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ABSTRACT

High-quality synthetic data is essential for accurate downstream analysis. Density
Ratio Estimation (DRE) has emerged as a powerful tool for evaluating synthetic
data quality. However, existing DRE methods are highly sensitive to hyperpa-
rameter selection, where suboptimal choices lead to poor convergence rates and
degraded empirical performance. To mitigate this, we propose a novel model
aggregation algorithm for DRE that trains multiple models with diverse hyper-
parameter configurations and combines their outputs. Our approach achieves
fast convergence without requiring prior knowledge of the unknown density ratio
smoothness and is minimax optimal for the squared loss. We demonstrate that our
method enhances the performance of established DRE techniques across bench-
mark datasets, achieving state-of-the-art results on MiniDomainNet and Amazon
Reviews.

1 INTRODUCTION

In the field of synthetic data evaluation, three primary categories of utility measures have been iden-
tified by [Drechsler & Haensch| (2024): Fit-for-purpose measures, analysis-specific utility measures,
and global utility measures. Fit-for-purpose measures primarily assess the univariate distributions
of observed and synthetic data, often employing visualization techniques or goodness-of-fit tests.
While these measures offer an initial assessment of the synthesis model’s performance, their scope
is inherently limited, as they typically examine only one or two variables at a time. To capture more
complex relationships, analysis-specific utility measures evaluate whether analyses conducted on
synthetic data yield results comparable to those obtained from the original data. For instance, these
measures can assess the similarity of regression model coefficients (Karr et al., 2006) or compare
the predictive performance of models trained on synthetic versus observed data based on relevant
evaluation metrics. However, a key limitation of analysis-specific utility measures is their lack of
generalizability, strong utility for one analysis does not necessarily imply high utility for another.

Global utility measures offer a potential solution to the limitations of previous approaches by assess-
ing the divergence between the entire multivariate distributions of the observed and synthetic data.
Consequently, they represent one of the most promising classes of utility measures, as the closer
the multivariate distributions of the observed and synthetic data, the more similar the results of any
subsequent analyses are expected to be. Global utility is typically quantified using divergence met-
rics, such as the Kullback-Leibler divergence, or by determining whether a classification model can
effectively distinguish between observed and synthetic data, a method known as propensity score
mean squared error (pMSE) (Snoke et al.| [2018). Despite their advantages, global utility measures
are often criticized for being overly general (Drechsler, 2022). Their outputs can be difficult to in-
terpret and provide limited insight into specific regions where the synthetic data fail to accurately
capture the characteristics of the true data.

To address the limitations associated with conventional global utility measures, |Volker et al.| (2024
recently proposed density ratio estimation (DRE) as an alternative approach for utility assessment.
Let {x,,}M_, and {z,}Y_;, M, N € N be two samples that are independently and identically
distributed (i.i.d.) according to two probability density functions p and g, respectively. Then the

objective of DRE is to learn the density ratio 8(x) := % from the samples, see Figure (1| (Left)

for an illustration. Conceptually, when two datasets exhibit similar multivariate distributions, the
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Figure 1: Left: Density ratio 3 = » between Normal distribution p = A/(0,0.5) and ¢ = A/(0,1).
Right: Procedures for selecting a single Model 1-3 (dashed) cannot approximate /3 well. In contrast,
our aggregation strategy (solid) achieves a good approximation.

density ratio remains approximately equal to 1 across the data range. Conversely, if the distributions
of the observed and synthetic data diverge significantly, the density ratio deviates substantially from
1 in regions where discrepancies between the distributions are most pronounced.

However, the performance of DRE methods is highly sensitive to the choice of hyperparameters, and
poorly chosen hyperparameters often result in suboptimal convergence rates and degraded empirical
performance, see Figure |1| (Right) for a simplified example. In this work, we therefore study the
problem of resolving hyperparameter choice issues for DRE methods.

2 RELATED WORK

Global utility measures are commonly used to quantify the degree of distributional similarity be-
tween observed and synthetic data samples. One effective approach for assessing this similarity
involves evaluating whether a classification model can reliably differentiate between samples from
the two distributions. If a classification model achieves high accuracy in distinguishing between
observed and synthetic data, it indicates a low level of distributional similarity, thereby implying
reduced global utility. The propensity score mean squared error (pMSE) introduced by Woo et al.
(2009) provides a formalized metric for capturing this relationship. Let {x,,}M_,, {x,}Y_, be
a real and synthetic dataset respectively, and s(z;) the predicted probability of a classifier that a
datapoint z; is synthetic. Then

1 M+N N
PMSE = 3y Z: (SW - M+N> :

Snoke et al.|(2018) extended this approach by comparing the pMSE value with its expected value un-
der the null hypothesis that the real and synthetic data are indistinguishable. In addition to the pMSE,
various alternative measures can be derived from the estimated propensity scores. These include the
percentage of correctly classified records (Raab et al.l 2021) and the Kolmogorov-Smirnov statis-
tic (Bowen et al.;2021)), both of which exhibit a strong correlation with the pMSE. Drechsler| (2022)
demonstrated that the utility score is highly sensitive to the choice of the propensity score model,
emphasizing that substantial improvements in synthetic data generation models may not always be
reflected in the pMSE. Furthermore, selecting an appropriate propensity score model presents chal-
lenges, as common issues in model selection, such as the bias-variance trade-off, remain relevant.

An alternative approach to quantifying distributional similarity is by utilizing the Kullback-Leibler
(KL) divergence which is approximated by density estimation techniques (Karr et al., [2006; [Wang
et al.,|2009). However, density estimation is one of the most challenging tasks in statistical learning,
inherently introducing estimation errors, particularly in high-dimensional settings (Sugiyama et al.,
2012a)). These errors become further exacerbated when computing the ratio of estimated densities,
as inaccuracies in both density estimates magnify during the division process. Direct DRE mitigates
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this issue by modeling and estimating the density ratio directly, without the need for separate density
estimations.

Recognizing this advantage, Volker et al.|(2024)) proposed the use of DRE for assessing data utility.
Thereby, they can evaluate global utility by calculating some f-divergence between the real and
synthetic data distributions. Moreover, using a density ratio estimator also allows for evaluating

local utility by using point evaluations 8(x;) := f; Ei; It was first observed by |Sugiyama et al.

(2012b) that a broad class of methods for DRE use the objective

fr = argmin Br (8, 9(f)) )]
feEH

and derive the desired density ratio estimator by Sy := ¢(f3), where ¢ : R — R is a strictly
increasing function and

~

Br(8,5) = EanalF(5(x)) — F(B(a)) — F'(B(z))[8(x) - B(a)]

denotes the Bregman divergence with prescribed generator /' : R — R, and H a given model class.
Consider the following example (cf.|[Sugiyama et al.|(2012b)); Menon & Ong|(2016); |Zellinger et al.
(2023)):

Example 1.

1. As shown in|Kanamori et al.| (2012b) the kernel unconstrained least squares importance
fitting procedure (KuLSIF) (Kanamori et al.l 2009) is realized by using F(z) = (v —1)?/2
and g(z) = x in equation (1)) such that Br(B3,9(f)) = 3 |8 — 9 2

2. Menon & Ong| (2016) use F(xz) = 3/ and g(x) = €>* in equation (1)) to obtain the
exponential function approach (Exp) as applied for AdaBoost (Freund et al.||1996)).

3. The square loss approach (SQ) in|Menon & Ong|(2016)) uses F(x) = ﬁ and g(x) =
—14+2x

2—2x °

4. To realize the logistic regression (Nelder & Wedderburn| |1972) (LR) approach as used
in |Bickel et al.|(2009) F(z) = xlog(x) — (1 + x)log(1 + x) and g(xz) = €® are set in
equation I}

All these methods share hyperparameter choice issues which we approach by model aggregation as
explained in the next section in more detail.

3 METHOD

Algorithm 1 DRE Aggregation

Input: K different hyperparameter setups, dataset {(z,,, y,, ) } 20 g p
Output:  Aggregation B(x) = Q(Zszl akfk(as)> with optimal coefficients & :=
(Qi,...,ak) € RE,

Step 1: Train one model {3 }2*_, for each hyperparameter setup (e.g., by a method in Example
and denote by f, = g~ 1(By) the associated binary classifiers.

Step 2: Compute aggregation weights & = G~!T with empirical Gram matrix G and inner
product vector T by

i 1 MAN K ~ 1 M+N K
G = (M—H\f > h<xmyn>fk<xn)fj<:cn>)kj_lr (M+N 2 Mana)f ”(x")y">k_1

n=1 n=1

with Hessian h(z,y) depending on the chosen binary loss, see Appendix [B| for the example of
LR.

Return: Aggregation E(m) = Q(Zszl akfk(x)).
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Notation Following [Menon & Ong| (2016) the optimization problem (1) can be equivalently for-
mulated as binary classification with loss function ¢ : ) x R — R and ) := {—1, 1}, such that
£(1, f(x)) and £(—1, f(x)) measure the error of a classifier f(x) predicting whether  is originating
from P or ). For this, we only need the assumption that the combined sample {z,, }}_, U{z,}Y_;
is an i.i.d. sample from the distribution p constructed as follows (Zellinger et al.,[2023): it is defined
as a probability measure on X’ x ) with conditionals p(z|y = 1) := p(x), p(z|ly = —1) := q(z),
and, marginal py, defined as Bernoulli measure such that the probability for bothevents y = 1,y =
—1lis % Then the optimization problem (1)) is equivalent to the minimization (Menon & Ong} 2016))

fx = argmin R(f) 2)
feH
with expected risk

R(f) = /X L. S)dotz. )

and the density ratio estimator 8¢ := g(f3/) can be recovered from the classifier f3;. For instance,
all the methods discussed in ExampleT|can be optimized through risk minimization (2)) by using the
corresponding loss functions.

Problem Given a finite number 51, ...,k : X — R of density ratio models, each trained with
a different hyperparameter setting, the goal is to find a model 5 : X — R with minimal error

-~

Approach We approach the problem by a linear aggregation of models

K
B = g(Z akfk> (3)
k=1

with fi := ¢g~1(Bk) being the binary classifier associated to to the density ratio estimator 35, and
the aggregation weights a;, . . ., ax which we compute as follows.

First, we follow [Menon & Ong| (2016) and Marteau-Ferey et al.[| (2019) to bound the Bregman
divergence in equation [I|by a norm (cf. Zellinger et al.| (2023)) for this strategy)

Br(8.8) ~ Br(,9(7)) = 2(R(H) ~ R(f) <2+ o7 B) — o

with some norm ||.|| that depends on the choices F" and g, see Appendix [B|for its derivations. Our
approach is to choose the aggregation weights a1, . . . , a that minimize this upper bound

K 2

min arfr — fu
ag,...,ak €ER 1

“4)

which has two advantages: (a) an analytic solution by functional least-squares and (b) fast provable
convergence rate for estimators.

Functional least squares aggregation A necessary optimality condition for equation [ leads to
the solution (Chen et al.l2015; |[Dinu et al., 2023)

K 2 K K
>t fu| = <Zakfkf7-t,zakfkf7-t>
k=1 k=1 k=1

L(a) :=

K K
- Z araj (fr, fi) — 220% s f) + Unt, fo)
kog=1 k=1
oL K
80(:) =2 <kz_1 ak (fr, fj) — <fk,f7-[>> -0
a=G'r

with G = ({f%, fj>)kKj:1 ,r = ({f, fH>)iK:1. After discretization, we arrive at Algorithm

4
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Relation to model selection methods In the continuous case (i.e., with access to p, g), our aggre-
gation strategy is at least as good as model selection:

Zakfk_fH Zakfk_f?-[

< min
a,...,ap€{0,1}

< ||fk — full®

k{,

(&)

Our next result shows that this also holds in the practical case where we only use finite samples from
b,q.

Theorem 1. Let assumptionsand technical assumptions from Appendix[A|be satisfied. Consider
K>110>0, {)\k} k1 as defined in Appendix Eand associated P’“ asin Equationm Then we
have that for 3 ofAlgorzthmIapplzed with By = g(f**):

2rata

Br(8.8) = Br(B,9(fn)) < C(M + N) 7557, ©)

with probability at least 1 — (9 + 2K)4 for sufficiently large M + N and C > 0 independent of
M, N.

Remark 1. To the best of our knowledge Theorem[I| provides the first provable principled way of
achieving minimax optimal convergence rates for a parameter choice procedure in DRE, a full proof
can be found in Appendix|[A]

In the following, we go beyond theoretical convergence results and conduct a comprehensive empir-
ical evaluation of our algorithm across multiple benchmark datasets.

4 EXPERIMENTS

We investigate the performance of our aggregation approach for resolving parameter choice issues
within the following areas of application. For all experiments, the real and synthetic data distribution
are represented by p and g respectively.

Datasets with known density ratios Building upon Kanamori et al|(2012b) we create ten distinct
datasets using Gaussian Mixture distributions in a 50-dimensional space. Each, real and synthetic
data distribution gets assigned a Gaussian Mixture distribution, see Appendix [C|for more details.

Domain Aaptation datasets To evaluate the effect of our algorithm in large-scale real-world sce-

narios we conduct experiments involving importance weighting for domain adaptation. Given a

iid

source dataset {x/,})_, ~ @ with labels {y, })_; (which represents synthetic data) and a target

dataset {z;} M, % P without labels (which represents real data), the goal is to learn a model f’ with
low expected risk R(f’) := E, ,)~p[l(y, f'(x))] on the target domain without having sampled
labels from the target domain. Motivated by |Sugiyama et al.| (2007) this task can be approached by

approximating the density ratio % with estimator 5 and empirical risk minimization such that

f _argmm—Zﬁ (@0 )l(Yns f(20))-

feHr

We evaluate on image, text, and time series datasets, see Appendix [C|for more details.

Methods To test our aggregation approach we pick four popular representatives of the large class
of widely used DRE methods that can be modeled as Bregman divergences as in equation (I)). For
this we use the DRE methods presented in Example[I]with cross-validation as hyperparameter selec-
tion procedure as a baseline and compare this for each of the four methods against our aggregation
approach. In the domain adaptation task we evaluate this for 11 different domain adaption methods.
We refer to Appendix [C] for more details.
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Empirical Results Our proposed aggregation approach consistently outperforms all evaluated
DRE methods in experiments involving geometric datasets with known density ratios (Table [T] and
benchmark domain adaptation scenarios(Table [2 and Table ). Notably, model aggregation consis-
tently yields superior results compared to non-aggregated baselines, both on geometric datasets and
in domain adaptation tasks, when performance is averaged across multiple domain adaptation sce-
narios. More detailed results, including the performance of individual DRE methods across specific
domain adaptation scenarios, are presented in Tables[5H37] Furthermore, our approach achieves new
state-of-the-art performance in deep domain adaptation, as demonstrated on the MiniDomainNet and
Amazon Reviews benchmarks. We additionally conduct three ablation studies. One shows that our
algorithm assigns higher weights to more accurate models (Figure [2), one shows that our algorithm
can also be used in a heuristic setting where not all assumption of Theorem [T] hold (Table [3). The
final one shows that our algorithm is better than model averaging (Table3).

Geometric Figures

Cross-Validation for Binary Classifier | Aggregation

Dataset KuLSIF Exp LR SQ \ KuLSIF Exp LR SQ

3,d1.70  8.616(+0.011)  8.322(+0.009)  8.840(+0.021)  9.170(+£0.011) | 8.320(+0.004)  8.151(+0.011)  8572(+0.016)  8.831(+0.011)
€2,d1.72  13.031(£0.005)  12.994(0.015) 13.255(+0.013) 13.537(£0.027) | 12.854(+0.007) 12.365(+0.011) 13.250(£0.009) 13.102(+0.019)
€2.d1.59  12.625(£0.005) 19.748(£0.037) 12.829(+0.014) 13.056(£0.015) | 12.422(+0.010) 12.441(+0.042) 12.719(+0.012) 12.615(+0.011)
cl.d1.55  11.813(£0.007) 14.477(+£0.103) 12.001(£0.023) 12.179(+0.013) | 11.625(+0.004) 11.324(+0.018) 12.001(+0.015) 11.458(+0.010)
2.d1.78  9.632(£0.003)  18.008(+£0.069)  9.802(+0.035)  9.990(+0.006) | 9.425(+0.013) 17.043(+0.015) 9.702(+0.023)  9.625(+0.007)
€2,d1.55  10.371(+0.007)  9.774(£0.019)  10.555(£0.059) 10.757(£0.023) | 10.001(£0.002) 9.523(£0.010)  10.415(:0.039) 10.317(:0.019)
3,d1.57  12.014(+0.003) 18.995(+0.126) 12.214(£0.037) 14.048(:0.029) | 12.003(:0.007) 12.021(+0.008) 11.238(£0.013) 12.940(::0.018)
€2,d1.61  11.614(£0.004)  11.282(£0.034) 11.800(+0.008) 12.242(+0.007) | 11.365(+0.003) 10.787(+0.013) 10.920(+0.008) 11.891(+0.007)
3.d1.46  12.803(£0.009) 12.616(£0.008) 12.971(+0.007) 13.159(+£0.006) | 9.421(+0.003) 12.025(+0.010) 12.132(+£0.004) 12.970(+0.004)
cl.d1.63  9.527(+0.006)  9.704(£0.009)  9.732(+0.014)  9.965(+0.015) | 9.397(+0.008)  9.611(+0.011)  9.071(+0.007)  9.729(+0.009)

Avg 11.205(£0.006)  13.392(£0.097)  11.400(40.023) 11.810(£0.015) | 10.683(+£0.006) 11.529(£0.015) 11.002(+0.014) 11.348(+0.012)

Table 1: Mean and standard deviation (after ) of twice the Bregman divergence error on the geo-
metrically constructed datasets following [Kanamori et al.| (2012b) over ten different sample draws
from P and Q.

Domain Adaptation: MiniDomainNet

Cross-Validation for Binary Classifier | Aggregation

DA-Method KuLSIF Exp LR SQ | KuLSIF Exp LR SQ

MMDA ).527(+£0.009) 28(+0.011)  0.528(+£0.012) 18(40.010) | 0.536(+£0.007) 0.539(+0.011) 0.536(+0.006) 0.535(+0.009)
CoDATS ).536(+£0.012) 32(40.015)  0.530(40.020) 17(40.018) | 0.542(+0.010) 0.543(+0.014) 0.540(+0.014) 0.533(+0.017)
DANN 0 )il(i(] 009) 0 >z2(10.012) 0 >20(10 019) 0 )Oh(i(],(ll()‘) 0.536(+0.007) 0.535(+£0.011) 0.526(+0.013) 0.519(+0.015)
CDAN 0.531(£0.012)  0.531(£0.017)  0.524(£0.023)  0.512(£0.021) | 0.537(+0.009) 0.544(+0.017) 0.535(+0.017) 0.526(+0.020)
DSAN 0.539(£0.011)  0.532(£0.015)  0.527(+0.015) 0.513(+0.013) | 0.544(+0.009) O. 546(i0 014) 0.535(+0.009) 0.525(+0.012)
DIRT 0.517(£0.026)  0.386(£0.177)  0.520(£0.023) 0.509(+0.021) | 0.523(+0.025) 0.395(+0.175) 0.526(+0.017) 0.525(+0.020)
AdvSKM 0.516(£0.006)  0.515(£0.009)  0.512(£0.012)  0.500(40.010) | 0.522(+0.005) 0.529(+0.008) 0.521(+0.006) 0.517(+0.008)
HoMM 0.531(£0.008)  0.529(£0.012)  0.521(40.015)  0.505(+0.013) | 0.539(+0.007) 0.544(+0.011) 0.529(+0.009) 0.528(+0. 012)
DDC 0.517(£0.010)  0.517(£0.013)  0.514(£0.012) 0.500(+0.010) | 0.527(+0.008) 0. 529(i0 012) 0.524(+0.008) 0.515(+0.009)
DeepCoral 0.535(£0.012)  0.528(£0.013)  0.530(+0.012)  0.514(40.011) | 0.543(+0.010) 0.540(+0.012) 0.536(+£0.007) 0.527(+0.009)
CMD 0.529(£0.010)  0.524(£0.021)  0.521(40.021) 0.510(40.019) | 0.536(+0.008) 0.538(+0.020) 0.527(+£0.015) 0.521(+0.018)
Avg. 0.528(+0.011)  0.513(40.029)  0.523(+0.017)  0.510(+0.015) | 0.535(+0.010) 0.526(+0.028) 0.530(+0.011) 0.525(+0.014)

Table 2: Mean and standard deviation (after ) of target classification accuracy on MiniDomainNet
datasets over three different random initialization of model weights and several domain adaptation
tasks.

5 CONCLUSION

In this work, we proposed an algorithm to resolve hyperparameter choice issues in DRE to improve
the evaluation of synthetic data quality. We approach these issues by introducing a novel model
aggregation algorithm to DRE that first trains a sequence of models with distinct hyperparameter
settings. Subsequently, the respective model outputs are aggregated via a linear combination where
the coefficients are optimized such that the algorithm achieves fast convergence rates without requir-
ing prior knowledge of the unknown density ratio smoothness and is optimal for square loss. We
supported this theoretical result by a comprehensive empirical evaluation on both, benchmarks for
DRE and large-scale deep domain adaptation. All experimental results confirm that our algorithm
clearly outperforms established DRE methods. Furthermore, on domain adaptation benchmarks, we
achieved new state-of-the-art performance on the MiniDomainNet and Amazon Reviews datasets.
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A THEORETICAL ANALYSIS

In the following we show that our aggregation approach achieves fast convergence rates when
is optimized in some RKHS # with norm ||.||,, and Tikhonov penalty || f Hi{ as follows

P i= angamin [ Be(5.9() + 3 115 @

feH

where A > 0 is the regularization parameter which we aim to choose. All DRE methods in Exam-
pleE]ﬁt into the optimization problem @), see (Zellinger et al.}|2023; |Gruber et al., 2024). We fix a
sequence ()\k)le of regularization parameters and refine our aggregation (3)) by

N K
B = g(Zakf’\’“> -
k=1

To prove that our Algorithm [I] achieves fast convergence rates, we introduce a set of assumptions
typical in learning theory, such as assumptions on data, the regularity of the underlying problem and
the previously introduced loss function /.
Assumption 1. The loss function £ : ) x R — R which is used for separating {(x,,1)}M_, from
{(2,, —=1)}N_, has an associated link function 1) : [0, 1] — R with the following properties:

* 9 is invertible and the associated conditional Bayes risk G(u) = wl(1,¢¥(u)) + (1 —

w)l(—1,1(u)) is twice differentiable,

o the minimizer fy satisfies f3(x) = ¥ (p(y = 1|x)).
Assumption 2 (source condition). There exist some r € (0, %] v € H satisfying fy = H(fy)" v
for the expected Hessian H(f) :=E, )~ ,[V2(y, f(2))].

Assumption 3 (capacity condition). There exist « > 1 and S > 0 such that df y < S A\~ with the
degrees of freedom

Aty = By | [0 9000 )
and Hy(f) := H(f) + M.

Both, source and capacity condition, are typically used in learning theory (Caponnetto & De Vito,
2007; Bauer et al.l 2007; Marteau-Ferey et al., 2019) to encode the regularity of the underlying
problem. We also need the following self-concordance assumption (Bach, [2010; |Ostrovskii &
Bach, 2021) on our loss function, which is known to be satisfied for the examples we discussed
(cf.|[Zellinger et al.|(2023))).

Assumption 4 (Pseudo self-concordance). For any y € Y, the function £, : R — R defined by
Ly(n) == L(y,n) is convex, three times differentiable and satisfies

|6y (m)| < £ () ®)

Note that by Lemma 3 in|Gruber et al.| (2024), Assumption E]implies generalized self concordance,
which is e.g. commonly employed in|Marteau-Ferey et al.[(2019);|Zellinger et al.|(2023)). As a next
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step we discuss the specific norms that occur in @) and (3)) in more detail, see Appendix [B] for an
example. From|Menon & Ong|(2016); Marteau-Ferey et al.|(2019) we know that

Be(53) - et 2[5l

for f3, Hx(f3) as in Assumption [2| and

1ty gy = [Er 028 - ©

However, the norm values ||- ||H>\( f5) are not directly accessible, as we have only observation from

the measure p. That is, we have to estimate the norm to find an approximate solution to the opti-
mization problem (@).

In the following, consider some small regularization parameter value A > 0 (as precisely specified
in Section|A)) and the empirical risk minimizer and empirical Hessian

M+N

. ' 1 )
M+N )\
- 2 2
= ar}ger?rim M+N Z Uyn, f(zn)) 2 115 - (10)

To prove our main theorem, we will need to recall several concentration bounds on weighted norms,
which were to a large extend established by Marteau-Ferey et al.|(2019). We will need the following
technical assumption:

Assumption 5 (technical assumption).
* The kernel k is continuous and bounded sup,c x ||k(z,-)|l,; < R.

e Let z = (z,y) € X x Y and denote (,(f) = L(y,f(x)). Then the quantities
1€.(0)], IV2.(0) |5, , Te(V2€.(0)) are almost surely (wrt. p) bounded.

The first estimate deals with estimates for empirical risk minimizers P in weighted norms.

Lemma 1 (Marteau-Ferey et al|(2019), Theorem 38). Let Assumptions|I{5|be satisfied, 5 € (0, 3],
and define BY, B5 and L by

Bi:= sup Tr(vgz(f'f-l))a By = sup Tr(VZKZ(fH))a L:= HfHHH*W(fH) :
z€supp(p) z€supp(p)

Whenever 0 < A < min{Bj, (2LRlog %)‘UT, S22(B3)*(By) "2} with S as in Assumption@and
M + N is larger than

B 8- 4142B; 129652
max {5184)\ log ( o P 2at2r /e [

then a minimizer P‘ of Equationsatisﬁes, with probability at least 1 — 29,

T S e T an
2

S 2
<414—= | = A14L2NT2T = S(M + N, 6, \) + A(N).
ISV og(5>+ (M + N,6,\) + A(N)

Next we use similar arguments as in |Zellinger et al.| (2023) to construct an admissible sequence of
regularization parameters and associated regularized estimators, which we want to aggregate in the
end. The same reasoning as used in the well known Lepskii balancing principle (Lepskii, (1991}
Goldenshluger & Pereverzev, 20005 Birgél 2001; Mathél |2006; De Vito et al., [2010; Miickel 2018;
Blanchard et al.| 20195 [Lu et al.; 2020; [Zellinger et al.,2021)) will give us, that the minimal (over all
admissible values for \) risk difference to the target even achieves the optimal rate:

11
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Lemma 2. Let Assumptions[I}-[3] be satisfied and let
e i=Xo-EF ke {l,... K}

1296

with € > 1, Ay < g*Kmin{B;,(QLRlogg)’%,SQQ(B;)Q(B;)*M}, K < — 2 and

o€ [ 1256 5 4+2K] Moreover, let n = 1296 log ™" (%) and \* be the solution 0fnS(M—|—N, 0,A*) =

()\*) Then A1, ..., A\ and \* satisfy the assumptions of the previous Lemma and we have for
k=1,.. ,K:

|7 fHHH oy S SO+ NEA) + A (12)
k

and even more:

. P * * * — * _2r2(:ai:a1
@gKHf fHHHA oy SOUSOM 4 N,5,X) + AN)) = CF(M + N)~ =555 (13)

with probability at least 1 — (4 + 2K)$4, for large enough sample size M + N greater than

B3 8-414°B; 129652
max {5184 o log ( od ) , L2/\(1)+2T+1/a (14)

at2ra
equationand C* = 16560&max(1+2r,1/0) 12 (12%76252) rrerre

Proof. 1t has been shown in the proof of Zellinger et al.| (2023, Theorem 1) that under the given
conditions, A\, fori = 1, ..., K as well as \* are admissible according to Lemma|[I] which establishes
equation [T} Let us now show equation [I3] First note that S is a decreasing and A an increasing
function with respect to A, so that \* is a minimizer of S + A. Due to the structure of S + A, it is
also clear that there is an index 1 < j < K with A; < A* < A4 so that

At = argmin  S(M + N,0,\) + AN) € {A\j, \j+1}-
)\E{)\h...,AK}

other hand implies S(\;) = % < B@)(Ar)~Hegt (M + N)=t = £Y/28(\*) (for
T

B(6) = 4145%log (%)) and A(\) < A(X) < VA7),

In the second case we assume A+ = A;11, which yields Ay < \*¢ and therefore A(A+) < A(ENY)
A(AF)ET2 and also S(A) < S(A*) < ¢127S(A*). Thus in both cases: S(Ay) + A(A+)
gmax(1+2r,1/0) (§(\*) 4+ A(\*)), implying equation|[13]

We now distinguish two cases: Let us first consider Ay = A;. Then A\; > )\*% which on the

OIA T

As a next step, let us state some concentration bounds on weighted norms, that relate on the one hand
the Hessian norms H ), (f) evaluated for different f € H, where on the other hand, the connections
between empirical and non-empirical Hessian norms are explored. To do so, we will also need to
introduce further notation: we write B < A iff A — B is positive semi-definite. