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Abstract

The accuracy of Computer-Assisted Coding001
(CAC) systems has improved significantly in002
recent years, thanks to advances in machine003
learning technologies. Yet simply predicting004
a set of final codes for a patient encounter is005
insufficient as CAC systems are required to pro-006
vide supporting textual evidence to justify the007
billing codes. A model able to produce accu-008
rate and reliable supporting evidence for each009
code would be a tremendous benefit. However,010
a human annotated code evidence corpus is ex-011
tremely difficult to create because it requires012
specialized knowledge. In this paper, we intro-013
duce MDACE, the first publicly available code014
evidence dataset, which is built on a subset of015
the MIMIC-III clinical records. The dataset016
– annotated by professional medical coders –017
consists of 302 Inpatient charts with 3,934 ev-018
idence spans and 52 Profee charts with 5,563019
evidence spans. We implemented several evi-020
dence extraction methods based on the Effec-021
tiveCAN model (Liu et al., 2021) to establish022
baseline performance on this dataset. MDACE023
can be used to evaluate code evidence extrac-024
tion methods for CAC systems, as well as the025
accuracy and interpretability of deep learning026
models for multi-label classification. We be-027
lieve that the release of MDACE will greatly028
improve the understanding and application of029
deep learning technologies for medical coding030
and document classification.031

1 Introduction032

Computer-Assisted Coding (CAC) uses Natural033

Language Processing (NLP) techniques to extract034

procedure and diagnosis codes from the documenta-035

tions of patient encounters. MIMIC-III (Medical In-036

formation Mart for Intensive Care) (Johnson et al.,037

2016) is an open-access dataset comprised of hos-038

pital records associated with patients admitted to039

the critical care units of the Beth Israel Deaconess040

Medical Center. For each patient record/chart, the041

data related to billing includes diagnostic codes,042

procedure codes, clinical notes by care providers 043

(discharge summaries, radiology and cardiology re- 044

ports, nursing notes, etc.), and other patient demo- 045

graphic data. The MIMIC records were originally 046

coded with the numerical-based code system ICD- 047

9 (International Classification of Diseases), which 048

contains approximately 14,000 codes overall. 049

Since the release of MIMIC-III, there has been a 050

surge of research on using machine learning (ML) 051

models to predict the billing codes based on the 052

clinical text (Ji et al., 2022). However, the MIMIC 053

database does not contain the association between 054

the billing codes and the clinical notes, i.e., the spe- 055

cific narratives in the notes supporting the codes are 056

not present. CAC systems are required to extract 057

text evidence to support the generated billing codes. 058

There is no dataset for reference code evidence as 059

it requires medical coding expertise and is costly 060

to build. As a result, work until this point can only 061

illustrate qualitatively that their models can extract 062

text evidence that look reasonable to humans. This 063

approach is time-consuming and makes the compar- 064

ison of different methods extremely difficult. The 065

need for a reference evidence dataset is obvious. 066

In many parts of the world, the ICD-9 code sys- 067

tem is out of date. Most countries are currently 068

using the much more robust alphanumeric code 069

system, ICD-10. The U.S. version, ICD-10-CM, 070

has approximately 69,000 codes while the proce- 071

dures (PCS) have about 82,000 codes. This dra- 072

matic increase in number can be attributed to the 073

addition of modifiers for disorders such as laterality, 074

severity, acuity, and sequence for injuries. While 075

the principles of coding remained the same, the 076

transition from ICD-9-CM to ICD-10-CM between 077

2014 and 2015 changed the way medical coders 078

read documentation and code from them. While 079

the entire chart should be read to understand the pa- 080

tient’s story, only documents generated as a result 081

of a face-to-face visit with an allowable provider 082

should be reviewed for direct ICD-10 code abstrac- 083
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tion. This includes Progress Notes, History and084

