOK-UCB: In this variation of our algorithm, we use the sparse approximation to the GP posterior
described in (Titsias, 2009). In this sparse approximation, instead of using all of the arm contexts up to
round t to compute the posterior, a small s element subset of them is used, called the inducing points.
The non-sparse O’CLOK-UCB requires updating the GP posterior at each round. A standard, efficient
implementation performs this sequentially using block matrix inversion, resulting in a total computational
complexity of O(K3T 3) over T rounds. By using a sparse approximation with s inducing points, this is
dramatically reduced to a total complexity of O(s2KT 2). We use this sparse variation with inducing points
uniformly at random from all of the contexts picked so far. In other words, in round t, we sample s contexts
from {x1,1, . . . x1,K , . . . xt−1,K}. We run simulations with three different inducing points: 10, 20, and 50.
We also set δ = 0.05 and use the squared exponential kernel.

ACC-UCB: We set v1 =
√

3, v2 = 1, ρ = 0.5, and N = 8, as given in Definition 1 of (Nika et al., 2020).
The initial (root) context cell, X0,1, is a three dimensional unit hypercube centered at (0.5, 0.5, 0.5).

CC-MAB: Since we have a three-dimensional context space, 300 tasks (rounds), and an exact Oracle, we
set hT = ⌈300 1

3·1+3 ⌉ = 3, as given in Theorem 1 of (Chen et al., 2018). Hence, each hypercube has a length
of 1/hT = 1

3 .

Benchmark: The benchmark greedily picks the arms with the highest expected outcome.

5.1.3 Results

We ran 5 independent runs and averaged the reward, regret, and time taken over these runs. We present the
standard deviations of the runs as error bars. Figure 2 shows the average task reward up to task t, divided
by the benchmark reward; and Figure 3 shows the cumulative regret of each algorithm for different T . The
two UCB-based algorithms perform around the same and are equal in performance with SO’CLOK-UCB

3To scale the distance we divide it by
√

0.5 because that is the maximum possible distance.

10

Under review as submission to TMLR

with 10 inducing points. However, they perform substantially worse for a larger number of inducing points.
Interestingly, only 100 inducing points were enough to achieve a very close performance to O’CLOK-UCB,
which does not use any approximations for the posterior update. Finally, as expected, the smaller the
number of inducing points, the worse the performance of SO’CLOK-UCB compared with the non-sparse
O’CLOK-UCB algorithm. However, even with 20 inducing points, SO’CLOK-UCB is able to outperform
both CC-MAB and ACC-UCB by around 30%.

We also plot the time taken for each algorithm to process each round, given in Figure 4. We can see that the
running time of O’CLOK-UCB does not scale well with the number of rounds, taking more than 20 minutes
just to pick workers and update the posterior for the final task. On the other hand, the sparse algorithms
do much better and are not only four to five times faster, but also scale linearly with t. The latter, coupled
with the fact that SO’CLOK-UCB’s performance is practically identical to that of O’CLOK-UCB, means
that even though SO’CLOK-UCB is slower than the UCB-based algorithms, its performance scales well with
time and so it can be used for large simulations or online settings. It is worth noting that in Figure 4, the
runtime curves for ACC-UCB and CC-MAB are superimposed, reflecting their similar and highly efficient
computational performance compared to the GP-based methods.

0 50 100 150 200 250
Arriving task (t)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
ta

sk
t

SO’CLOK-UCB (10 inducing pts.)

SO’CLOK-UCB (20 inducing pts.)

SO’CLOK-UCB (50 inducing pts.)

SO’CLOK-UCB (100 inducing pts.)

O’CLOK-UCB

ACC-UCB

CC-MAB

Figure 2: Average reward of each algorithm di-
vided by that of the benchmark Simulation I.

0 50 100 150 200 250
Number of rounds (T)

0.00

0.25

0.50

0.75

1.00

1.25

C
um

ul
at

iv
e

re
gr

et

×102

SO’CLOK-UCB (10 inducing pts.)

SO’CLOK-UCB (20 inducing pts.)

SO’CLOK-UCB (50 inducing pts.)

SO’CLOK-UCB (100 inducing pts.)

O’CLOK-UCB

ACC-UCB

CC-MAB

Figure 3: Cumulative regret of each algorithm
for different number of rounds (T) Simulation I.

0 50 100 150 200 250
Arriving task (t)

0

500

1000

T
im

e
ta

ke
n

(s
)

SO’CLOK-UCB (10 inducing pts.)

SO’CLOK-UCB (20 inducing pts.)

SO’CLOK-UCB (50 inducing pts.)

SO’CLOK-UCB (100 inducing pts.)

O’CLOK-UCB

ACC-UCB

CC-MAB

Figure 4: Time taken in seconds to process each
round for each algorithm in Simulation I.

0 100 200 300 400
Round number (t)

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
ro

un
d
t

SO’CLOK-UCB (1 inducing pts.)

