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Abstract

The accuracy of Computer-Assisted Coding
(CAC) systems has improved significantly in
recent years, thanks to advances in machine
learning technologies. Yet simply predicting
a set of final codes for a patient encounter is
insufficient as CAC systems are required to pro-
vide supporting textual evidence to justify the
billing codes. A model able to produce accu-
rate and reliable supporting evidence for each
code would be a tremendous benefit. However,
a human annotated code evidence corpus is ex-
tremely difficult to create because it requires
specialized knowledge. In this paper, we intro-
duce MDACE, the first publicly available code
evidence dataset, which is built on a subset of
the MIMIC-III clinical records. The dataset
— annotated by professional medical coders —
consists of 302 Inpatient charts with 3,934 ev-
idence spans and 52 Profee charts with 5,563
evidence spans. We implemented several evi-
dence extraction methods based on the Effec-
tiveCAN model (Liu et al., 2021) to establish
baseline performance on this dataset. MDACE
can be used to evaluate code evidence extrac-
tion methods for CAC systems, as well as the
accuracy and interpretability of deep learning
models for multi-label classification. We be-
lieve that the release of MDACE will greatly
improve the understanding and application of
deep learning technologies for medical coding
and document classification.

1 Introduction

Computer-Assisted Coding (CAC) uses Natural
Language Processing (NLP) techniques to extract
procedure and diagnosis codes from the documenta-
tions of patient encounters. MIMIC-III (Medical In-
formation Mart for Intensive Care) (Johnson et al.,
2016) is an open-access dataset comprised of hos-
pital records associated with patients admitted to
the critical care units of the Beth Israel Deaconess
Medical Center. For each patient record/chart, the
data related to billing includes diagnostic codes,

procedure codes, clinical notes by care providers
(discharge summaries, radiology and cardiology re-
ports, nursing notes, etc.), and other patient demo-
graphic data. The MIMIC records were originally
coded with the numerical-based code system ICD-
9 (International Classification of Diseases), which
contains approximately 14,000 codes overall.

Since the release of MIMIC-III, there has been a
surge of research on using machine learning (ML)
models to predict the billing codes based on the
clinical text (Ji et al., 2022). However, the MIMIC
database does not contain the association between
the billing codes and the clinical notes, i.e., the spe-
cific narratives in the notes supporting the codes are
not present. CAC systems are required to extract
text evidence to support the generated billing codes.
There is no dataset for reference code evidence as
it requires medical coding expertise and is costly
to build. As a result, work until this point can only
illustrate qualitatively that their models can extract
text evidence that look reasonable to humans. This
approach is time-consuming and makes the compar-
ison of different methods extremely difficult. The
need for a reference evidence dataset is obvious.

In many parts of the world, the ICD-9 code sys-
tem is out of date. Most countries are currently
using the much more robust alphanumeric code
system, ICD-10. The U.S. version, ICD-10-CM,
has approximately 69,000 codes while the proce-
dures (PCS) have about 82,000 codes. This dra-
matic increase in number can be attributed to the
addition of modifiers for disorders such as laterality,
severity, acuity, and sequence for injuries. While
the principles of coding remained the same, the
transition from ICD-9-CM to ICD-10-CM between
2014 and 2015 changed the way medical coders
read documentation and code from them. While
the entire chart should be read to understand the pa-
tient’s story, only documents generated as a result
of a face-to-face visit with an allowable provider
should be reviewed for direct ICD-10 code abstrac-



tion. This includes Progress Notes, History and
Physicals, Consults and Operatives Notes, etc. For
procedure code selection, only a procedure or oper-
ative note is acceptable.

For these reasons, the ML models trained on the
MIMIC-III discharge summaries to predict ICD-9
codes have little value for medical coding in real-
ity. MIMIC-IV (Johnson et al., 2020) improved
upon MIMIC-III in many ways, one of which is the
addition of ICD-10 codes. But the clinical notes
associated with the patient records have yet to be
released.

In this paper, we introduce MDACE, the first
publicly available code evidence dataset' built on
a subset of the MIMIC-III clinical records. The
dataset contains evidence spans for diagnosis and
procedure codes annotated by professional medical
coders. Each span contains the billing code and
the text offsets in the respective clinical note. We
provide Python scripts for merging our evidence
representation with the MIMIC NOTEEVENTS ta-
ble to obtain the true evidence so as to comply with
The PhysioNet Credentialed Health Data License.
To broaden its use, we automatically map between
ICD-10 and ICD-9 codes with evidence so that the
evidence can potentially be used with the MIMIC-
IV corpus. MDACE addresses a critical need for
CAC research to be able to automatically evaluate
the code evidence generated by ML models.