Physicals, Consults and Operatives Notes, etc. For085

procedure code selection, only a procedure or oper-086

ative note is acceptable.087

For these reasons, the ML models trained on the088

MIMIC-III discharge summaries to predict ICD-9089

codes have little value for medical coding in real-090

ity. MIMIC-IV (Johnson et al., 2020) improved091

upon MIMIC-III in many ways, one of which is the092

addition of ICD-10 codes. But the clinical notes093

associated with the patient records have yet to be094

released.095

In this paper, we introduce MDACE, the first096

publicly available code evidence dataset1 built on097

a subset of the MIMIC-III clinical records. The098

dataset contains evidence spans for diagnosis and099

procedure codes annotated by professional medical100

coders. Each span contains the billing code and101

the text offsets in the respective clinical note. We102

provide Python scripts for merging our evidence103

representation with the MIMIC NOTEEVENTS ta-104

ble to obtain the true evidence so as to comply with105

The PhysioNet Credentialed Health Data License.106

To broaden its use, we automatically map between107

ICD-10 and ICD-9 codes with evidence so that the108

evidence can potentially be used with the MIMIC-109

IV corpus. MDACE addresses a critical need for110

CAC research to be able to automatically evaluate111

the code evidence generated by ML models.112

2 Related Work113

With the recent increased attention to the inter-114

pretability of deep learning models, datasets con-115

taining explanations in different forms (highlights,116

free-text, structured) have been curated. Wiegreffe117

and Marasovic (2021) provide a list of 65 datasets118

for various explainable NLP tasks, and Feldhus119

et al. (2021) present the results of different expla-120

nation generation models trained on these datasets.121

However, none of these datasets covers evidence122

for medical coding.123

Many works have used private datasets for the124

development of evidence generation methods for125

medical coding, e.g., Sen et al. (2021). However,126

these datasets are not publicly available, and can’t127

be used to improve the research on evidence extrac-128

tion. Searle et al. (2020) used a semi-supervised ap-129

proach to create a silver-standard dataset of clinical130

codes, from only the discharge diagnosis sections131

1Link to the dataset will be provided in the final submis-
sion.

of the MIMIC-III discharge summary notes, with a 132

small sample validated by humans. 133

There has been a surge in neural network models 134

for automatic medical coding in the past several 135

years. Mullenbach et al. (2018) first introduced a 136

convolutional neural net with an attention mecha- 137

nism, where the code (label) dependent attention 138

weights were used as token importance measure 139

for the model interpretability. Liu et al. (2021) ex- 140

tended on this work by incorporating the squeeze- 141

and-excitation network (Hu et al., 2018) into the 142

text encoder to obtain better contextual text repre- 143

sentations. Xie et al. (2019) used the multi-scale 144

convolutional attention while Vu et al. (2020) pro- 145

posed to combine Bi-LSTM and an extension of 146

structured self-attention mechanism for ICD code 147

prediction. Some other recent models that achieved 148

the state-of-the-art results on the MIMIC-III full 149

code set include Kim and Ganapathi (2021); Hu 150

et al. (2021); Yuan et al. (2022). There are also 151

a large number of Transformer based models for 152

medical coding, e.g., (Liu et al., 2022; Pascual 153

et al., 2021), but they often only predict the top 50 154

codes and therefore have little value to solving real- 155

world CAC problems. One exception is PLM-ICD 156

(Huang et al., 2022), which uses domain-specific 157

pretraining, segment pooling and label-aware atten- 158

tion to tackle the challenges of coding and improve 159

performance. However, this model cannot extract 160

phrase level evidence for the ICD codes. 161

Many of the above works use the attention 162

weights to identify the text snippets that justify 163

code predictions. But there is no quantitative eval- 164

uation of the quality of the snippets. 165

Works that use semi-supervised learning for ex- 166

planation tasks in NLP include (Zhong et al., 2019; 167

Pruthi et al., 2020; Segal et al., 2020), where Se- 168

gal et al. (2020) use a linear tagging model for 169

identifying answer snippets in question answering. 170

Although they are not directly related to medical 171

coding, we can apply their approaches for evidence 172

extraction with the help of the MDACE dataset. 173

3 Challenges and Solutions 174

MIMIC-III poses a number of challenges for cre- 175

ating a reference code evidence dataset. In this 176

section, we discuss these challenges including the 177

coding specialties and code systems, and describe 178

our solutions and process to increase the usability 179

of MDACE. 180
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3.1 Coding Specialties181