SO’CLOK-UCB (2 inducing pts.)

SO’CLOK-UCB (4 inducing pts.)

ACC-UCB

Figure 5: Average reward of each algorithm di-
vided by that of the benchmark for the Movie-
Lens DPMC setup of Simulation III.

5.2 Simulation II: Varying Base Arm Codependency

The goal of this simulation is to evaluate the performance of our approach against baseline methods under
varying levels of base arm codependency, demonstrating how our GP-based method effectively exploits base
arm dependencies.

11

Under review as submission to TMLR

0 100 200 300
Round number (t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
t

O’CLOK-UCB

Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Round number (t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
t

SO’CLOK-UCB (20 inducing pts.)

Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Round number (t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
t

SO’CLOK-UCB (50 inducing pts.)

Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Round number (t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
t

SO’CLOK-UCB (100 inducing pts.)

Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Round number (t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
A

ve
ra

ge
ta

sk
re

w
ar

d
di

vi
de

d
by

b
en

ch
m

ar
k

re
w

ar
d

up
to
t

ACC-UCB
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Round number (t)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

ta
sk

re
w

ar
d

di
vi

de
d

by
b

en
ch

m
ar

k
re

w
ar

d
up

to
t

CC-MAB
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

Figure 6: Average reward of each algorithm divided by that of the benchmark for different outcome kernel
lengthscales (l) in Simulation II.

5.2.1 Setup

We perform 30 different simulations with an evenly spaced number of rounds from T = 10 to T = 300
in order to be able to plot the cumulative regret. Note that this step is needed because ACC-UCB and
CC-MAB’s decisions are affected by the number of rounds, hence to plot the cumulative regret, we need to
run the simulations with different T .

Similar to Simulation I, the number of arms in each round is sampled from a Poisson distribution with a
mean of 100 and the budget is K = 5. This means that we will have 30000 base arms when T = 300.
Sampling this many points from a GP requires the creation and Cholesky decomposition of a 900 million
element matrix, which would not only take a long time on our i7 6700K PC, but would also require a large
amount of RAM (more than 7.2 GB). In order to address this issue, we first generate 6000 3D contexts from
[0, 1]3 and then sample the GP at those points. Then, during our simulation, we sample each base arm’s
context x and the corresponding expected outcome f(x) from the generated sets. Just like in Simulation I,
r(x) = f(x) + η, where η ∼ N (0, 0.12). Note that we first generate the dataset (i.e., arriving arm contexts
and rewards in each round) for T = 300 and then use the same dataset, but truncated, for smaller T .

The expected outcome of each arm is generated from a zero mean GP with the squared exponential kernel with
lengthscale l, given as k(x, x′) = exp

(
− 1

2l2 ∥x− x′∥
)
. We run our simulations for five different lengthscales,

l ∈ {0.01, 0.05, 0.1, 0.5, 1}. Intuitively, the larger the length scale, the larger the covariance (and thus
dependence) between any two arms with nonequal contexts.

Finally, in round t and given K chosen arms context vector x = [x1, . . . , xK], we define our reward as

u(r(x)) =
K∑

i=1
r(xi). Just like in Simulation I, each algorithm will select five arms (i.e., K = 5). Moreover,

the Oracle for this setup will be a greedy one that picks the arms whose contexts have the highest performance
estimates.

12

Under review as submission to TMLR

0 100 200 300
Number of rounds (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

re
gr

et

×103 O’CLOK-UCB
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Number of rounds (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

re
gr

et

×103 SO’CLOK-UCB (20 inducing pts.)
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Number of rounds (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

re
gr

et

×103 SO’CLOK-UCB (50 inducing pts.)
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Number of rounds (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

re
gr

et

×103 SO’CLOK-UCB (100 inducing pts.)
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Number of rounds (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
C

um
ul

at
iv

e
re

gr
et

×103 ACC-UCB
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

0 100 200 300
Number of rounds (T)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
um

ul
at

iv
e

re
gr

et

×103 CC-MAB
Outcome kernel l = 0.01

Outcome kernel l = 0.05

Outcome kernel l = 0.10

Outcome kernel l = 0.50

Outcome kernel l = 1.00

Figure 7: Cumulative regret of each algorithm at the end of different number of rounds and outcome kernel
lengthscales (l) in Simulation II.

5.2.2 Algorithms

We use the same algorithms as in Simulation I, detailed below.

O’CLOK-UCB: We use the same squared exponential kernel as in Simulation I and set δ = 0.05.

SO’CLOK-UCB: We run simulations with three different inducing points: 20, 50, and 100. We also set
δ = 0.05 and use the same squared exponential kernel as O’CLOK-UCB.

ACC-UCB: We set v1 =
√

3, v2 = 1, ρ = 0.5, and N = 8. The initial (root) context cell, X0,1, is a three
dimensional unit hypercube centered at (0.5, 0.5, 0.5).