2 Related Work

With the recent increased attention to the inter-
pretability of deep learning models, datasets con-
taining explanations in different forms (highlights,
free-text, structured) have been curated. Wiegreffe
and Marasovic (2021) provide a list of 65 datasets
for various explainable NLP tasks, and Feldhus
et al. (2021) present the results of different expla-
nation generation models trained on these datasets.
However, none of these datasets covers evidence
for medical coding.

Many works have used private datasets for the
development of evidence generation methods for
medical coding, e.g., Sen et al. (2021). However,
these datasets are not publicly available, and can’t
be used to improve the research on evidence extrac-
tion. Searle et al. (2020) used a semi-supervised ap-
proach to create a silver-standard dataset of clinical
codes, from only the discharge diagnosis sections

"Link to the dataset will be provided in the final submis-
sion.

of the MIMIC-III discharge summary notes, with a
small sample validated by humans.

There has been a surge in neural network models
for automatic medical coding in the past several
years. Mullenbach et al. (2018) first introduced a
convolutional neural net with an attention mecha-
nism, where the code (label) dependent attention
weights were used as token importance measure
for the model interpretability. Liu et al. (2021) ex-
tended on this work by incorporating the squeeze-
and-excitation network (Hu et al., 2018) into the
text encoder to obtain better contextual text repre-
sentations. Xie et al. (2019) used the multi-scale
convolutional attention while Vu et al. (2020) pro-
posed to combine Bi-LSTM and an extension of
structured self-attention mechanism for ICD code
prediction. Some other recent models that achieved
the state-of-the-art results on the MIMIC-III full
code set include Kim and Ganapathi (2021); Hu
et al. (2021); Yuan et al. (2022). There are also
a large number of Transformer based models for
medical coding, e.g., (Liu et al., 2022; Pascual
et al., 2021), but they often only predict the top 50
codes and therefore have little value to solving real-
world CAC problems. One exception is PLM-ICD
(Huang et al., 2022), which uses domain-specific
pretraining, segment pooling and label-aware atten-
tion to tackle the challenges of coding and improve
performance. However, this model cannot extract
phrase level evidence for the ICD codes.

Many of the above works use the attention
weights to identify the text snippets that justify
code predictions. But there is no quantitative eval-
uation of the quality of the snippets.

Works that use semi-supervised learning for ex-
planation tasks in NLP include (Zhong et al., 2019;
Pruthi et al., 2020; Segal et al., 2020), where Se-
gal et al. (2020) use a linear tagging model for
identifying answer snippets in question answering.
Although they are not directly related to medical
coding, we can apply their approaches for evidence
extraction with the help of the MDACE dataset.

3 Challenges and Solutions

MIMIC-III poses a number of challenges for cre-
ating a reference code evidence dataset. In this
section, we discuss these challenges including the
coding specialties and code systems, and describe
our solutions and process to increase the usability
of MDACE.



3.1 Coding Specialties

MIMIC-III contains both ICD-9 codes which are
used for inpatient coding, and CPT (Current Pro-
cedure Terminology) codes, which are maintained
by the American Medical Association (AMA) and
used for outpatient facility and professional fee
(Profee) billing in the U.S. There are approximately
ten thousand CPT-4 codes. It was necessary to have
different coders for each of these tasks (Inpatient
vs. Profee) because it is unusual that one person
be experienced in both areas. This means that in-
patient coders tend to be more skilled ICD coders,
while profee coders are often skilled CPT coders
within their domain. ICD codes are also applied
to profee charts to meet medical necessity require-
ments which ensure that the patient’s bill is paid by
insurance companies.

For this reason, we hired two coding teams with
two professional coders each for Inpatient and
Profee coding respectively. Although both teams
coded diagnosis codes, the actual codes can be dif-
ferent due to different coding rules.

For either coding scenario, a coder usually looks
for sufficient evidence that supports a code and ig-
nores equally good evidence that she comes across
later to save the time spent on each chart. This
poses a challenge for evaluating CAC systems
which can generate multiple pieces of evidence
for a code that may or may not overlap with the suf-
ficient reference evidence. To overcome this chal-
lenge but still finish the annotations in a reasonable
time frame, we asked our coders to annotate suf-
ficient evidence for Inpatient coding but complete
evidence for Profee coding.