MIMIC-III contains both ICD-9 codes which are182

used for inpatient coding, and CPT (Current Pro-183

cedure Terminology) codes, which are maintained184

by the American Medical Association (AMA) and185

used for outpatient facility and professional fee186

(Profee) billing in the U.S. There are approximately187

ten thousand CPT-4 codes. It was necessary to have188

different coders for each of these tasks (Inpatient189

vs. Profee) because it is unusual that one person190

be experienced in both areas. This means that in-191

patient coders tend to be more skilled ICD coders,192

while profee coders are often skilled CPT coders193

within their domain. ICD codes are also applied194

to profee charts to meet medical necessity require-195

ments which ensure that the patient’s bill is paid by196

insurance companies.197

For this reason, we hired two coding teams with198

two professional coders each for Inpatient and199

Profee coding respectively. Although both teams200

coded diagnosis codes, the actual codes can be dif-201

ferent due to different coding rules.202

For either coding scenario, a coder usually looks203

for sufficient evidence that supports a code and ig-204

nores equally good evidence that she comes across205

later to save the time spent on each chart. This206

poses a challenge for evaluating CAC systems207

which can generate multiple pieces of evidence208

for a code that may or may not overlap with the suf-209

ficient reference evidence. To overcome this chal-210

lenge but still finish the annotations in a reasonable211

time frame, we asked our coders to annotate suf-212

ficient evidence for Inpatient coding but complete213

evidence for Profee coding.214

3.2 Code Mappings215

We explained in Section 1 that MIMIC-III was216

coded in ICD-9, which has been discontinued. Up-217

dating the MIMIC-III dataset with ICD-10 codes218

and evidence will benefit research that targets real-219

world coding problems. MDACE is designed to220

contain evidence for both ICD-9 and ICD-10 codes221

so that it can be used to evaluate evidence extrac-222

tion of CAC models trained on MIMIC-III, and223

also models that can predict ICD-10 codes, e.g.,224

trained on MIMIC-IV once the notes are released.225

We chose to use ICD-10 for annotation because226

firstly, most coders are more familiar with the ICD-227

10 code system, and secondly, ICD-10 codes are228

more specific, so the mapping from an ICD-10229

code to ICD-9 would be less ambiguous than the230

other way round. Our coders annotated a sub- 231

set of the MIMIC-III charts with ICD-10 codes 232

and their evidence, which were then automatically 233

mapped to ICD-9 through the General Equivalence 234

Mappings (GEMs)2 (Center for Medicare & Med- 235

icaid Services, 2009). GEMs contain six types of 236

mappings, including Identical match, Approximate 237

match, Combination map, and No Map, etc. To 238

ensure the quality of code mapping, we follow this 239

process to backward map ICD-10 to ICD-9: 240

1. Use the identical match or single approximate 241

match from an ICD-10 to ICD-9 code; 242

2. When more than one mapping exists, choose 243

the ICD-9 code that is in the MIMIC-III code 244

set. If none of the mapped codes is in MIMIC, 245

choose the code with the description that over- 246

laps the most with that of the ICD-10 code; 247

3. When no mapping exists, use the mapped 248

ICD-9 code of the parent ICD-10 code. 249

This process allows all annotated ICD-10 codes 250

to be mapped except for two in our dataset. 251

3.3 Annotation Workflow 252

It is well known that medical coding is an ex- 253

tremely complex task, and there is often disagree- 254

ment among coders. Given the large number of 255

notes and codes in each MIMIC-III record (Su et al., 256

2019), it is impractical for our coders to first decide 257

the best ICD-10 code for a MIMIC ICD-9 code 258

and then annotate the narrative evidence in clinical 259

notes for that code. Therefore, our coders followed 260

their natural workflow of coding each chart from 261

scratch to save time. However, the original MIMIC 262

codes and their possible ICD-10 mappings were 263

made available to them. After completing a chart, 264

if there were MIMIC codes that were not accounted 265

for, they could reference those left-overs, re-review 266

the chart for evidence and annotate accordingly. If 267

the coders could not find evidence after reviewing 268

again, for example, the required note was missing, 269

they simply made a note in their coding reports. 270

We used a tool called INCEpTION3 to help our 271

coders to review and annotate MIMIC charts. This 272

tool allows them to browse through the clinical 273

notes, highlight text spans and assign labels (billing 274

2GEMs are a comprehensive translation dictionary devel-
oped by multiple health organizations in the U.S. to effectively
translate between the ICD-9 and ICD-10 codes.

3https://inception-project.github.io
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codes) to the spans. The annotation guideline is275