CC-MAB: Since we have a three-dimensional context space, 300 tasks (rounds), and an exact Oracle, we
set hT = ⌈300 1

3·1+3 ⌉ = 3. Hence, each hypercube has a length of 1/hT = 1
3 .

Benchmark: The benchmark greedily picks the arms with the highest expected outcome.

5.2.3 Results

We run each simulation five times and average over them to get the results. We also visualize the standard
deviation of the runs as error bars. Figure 6 shows the average task reward up to task t, divided by the
benchmark reward; and Figure 7 shows the final cumulative regret of each algorithm for different T . None
of the algorithms is able to learn and achieve high reward when l = 0.01, which is expected because different

13

Under review as submission to TMLR

arm outcomes are almost independent of one another for this length scale. As the length scale increases,
we see that all algorithms improve, but it is only the GP algorithms that manage to achieve performance
close to that of the benchmark (i.e., approach > 0.8 in reward plots). SO’CLOK-UCB with 20 inducing
points performed the worst among the GP algorithms, which is expected because it is essentially trying to
learn the entire [0, 1]3 arm context space with just 20 randomly picked contexts. However, when the number
of inducing points increases, the performance of SO’CLOK-UCB with both 50 and 100 inducing points is
practically identical to the non-sparse O’CLOK-UCB’s performance when the outcome kernel has l = 1.
Interestingly, O’CLOK-UCB achieves near-optimal performance, as shown by its scaled reward being very
close to one, when the outcome kernel has l = 0.5 or l = 1, but the same cannot be said about SO’CLOK-
UCB. Moreover, O’CLOK-UCB is the only GP algorithm that has better performance when l = 1 compared
with l = 0.5. This indicates that the sparse algorithms are not able to make use of the increased arm outcome
covariance, even with 100 inducing points. That being said, the difference in the average reward between
O’CLOK-UCB and SO’CLOK-UCB with 100 inducing points is only about 5% when l = 1 and 1% when
l = 0.5. Thus, SO’CLOK-UCB is a very good practical alternative to O’CLOK-UCB.

5.3 Simulation III: Movie Recommendation

5.3.1 Setup & dataset

We use a movie recommendation setup where in each round a selection of K = 3 movies are to be shown to
a group of users, with the goal being maximizing the number of users that watch any recommended movie.
We use the MovieLens 25M dataset (Harper & Konstan, 2015). Each movie comes with genre metadata that
indicates the genres of the movie from a set of 20 genres (action, adventure, comedy, etc.). Moreover, each
rating is between 0.5 and 5.0, increasing in increments of 0.5.

In our experiment, we only consider ratings after 2015 and users who have rated at least 200 movies. Then,
in each round t, we sample Lt movies from the movie set, where Lt follows Poisson with mean 75. Then,
from the users who reviewed the picked movies, we sample Rt of them, where Rt follows Poisson with mean
200. If a user j rated a movie i, then there is an edge connecting them with context xi,j . We define this
context to be xi,j = ⟨uj , gi⟩/10, where uj is the average of the genres of the movies that user j rated,
weighed by their rating, gi is the genre vector of movie i, and 10 is a normalizing factor.4 Then, we pick the
expected outcome of a base arm (i.e., edge) with context xi,j to be f(xi,j) = 2/(1 + e−4xi,j) − 1, to model
a realistic non-linear relationship. Its S-shape captures a natural saturation effect, where the outcome is
most sensitive to mid-range context values but has diminishing returns at the extremes. Then, the random
outcome (i.e., the chance of the user watching the recommended movie) is a Bernoulli random variable with
probability f(xi,j). Finally, the reward is the number of users that watched at least one movie that they were
recommended. Formally, the expected reward in round t and given a super arm S (i.e., the set of outgoing
movie-user edges from the K movies to be recommended) is

u(f(xt,S)) =
Rt∑

j=1

(
1−

Lt∏
i=1

(1− I((i, j) ∈ S)f(xi,j))
)

,

where I((i, j) ∈ S) indicates whether the edge connecting movie i and user j is among the picked base arms.
Notice that even if the learner knew all the edge probabilities, the problem of picking left nodes (i.e., movies)
to maximize the expected number of activated right nodes (i.e., users) is NP-hard and thus computationally
intractable (Chen et al., 2016a). Therefore, we use an approximate oracle for both the learning algorithms
and the benchmark. We chose TIM+ (Tang et al., 2014), which is an (α, β)-approximate oracle with
α = 1 − 1/e − ϵ and β = 1 − 3n−l, where n is the total number of nodes. Although our setup assumes an
α-approximate oracle, our algorithm has no issue using an (α, β)-approximate oracle in practice, as we will
see in the results. Note that the oracle knows the problem structure and thus knows the number of left and
right nodes as well as the edges connecting them, but it does not know the edge probabilities and instead
takes them as input.

4We divide by 10 and not 20 to normalize the context because the maximum number of genres that a movie has in the
dataset is 10.

