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Abstract

Consider the following instance of the Offline Meta Reinforcement Learning
(OMRL) problem: given the complete training logs of N conventional RL agents,
trained on N different tasks, design a meta-agent that can quickly maximize reward
in a new, unseen task from the same task distribution. In particular, while each
conventional RL agent explored and exploited its own different task, the meta-agent
must identify regularities in the data that lead to effective exploration/exploitation
in the unseen task. Here, we take a Bayesian RL (BRL) view, and seek to learn
a Bayes-optimal policy from the offline data. Building on the recent VariBAD
BRL approach, we develop an off-policy BRL method that learns to plan an
exploration strategy based on an adaptive neural belief estimate. However, learning
to infer such a belief from offline data brings a new identifiability issue we term
MDP ambiguity. We characterize the problem, and suggest resolutions via data
collection and modification procedures. Finally, we evaluate our framework on a
diverse set of domains, including difficult sparse reward tasks, and demonstrate
learning of effective exploration behavior that is qualitatively different from the
exploration used by any RL agent in the data. Our code is available online at
https://github.com/Rondorf/BOReL.

1 Introduction

A central question in reinforcement learning (RL) is how to learn quickly (i.e., with few samples)
in a new environment. Meta-RL addresses this issue by training an agent on a large set of training
environments [5, 9]. Intuitively, the meta-RL agent can learn regularities in the environments,
which allow quick learning in any environment that shares a similar structure. Indeed, recent work
demonstrated this by training memory-based controllers that ‘identify’ the domain [5, 28, 18], or by
learning a parameter initialization that leads to good performance within a few gradient steps [9].

Another formulation of quick RL is Bayesian RL [BRL, 11]. In BRL, the environment parameters
are treated as unobserved variables, with a known prior distribution. Consequentially, the standard
problem of maximizing expected returns (taken with respect to the posterior distribution) explicitly
accounts for the environment uncertainty, and its solution is a Bayes-optimal policy, wherein actions
optimally balance exploration and exploitation. Recently, Zintgraf et al. [36] showed that meta-RL
is in fact an instance of BRL, where the meta-RL environment distribution is simply the BRL prior.
Furthermore, a Bayes-optimal policy can be trained using standard RL methods, by adding to the
state the belief over the environment parameters. The VariBAD algorithm [36] implements this idea
using a variational autoencoder (VAE) for belief estimation and deep neural network policies.
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Figure 1: Offline meta-RL on the Semi-Circle domain: the task is to navigate to a goal position that
can be anywhere on the semi-circle. The reward is sparse (light-blue), and the offline data (left)
contains training logs of conventional RL agents trained to find individual goals. The meta-RL agent
(right) needs to find a policy that quickly finds the unknown goal, here, by searching across the
semi-circle in the first episode, and directly reaching it the second – a completely different strategy
from the dominant behaviors in the data.

Most meta-RL studies, including VariBAD, have focused on the online setting, where, during training,
the meta-RL policy is continually updated using data collected from running it in the training
environments. In domains where data collection is expensive, such as robotics and healthcare to name
a few, online training is a limiting factor. For standard RL, offline (a.k.a. batch) RL mitigates this
problem by learning from data collected beforehand by an arbitrary policy [7, 21]. In this work we
investigate the offline approach to meta-RL (OMRL).

Any offline RL approach is heavily influenced by the data collection policy. To ground our inves-
tigation, we focus on the following practical setting:1 we assume that data is collected by running
standard RL agents on a set of environments from the environment distribution. While the data was
not specifically collected for the meta-RL task, we hypothesize that regularities between the training
domains can still be learned, to provide faster learning in new environments. Figure 1 illustrates our
problem: in this navigation task, each RL agent in the data learned to find its own goal, and converged
to a behavior that quickly navigates toward it. The meta-RL agent, on the other hand, needs to learn a
completely different behavior that effectively searches for the unknown goal position.

Our method for solving OMRL is an off-policy variant of the VariBAD algorithm, based on replacing
the on-policy policy gradient optimization in VariBAD with an off-policy Q-learning based approach.
This, however, requires some care, as Q-learning applies to states of fully observed systems. We
show that the VariBAD approach of augmenting states with the belief in the data applies to the
off-policy setting as well, leading to an effective and practical algorithm. The offline setting, however,
brings about another challenge – when the agent visits different parts of the state space in different
environments, learning to identify the correct environment and obtain an accurate belief estimate
becomes challenging, a problem we term MDP ambiguity. We formalize this problem, and discuss
how it manifests in common scenarios such as sparse rewards or sparse differences in transitions.
Based on our formalization, we propose a general data collection strategy that can mitigate the
problem. Furthermore, when ambiguity is only due to reward differences, we show that a simple
reward relabelling trick suffices, without changing data collection. We collectively term our data
collection/relabelling and off-policy algorithm as Bayesian Offline Reinforcement Learning (BOReL).