3.2 Code Mappings

We explained in Section 1 that MIMIC-III was
coded in ICD-9, which has been discontinued. Up-
dating the MIMIC-III dataset with ICD-10 codes
and evidence will benefit research that targets real-
world coding problems. MDACE is designed to
contain evidence for both ICD-9 and ICD-10 codes
so that it can be used to evaluate evidence extrac-
tion of CAC models trained on MIMIC-III, and
also models that can predict ICD-10 codes, e.g.,
trained on MIMIC-IV once the notes are released.

We chose to use ICD-10 for annotation because
firstly, most coders are more familiar with the ICD-
10 code system, and secondly, ICD-10 codes are
more specific, so the mapping from an ICD-10
code to ICD-9 would be less ambiguous than the

other way round. Our coders annotated a sub-
set of the MIMIC-III charts with ICD-10 codes
and their evidence, which were then automatically
mapped to ICD-9 through the General Equivalence
Mappings (GEMs)? (Center for Medicare & Med-
icaid Services, 2009). GEMs contain six types of
mappings, including Identical match, Approximate
match, Combination map, and No Map, etc. To
ensure the quality of code mapping, we follow this
process to backward map ICD-10 to ICD-9:

1. Use the identical match or single approximate
match from an ICD-10 to ICD-9 code;

2. When more than one mapping exists, choose
the ICD-9 code that is in the MIMIC-III code
set. If none of the mapped codes is in MIMIC,
choose the code with the description that over-
laps the most with that of the ICD-10 code;

3. When no mapping exists, use the mapped
ICD-9 code of the parent ICD-10 code.

This process allows all annotated ICD-10 codes
to be mapped except for two in our dataset.

3.3 Annotation Workflow

It is well known that medical coding is an ex-
tremely complex task, and there is often disagree-
ment among coders. Given the large number of
notes and codes in each MIMIC-III record (Su et al.,
2019), it is impractical for our coders to first decide
the best ICD-10 code for a MIMIC ICD-9 code
and then annotate the narrative evidence in clinical
notes for that code. Therefore, our coders followed
their natural workflow of coding each chart from
scratch to save time. However, the original MIMIC
codes and their possible ICD-10 mappings were
made available to them. After completing a chart,
if there were MIMIC codes that were not accounted
for, they could reference those left-overs, re-review
the chart for evidence and annotate accordingly. If
the coders could not find evidence after reviewing
again, for example, the required note was missing,
they simply made a note in their coding reports.
We used a tool called INCEpTION? to help our
coders to review and annotate MIMIC charts. This
tool allows them to browse through the clinical
notes, highlight text spans and assign labels (billing

“GEMs are a comprehensive translation dictionary devel-
oped by multiple health organizations in the U.S. to effectively
translate between the ICD-9 and ICD-10 codes.
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codes) to the spans. The annotation guideline is
illustrated in Appendix B.

We sampled a subset of the full code test set of
Mullenbach et al. (2018) so as to build a dataset
for evaluating code evidence. Depending on the
size of the resulting dataset, it can also be used for
training extraction methods. We randomly sam-
pled batches of 50 charts from the test set, and
extracted all clinical notes eligible for coding for
each chart rather than just the discharge summaries.
Our coders worked on one batch at a time, and the
project lasted two months.

3.4 Inter-Annotator Agreement

As the first step of the annotation process, we mea-
sured the inter-annotator agreement to assess the
reliability of the annotations. To quantify the qual-
ity of annotations, two coders independently an-
notated sufficient (for Inpatient) or complete (for
Profee) evidence for the same three charts, and we
measured their agreement. Next, they reviewed
each other’s annotations on where they disagreed
to investigate the reasons for disagreement and see
if they could reach an agreement. If they still dis-
agreed, their supervisor made the final call. Once
all disagreements were resolved, the coders started
working on the first batch of charts following the
same coding practice.

We used Krippendorf’s o (Krippendorft, 2004)
as an agreement measure, as it allows for assign-
ing multiple labels to a span, which could be the
case in medical coding. The punctuation marks in
annotations were discarded in the calculation. The
agreement for initial and final coding are given in
Table 1, where the « values higher than 0.80 could
be interpreted as strong agreement.