14

Under review as submission to TMLR

5.3.2 Algorithms

We run the experiment on the sparse version of our algorithm, SO’CLOK-UCB, and ACC-UCB of
(Nika et al., 2020). We excluded our non-sparse algorithm because its computational efficiency is very
poor, especially in practice, and as we will see, the sparse algorithm manages to perform extremely well
anyways. Moreover, CC-MAB of (Chen et al., 2018) was excluded because its (1 − 1/e)-greedy oracle that
approximately maximizes a reward function takes as input a set, but in the dynamic probabilistic maximum
coverage (DPMC) problem, the input to the reward function is a vector. Below are the parameters and
configurations of each used algorithm:

SO’CLOK-UCB: We use the sparse variation of our algorithm, as described in Simulation I. We use three
different numbers of inducing points: 1, 2, and 4. We also set δ = 0.05 and use the squared exponential
kernel. We use the TIM+ oracle with ϵ = 0.1 and l = 1.

ACC-UCB: We set v1 = 1, v2 = 1, ρ = 0.5, and N = 2, as given in Definition 1 of (Nika et al., 2020). The
initial (root) context cell, X0,1, is a one-dimensional unit hypercube (i.e., a line) centered at (0.5). ACC-UCB
also uses the TIM+ oracle with ϵ = 0.1 and l = 1.

5.3.3 Results

We run the experiment for 400 rounds and repeat it 5 times, averaging over each run. Figure 5 shows the
running average reward of each algorithm divided by that of the benchmark. Even with 2 inducing points,
SO’CLOK-UCB manages to outperform ACC-UCB by around 5%. With 4 inducing points, SO’CLOK-UCB
reaches an average reward that is only 0.5% less than that of the benchmark and outperforms ACC-UCB by
more than 8%. These results show that SO’CLOK-UCB achieves optimal performance in a realistic setting
where the underlying problem cannot be solved by greedily picking the base arms with the highest estimate
outcomes.

6 Conclusion

We considered the contextual combinatorial multi-armed bandit with changing action set problem with
semi-bandit feedback, where in each round, the agent has to play a feasible subset of the base arms in
order to maximize the cumulative reward. Under the assumption that the expected base arm outcomes are
drawn from a Gaussian process and that the expected reward is Lipschitz continuous with respect to the
expected base arm outcomes, we proposed O’CLOK-UCB which incurs Õ(

√
λ∗(K)KTγKT (∪t≤TXt)) regret

in T rounds. In experiments, we showed that sparse GPs can be used to speed up UCB computation without
significantly degrading the performance. Our comparisons also indicated that GPs can transfer knowledge
among contexts better than partitioning the contexts into groups of similar contexts based on a similarity
metric. A potential limitation of our work is the assumption of access to offline approximation oracles and
the Lipschitz continuity of the expected regret.

An interesting future research direction involves investigating how dependencies between base arms can be
used for more efficient exploration. For instance, when the oracle selects base arms sequentially, it is possible
to update the posterior variances of the not yet selected based arms by conditioning on the selected but not
yet observed base arms. Another interesting direction would be to investigate how tight the dependence of
the regret bounds is on K.

15

Under review as submission to TMLR

References
Guglielmo Maria Accabi, Francesco Trovo, Alessandro Nuara, Nicola Gatti, and Marcello Restelli. When

gaussian processes meet combinatorial bandits: Gcb. In 14th European Workshop on Reinforcement
Learning, pp. 1–11, 2018.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Mach. Learn., 47(2-3):235–256, 2002a.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed
bandit problem. SIAM journal on computing, 32(1):48–77, 2002b.

Zahy Bnaya, Rami Puzis, Roni Stern, and Ariel Felner. Volatile multi-armed bandits for guaranteed targeted
social crawling. In Workshops at the Twenty-Seventh AAAI Conf. Artif. Intell., 2013.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. arXiv preprint arXiv:1204.5721, 2012.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of Machine
Learning Research, 12(5), 2011.

Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization problems.
ACM Trans. Alg., 14(3):1–20, 2018.

Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System Sciences,
78(5):1404–1422, 2012.

Deepayan Chakrabarti, Ravi Kumar, Filip Radlinski, and Eli Upfal. Mortal multi-armed bandits. Proc. Adv.
Neural Inf. Process. Syst., 21:273–280, 2008.

Lixing Chen, Jie Xu, and Zhuo Lu. Contextual combinatorial multi-armed bandits with volatile arms and
submodular reward. In Proc. Adv. Neural Inf. Process. Syst., pp. 3247–3256, 2018.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Combinatorial pure exploration of
multi-armed bandits. Advances in neural information processing systems, 27, 2014.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and
applications. In Proc. 30th Int. Conf. Mach. Learn., pp. 151–159. PMLR, 2013.

Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed bandit with general
reward functions. In Proc. Adv. Neural Inf. Process. Syst., pp. 1659–1667, 2016a.

Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-armed bandit and its extension
to probabilistically triggered arms. The Journal of Machine Learning Research, 17(1):1746–1778, 2016b.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In
Proc. 14th Int. Conf. Artif. Intell. and Statist., pp. 208–214, 2011.

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, et al. Combinatorial
bandits revisited. Advances in neural information processing systems, 28, 2015.

Emile Contal, David Buffoni, Alexandre Robicquet, and Nicolas Vayatis. Parallel gaussian process optimiza-
tion with upper confidence bound and pure exploration. Lecture Notes in Computer Science, pp. 225–240,
2013. ISSN 1611-3349.

Sepehr Elahi, Baran Atalar, Sevda Öğüt, and Cem Tekin. Contextual combinatorial multi-output GP bandits
with group constraints. Transactions on Machine Learning Research, 06 2023.

Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with unknown
variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Trans. Netw.,
20(5):1466–1478, 2012.

16

Under review as submission to TMLR

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4), December 2015. ISSN 2160-6455. doi: 10.1145/2827872.

Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta, Iftikhar Ahamath Burhanuddin, Zheng Wen, and
Branislav Kveton. Cascading linear submodular bandits: Accounting for position bias and diversity in
online learning to rank. In Uncertainty in Artificial Intelligence, pp. 722–732. PMLR, 2020.

Alihan Huyuk and Cem Tekin. Analysis of thompson sampling for combinatorial multi-armed bandit with
probabilistically triggered arms. In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1322–1330. PMLR, 2019.

Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. Regret bounds for sleeping experts
and bandits. Mach. Learn., 80(2-3):245–272, 2010.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2
(1-2):83–97, 1955.

Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid bandits: Fast
combinatorial optimization with learning. arXiv preprint arXiv:1403.5045, 2014.

Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits: Learning to rank in
the cascade model. In Proc. 32nd Int. Conf. Mach. Learn., pp. 767–776, 2015a.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Combinatorial cascading bandits.
Advances in Neural Information Processing Systems, 28, 2015b.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochastic
combinatorial semi-bandits. In Artificial Intelligence and Statistics, pp. 535–543. PMLR, 2015c.

John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed bandits. Proc.
Adv. Neural Inf. Process. Syst., 20(1):96–1, 2007.

Fengjiao Li, Jia Liu, and Bo Ji. Combinatorial sleeping bandits with fairness constraints. IEEE Trans. Netw.
Sci. Eng., 7(3):1799–1813, 2019.

Tian Lin, Jian Li, and Wei Chen. Stochastic online greedy learning with semi-bandit feedbacks. In Proc.
Adv. Neural Inf. Process. Syst., pp. 352–360, 2015.

Tyler Lu, Dávid Pál, and Martin Pál. Contextual multi-armed bandits. In Proc. 13th Int. Conf. Artif. Intell.
and Statist., pp. 485–492, 2010.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas, Pablo
León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process library using
TensorFlow. J. Mach. Learn. Res., 18(40):1–6, apr 2017.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maxi-
mizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

Andi Nika, Sepehr Elahi, and Cem Tekin. Contextual combinatorial volatile multi-armed bandit with
adaptive discretization. In Proc. 23rd Int. Conf. Artif. Intell. and Statist., volume 108, pp. 1486–1496,
26–28 Aug 2020.

Alessandro Nuara, Francesco Trovò, Nicola Gatti, and Marcello Restelli. Online joint bid/daily budget
optimization of internet advertising campaigns. Artificial Intelligence, 305:103663, 2022.

Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application on
diversified online recommendation. In Proceedings of the 2014 SIAM Int. Conf. on Data Mining, pp.
461–469. SIAM, 2014.

Jack Sandberg, Niklas Åkerblom, and Morteza Haghir Chehreghani. Bayesian analysis of combinatorial
gaussian process bandits. In ICLR, 2025.

17

Under review as submission to TMLR

Shubhanshu Shekhar, Tara Javidi, et al. Gaussian process bandits with adaptive discretization. Electron. J.
Stat., 12(2):3829–3874, 2018.

Aleksandrs Slivkins. Contextual bandits with similarity information. In Proc. 24th Annu. Conf. Learn.
Theory., pp. 679–702, 2011.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Information-theoretic regret bounds for gaussian
process optimization in the bandit setting. IEEE Trans. Inf. Theory, 58(5):3250–3265, 2012.

Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization: Near-optimal time complexity meets
practical efficiency. In Proc. ACM SIGMOD Int. Conf. Manage. Data, SIGMOD ’14, pp. 75–86, New
York, NY, USA, 2014. ISBN 9781450323765.

Michalis K Titsias. Variational learning of inducing variables in sparse gaussian processes. In Proc. 12th Int.
Conf. Artif. Intell. and Statist., pp. 567–574, 2009.

Sattar Vakili, Kia Khezeli, and Victor Picheny. On information gain and regret bounds in gaussian process
bandits. arXiv preprint arXiv:2009.06966, 2020.

Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization. John Wiley & Sons,
2014.

D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. Modeling user activity preference by leveraging user spatial
temporal characteristics in lbsns. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(1):
129–142, 2015.

Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton. Cascading bandits
for large-scale recommendation problems. arXiv preprint arXiv:1603.05359, 2016.

18

Under review as submission to TMLR

Appendix
A Missing Proofs

The proof of Theorem 1 relies on the following auxiliary lemmas, which we state and prove hereon.

First, let us denote by rJt−1K the vector of observations made until the beginning of round t, that is,

rJt−1K = [rT (x1,S1), . . . , rT (xt−1,St−1)]T .

For any t ≥ 1, note that the posterior distribution of f(x) given the observation vector rJt−1K is
N (µJt−1K(x), σ2

Jt−1K(x)), for any x ∈ Xt. Thus, applying the Gaussian tail bound, we obtain

P
(
|f(x)− µJt−1K(x)| > β

1/2
t σJt−1K(x)

∣∣rJt−1K

)
≤ 2 exp

(
−βt

2

)
, (6)

for βt ≥ 0. We will use this argument in order to prove our first result which gives high probability upper
bounds on the deviation from the function value of the index of any available context.

Our first result guarantees that the indices upper bound the expected base arm outcomes with high proba-
bility.
Lemma 2. For any δ ∈ (0, 1), the probability of the following event is at least 1− δ:

F = {∀t ≥ 1,∀x ∈ Xt : |f(x)− µJt−1K(x)| ≤ β
1/2
t σJt−1K(x)} ,

where βt = 2 log(Mπ2t2/3δ).

Proof. We have:

1− P(F) = E
[
I
(
∃t ≥ 1,∃x ∈ Xt : |f(x)− µJt−1K(x)| > β

1/2
t σJt−1K(x)

)]
(7)

≤ E

∑
t≥1

∑
x∈Xt

I
(
|f(x)− µJt−1K(x)| > β

1/2
t σJt−1K(x)

)
=
∑
t≥1

∑
x∈Xt

E
[
E
[
I
(
|f(x)− µJt−1K(x)| > β

1/2
t σJt−1K(x)

) ∣∣∣∣rJt−1K

]]
(8)

=
∑
t≥1

∑
x∈Xt

E
[
P
(
|f(x)− µJt−1K(x)| > β

1/2
t σJt−1K(x)

∣∣∣∣rJt−1K

)]

≤
∑
t≥1

∑
x∈Xt

2 exp
(
−βt

2

)
(9)

= 2M
∑
t≥1

6δ

2Mπ2t2

= δ
6
π2

∑
t≥1

t−2 = δ ,

where equation 7 follows from the fact that P(F) = E[I(F)]; equation 8 follows from the tower rule and
the fact that the sets Xt, t ≥ 1 are fixed (thus there is no randomness from there); equation 9 follows from
equation 6 and the rest follows from substituting βt and the fact that

∑
t≥1 t−2 = π2/6.

19

Under review as submission to TMLR

Next, we upper bound the gap of a selected super arm in terms of the gaps of individual arms. From here
on, unless otherwise stated, we denote by xt,k the context xt,st,k

associated with the kth selected arm st,k

at time t for brevity.
Lemma 3. Given round t ≥ 1, let us denote by S∗

t = {s∗
t,1, . . . , s∗

t,|S∗
t |} the optimal super arm in round t.

Then, the following holds under the event F :

α · u(f(xt,S∗
t
))− u(f(xt,St

)) ≤ 2Bβ
1/2
t

|St|∑
k=1

∣∣σJt−1K(xt,k)
∣∣ .

Proof. Let us first define Gt = argmaxS∈St
u(it(xt,S)). Given that event F holds, we have:

α · u(f(xt,S∗
t
))− u(f(xt,St

)) ≤ α · u(it(xt,S∗
t
))− u(f(xt,St

)) (10)
≤ α · u(it(xt,Gt

))− u(f(xt,St
)) (11)

≤ u(it(xt,St
))− u(f(xt,St

)) (12)

≤ B

|St|∑
k=1
|it(xt,k)− f(xt,k)| (13)

≤ B

|St|∑
k=1

∣∣µJt−1K(xt,k)− f(xt,k)
∣∣

+ B

|St|∑
k=1

∣∣∣β1/2
t σJt−1K(xt,k)

∣∣∣ (14)

≤ 2Bβ
1/2
t

|St|∑
k=1

∣∣σJt−1K(xt,k)
∣∣ , (15)

where equation 10 follows from monotonicity of u and the fact that f(xt,s∗
t,k

) ≤ it(xt,s∗
t,k

), for k ≤ |S∗
t |, by

Lemma 2; equation 11 follows from the definition of Gt; equation 12 holds since St is the super arm chosen
by the α-approximation Oracle; equation 13 follows from the Lipschitz continuity of u: equation 14 follows
from the definition of index and the triangle inequality; for equation 15 we use Lemma 2.

We next provide the full proof of Lemma 1. We first restate the result below for convenience.
Statement. Let zt := xt,St

be the vector of selected contexts at time t ≥ 1. Given T ≥ 1, we have:

I
(
r(z[T]); f(z[T])

)
≥ 1

2(σ−2λ∗(K) + 1)

T∑
t=1

|St|∑
k=1

σ−2σ2
Jt−1K(xt,k) ,

where z[T] = [z1, . . . , zT]T is the vector of all selected contexts until round T and λ∗(K) is the maximum
eigenvalue of matrices (ΣJt−1K(z[t]))T

t=1.

Proof. By definition, we have

I
(
r(z[T]); f(z[T])

)
= H

(
r(z[T])

)
−H

(
r(z[T])

∣∣f(z[T])
)

= H
(
r(zT), r(z[T −1])

)
−H

(
r(z[T])

∣∣f(z[T])
)

= H
(
r(zT)

∣∣r(z[T −1])
)

+ H
(
r(z[T −1])

)
−H

(
r(z[T])

∣∣f(z[T])
)

.

Reiterating inductively we obtain:

I
(
r(z[T]); f(z[T])

)
=

T∑
t=2

H
(
r(zt)

∣∣r(z[t−1])
)

+ H (r(z1))−H
(
r(z[t])

∣∣f(z[t])
)

,

20

Under review as submission to TMLR

since r(z[1]) = r(z1). Let ηt = [ηt,1, . . . , ηt,|St|]T . Note that

H
(
r(z[t])

∣∣f(z[t])
)

= H
(
f(z1) + η1, . . . , f(zT) + ηT

∣∣f(z[T])
)

= H
(
f(x1,1) + η1,1, . . . , f(x1,|S1|) + η1,|S1|, . . . , f(xT,1)

+ηT,1, . . . , f(xT,|ST |) + ηT,|ST |
∣∣f(z[T])

)
=

T∑
t=1

|St|∑
k=1

H(ηt,k)

= 1
2

T∑
t=1

log
∣∣2πeσ2I|St|

∣∣ ,

where the last equality follows from the entropy formula for Gaussian random variables. On the other
hand, since any finite dimensional distributions associated with a Gaussian process are Gaussian random
vectors and also, since zt is deterministic given z[t−1], the conditional distribution of r(zt) given r(z[t−1]) is
N
(
µJt−1K(zt), ΣJt−1K(zt) + σ2I|St|

)
, where µJt−1K(zt) = [µJt−1K(xt,1), . . . , µJt−1K(xt,|St|)]T and

ΣJt−1K(zt) =

 σ2
Jt−1K(xt,1) . . . kJt−1K(xt,1, xt,|St|)

...
kJt−1K(xt,|St|, xt,1) . . . σ2

Jt−1K(xt,|St|)

 .

Here, k0(x, y) = k(x, y) and kJt−1K(x, y) := kN (x, y), where N =
∑t−1

t′=1 |St′ |. Before we proceed, we need to
emphasize the fact that O’CLOK-UCB does not employ any randomisation subroutines. There exist many
deterministic α-approximation oracles (Lin et al., 2015; Qin et al., 2014; Buchbinder & Feldman, 2018),
including greedy approximation oracles. We assume that the α-approximation oracle that our algorithm
uses is deterministic, and hence, there is no randomness coming from our algorithm. Therefore, we obtain
the following.

I(r(z[T]); f(z[T])) =
T∑

t=2
H
(
r(zt

∣∣r(z[t−1])
)

+ H (r(z1))−H
(
r(z[t])

∣∣f(z[t])
)

=
T∑

t=2

1
2
[
log
∣∣2πe

(
ΣJt−1K(zt) + σ2I|St|

)∣∣]
+ 1

2
[
log
∣∣2πe

(
Σ0(z1) + σ2I|S1|

)∣∣]− 1
2

T∑
t=1

log
∣∣2πeσ2I|St|

∣∣ (16)

=
T∑

t=1

1
2 log

∣∣2πe
(
ΣJt−1K(zt) + σ2I|St|

)∣∣− 1
2

T∑
t=1

log
∣∣2πeσ2I|St|

∣∣
=

T∑
t=1

1
2 log

∣∣2πeσ2 (σ−2ΣJt−1K(zt) + I|St|
)∣∣− 1

2

T∑
t=1

log
∣∣2πeσ2I|St|

∣∣
=

T∑
t=1

1
2 log

∣∣2πeσ2I|St|
∣∣+

T∑
t=1

1
2 log

∣∣(σ−2ΣJt−1K(zt) + I|St|
)∣∣

− 1
2

T∑
t=1

log
∣∣2πeσ2I|St|

∣∣
= 1

2

T∑
t=1

log
∣∣(σ−2ΣJt−1K(zt) + I|St|

)∣∣ (17)

= 1
2

T∑
t=1

log

 |St|∏
k=1

(σ−2λk + 1)

 (18)

21

Under review as submission to TMLR

= 1
2

T∑
t=1

|St|∑
k=1

log(σ−2λk + 1)

≥ 1
2

T∑
t=1

|St|∑
k=1

σ−2λk

σ−2λk + 1 (19)

≥ 1
2(σ−2λ∗(K) + 1)

T∑
t=1

|St|∑
k=1

σ−2λk (20)

= 1
2(σ−2λ∗(K) + 1)

T∑
t=1

|St|∑
k=1

σ−2σ2
Jt−1K(xt,k) (21)

where equation 16 follows from the formula of conditional entropy for Gaussian random vectors; for equa-
tion 18, we make the observation that given a symmetric positive-definite n by n matrix A, we can write
|A + In| =

∏
k≤n(λk +1); for equation 19, we use the fact that log x ≥ (x−1)/x, for all x > 0; in equation 20

λ∗(K) denotes the maximal eigenvalue of all ΣJt−1K(zt), for t ≤ T ; for equation 21 we use the fact that the
trace of a symmetric matrix is equal to the sum of its eigenvalues.

Finally, we are ready to prove Theorem 1.
Statement. Let δ ∈ (0, 1), T ∈ N. Given βt = 2 log(Mπ2t2/3δ), the regret incurred by O’CLOK-UCB in T
rounds is upper bounded with probability at least 1− δ as follows:

Rα(T) ≤
√

CβT KTγKT (XT) ,

where C = 8B2(λ∗(K) + σ2).

Proof. From Lemma 3 we have:

Rα(T) = α

T∑
t=1

opt(ft)−
T∑

t=1
u(f(xt,St

))

≤ 2Bβ
1/2
T

T∑
t=1

|St|∑
k=1

∣∣σJt−1K(xt,k)
∣∣ , (22)

using the fact that β
1/2
t is monotonically increasing in t. Taking the square of both sides, we have:

R2
α(T) ≤ 4B2βT

 T∑
t=1

|St|∑
k=1

∣∣σJt−1K(xt,k)
∣∣2

≤ 4B2βT T

T∑
t=1

 |St|∑
k=1

∣∣σJt−1K(xt,k)
∣∣2

(23)

≤ 4B2βT T

T∑
t=1
|St|

|St|∑
k=1

σ2
Jt−1K(xt,k) (24)

≤ 4B2βT TK

T∑
t=1

|St|∑
k=1

σ2
Jt−1K(xt,k)

= 4B2βT TKσ2
T∑

t=1

|St|∑
k=1

σ−2σ2
Jt−1K(xt,k) (25)

22

Under review as submission to TMLR

≤ 8B2βT TK(σ−2λ∗(K) + 1)σ2I
(
r(z[T]); f(z[T])

)
(26)

≤ CKβT TγKT (XT) , (27)

where for equation 23 and equation 24, we have used the Cauchy–Schwarz inequality twice; in equation 25,
we just multiply by σ2 and σ−2; equation 26 follows from Lemma 1; and for equation 27, we use the definition
of γT .

Taking the square root of both sides we obtain our desired result.

Finally, we prove Corollary 1.
Statement. Let δ ∈ (0, 1), T, K ∈ N and let X ⊂ RD be compact and convex. Under the conditions
of Theorem 1 and for the following kernels, the α-regret incurred by O’CLOK-UCB in T rounds is upper
bounded (up to polylog factors) with probability at least 1− δ as follows:

• For the linear kernel we have: Rα(T) ≤ Õ
(√

λ∗(K)DKT
)

.

• For the RBF kernel we have: Rα(T) ≤ Õ

(√
λ∗(K)KT logD T

)
.

• For the Matérn kernel we have: Rα(T) ≤ Õ
(√

λ∗(K)KT (D+ν)/(D+2ν)
)

, where ν > 1 is the Matérn
parameter.

Proof. This is an immediate application of the explicit bounds on γT given in Theorem 5 of (Srinivas et al.,
2012), to the bound we obtained in Theorem 1. For the Matérn kernel, we have used the tighter bounds
from (Vakili et al., 2020).

23

	Introduction
	Our contributions
	Related work

	Problem formulation
	Base arms and their outcomes, super arms and their rewards
	The optimization and learning problems
	The optimization problem
	The learning problem

	Example applications of C3-MAB
	Putting structure on base arm outcomes via GPs
	Information gain

	The learning algorithm
	Regret bounds
	Experimental results
	Simulation I: Crowdsourcing
	Simulation Setup
	Algorithms
	Results

	Simulation II: Varying Base Arm Codependency
	Setup
	Algorithms
	Results

	Simulation III: Movie Recommendation
	Setup & dataset
	Algorithms
	Results

	Conclusion
	
	 Appendix
	Missing Proofs