illustrated in Appendix B.276

We sampled a subset of the full code test set of277

Mullenbach et al. (2018) so as to build a dataset278

for evaluating code evidence. Depending on the279

size of the resulting dataset, it can also be used for280

training extraction methods. We randomly sam-281

pled batches of 50 charts from the test set, and282

extracted all clinical notes eligible for coding for283

each chart rather than just the discharge summaries.284

Our coders worked on one batch at a time, and the285

project lasted two months.286

3.4 Inter-Annotator Agreement287

As the first step of the annotation process, we mea-288

sured the inter-annotator agreement to assess the289

reliability of the annotations. To quantify the qual-290

ity of annotations, two coders independently an-291

notated sufficient (for Inpatient) or complete (for292

Profee) evidence for the same three charts, and we293

measured their agreement. Next, they reviewed294

each other’s annotations on where they disagreed295

to investigate the reasons for disagreement and see296

if they could reach an agreement. If they still dis-297

agreed, their supervisor made the final call. Once298

all disagreements were resolved, the coders started299

working on the first batch of charts following the300

same coding practice.301

We used Krippendorf’s α (Krippendorff, 2004)302

as an agreement measure, as it allows for assign-303

ing multiple labels to a span, which could be the304

case in medical coding. The punctuation marks in305

annotations were discarded in the calculation. The306

agreement for initial and final coding are given in307

Table 1, where the α values higher than 0.80 could308

be interpreted as strong agreement.309

We observed two sources that accounted for the310

low initial agreement. One source is that the coders311

annotated the same or similar evidence from differ-312

ent locations of the same documents or in different313

documents of the same chart. For example, two314

coders annotated G60.8 for “idiopathic generalized315

neuropathy”, one from the Physician Initial Consult316

Note, while the other from the Physician Surgical317

Admission Note. Both notes are valid for coding.318

Another example is that one coder assigned I46.9319

for “Asystole” documented in the Discharge Sum-320

mary while the other assigned the same code for321

“cardiac arrest” from the Physician Initial Consult322

Note. Both diagnosis terms are correct for I46.9.323

These cases were resolved in the re-review process,324

Inpatient Profee
Encounter #1 0.63 0.34
Encounter #2 0.90 0.23
Encounter #3 0.18 0.07
All 0.51 0.24
After Review 0.97 0.96

Table 1: Krippendorf’s α for inter-annotator agreement
measures

Annotated Inpatient Profee
Encounters 302 52
Documents 604 588
ICD-9 Codes 918 652
ICD-10 Codes 1,024 734
Evidence for ICD-9 3,934 5,563
Evidence for ICD-10 3,936 5,563

Table 2: Summary of MDACE

and should be treated as agreements. 325

The other source of disagreement came from 326

external cause codes and symptom codes, which 327

are not essential for billing, so some coders chose 328

to code them while others did not. 329

For Profee coding, the initial disagreement was 330

also due to the lack of experience of one coder. 331

An example is that one coder assigned the code 332

S04.40XA for “traumatic 6th nerve palsy” docu- 333

mented in the Discharge Summary whereas the 334

other assigned the code H49.20 for the same di- 335

agnosis which is incorrect. The disagreement was 336

resolved after discussion and it was agreed that 337

S04.40XA was the correct code. 338

After the review process, the coders achieved 339

high degrees of agreement for both Inpatient and 340

Profee coding. 341

4 Dataset Analysis 342

In this section, we present various statistics of 343

MDACE, including the number of annotated en- 344

counters/charts, documents, unique codes and ev- 345

idence spans (Table 2). Since annotating all evi- 346

dence is more time consuming than annotating suf- 347

ficient evidence, the Profee coders only completed 348

a small subset (52) of the Inpatient charts. 349

Tables 3 and 4 show the distribution of evidence 350

spans in different note categories. Research on 351

deep learning models for CAC has been mostly 352

focused on using discharge summaries for code 353

prediction. The tables show that although discharge 354

summaries capture the majority of coding related 355

narratives for Inpatient, they are insufficient for 356

Profee coding. Other notes, such as Physician and 357

Radiology notes, should also be used. 358
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Note Category Evidence Count Percentage
Discharge Summary 3,434 87.3
Physician 364 9.3
Radiology 60 1.5
General 28 0.7
Nutrition 19 0.5
Respiratory 12 0.3

Table 3: Distribution of evidence spans in Inpatient
notes (cutoff at 10)

Note Category Evidence Count Percentage
Physician 2,082 37.4
Discharge Summary 1,584 28.5
Radiology 1,269 22.8
ECG 256 4.6
Echo 207 3.7
Rehab Services 66 1.2
General 29 0.5
Respiratory 27 0.5
Nutrition 26 0.5

Table 4: Distribution of evidence spans in Profee notes
(cutoff at 10)

Table 5 shows the overlap between the MIMIC359

codes and MDACE codes4. There is less than 50%360

code overlap, indicating that a high percentage of361

MIMIC codes are missing from our annotations.362

There are two possible explanations for this: firstly,363

over 37% of the 302 MIMIC encounters are miss-364

ing operative notes, and as a result, the coders could365

not annotate the procedure codes which account for366

33% of the missing Inpatient codes; and secondly,367

coding guidelines have changed over the years, and368

our coders were likely following different coding369

standards from the MIMIC coders; However, veri-370

fying such a claim without information about the371

MIMIC coding process is impossible. It should be372

noted that a similar observation of low agreement373

with MIMIC coders based on 508 re-annotated dis-374

charge summaries was also reported in (Kim and375

Ganapathi, 2021). Our coders added an average of376

25 extra codes per chart for Profee coding, a result377

of their effort to annotate all evidence spans.378

Table 6 summarizes the mapping from ICD-10379

to ICD-9 codes. The majority of the mappings,380

92% for Inpatient and 87% for Profee, were either381

verified by coders during the annotation process or382

based on a single identical or approximate match383

in GEMs. This gives us high confidence with the384

quality of the mapped ICD-9 codes.385

4We ignored CPT codes for Evaluation and Management
(E&M) which are in the range of 99201 and 99499 as they
require a decision making calculator to arrive at the correct
CPT codes rather than simply depending on the clinical text.

Codes Inpatient Profee
MIMIC 5,250 694
MDACE 3,414 1,630
Agreed 2,370 (45.1%) 306 (44.1%)
Missed 2,880 (54.9%) 388 (55.9%)
Added (average) 3.457 25.462

Table 5: Comparison of MIMIC-III and MDACE codes

ICD-10 to ICD-9 Inpatient Profee
Coder Verified 2,525 (64.2%) 1,606 (28.9%)
Identical match 417 (10.6%) 1,387 (24.9%)
Approximate match 687 (17.5%) 1,847 (33.2%)
Multiple match 244 (6.2%) 704 (12.6%)
Other 61 (1.6%) 19 (0.3%)

Table 6: Distribution of ICD-10 to ICD-9 code map-
pings

5 Evidence Extraction Methods 386

This section introduces several evidence extrac- 387

tion methods that we implemented within a convo- 388

lutional neural network based model to establish 389

baselines for code evidence extraction on MDACE. 390

5.1 EffectiveCAN 391

EffecitiveCAN (Liu et al., 2021) is a convolution- 392

based multi-label text classifier that achieved state- 393

of-the-art performance on ICD-9 code prediction 394

on MIMIC-III. It encodes the input text through 395

multiple layers of residual squeeze-and-excitation 396

(Res-SE) convolutional block to generate informa- 397

tive representations of the document. It uses label- 398

wise attention to generate label specific representa- 399

tions, which has been widely used by DL models to 400

improve predictions as well as to provide an expla- 401

nation mechanism of the model, e.g., (Mullenbach 402

et al., 2018). We chose EffectiveCAN as our base 403

model for its simplicity, efficiency, and high per- 404

formance. Its attention weights can be viewed as 405

soft masks, making it a natural fit for producing 406

baseline evidence results on MDACE. 407

5.2 Evidence Extraction Methods 408

We implemented multiple baseline approaches for 409

code evidence extraction, including unsupervised 410

attention, supervised attention, linear tagging and 411

CNN tagging. Figure 1 shows our implementa- 412

tion of the EffectiveCAN model with additional 413

attention supervision mechanism for evidence ex- 414

traction. 415

5.2.1 Unsupervised Attention 416

EffectiveCAN uses text encoding from multiple 417

layers of Res-SE block to generate key for the at- 418
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Figure 1: The architecture of EffectiveCAN with supervised attention.

tention module. The result is a label-specific repre-419

sentation of the input obtained by multiplying the420

key (value) by the attention weights. The attention421

weights signal the most relevant parts of the input422

text with respect to the output, and can be used423

to extract evidence for the predicted codes. We424

consider this the simplest baseline and compare the425

performance of other supervised methods with it.426

5.2.2 Supervised Attention (SA)427

We added a loss for evidence supervision during428

training as illustrated in Equation 1. We chose429

Kullback–Leibler (KL) divergence loss over other430

losses such as mean squared error because it is431

a term in the cross-entropy loss expression, and432

would result in a similar gradient behavior to the433

binary-cross entropy (BCE) loss used for code pre-434

diction (Yu et al., 2021).435

L = LBCE(ŷcode, ycode) + λ1 LKLD(a, yevd)
(1)

436

where a is the attention weights.437

5.2.3 Linear Tagging Layer438

Inspired by the work of Segal et al. (2020) on the439

use of tagging for question answering, we added440

a feed-forward tagging layer, ftag, on top of Ef-441

fectiveCAN for evidence extraction. We use the442

output of the last Res-SE block, hl, and the normal-443

ized attention scores w.r.t. the maximum weight,444

ascaled, as inputs to two linear layers that share445

parameters for all the labels. The scaling is done446

so that the maximum score would be consistent 447

among different instances. The outputs of these 448

linear layers are multiplied to obtain the logits for 449

evidence prediction, ŷevd ∈ RN (where N is the 450

text length and each token is labeled as evidence or 451

not). We used BCE for the tagging loss, and added 452

it to the label loss through a weight term: 453

ˆyevd = σ
(
f1(hl=4)× f2(ascaled)

)
(2) 454

455

L = LBCE(ŷcode, ycode) + λ2 LBCE(ŷevd, yevd)
(3)

456

5.2.4 CNN Tagging Layer 457

We extended the linear tagging layer by adding a 458

CNN layer as another method for evidence extrac- 459

tion. The CNN tagger, fcnn, has as input the sum 460

of the two linear layer projection of the last Res- 461

SE block, the normalized attention scores, and the 462

code embeddings, u. The inputs are then fed into 463

a 1-D convolutional layer (conv1D) with kernel 464

size of 9 and out-channel size of 10, followed by 465

layer normalization, ReLU activation, and finally 466

a linear layer (f4) to project the output back to the 467

original dimension. 468

x = f1(hl=4) + f2(ascaled) + f3(u) (4) 469
470

ŷevd = σ
(
f4(conv1D(x))

)
(5) 471

The output logits from the final layer are used for 472

evidence prediction, with the same BCE loss as the 473

linear tagger, shown in Equation 3. 474
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Train Set Code-F1 Token-F1
0 0.583 0.320
1/8 0.581 0.323
1/4 0.577 0.328
1/2 0.582 0.332
3/4 0.581 0.362
1 0.581 0.368

Table 7: Supervised attention training performance on
dev set for evidence training datasets of different sizes.

Data Splits Train Dev Test
Code (c) c.train c.dev c.test

47,719 1,631 3,372
Evidence (ev) ev.train ev.dev ev.test

Inpatient 181 60 61
Profee 31 10 11

Code+Evidence c.train c.dev c.test - ev.dev
+ ev.train + ev.dev - ev.train

Inpatient 47,900 1,691 3,131
Profee 47,750 1,641 3,331

Table 8: Our new Code+Evidence data splits based on
the splits of Mullenbach et al. (2018) for code prediction
and our evidence dataset splits.

6 Experiments and Results475

In this section, we describe the experiments for476

evaluating the evidence extraction methods intro-477

duced in Section 5, using the token- and span-level478

metrics in Section 6.2.479

6.1 Data Splits480

Rather than simply making random train/dev/test481

splits, we created sub-training splits to effectively482

determine the optimum splits for low resource semi-483

supervised evidence learning. We randomly sam-484

pled fixed development and test sets with 10% of485

the annotated charts (overall, 20% was held out).486

Next, we used different portions of the remaining487

80% data to create 12.5%, 25%, 50%, 75%, and488

100% training sets to train the attention weights489

of the EffectiveCAN model as shown in Table 7.490

As a result, we established the data size needed491

for supervised training, while the remaining data492

can be used to create a more representative test set.493

For results given in Table 7, λ1 = 0.5 was used494

as the hyperparameter in Equation 1 without any495

hyperparameter tuning.496

We decided to use the 75% split point since the497

evidence training showed only slight improvement498

with more data. Hence, the created evidence data499

splits are 60%/20%/20% for train/dev/test. The500

new data splits for code and evidence are given in501

Table 85. We adopted the train/dev splits (c.train502

5Four records in the code training set were removed be-

and c.dev) of Mullenbach et al. (2018) for code 503

prediction as they have been widely used for com- 504

paring the performance of deep learning models. 505

We removed the evidence train and dev examples 506

(ev.train and ev.dev) from their test set (c.test) so 507

as to follow the standard data use practices. 508

Table 7 also shows that adding labeled evidence 509

data to the code train/dev sets did not affect code 510

prediction significantly. This is reasonable given 511

that the evidence dataset is much smaller than the 512

code dataset. Compared with the results in (Liu 513

et al., 2021), we can see that the code prediction 514

F1 does not change significantly with or without 515

evidence training. This means that code prediction 516

performance established on the Mullenbach et al. 517

(2018) data splits can be transferred to the MDACE 518

data splits without much concern. 519

6.2 Evaluation Metrics 520

We evaluate the evidence extraction methods us- 521

ing the precision, recall, and micro-F1 score on 522

five main metrics: Token match, Exact span match, 523

Partial span match, Position independent (P.I.) to- 524

ken match, and P.I. exact span match. The token 525

match metrics are used to measure the predicted 526

evidence label of each token in a document com- 527

pared to its ground truth label. The span metrics 528

measure the whole evidence span, which is defined 529

as consecutive tokens with the evidence label. An 530

exact span match considers complete overlap with 531

the ground truth span as correct, while partial span 532

match treats any overlap as correct. These metrics 533

measure how well the evidence extraction methods 534

generate whole spans rather than disjoint, correct 535

tokens. The P.I. metrics disregard the location of 536

the evidence span/token and consider an evidence 537

as correct based on string matching. These metrics 538

are used to alleviate the issue of sufficient vs. com- 539

plete evidence annotation explained in Section 3.1. 540

We use the model’s precision-recall curve on the 541

dev set to determine a threshold that maximizes the 542

token match micro-F1 score, and use this threshold 543

for evaluation on the test set. 544

6.3 Results 545

The evaluation results of the various evidence ex- 546

traction methods on the discharge summaries of 547

MDACE are shown in Table 9. The results for each 548

method/model are from a single run of training. 549

The EffectiveCAN based models have about 17 mil- 550

cause they do not contain any billing codes.
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Model Threshold Token Match Exact Span Match Partial Span Match P.I. Token Match P.I. Exact Span Match
P R F1 P R F1 P R F1 P R F1 P R F1

CAML
Unsup. Attention 0.02 3.81 10.7 5.62 0.43 2.13 0.71 4.18 20.9 6.97 6.73 18.0 9.80 0.88 4.16 1.45
EffectiveCAN
Unsup. Attention 0.08 40.9 34.3 37.3 20.4 36.8 26.3 41.4 74.6 53.3 67.6 37.9 48.5 35.0 40.7 37.6
Sup. Attention 0.06 41.5 45.3 43.3 22.1 45.0 29.6 40.2 82.0 54.0 68.1 50.1 57.8 36.7 49.6 42.2
Linear Tagging 0.15 41.9 41.0 41.5 21.7 40.0 28.1 40.2 74.0 52.1 66.1 46.8 54.8 34.4 45.9 39.3
CNN Tagging 0.25 36.8 51.5 42.9 19.7 38.5 26.1 40.0 78.2 53.0 56.3 60.2 58.2 30.1 48.7 37.2

Table 9: Evaluation results of evidence extraction methods on the IP discharge summary test set of MDACE.

Dataset Threshold Token Match Exact Span Match Partial Span Match P.I. Token Match P.I. Exact Span Match
P R F1 P R F1 P R F1 P R F1 P R F1

Inpatient 0.06 34.9 40.2 37.4 17.3 38.8 23.9 33.2 74.6 46.0 68.0 46.2 55.1 35.4 45.6 39.9
Profee 0.02 41.0 50.9 45.4 28.2 49.2 35.9 42.4 74.0 54.0 51.7 61.0 56.0 29.7 55.8 38.8

Table 10: Evaluation results of the supervised attention model on the code-able notes test set of MDACE.

lion parameters, and each took about six hours to551

train on an AWS p3.2xlarge 1 GPU EC2 instance.552

Out of all the evidence extraction methods tested,553

Supervised Attention performed the best across all554

metrics. The tagging methods under-performed SA,555

likely because they need more data to tune their556

parameters. Our experiments on a much larger557

proprietary evidence dataset showed that Linear558

Tagging outperformed SA. So the best evidence559

extraction methods could be based on the size of560

the training data.561

We provide the performance of CAML’s562

attention-based explanation (Mullenbach et al.,563

2018) for comparison. It should be noted that we564

used the filter size of 11 rather than 10 for training565

the CAML model, and the best micro-F1 we ob-566

tained is 0.525, lower than the F1 value of 0.539567

as reported in the paper.568

Since supervised attention resulted in better per-569

formance than other methods on discharge sum-570

maries, we used it to evaluate the effect of adding571

other code-able notes including physician and radi-572

ology notes to the input (Table 10). For training the573

model on Inpatient and Profee datasets, the maxi-574

mum length for truncating text was increased from575

3, 500 to 5, 000. Table 10 shows the performance576

of Inpatient vs. Profee coding. The position sensi-577

tive span metrics on Profee are significantly higher578

than those of Inpatient, likely the result of complete579

evidence annotations, as the gain was reduced on580

position-independent metrics.581

We determined threshold values based on the582

token match metric for its simplicity. But we also583

take into consideration the other metrics, such as584

exact span match, to have a better grasp of how585

well the extracted evidence matches human annota-586

tions. Note that partial span match should be used587

with caution since if all the tokens were predicted 588

as evidence, it would yield a perfect performance. 589

Position independent token match takes tokens out 590

of their context, which may result in evidence that 591

is not reasonable to humans, e.g., “hr” where it 592

means hour instead of heart rate. 593

The λ values in the loss Equations 1 and 3 were 594

tuned such that the micro-F1 value for the code 595

prediction task would remain close to the baseline 596

value. For SA, 2.5 and 5.0 were considered for the 597

λ coefficient, and λ1 = 2.5 yielded code micro-F1 598

of 0.585, close to the baseline value of 0.584. For 599

the tagging models, three values, 0.5, 1.0 and 2.0, 600

were considered, and λ2 = 0.5 yielded code micro- 601

F1 of 0.583, close to the baseline performance for 602

CNN tagging. These values were used for the re- 603

ported results. For evidence prediction threshold, 604

steps of 0.02 and 0.05 were used to generate the 605

precision-recall curve for the attention-based and 606

tagging methods respectively, and the threshold 607

values are reported in Tables 9 and 10. 608

Table 11 in Appendix A provides example out- 609

puts from two baseline extraction methods. 610

7 Conclusions 611

In this paper, we introduce MDACE, the first pub- 612

licly available code evidence dataset built on a 613

subset of the MIMIC-III clinical records. The 614

dataset contains evidence spans for diagnosis and 615

procedure codes annotated by professional medi- 616

cal coders. MDACE addresses a critical need for 617

CAC research to be able to automatically evalu- 618

ate the code evidence generated by ML models. 619

We believe that its release will greatly improve 620

the understanding and application of deep learn- 621

ing technologies for medical coding and document 622

classification. 623
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8 Limitations624

Professional coders are trained to find sufficient,625

as opposed to exhaustive, evidence for each code.626

Our Profee coders were instructed to find all the627

evidence for each code. However, given the large628

number of notes in some MIMIC encounters, they629

might only manage to annotate most of the evi-630

dence. For Inpatient, there might be more bias631

among coders towards finding sufficient evidence:632

namely, there were many cases in which one coder633

found evidence that another had not, but during the634

adjudication process, both coders agreed it should635

be included. Thus, although we have opened the636

door to automatic evaluation of evidence extrac-637

tion systems, some metrics, such as recall on our638

dataset, might underestimate the true recall of a639

system.640

We discovered many human errors while clean-641

ing up the data, including wrong codes and partial642

highlights. We tried our best to fix these issues, but643

some errors likely remain in the dataset.644
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A Examples of Generated Evidence768

Examples of predicted evidence, using unsuper-769

vised attention weights as the baseline and the su-770

pervised attention method, are given in Table 11.771

Code Human Annotation Baseline Supervised Attention Code description

36.15
“left internal mammary artery to “mammary” “left internal mammary” Single internal mammary-coronary
left anterior descending artery” “left anterior descending” artery bypass

427.31
“Atrial fibrillation” “Atrial” ×2 “Atrial fibrillation” ×2 Atrial fibrillation

“atrial”

424.1
“aortic stenosis” “Sj” “Sj” Aortic valve disorders

“Aortic (aortic ×2)′′

441.2
“thoracic aortic aneurysm” “thoracic” “thoracic” Thoracic aneurysm without mention

“aneurysm” of rupture
428.0 “Congestive heart failure” “Congestive” ×2 “Congestive heart failure” ×2 Congestive heart failure, unspecified

790.92
“Supratherapeutic INR” “INR” ×3 “INR” Abnormal coagulation profile

“Supratherapeutic INR”

584.9
“Acute Renal Failure” “Renal” “Acute Renal Failure” Acute kidney failure, unspecified

“creatinine” “renal failure”
“renal”

585.9 “Chronic renal insufficiency” “renal” ×2 “renal insufficiency” ×2 Chronic kidney disease, unspecified

Table 11: Examples of generated evidence
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B Annotation Guidelines772

The task is to annotate MIMIC charts with suffi-773

cient code evidence based on the documentations774

using an open source tool called INCEpTION.775

• For Inpatient coding, annotate evidence for776

ICD-10-CM and ICD-10-PCS codes.777

• For Profee coding, annotate evidence for ICD-778

10-CM and CPT codes (ignoring EM codes779

which are in the range of 99201-99499).780

Reference the latest coding book to decide781

whether an ICD-10 code is supported by the docu-782

mentation. If there is a definitive diagnosis, do not783

code symptom codes, otherwise symptom codes784

can be coded. Code external cause codes only with785

injury codes.786

Code as in real life, once a condition is confirmed787

and you feel comfortable with a code assignment,788

annotate the text spans with the code and move on789

to the next one. You are encouraged to provide790

multiple evidence for a code, as long as it doesn’t791

slow you down too much. For Profee coding, go792

through all notes and annotate as many diagnoses793

as possible.794

The general annotation process includes:795

• Leaf through chart documents to find the796

ones appropriate to code from. Highlight797

best/sufficient text spans as evidence for a798

code.799

• Choose the appropriate ICD-10/ICD-9 code800

pair or CPT code in the Label box to assign to801

the highlighted text span.802

• If the correct ICD-10 or CPT code is not in the803

label set, type it in the Label box and assign it804

to the highlighted text span.805

• Try to annotate evidence for all ICD-9 or CPT806

codes in the label set if there is supporting807

documentation.808

Follow these instructions to annotate and export809

a chart in INCEpTION:810

1. Go to Dashboard and click Annotation, select811

a document to open.812

2. Select Search in the left panel. You can search813

any phrase and select the document containing814

the phrase to annotate.815

3. Open the Preferences popup, and set the fol- 816

lowing (Done once for a project): 817

• Editor: brat (line-oriented) 818

• Sidebar right: 30 819

• Page size: 1000 820

4. In a document, double click on a word or high- 821

light a text span, and then select a label from 822

the right panel. You can also start typing in the 823

label box and the matching labels will show 824

up. 825

5. You can navigate through the documents us- 826

ing the icons at the top of the middle panel, 827

and move through the annotations using the 828

arrows in the right panel. 829

6. After you finish annotating a chart, select Ad- 830

ministration -> MIMIC-encounterID -> Set- 831

tings -> Export, choose WebAnno TSV v3.3 832

format and then Export the whole project. 833

These code evidence annotations will be made 834

available to the research communities so those with 835

access to the MIMIC dataset can use them to evalu- 836

ate the code evidence generated by their ML mod- 837

els. 838
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