In our experiments, we show that BOReL learns effective exploration policies from offline data on
both discrete and continuous control problems. We demonstrate significantly better exploration than
meta-RL methods based on Thompson sampling such as PEARL [28], even when these methods
are allowed to train online. Furthermore, we explore the issue of MDP ambiguity in practice, and
demonstrate that, when applicable, our proposed solutions successfully mitigate it.

An important implication of our study is that without suitably collected data, MDP ambiguity can
make learning an effective offline BRL solution impossible. This stands in contrast to recent studies
in offline (non-Bayesian) RL [30, 10, 19], where the focus is on designing learning algorithms for
arbitrarily collected data, typically by avoiding actions that were not explored enough. Outside offline
RL, however, it is common to develop data collection methods based on formal limitations of the
problem. For example, the use of randomized controlled trials in medical treatments is well motivated
by the theory of causal inference [27]. The data collection methods we propose here are simple and
practical to implement, and as we demonstrate, effectively handle MDP ambiguity.

1The theory and algorithms we develop, however, are not limited to any particular data collection protocol.
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Our main contributions are therefore as follows: to our knowledge, this is the first study of meta
learning exploration in the offline setting; we provide the necessary theory to extend VariBAD to
off-policy RL; we formulate MDP ambiguity, which characterizes which problems are solvable under
the offline BRL setting, and based on this formulation we propose several principled data collection
strategies; we show non-trivial empirical results that demonstrate significantly better exploration than
meta-RL methods based on Thompson sampling; finally, and of independent interest, our off-policy
algorithm significantly improves the sample efficiency of conventional VariBAD in the online setting.

2 Background

We recapitulate meta-RL, BRL and the VariBAD algorithm.

Meta-RL: In meta-RL, a distribution over tasks is assumed. A task Ti is described by a Markov
Decision Process [MDP, 2]Mi = (S,A,Ri,Pi), where the state space S and the action space A
are shared across tasks, and Ri and Pi are task specific reward and transition functions. Thus, we
write the task distribution as p(R,P). For simplicity, we assume throughout that the initial state
distribution Pinit(s0) is the same for all MDPs. The goal in meta-RL is to train an agent that can
quickly maximize reward in new, unseen tasks, drawn from p(R,P).

Bayesian Reinforcement Learning: The goal in BRL is to find the optimal policy π in an MDP,
when the transitions and rewards are not known in advance. Similar to meta-RL, we assume a prior
over the MDP parameters p(R,P), and seek to maximize the expected discounted return,

Eπ

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where the expectation is taken with respect to both the uncertainty in state-action transitions st+1 ∼
P(·|st, at), at ∼ π, and the uncertainty in the MDP parametersR,P ∼ p(R,P).2 Key here is that
this formulation naturally accounts for the exploration/exploitation tradeoff – an optimal agent must
plan its actions to reduce uncertainty in the MDP parameters, if such leads to higher rewards.

One way to approach the BRL problem is to modelR,P as unobserved state variables in a partially
observed MDP [POMDP, 3], reducing the problem to solving a particular POMDP instance where the
unobserved variables do not change in time. The belief at time t, bt, denotes the posterior probability
overR,P given the history of state transitions and rewards observed until this time bt = P (R,P|h:t),
where h:t = {s0, a0, r1, s1 . . . , rt, st} (note that we denote the reward after observing the state and ac-
tion at time t as rt+1 = r(st, at)). The belief can be updated iteratively according to Bayes rule, where
b0(R,P) = p(R,P), and: bt+1(R,P) = P (R,P|h:t+1) ∝ P (st+1, rt+1|h:t,R,P)bt(R,P).

Similar to the idea of solving a POMDP by representing it as an MDP over belief states, the state
in BRL can be augmented with the belief to result in the Bayes-Adaptive MDP model [BAMDP,
6]. Denote the augmented state s+t = (st, bt) and the augmented state space S+ = S × B, where
B denotes the belief space. The transitions in the BAMDP are given by: P+(s+t+1|s

+
t , at) =

Ebt [P(st+1|st, at)] δ (bt+1 = P (R,P|h:t+1)) , and the reward in the BAMDP is the expected re-
ward with respect to the belief: R+(s+t , at) = Ebt [R(st, at)] . The Bayes-optimal agent seeks to
maximize the expected discounted return in the BAMDP, and the optimal solution of the BAMDP
gives the optimal BRL policy. As in standard MDPs, the optimal action-value function in the BAMDP
satisfies the Bellman equation: ∀s+ ∈ S+, a ∈ A we have that

Q(s+, a) = R+(s+, a) + γEs+′∼P+

[
max
a′

Q(s+
′
, a′)

]
. (2)

Computing a Bayes-optimal agent amounts to solving the BAMDP, where the optimal policy is a
function of the augmented state. For most problems this is intractable, as the augmented state space
is continuous and high-dimensional, and the posterior update is also intractable in general.

