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ABSTRACT

We build a bijective mapping between different physical fields from hydrody-
namic CAMELS simulations. We train a CycleGAN on three different setups:
translating dark matter to neutral hydrogen (Mcdm-HI), mapping between dark
matter and magnetic fields magnitude (Mcdm-B), and finally predicting magnetic
fields magnitude from neutral hydrogen (HI-B). We assess the performance of
the models using various summary statistics, such as the probability distribution
function (PDF) of the pixel values and 2D power spectrum (P (k)). Results sug-
gest that in all setups, the model is capable of predicting the target field from the
source field and vice versa, and the predicted maps exhibit statistical properties
which are consistent with those of the target maps. This is indicated by the fact
that the mean and standard deviation of the PDF of maps from the test set is in
good agreement with those of the generated maps. The mean and variance of P (k)
of the real maps agree well with those of generated ones. The consistency tests
on the model suggest that the source field can be recovered reasonably well by
a forward mapping (source to target) followed by a backward mapping (target to
source). This is demonstrated by the agreement between the statistical properties
of the source images and those of the recovered ones.

1 INTRODUCTION

The upcoming generation of surveys (e.g. SKA) will be able to map neutral hydrogen via HI in-
tensity mapping (Santos et al., 2015). This powerful cosmological probe will help us further our
understanding of large-scale structure. To extract the relevant information about the matter field
from these surveys, we usually resort to summary statistic, such as power spectrum. This is chal-
lenging in the non-linear regime due to the contamination of the signal by the baryonic physics
and hence requires higher order statistics. The other approach is to carry out the analysis at the
field level, e.g. inference or direct mapping between fields. Previous studies demonstrated the fea-
sibility of building a mapping at the field level between baryons and dark matter (Wadekar et al.,
2021; Villanueva-Domingo & Villaescusa-Navarro, 2021; Bernardini et al., 2022). In light of those
existing works, and by utilizing generative adversarial networks (CycleGAN), we aim at building a
bijective map between dark matter and two observables, namely neutral hydrogen and magnetic field
magnitude. This is crucial since with a single training, it is possible to either paint the dark matter
from simulation with baryons or directly infer its distribution from maps of observables obtained
from different surveys in the near future.

2 METHODS

2.1 DATA

In this study, we use the publicly available CAMELS Multifields Dataset (CMD) (Villaescusa-
Navarro et al., 2022) which contains thousands of 2D field maps generated from state-of-the-art
hydrodynamics simulations(Villaescusa-Navarro et al., 2021). We consider 256 × 256 pixels 2D
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maps, which cover an area of 25× 25 (h−1Mpc)2 at z = 0, of dark matter (Mcdm), neutral hydro-
gen (HI) and magnetic fields magnitude (B) from the IllustrisTNG LH set. The choice of the fields
in this simple scenario is based on the aim of inferring the matter distribution from observables. In
total, each field corresponds to 15000 2D images, each characterized by a set of 6 parameters: matter
density (Ω8), the amplitude of matter power spectrum (σ8), the stellar feedbacks (ASN1, ASN1) and
AGN feedbacks (AAGN1, AAGN2).

2.2 MODEL AND TRAINING

To build an invertible mapping between two different fields, we make use of CycleGAN (Zhu et al.,
2017), an improvement on “pix2pix” method (Isola et al., 2017) which is trained on paired examples
to achieve image-to-image translation. The approach consists of building a function G : X → Y
that maps a source field X to a target field Y (forward mapping), simultaneously with another
function F : Y → X that translates the target to the source field. To this end, two generators
GX (representing F and producing the source field images) and GY (representing G and producing
the target field images) are trained with two adversarial discriminators DX and DY respectively.
Following the prescription in Zhu et al. (2017), there are two main components to the loss function
for the training. The adversarial loss – for each of the pair (GX , DX ) and (GY , DY ) – is given by
(Zhu et al., 2017)

LGAN(GX , DX , Y,X) = Ex∼pdata(x)[logDX(x)] + Ey∼pdata(y)[log(1−DX(GX(y)))] (1)

and

LGAN(GY , DY , X, Y ) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (GY (x)))] (2)

where x ∼ pdata(x) and y ∼ pdata(y) are the data distributions of the source images (x ∈ X) and
target images (y ∈ Y ) respectively. The consistency loss ensures that the functions G and F are
inverse of each other such that GX(GY (x)) ≈ x and GY (GX(y)) ≈ y. In other words, an input x
(or y) is recovered by applying GX on GY (x) (or applying GY on GX(y)). The consistency loss is
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Figure 1: The top, middle, and bottom rows show the results from mapping HI-B, Mcdm-HI, and
Mcdm-B respectively. It is worth noting that in a X-Y setting, X and Y designate the source and
target fields, respectively.

given by (Zhu et al., 2017)

Lcycle = Ex∼pdata(x)[||GX(GY (x))− x||1] + Ey∼pdata(y)[||GY (GX(y))− y||1], (3)

where ||.||1 denotes the mean absolute error (L1Loss). To further enforce a unique prediction of a
given input such that GY (y) ≈ y and GX(x) ≈ x, an identity loss

Lid = Ey∼pdata(y)[||GY (y)− y||1] + Ex∼pdata(x)[||GX(x)− x||1] (4)

is used. The total loss is then given by

Ltot = LGAN(GX , DX , Y,X) + LGAN(GX , DX , Y,X) + λcycleLcycle + λidLid, (5)
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where both λcycle and λid are constants that characterize the contributions of the consistency cy-
cle loss and identity loss respectively. Based on the prescription in Zhu et al. (2017), we have that
λcycle = 10 and λid = 5 during training.
The generators GY and GX , which have the same architecture, comprise a stage that downsamples
the inputs (similar to encoding), 9 residual layers mimicking a bottleneck in the variational encoder
and finally, a stage that upsamples the output from the bottleneck (similar to decoding). The discrim-
inators DY and DX , which are also identical, consist of chaining up 5 convolutional layers where
the first three downsample the input by using stride = 2. To have a bit more control on the topology
of the generated maps, we condition the input of each component of the model (GX , DX , GY and
DY ) on the underlying cosmology and astrophysics, i.e the parameters Ω8, σ8, ASN1, ASN1, AAGN1

and AAGN2. The array of parameters of shape 1 × 6 is passed through a dense layer with 4096
units whose output is reshaped to 64 × 64, upsampled to 256 × 256 via interpolation, and finally
concatenated along the channel to the input image. The model is trained for 100 epochs with 12000
unpaired examples, i.e. shuffling the set of source images such that they don’t match the target im-
ages, using Adam optimizer with a learning rate of 0.0002. By setting the batch size to 1, following
Zhu et al. (2017), each epoch takes about 109 minutes on a NVIDIA GeForce GTX 1080 Ti.

3 RESULTS

We present in Figure 1 some predictions by the generators (GY and GX ) using input images from
test set. Each column in Figure 1 corresponds to the input, target and prediction in a given setup, e.g.
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Figure 2: Comparing probability distribution function (PDF) of pixel values of the simulated and
generated maps. Results corresponding to each field are shown in each column. Solid red and
dashed blue lines denote PDFs of fake and real maps, respectively. Whereas red and blue shaded
areas correspond to the standard deviations of the PDFs of fake and real maps, respectively. Each
column corresponds to PDF of fields in different setups. The top rows show the comparison between
the PDFs of predicted and true maps of a field in each setup. The bottom rows show the consistency
test.

HI-B. In the first three columns of each row, we show the result from the forward mapping, i.e. the
input is the source field X and the output is the target field Y. The last three columns of each row show
the results related to the backward mapping, i.e. the input is the target field Y which is translated
to the source field X. Visually, the output of the map by the generators are in good agreement with
the inputs and the quality is comparable to that of the data from IllustrisTNG, overall. However it
appears that predicting the magnetic field B from dark matter or neutral hydrogen seems to be a bit
more challenging, as evidenced by the more noticeable difference in the map features between the
ground truth and prediction (see 2nd and 3rd columns of both top and bottom rows).
The first metric we use to assess how well the model performs is the probability distribution function
(PDF) of pixel intensities. The test set for each setup comprises of 1000 images unseen by the model
during training. We then compute the mean µPDF and standard deviation σPDF of PDF of each field
in the test set in each setup. In Figure 2, we present the PDFs of each field in some setups in
each column. The top rows show the results from either forward or backward mappings, whereas
the results of the consistency test – assessing if an input is recovered by applying forward and
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Figure 3: Comparing the resulting power spectra of the simulated and generated maps. Results
corresponding to each field are shown in each column. Solid red and dashed blue lines denote the
averaged power spectrum (P (k)) of fake and real maps, respectively. Whereas red and blue shaded
areas correspond to the standard deviations of the P (k) of fake and real maps, respectively. The
relative error between the two power spectra for each field in each setup is indicated by the solid
green line.