We observed two sources that accounted for the
low initial agreement. One source is that the coders
annotated the same or similar evidence from differ-
ent locations of the same documents or in different
documents of the same chart. For example, two
coders annotated G60.8 for “idiopathic generalized
neuropathy”, one from the Physician Initial Consult
Note, while the other from the Physician Surgical
Admission Note. Both notes are valid for coding.
Another example is that one coder assigned 146.9
for “Asystole” documented in the Discharge Sum-
mary while the other assigned the same code for
“cardiac arrest” from the Physician Initial Consult
Note. Both diagnosis terms are correct for 146.9.
These cases were resolved in the re-review process,

Inpatient  Profee
Encounter #1 0.63 0.34
Encounter #2 0.90 0.23
Encounter #3 0.18 0.07
All 0.51 0.24
After Review 0.97 0.96

Table 1: Krippendorf’s « for inter-annotator agreement
measures

Annotated Inpatient  Profee
Encounters 302 52
Documents 604 588
ICD-9 Codes 918 652
ICD-10 Codes 1,024 734
Evidence for ICD-9 3,934 5,563
Evidence for ICD-10 3,936 5,563

Table 2: Summary of MDACE

and should be treated as agreements.

The other source of disagreement came from
external cause codes and symptom codes, which
are not essential for billing, so some coders chose
to code them while others did not.

For Profee coding, the initial disagreement was
also due to the lack of experience of one coder.
An example is that one coder assigned the code
S04.40XA for “traumatic 6th nerve palsy” docu-
mented in the Discharge Summary whereas the
other assigned the code H49.20 for the same di-
agnosis which is incorrect. The disagreement was
resolved after discussion and it was agreed that
S04.40XA was the correct code.

After the review process, the coders achieved
high degrees of agreement for both Inpatient and
Profee coding.

4 Dataset Analysis

In this section, we present various statistics of
MDACE, including the number of annotated en-
counters/charts, documents, unique codes and ev-
idence spans (Table 2). Since annotating all evi-
dence is more time consuming than annotating suf-
ficient evidence, the Profee coders only completed
a small subset (52) of the Inpatient charts.

Tables 3 and 4 show the distribution of evidence
spans in different note categories. Research on
deep learning models for CAC has been mostly
focused on using discharge summaries for code
prediction. The tables show that although discharge
summaries capture the majority of coding related
narratives for Inpatient, they are insufficient for
Profee coding. Other notes, such as Physician and
Radiology notes, should also be used.



Note Category Evidence Count  Percentage
Discharge Summary 3,434 87.3
Physician 364 9.3
Radiology 60 1.5

General 28 0.7
Nutrition 19 0.5
Respiratory 12 0.3

Table 3: Distribution of evidence spans in Inpatient
notes (cutoff at 10)

Note Category Evidence Count Percentage
Physician 2,082 374
Discharge Summary 1,584 28.5
Radiology 1,269 22.8

ECG 256 4.6

Echo 207 37

Rehab Services 66 1.2
General 29 0.5
Respiratory 27 0.5
Nutrition 26 0.5

Table 4: Distribution of evidence spans in Profee notes
(cutoff at 10)

Table 5 shows the overlap between the MIMIC
codes and MDACE codes®. There is less than 50%
code overlap, indicating that a high percentage of
MIMIC codes are missing from our annotations.
There are two possible explanations for this: firstly,
over 37% of the 302 MIMIC encounters are miss-
ing operative notes, and as a result, the coders could
not annotate the procedure codes which account for
33% of the missing Inpatient codes; and secondly,
coding guidelines have changed over the years, and
our coders were likely following different coding
standards from the MIMIC coders; However, veri-
fying such a claim without information about the
MIMIC coding process is impossible. It should be
noted that a similar observation of low agreement
with MIMIC coders based on 508 re-annotated dis-
charge summaries was also reported in (Kim and
Ganapathi, 2021). Our coders added an average of
25 extra codes per chart for Profee coding, a result
of their effort to annotate all evidence spans.

Table 6 summarizes the mapping from ICD-10
to ICD-9 codes. The majority of the mappings,
92% for Inpatient and 87% for Profee, were either
verified by coders during the annotation process or
based on a single identical or approximate match
in GEMs. This gives us high confidence with the
quality of the mapped ICD-9 codes.

*We ignored CPT codes for Evaluation and Management
(E&M) which are in the range of 99201 and 99499 as they
require a decision making calculator to arrive at the correct
CPT codes rather than simply depending on the clinical text.