The VariBAD Algorithm: VariBAD [36] approximates the Bayes-optimal solution by combining a
model for the MDP parameter uncertainty, and an optimization method for the corresponding BAMDP.
The MDP parameters are represented by a vector m ∈ Rd, corresponding to the latent variables in a

2For ease of presentation, we consider the infinite horizon discounted return. Our formulation easily extends
to the episodic and finite horizon settings, as considered in our experiments.
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parametric generative model for the state-reward trajectory distribution conditioned on the actions
P (s0, r1, s1 . . . , rH , sH |a0, . . . , aH−1) =

∫
pθ(m)pθ(s0, r1, s1 . . . , rH , sH |m, a0, . . . , aH−1)dm.

The model parameters θ are learned by a variational approximation to the maximum likelihood objec-
tive, where the variational approximation to the posterior P (m|s0, r1, s1 . . . , rH , sH , a0, . . . , aH−1)
is chosen to have the structure qφ(m|s0, a0, r1, s1 . . . , rt, st) = qφ(m|h:t). That is, the ap-
proximate posterior is conditioned on the history up to time t. The evidence lower bound
(ELBO) in this case is ELBOt = Em∼qφ(·|h:t) [log pθ(s0, r1, s1 . . . , rH , sH |m, a0, . . . , aH−1)] −
DKL(qφ(m|h:t)||pθ(m)). The main claim of Zintgraf et al. [36] is that qφ(m|h:t) can be taken as
an approximation of the belief bt. In practice, qφ(m|h:t) is represented as a Gaussian distribution
q(m|h:t) = N (µ(h:t),Σ(h:t)), where µ and Σ are learned recurrent neural networks. While other
neural belief representations could be used [15], we chose to focus on VariBAD for concreteness.

To approximately solve the BAMDP, [36] exploit the fact that an optimal BAMDP policy is a function
of the state and belief, and therefore consider neural network policies that take the augmented
BAMDP state as input π(at|st, qφ(m|h:t)), where the posterior is practically represented by the
distribution parameters µ(h:t),Σ(h:t). The policies are trained using policy gradients, optimizing

J(π) = ER,PEπ

[
H∑
t=0

γtr(st, at)

]
. (3)

The expectation over MDP parameters in (3) is approximated by averaging over training environments,
and the RL agent is trained online, alongside the VAE.

3 OMRL and Off-Policy VariBAD

In this section, we derive an off-policy variant of the VariBAD algorithm, and apply it to the OMRL
problem. We first describe OMRL, and then present our algorithm.

3.1 OMRL Problem Definition

We follow the Meta-RL and BRL formulation described above, with a prior distribution over MDP
parameters p(R,P). We are provided training data of an agent interacting with N different MDPs,
{Ri,Pi}Ni=1 , sampled from the prior. Each interaction is organized as M trajectories of length
H , τ i,j = si,j0 , ai,j0 , ri,j1 , si,j1 . . . , ri,jH , si,jH , i ∈ 1, . . . , N, j ∈ 1, . . . ,M , where the rewards satisfy
ri,jt+1 = Ri(si,jt , a

i,j
t ), the transitions satisfy si,jt+1 ∼ Pi(·|s

i,j
t , a

i,j
t ), and the actions are chosen from

an arbitrary data collection policy. To ground our work in a specific context, we sometimes assume
that the trajectories are obtained from running a conventional RL agent in each one of the MDPs (i.e.,
the complete RL training logs), which implicitly specifies the data collection policy. We will later
investigate implications of this assumption, but emphasize that this is merely an illustration, and our
approach does not place any such constraint – the trajectories can also be collected differently. Our
goal is to use the data for learning a Bayes-optimal policy, i.e., a policy π that maximizes Eq. (1).

3.2 Off-Policy VariBAD

The on-policy VariBAD algorithm cannot be applied to our offline setting. Our first step is to modify
VariBAD to work off-policy. We start with an observation about the use of the BAMDP formulation
in VariBAD, which will motivate our subsequent development.
Does VariBAD really optimize the BAMDP? Recall that a BAMDP is in fact a reduction of a
POMDP to an MDP over augmented states s+ = (s, b), and with the rewards and transitions given
by R+ and P+. Thus, an optimal Markov policy for the BAMDP exists in the form of π(s+). The
VariBAD policy, as described above, similarly takes as input the augmented state, and is thus capable
of representing an optimal BAMDP policy. However, VariBAD’s policy optimization in Eq. (3) does
not make use of the BAMDP parameters R+ and P+! While at first this may seem counterintuitive,
Eq. (3) is in fact a sound objective for the BAMDP, as we now show.3

Proposition 1. Let τ = s0, a0, r1, s1 . . . , rH , sH denote a random trajectory from a fixed history
dependent policy π, generated according to the following process. First, MDP parameters R,P

3This result is closely related to the discussion in [14, 26], here applied to our particular setting.
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Figure 2: Reward ambiguity: from the two trajectories, it is impossible to know if there are two
MDPs with different rewards (blue and yellow circles), or one MDP with rewards at both locations.

are drawn from the prior p(R,P). Then, the state trajectory is generated according to s0 ∼
Pinit, at ∼ π(·|s0, a0, r1, . . . , st), st+1 ∼ P(·|st, at) and rt+1 ∼ R(st, at). Let bt denote the
posterior belief at time t, bt = P (R,P|s0, a0, r1, . . . , st). Then, P (st+1|s0, a0, r1, . . . , rt, st, at) =
ER,P∼btP(st+1|st, at), and P (rt+1|s0, a0, r1, . . . , st, at) = ER,P∼btR(rt+1|st, at).

For on-policy VariBAD, Proposition 1 shows that the rewards and transitions in each trajectory can
be seen as sampled from a distribution that in expectation is equal to R+ and P+, and therefore
maximizing Eq. 3 is valid.4 However, off-policy RL does not take as input trajectories, but tuples of the
form (s, a, r, s′) ≡ (state, action, reward, next state), where states and actions can be sampled
from any distribution. For an arbitrary distribution of augmented states, we must replace the
rewards and transitions in our data with R+ and P+, which can be difficult to compute. Fortunately,
Proposition 1 shows that when collecting data by sampling complete trajectories and corresponding
beliefs, this is not necessary, as in expectation, the rewards and transitions are correctly sampled from
the BAMDP. In the following, we therefore focus on settings where data can be collected that way,
for example, by collecting logs of RL agents trained on the different training tasks.

Based on Proposition 1, we can use a state augmentation method similar to VariBAD, which we
refer to as state relabelling. Consider each trajectory in our data τ i,j = si,j0 , ai,j0 , ri,j1 , . . . , si,jH , as
defined above. Recall that the VariBAD VAE encoder provides an estimate of the belief given the
state history q(m|h:t) = N (µ(h:t),Σ(h:t)). Thus, we can run the encoder on every partial t-length
history τ i,j:t to obtain the belief at each time step. Following the BAMDP formulation, we define the
augmented state s+,i,jt = (si,jt , b

i,j
t ), where bi,jt = µ(τ i,j:t ),Σ(τ i,j:t ). We next replace each state in our

data si,jt with s+,i,jt , effectively transforming the data to as coming from a BAMDP. After applying
state relabelling, any off-policy RL algorithm can be applied to the modified data, for learning a
Bayes-optimal policy. In our experiments we used deep Q-learning [DQN, 25] for discrete action
domains, and soft actor critic [SAC, 17] for continuous control.

4 Identifiability Problems in OMRL

We take a closer look at the OMRL problem. While in principle, it is possible to simply run off-
policy VariBAD on the offline data, we claim that in many problems this may not work well. The
reason is that the VariBAD belief update should reason about the uncertainty in the MDP parameters,
which requires to effectively distinguish between the different possible MDPs. Training the VAE to
distinguish between MDPs, however, depends on the offline data, and might not always be possible.
This problem, which we term MDP ambiguity, is illustrated in Figure 2: consider two MDPs, one
with rewards in the blue circle, and the other with rewards in the yellow circle. If the data contains
trajectories similar to the ones in the figure, it is impossible to distinguish between having two
different MDPs with the indicated rewards, or a single MDP with rewards at both the blue and yellow
circles. Accordingly, we cannot expect to learn a meaningful belief update. In the following, we
formalize MDP ambiguity, and how it can be avoided.

For an MDP defined by {R,P}, denote by PR,P,π(s, a, r, s′) and PP,π(s, a) the distribution over
(s, a, r, s′) and (s, a), respectively, induced by a policy π.
Definition 1 (MDP Ambiguity). Consider data coming from a set of N different MDPs M =
{Ri,Pi}Ni=1 ⊂ M, whereM is an hypothesis set of possible MDPs, and corresponding data col-
lection policies {πiβ}Ni=1, resulting in N different data distributions D = {PRi,Pi,πiβ (s, a, r, s′)}Ni=1.