backward mappings sequentially – is presented at the bottom row. Results suggest that the model is
capable of predicting the source and target fields in each setup using GX and GY respectively, as
evidenced by both µPDF and σPDF of the data in good agreement with those of the generated maps
of each field. We also find that in general, the bijective mapping is achieved to a good accuracy,
i.e. GX(GY (x)) ≈ x and GY (GX(y)) ≈ y, as demonstrated by the µPDF and σPDF of the data
which agree well with those of the recovered outputs. The relatively small discrepancy at the high
end of the distributions can be accounted for by the small number of pixels having those values in
the training data, i.e. overdense regions are rare. The other metric used in our investigation is the
auto-power spectrum P (k). Similar to the results presented in Figure 2, we show the P (k) of the
images produced by the forward/backward mapping and the consistency test at the top and bottom
rows of Figure 3 respectively. Each panel shows the mean and standard deviation of the P (k) of
both real (dashed blue) and fake maps (solid red), and the solid green line at the bottom of each
panel shows the relative difference

(
Pfake(k)
Preal(k)

− 1
)

between the two P (k)′s (fake and real maps). It
is clear that the forward and backward mappings are able to produce maps with clustering properties
in good agreement with those of the data. Moreover, the mean and variance of P (k) of the recovered
maps from the consistency check agree reasonably well with those of the maps from IllustrisTNG,
regardless of the increasing difference on larger scales k > 10h/Mpc. Our result for Mcdm-HI (see
Figure 3 top middle panel) is comparable to what was obtained by Wadekar et al. (2021) where a
standard UNet architecture was used to convert dark matter density to HI maps.

4 CONCLUSION

We have made use of CycleGAN model to build a bijective model that can map different physical
fields from 2D maps created from the CAMELS state-of-the-art hydrodynamic simulations. Results
show that the predicted maps exhibit statistical properties that agree well with those from the dataset
used for training. Moreover, the condition for bijective mapping is met, as demonstrated by the
consistency test. By applying the composition function F ◦ G(x) (or G ◦ F(y)), an input map x
(or y) is recovered reasonably while the statistics being preserved. This work represents a step
forward towards establishing an efficient direct mapping between different observables, and hence
maximizing the scientific return of future multi-wavelength surveys.

4



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

ACKNOWLEDGMENTS

SA acknowledges financial support from the South African Radio Astronomy Observatory
(SARAO). FVN and SH acknowledge support provided by the Simons Foundation. SH also ac-
knowledges support for Program number HST-HF2-51507 provided by NASA through a grant from
the Space Telescope Science Institute, which is operated by the Association of Universities for Re-
search in Astronomy, incorporated, under NASA contract NAS5-26555. The CAMELS project is
supported by NSF grant AST 2108078.

REFERENCES

Mauro Bernardini, Robert Feldmann, Daniel Anglés-Alcázar, Mike Boylan-Kolchin, James Bullock,
Lucio Mayer, and Joachim Stadel. From ember to fire: predicting high resolution baryon fields
from dark matter simulations with deep learning. Monthly Notices of the Royal Astronomical
Society, 509(1):1323–1341, 2022.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Mario G Santos, Philip Bull, David Alonso, Stefano Camera, Pedro G Ferreira, Gianni Bernardi,
Roy Maartens, Matteo Viel, Francisco Villaescusa-Navarro, Filipe B Abdalla, et al. Cosmology
with a ska hi intensity mapping survey. arXiv:1501.03989, 2015.

Francisco Villaescusa-Navarro, Daniel Anglés-Alcázar, Shy Genel, David N Spergel, Rachel S
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