Codes Inpatient Profee
MIMIC 5,250 694
MDACE 3,414 1,630
Agreed 2,370 (45.1%) 306 (44.1%)
Missed 2,880 (54.9%) 388 (55.9%)
Added (average) 3.457 25.462

Table 5: Comparison of MIMIC-IIT and MDACE codes

ICD-10 to ICD-9
Coder Verified
Identical match
Approximate match
Multiple match
Other

Profee

1,606 (28.9%)
1,387 (24.9%)
1,847 (33.2%)
704 (12.6%)
19 (0.3%)

Inpatient
2,525 (64.2%)
417 (10.6%)
687 (17.5%)
244 (6.2%)
61 (1.6%)

Table 6: Distribution of ICD-10 to ICD-9 code map-
pings

5 [Evidence Extraction Methods

This section introduces several evidence extrac-
tion methods that we implemented within a convo-
lutional neural network based model to establish
baselines for code evidence extraction on MDACE.

5.1 EffectiveCAN

EffecitiveCAN (Liu et al., 2021) is a convolution-
based multi-label text classifier that achieved state-
of-the-art performance on ICD-9 code prediction
on MIMIC-III. It encodes the input text through
multiple layers of residual squeeze-and-excitation
(Res-SE) convolutional block to generate informa-
tive representations of the document. It uses label-
wise attention to generate label specific representa-
tions, which has been widely used by DL models to
improve predictions as well as to provide an expla-
nation mechanism of the model, e.g., (Mullenbach
et al., 2018). We chose EffectiveCAN as our base
model for its simplicity, efficiency, and high per-
formance. Its attention weights can be viewed as
soft masks, making it a natural fit for producing
baseline evidence results on MDACE.

5.2 [Evidence Extraction Methods

We implemented multiple baseline approaches for
code evidence extraction, including unsupervised
attention, supervised attention, linear tagging and
CNN tagging. Figure 1 shows our implementa-
tion of the EffectiveCAN model with additional
attention supervision mechanism for evidence ex-
traction.

5.2.1 Unsupervised Attention

EffectiveCAN uses text encoding from multiple
layers of Res-SE block to generate key for the at-
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Figure 1: The architecture of EffectiveCAN with supervised attention.

tention module. The result is a label-specific repre-
sentation of the input obtained by multiplying the
key (value) by the attention weights. The attention
weights signal the most relevant parts of the input
text with respect to the output, and can be used
to extract evidence for the predicted codes. We
consider this the simplest baseline and compare the
performance of other supervised methods with it.

5.2.2 Supervised Attention (SA)

We added a loss for evidence supervision during
training as illustrated in Equation 1. We chose
Kullback-Leibler (KL) divergence loss over other
losses such as mean squared error because it is
a term in the cross-entropy loss expression, and
would result in a similar gradient behavior to the
binary-cross entropy (BCE) loss used for code pre-
diction (Yu et al., 2021).

L= ‘CBCE(ycode? ycode) + M LkLp (a7 yevd)
(D

where a is the attention weights.

5.2.3 Linear Tagging Layer

Inspired by the work of Segal et al. (2020) on the
use of tagging for question answering, we added
a feed-forward tagging layer, f;,4, on top of Ef-
fectiveCAN for evidence extraction. We use the
output of the last Res-SE block, h!, and the normal-
ized attention scores w.r.t. the maximum weight,
Qscaled, AS inputs to two linear layers that share
parameters for all the labels. The scaling is done

so that the maximum score would be consistent
among different instances. The outputs of these
linear layers are multiplied to obtain the logits for
evidence prediction, §,,; € RY (where N is the
text length and each token is labeled as evidence or
not). We used BCE for the tagging loss, and added
it to the label loss through a weight term:

yeAUd = U(fl (hl:4) X f2(ascaled)) (2)

L= ‘CBCE(ycodev ycode) + A2 EBCE(yevdﬂ Yevd)
(3)

5.2.4 CNN Tagging Layer

We extended the linear tagging layer by adding a
CNN layer as another method for evidence extrac-
tion. The CNN tagger, f.nn, has as input the sum
of the two linear layer projection of the last Res-
SE block, the normalized attention scores, and the
code embeddings, u. The inputs are then fed into
a 1-D convolutional layer (conv1D) with kernel
size of 9 and out-channel size of 10, followed by
layer normalization, ReLLU activation, and finally
a linear layer (f4) to project the output back to the
original dimension.

X = fl (hl:4) + f2 (ascaled) + f3 (ll) (4)

Yevd = 0(f4(conv1D(x))) 5)

The output logits from the final layer are used for
evidence prediction, with the same BCE loss as the
linear tagger, shown in Equation 3.



Train Set Code-F1 Token-F1
0 0.583 0.320
1/s 0.581 0.323
1/a 0.577 0.328
12 0.582 0.332
3/a 0.581 0.362
1 0.581 0.368

Table 7: Supervised attention training performance on
dev set for evidence training datasets of different sizes.

Data Splits Train Dev Test
Code (¢) c.train c.dev c.test
47,719 1,631 3,372
Evidence (ev) ev.train ev.dev ev.test
Inpatient 181 60 61
Profee 31 10 11
Code+Evidence c.train c.dev c.test - ev.dev
+ev.train  + ev.dev - ev.train
Inpatient 47,900 1,691 3,131
Profee 47,750 1,641 3,331

Table 8: Our new Code+Evidence data splits based on
the splits of Mullenbach et al. (2018) for code prediction
and our evidence dataset splits.

6 Experiments and Results

In this section, we describe the experiments for
evaluating the evidence extraction methods intro-
duced in Section 3, using the token- and span-level
metrics in Section 6.2.

6.1 Data Splits

Rather than simply making random train/dev/test
splits, we created sub-training splits to effectively
determine the optimum splits for low resource semi-
supervised evidence learning. We randomly sam-
pled fixed development and test sets with 10% of
the annotated charts (overall, 20% was held out).
Next, we used different portions of the remaining
80% data to create 12.5%, 25%, 50%, 75%, and
100% training sets to train the attention weights
of the EffectiveCAN model as shown in Table 7.
As a result, we established the data size needed
for supervised training, while the remaining data
can be used to create a more representative test set.
For results given in Table 7, A\; = 0.5 was used
as the hyperparameter in Equation 1 without any
hyperparameter tuning.

We decided to use the 75% split point since the
evidence training showed only slight improvement
with more data. Hence, the created evidence data
splits are 60%/20%/20% for train/dev/test. The
new data splits for code and evidence are given in
Table 8°. We adopted the train/dev splits (c.train

SFour records in the code training set were removed be-

and c.dev) of Mullenbach et al. (2018) for code
prediction as they have been widely used for com-
paring the performance of deep learning models.
We removed the evidence train and dev examples
(ev.train and ev.dev) from their test set (c.test) so
as to follow the standard data use practices.

Table 7 also shows that adding labeled evidence
data to the code train/dev sets did not affect code
prediction significantly. This is reasonable given
that the evidence dataset is much smaller than the
code dataset. Compared with the results in (Liu
et al., 2021), we can see that the code prediction
F1 does not change significantly with or without
evidence training. This means that code prediction
performance established on the Mullenbach et al.
(2018) data splits can be transferred to the MDACE
data splits without much concern.

6.2 Evaluation Metrics

We evaluate the evidence extraction methods us-
ing the precision, recall, and micro-F1 score on
five main metrics: Token match, Exact span match,
Partial span match, Position independent (P.1.) to-
ken match, and P.I. exact span match. The token
match metrics are used to measure the predicted
evidence label of each token in a document com-
pared to its ground truth label. The span metrics
measure the whole evidence span, which is defined
as consecutive tokens with the evidence label. An
exact span match considers complete overlap with
the ground truth span as correct, while partial span
match treats any overlap as correct. These metrics
measure how well the evidence extraction methods
generate whole spans rather than disjoint, correct
tokens. The P.I. metrics disregard the location of
the evidence span/token and consider an evidence
as correct based on string matching. These metrics
are used to alleviate the issue of sufficient vs. com-
plete evidence annotation explained in Section 3.1.

We use the model’s precision-recall curve on the
dev set to determine a threshold that maximizes the
token match micro-F1 score, and use this threshold
for evaluation on the test set.

6.3 Results

The evaluation results of the various evidence ex-
traction methods on the discharge summaries of
MDACE are shown in Table 9. The results for each
method/model are from a single run of training.
The EffectiveCAN based models have about 17 mil-

cause they do not contain any billing codes.



Token Match Exact Span Match Partial Span Match P.I. Token Match PI. Exact Span Match
Model Threshold | p " "p " Fp | P R P R FI | P R Fl|P R Fl
CAML
Unsup. Attention 0.02 381 107 562 | 043 213 071 | 418 209 697 | 673 180 9.80 | 0.88 4.16 1.45
EffectiveCAN
Unsup. Attention 0.08 409 343 373 | 204 368 263 | 414 746 533 | 67.6 379 485|350 407 376
Sup. Attention 0.06 415 453 433 | 221 450 29.6 | 40.2 82.0 540 | 68.1 50.1 57.8 | 367 49.6 422
Linear Tagging 0.15 419 41.0 415 | 21.7 400 281 | 40.2 740 521 | 66.1 46.8 548 | 344 459 393
CNN Tagging 0.25 36.8 515 429 | 197 385 26.1 | 400 782 53.0 | 563 60.2 582 | 30.1 487 372

Table 9: Evaluation results of evidence extraction methods on the IP discharge summary test set of MDACE.

Dataset Threshold Token Match Exact Span Match Partial Span Match P.I. Token Match P.I. Exact Span Match
P R F1 P R F1 P R F1 p R F1 P R F1

Inpatient 0.06 349 402 374 | 173 388 239 | 332 746 46.0 | 68.0 462 551 | 354 456 399

Profee 0.02 410 509 454 | 282 492 359 | 424 740 540 | 517 61.0 56.0 | 29.7 558 38.8

Table 10: Evaluation results of the supervised attention model on the code-able notes test set of MDACE.

lion parameters, and each took about six hours to
train on an AWS p3.2xlarge 1 GPU EC2 instance.

Out of all the evidence extraction methods tested,
Supervised Attention performed the best across all
metrics. The tagging methods under-performed SA,
likely because they need more data to tune their
parameters. Our experiments on a much larger
proprietary evidence dataset showed that Linear
Tagging outperformed SA. So the best evidence
extraction methods could be based on the size of
the training data.

We provide the performance of CAML’s
attention-based explanation (Mullenbach et al.,
2018) for comparison. It should be noted that we
used the filter size of 11 rather than 10 for training
the CAML model, and the best micro-F1 we ob-
tained is 0.525, lower than the F1 value of 0.539
as reported in the paper.

Since supervised attention resulted in better per-
formance than other methods on discharge sum-
maries, we used it to evaluate the effect of adding
other code-able notes including physician and radi-
ology notes to the input (Table 10). For training the
model on Inpatient and Profee datasets, the maxi-
mum length for truncating text was increased from
3,500 to 5,000. Table 10 shows the performance
of Inpatient vs. Profee coding. The position sensi-
tive span metrics on Profee are significantly higher
than those of Inpatient, likely the result of complete
evidence annotations, as the gain was reduced on
position-independent metrics.

We determined threshold values based on the
token match metric for its simplicity. But we also
take into consideration the other metrics, such as
exact span match, to have a better grasp of how
well the extracted evidence matches human annota-
tions. Note that partial span match should be used

with caution since if all the tokens were predicted
as evidence, it would yield a perfect performance.
Position independent token match takes tokens out
of their context, which may result in evidence that
is not reasonable to humans, e.g., “hr” where it
means hour instead of heart rate.

The A values in the loss Equations 1 and 3 were
tuned such that the micro-F1 value for the code
prediction task would remain close to the baseline
value. For SA, 2.5 and 5.0 were considered for the
A coefficient, and A\; = 2.5 yielded code micro-F1
of 0.585, close to the baseline value of 0.584. For
the tagging models, three values, 0.5, 1.0 and 2.0,
were considered, and Ao = 0.5 yielded code micro-
F1 of 0.583, close to the baseline performance for
CNN tagging. These values were used for the re-
ported results. For evidence prediction threshold,
steps of 0.02 and 0.05 were used to generate the
precision-recall curve for the attention-based and
tagging methods respectively, and the threshold
values are reported in Tables 9 and 10.

Table 11 in Appendix A provides example out-
puts from two baseline extraction methods.

7 Conclusions

In this paper, we introduce MDACE, the first pub-
licly available code evidence dataset built on a
subset of the MIMIC-III clinical records. The
dataset contains evidence spans for diagnosis and
procedure codes annotated by professional medi-
cal coders. MDACE addresses a critical need for
CAC research to be able to automatically evalu-
ate the code evidence generated by ML models.
We believe that its release will greatly improve
the understanding and application of deep learn-
ing technologies for medical coding and document
classification.



8 Limitations

Professional coders are trained to find sufficient,
as opposed to exhaustive, evidence for each code.
Our Profee coders were instructed to find all the
evidence for each code. However, given the large
number of notes in some MIMIC encounters, they
might only manage to annotate most of the evi-
dence. For Inpatient, there might be more bias
among coders towards finding sufficient evidence:
namely, there were many cases in which one coder
found evidence that another had not, but during the
adjudication process, both coders agreed it should
be included. Thus, although we have opened the
door to automatic evaluation of evidence extrac-
tion systems, some metrics, such as recall on our
dataset, might underestimate the true recall of a
system.

We discovered many human errors while clean-
ing up the data, including wrong codes and partial
highlights. We tried our best to fix these issues, but
some errors likely remain in the dataset.
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A Examples of Generated Evidence

Examples of predicted evidence, using unsuper-
vised attention weights as the baseline and the su-

pervised attention method, are given in Table 11.

Code Human Annotation Baseline Supervised Attention Code description
36.15 “left internal mammary artery to  “mammary” “left internal mammary”’ Single internal mammary-coronary
left anterior descending artery” “left anterior descending” artery bypass
42731 “Atrial fibrillation” “Atrial” x2 “Atrial fibrillation” x2 Atrial fibrillation
“atrial”
“aortic stenosis” “Sj” “Sj” Aortic valve disorders
424.1 . :
“Aortic (aortic x2)”
4412 “thoracic aortic aneurysm” “thoracic” “thoracic” Thoracic aneurysm without mention
“aneurysm” of rupture
428.0 “Congestive heart failure” “Congestive” x2 “Congestive heart failure” x2 Congestive heart failure, unspecified
“Supratherapeutic INR” “INR” x3 “INR” Abnormal coagulation profile
790.92 « . "
Supratherapeutic INR
“Acute Renal Failure” “Renal” “Acute Renal Failure” Acute kidney failure, unspecified
584.9 “creatinine” “renal failure”
“renal”
585.9 “Chronic renal insufficiency” “renal” x2 “renal insufficiency” x2 Chronic kidney disease, unspecified

Table 11: Examples of generated evidence
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B Annotation Guidelines

The task is to annotate MIMIC charts with suffi-
cient code evidence based on the documentations
using an open source tool called INCEpTION.

* For Inpatient coding, annotate evidence for
ICD-10-CM and ICD-10-PCS codes.

* For Profee coding, annotate evidence for ICD-
10-CM and CPT codes (ignoring EM codes
which are in the range of 99201-99499).

Reference the latest coding book to decide
whether an ICD-10 code is supported by the docu-
mentation. If there is a definitive diagnosis, do not
code symptom codes, otherwise symptom codes
can be coded. Code external cause codes only with
injury codes.

Code as in real life, once a condition is confirmed
and you feel comfortable with a code assignment,
annotate the text spans with the code and move on
to the next one. You are encouraged to provide
multiple evidence for a code, as long as it doesn’t
slow you down too much. For Profee coding, go
through all notes and annotate as many diagnoses
as possible.

The general annotation process includes:

* Leaf through chart documents to find the
ones appropriate to code from. Highlight
best/sufficient text spans as evidence for a
code.

* Choose the appropriate ICD-10/ICD-9 code
pair or CPT code in the Label box to assign to
the highlighted text span.

* If the correct ICD-10 or CPT code is not in the
label set, type it in the Label box and assign it
to the highlighted text span.

* Try to annotate evidence for all ICD-9 or CPT
codes in the label set if there is supporting
documentation.

Follow these instructions to annotate and export
a chart in INCEpTION:

1. Go to Dashboard and click Annotation, select
a document to open.

2. Select Search in the left panel. You can search
any phrase and select the document containing
the phrase to annotate.
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. Open the Preferences popup, and set the fol-
lowing (Done once for a project):

 Editor: brat (line-oriented)
* Sidebar right: 30
* Page size: 1000

In a document, double click on a word or high-
light a text span, and then select a label from
the right panel. You can also start typing in the
label box and the matching labels will show

up.

. You can navigate through the documents us-
ing the icons at the top of the middle panel,
and move through the annotations using the
arrows in the right panel.

After you finish annotating a chart, select Ad-
ministration -> MIMIC-encounterID -> Set-
tings -> Export, choose WebAnno TSV v3.3
format and then Export the whole project.

These code evidence annotations will be made
available to the research communities so those with
access to the MIMIC dataset can use them to evalu-
ate the code evidence generated by their ML mod-
els.
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