4To further clarify, if we could calculate R+, replacing all rewards in the trajectories with R+ will result in a
lower variance policy update, similar to expected SARSA [34].
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We say that the data is ambiguous if there is an MDP {R,P} ∈ M and two policies π and π′ such
that PRi,Pi,πiβ (s, a, r, s′) = PR,P,π(s, a, r, s′) and PRj ,Pj ,πjβ (s, a, r, s′) = PR,P,π′(s, a, r, s′), for

some i 6= j. Otherwise, the data is termed identifiable.5

The essence of identifiability, as expressed in Definition 1, is that there is no single MDP in the
hypothesis set that can explain data from multiple MDPs in the data, as in this case it will be
impossible to learn an inference model that accurately distinguishes between the different MDPs,
even with infinite data.6 Let us now define the notion of identifying state-actions and overlapping
state-actions, which will enable us to clearly state a simple sufficient condition for identifiability.
Definition 2 (Identifying State-Action). For a pair of MDPs i and j, we say that (s, a) is an
identifying state-action pair ifRi(s, a) 6= Rj(s, a) and/or Pi(s′|s, a) 6= Pj(s′|s, a).
Definition 3 (Overlapping State-Action). Consider the setting in Definition 1. For a pair of MDPs i
and j, we say that a state-action pair (s, a) overlaps if it has positive probability under both i and j,
i.e., PPi,πiβ (s, a), PPj ,πjβ

(s, a) > 0.

Identifiability strongly depends on the hypothesis setM. However, for learning deep neural network
inference models, we do not want to impose any structure onM. Thus, in the following we provide a
sufficient identifiability condition that holds for anyM.
Proposition 2. Consider the setting in Definition 1. If for every i 6= j there exists an identifying
state-action pair that overlaps, then the data is identifiable.

Thus, if the agent has data on identifying state-actions obtained from different MDPs, it has the
capability to identify which data samples belong to which MDP. We next categorize several common
types of meta-RL problems according to identifiability, as per Proposition 2; we will later revisit this
dichotomy in our experiments. For our illustration, we assume that in each training MDP, the data
collecting policy is approximately optimal (this would be the case when training standard RL agents
on each MDP). Let us first consider problems that only differ in the reward. Here, when identifying
state-actions (i.e., state-actions with different rewards) in different MDPs do not overlap, we will
have an identifiability problem. The sparse reward tasks in Figures 1 and 2 are examples of this case –
each agent will visit only its own reward area, resulting in ambiguity. When the rewards are dense,
however, it is much more likely that the data is identifiable; common tasks like Half-Cheetah-Vel (cf.
Sec. 6) are examples of this setting.7 For MDPs that differ in their transitions, a similar argument can
be made about whether the identifying state-actions overlap or not. Most studies on online and offline
meta-RL to date considered problems with overlapping identifying state-actions, where ambiguity is
not an issue. For example, in the Walker environment of Zintgraf et al. [36], the shape of the agent
is varied, which manifests in almost every transition, and a successful agent must walk forward,
thus many overlapping state-actions are visited; the Wind domain (cf. Sec. 6) is another example.
Examples of problems with non-overlapping identifying transitions are, for example, peg-in-hole
insertion where the hole position varies between tasks, or the Escape-Room domain in Sec. 6; in
such domains we expect ambiguity to be a concern. One can of course imagine combinations and
variations of the categories above – our aim is not to be exhaustive, but to illustrate which OMRL
problems are difficult due to ambiguity, and which are not.

Note that MDP ambiguity is special to offline meta-RL; in online meta-RL, the agent may be driven
by the online adapting policy (or guided explicitly) to explore states that reduce its ambiguity. We
also emphasize that this problem is not encountered in standard (non-meta) offline RL, as the problem
here concerns the identification of the MDP, which in standard RL is unique.

How can one collect data to mitigate MDP ambiguity? We present a simple, general modification to
the data collection scheme we term policy replaying, which, under mild conditions on the original
data collection policies, guarantees that the resulting data will be identifiable. We importantly note
that changing the data collection method in-hindsight is not suitable for the offline setting. Therefore,
the proposed scheme should be viewed as a guideline for effective OMRL data collection. For each

5P (·) = P ′(·) means equality almost everywhere; P (·) 6= P ′(·) means that equality almost everywhere
does not hold.

6For simplicity, Definition 1 considers a discrete set of MDPs, and infinite data. In our experiments, we
validate that our insights also hold for finite data and continuous models.

7The ambiguity of sparse reward tasks is very different from the well-known exploration difficulty in RL
with sparse rewards (e.g., [1]): ambiguity is not related to the RL algorithm but to the learned belief estimate.
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MDP, we propose collecting data in the following manner: randomly draw a data collection policy
from {πiβ}Ni=1, collect a trajectory following that policy, and repeat. After this procedure, the new
data distributions are all associated with the same data collection policy, which we denote πr.
Proposition 3. For every i 6= j, denote the set of identifying state-action pairs by Ii,j . If for every i
and every j exists (si,j , ai,j) ∈ Ii,j such that PPi,πiβ (si,j , ai,j) > 0, then replacing πiβ with πr for
all i results in identifiable data.

Note that the requirement on identifying states in Proposition 3 is minimal – without it, the original
data collecting policies πiβ are useless, as they do not visit any identifying states (e.g., consider the
example in Figure 2 with policies that do not visit the reward at all).

When the tasks only differ in their reward function, and the reward functions for the training
environments are known, policy replaying can be implemented in hindsight, without changing the data
collection process. This technique, which we term Reward Relabelling (RR), is applicable under the
offline setting, and described next. In RR, we replace the rewards in a trajectory from some MDP i in
the data with rewards from another randomly chosen MDP j 6= i. That is, for each i ∈ 1, . . . , N , we
add to the data K trajectories τ̂ i,k, k ∈ 1, . . . ,K, where τ̂ i,k = (si,k0 , ai,k0 , r̂i,k1 , si,k1 . . . , r̂i,kH , si,kH ),
where the relabelled rewards r̂ satisfy r̂i,kt+1 = Rj(si,kt , ai,kt ). Thus, our relabelling effectively runs
πiβ on MDP j, which is equivalent to performing policy replaying (in hindsight). We remark that the
assumption on known reward (during training) is mild, as the reward is the practitioner’s method of
specifying the task goal, which is typically known [13, 32, 31]; this assumption is also satisfied in all
meta-RL studies to date.

BOReL: we refer to the BOReL algorithm as the combination of the policy replaying/RR techniques
and off-policy RL applied to state-relabelled trajectories. In Appendix B we provide pseudo-code,
and detail how to apply the insights of Proposition 3 to a practical episodic RL setting.

5 Related Work
We focus on meta-RL – quickly learning to solve RL problems. Gradient-based approaches to
meta-RL seek policy parameters that can be updated to the current task with a few gradient steps [9,
12, 29, 4]. These are essentially online methods, and several studies investigated learning of structured
exploration strategies in this setting [16, 29, 33]. Memory-based meta-RL, on the other hand, map
the observed history in a task h:t to an action [5, 35]. These methods effectively treat the problem as
a POMDP, and learn a memory based controller for it.

The connection between meta-learning and Bayesian methods, and between meta-RL and Bayesian
RL in particular, has been investigated in a series of recent papers [20, 18, 26, 36], and our work
closely follows these ideas. In particular, these works elucidate the difference between Thompson-
sampling based strategies, such as PEARL [28], and Bayes-optimal policies, such as VariBAD,
and suggest to estimate the BAMDP belief using the latent state of deep generative models. Our
contribution is an extension of these ideas to the offline RL setting, which to the best of our knowledge
is novel. Technically, the VariBAD algorithm in [36] is limited to on-policy RL, and the off-policy
method in [18] requires specific task descriptors during learning, while VariBAD, which our work
is based on, does not. One can also learn neural belief models using contrastive learning [15]; our
methods and identifiability discussion apply to this case as well.

Concurrently and independently with our work, Li et al. [22] proposed MBML, an offline meta-
RL algorithm that combines BCQ [10] with a task inference module. Interestingly, Li et al. [22]
describe a technique similar to reward relabelling for discouraging task inference to ignore rewards.
Here, we provide a formal and general characterization of identifiability problems in OMRL. Addi-
tionally, MBML does not take into account task uncertainty, and cannot plan actions that actively
explore to reduce this uncertainty – this is a form of Thompson sampling, where a task-conditional
policy reacts to the task inference (see Figure 1 in [22]). Our work is the first to tackle offline
meta-learning of Bayes-optimal exploration. In addition, we demonstrate the first offline results
on sparse reward tasks, which, compared to the dense reward tasks in [22], require a significantly
more complicated solution than Thompson sampling (see experiments section). We achieve this by
building on BRL theory, which both optimizes for Bayes-optimality and results in a much simpler
algorithm. Recent work on meta Q-learning [8] also does not incorporate task uncertainty, and thus
cannot be Bayes-optimal. The very recent work of Mitchell et al. [24] considers a different offline
meta-RL setting, where an offline dataset from the test environment is available.
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Classical works on BRL are comprehensively surveyed by Ghavamzadeh et al. [11]. Our work, in
comparison, allows training scalable deep BRL policies. Finally, there is growing interest in offline
deep RL [30, 21]. In our experiments, a state-of-the-art method of this flavor (CQL, [19]) led to
minor improvements, though future offline RL developments may possibly benefit OMRL too.

6 Experiments

In our experiments, we aim to demonstrate: (1) Learning approximately Bayes-optimal policies in
the offline setting; and (2) The severity of MDP ambiguity, and the effectiveness of our proposed
resolutions. In the supplementary material, we also report that our off-policy method improves
meta-RL performance in the online setting.

Answering (1) is difficult because the Bayes-optimal policy is generally intractable, and because our
results crucially depend on the available data. However, in deterministic domains with a single sparse
reward, the optimal solution amounts to ‘search all possible goal locations as efficiently as possible,
and stay at goal once found; in subsequent episodes, move directly to goal’. We therefore chose
domains where this behavior can be identified qualitatively. Quantitatively, we compare BOReL with
two Thompson sampling based methods: MBML [22] using the same offline data, and PEARL [28],
using online data, and aim to show that the performance improvement due to being approximately
Bayes-optimal gives an advantage, even under the offline data restriction.

Domains and evaluation metric: we evaluate learning to explore efficiently in a diverse set of
domains: (1) A discrete 5 × 5 Gridworld [36]; (2) Semi-circle – a continuous point robot where
a sparse reward is located somewhere on a semi-circle (see Figure 1); (3) Ant-Semi-circle – a
challenging modification of the popular Ant-Goal task [8] to a sparse reward setting similar to the
semi-circle task above (see Figure 5); (4) Half-Cheetah-Vel [9], a popular high-dimensional control
domain with dense rewards; (5) Reacher-Image – 2-link robot reaching an unseen target located
somewhere on a quarter circle, with image observations and dense rewards (see Appendix D); (6)
Wind – a point robot navigating to a fixed goal in the presence of varying wind; and (7) Escape-Room
– a point robot that needs to escape a circular room where the only opening is somewhere on the
semi-circle (full details in Appendix D). These domains portray both discrete (1) and continuous (2-7)
dynamics, and environments that differ either in the rewards (1-5) or transitions (6-7). Domains (3),
(4) and (5) are high-dimensional, and the navigation problems (1-3, 7) require non-trivial exploration
behavior to quickly identify the task. Importantly, relating to the MDP ambiguity discussion in Sec. 4,
optimal policies for domains (1-3, 7) have non-overlapping identifying states; here we expect MDP
ambiguity to be a problem. On the other hand, in domains (4-6) the identifying states are expected
to overlap, as the rewards/transition differences are dense. To evaluate performance, we measure
average reward in the first 2 episodes on unseen tasks – this is where efficient exploration makes a
critical difference.8 In the supplementary, we report results for more evaluation episodes.

Data collection and organization: For data collection, we used off-the-shelf DQN (Grid-
world) and SAC (continuous domains) implementations. To study the effect of data di-
versity, we diversified the offline dataset by modifying the initial state distribution Pinit

8For Gridworld, we measure average reward in the first 4 episodes, and for Wind, only in the first episode.

Figure 3: Offline performance on domains with varying rewards. We compare BOReL with and
without reward relabeling (blue and red, respectively) with Thompson sampling baselines – calculated
exactly in Gridworld, and using online PEARL and offline MBML for the other domains. Full
training curves for baselines appear in the supplementary; here we plot only the best performance.
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Figure 4: Offline performance on do-
mains with varying transitions. We com-
pare BOReL with and without policy re-
playing (blue and red, respectively) with
online PEARL and offline MBML.

to either (1) uniform over a large region, (2) uniform over
a restricted region, or (3) fixed to a single position. At
meta-test time, only the single fixed position is used. The
tasks are episodic, but we want the agent to maintain its
belief between episodes, so that it can continually improve
performance (see Figure 1). We follow Zintgraf et al. [36],
and aggregate k consecutive episodes of length H to a
long trajectory of length k ×H , and we do not reset the
hidden state in the VAE recurrent neural network after
episode termination. For reward relabelling, we replace
either the first or last k/2 trajectories with trajectories from
a randomly chosen MDP, and relabel their rewards. For
policy replay we replace trajectories by sampling a new
trajectory using the trained RL policy of another MDP.
Technically, network architectures and hyperparameters
were chosen similarly to [36], as detailed in the supplementary.

Main Results: In Figure 3 we compare our offline algorithm with Thompson sampling based
methods, and also with an ablation of the reward relabelling method. For Gridworld, the Thomp-
son sampling method is computed exactly, while for the continuous environments, we use online
PEARL [28] – a strong baseline that is not affected by our offline data limitation, and MBML [22].9
For these results the uniform initial state distribution was used to collect data. Note that we signif-
icantly outperform Thompson sampling based methods, demonstrating our claim of learning
non-trivial exploration from offline data. These results are further explained qualitatively by ob-
serving the exploration behavior of our learned agents. In Figure 1 and in Figure 5, we visualize
the trajectories of the trained agents in the Semi-circle and Ant-Semi-circle domains, respectively.10

An approximately Bayes-optimal behavior is evident: in the first episode, the agents search for
the goal along the semi-circle, and in the second episode, the agents maximize reward by mov-
ing directly towards the already found goal. Similar behaviors for Gridworld and Escape-Room
are reported in Appendix F. In contrast, a Thompson sampling based agent will never display
such search behavior, as it does not plan to proactively reduce uncertainty. Instead, such an agent
will randomly choose an un-visited possible goal at each episode and directly navigate towards
it (cf. Figure 1 in [22]). We further emphasize that the approximately Bayes-optimal search be-
havior is very different from the training data, in which the agents learned to reach specific goals.

Figure 5: Ant-Semi-circle: trajectories from
trained policy on a new goal. In the first episode
the ant searches for the goal, and in the second one
it directly moves toward the goal it has previously
found. This search behavior is different from the
goal-reaching behaviors that dominate the data.

Our results also signify the severity of MDP
ambiguity, and align with the theory in Sec. 4.
In domains with non-overlapping identify-
ing states (1-3, 7), as expected, perfor-
mance without policy replaying (RR) is poor,
while in domains with overlapping identify-
ing states policy replaying has little effect.
In Figure 7 in the supplementary, we provide
further insight into these results, by plotting
the belief update during the episode rollout for
Semi-circle: the belief starts as uniform on the
semi-circle, and narrows in on the target as the
agent explores the semi-circle. With reward rela-
belling ablated, however, we show that the belief
does not update correctly, and the agent believes
the reward is at the point it first visited on the
semi-circle.

9Since the official implementation of MBML does not support discrete domains nor image observations,
we omit this baseline for Gridworld and Reacher-Image. We could not get the BCQ component of MBML
to produce reasonable results for Wind with policy replaying, nor for Escape-Room – with or without policy
replaying.

10Video is provided: https://youtu.be/6Swg55ZYOU4

9

https://youtu.be/6Swg55ZYOU4


Table 1: Average return in Ant-Semi-circle for of-
fline data with different initial state distributions:
Uniform distribution, uniform distribution exclud-
ing states on the semi-circle (Excluding s.c.), and
fixed initial position (Fixed).

BOReL BOReL+CQL

Uniform 171.8 ± 7.0 176.0 ± 10.2

Excluding s.c. 102.8 ± 32.7 116.6 ± 19.9

Fixed 99.2 ± 27.4 112.4 ± 31.3

Data Quality Ablative Study: To evaluate
the dependency of our method on the offline data
quality, we report results for the 3 different data
collection strategies described above (see sup-
plementary for more details), summarized in Ta-
ble 1. As expected, data diversity is instrumental
to offline training. However, as we qualitatively
show in Figure 10 in the supplementary, even
on the low-diversity datasets, our agents learned
non-trivial exploration strategies that search for
the goal. This is especially remarkable for the
fixed-distribution dataset, where it is unlikely
that any training trajectory traveled along the
semi-circle (see supplementary Figure 11).

One may ask whether OMRL presents the same challenge as standard offline RL, and whether recent
offline RL advances can mitigate the dependency on data diversity. To investigate this, we also
compare our method with a variant that uses CQL [19] – a state-of-the-art offline RL method – to
train the critic network of the meta-RL agent. Interestingly, while CQL improved results (Table 1),
the effect of data diversity is much more significant. Together with our results on MDP ambiguity,
our investigation highlights the particular challenges of the OMRL problem.

7 Conclusion and Future Work

We presented the first approximately Bayes-optimal offline meta-RL algorithm, allowing to solve
problems where efficient exploration is crucial. The connection between Bayesian RL and meta
learning allows to reduce the problem to offline RL on belief-augmented states. However, learning a
neural belief update from offline data is prone to MDP ambiguity. We formalized the problem, and
proposed a simple data collection protocol that guarantees identifiability. In the particular case of
tasks that differ in their rewards, our protocol can be implemented in hindsight, for arbitrarily offline
data. Finally, we demonstrated state-of-the-art results on several challenging domains.

An important investigation that we leave to future work is to formalize the connection between task
diversity and task generalization. Additionally, it is intriguing whether other techniques can mitigate
MDP ambiguity, for example, by designing exploration policies that induce identifiability, or by using
domain knowledge to restrict the hypothesis set of possible MDPs in the belief.
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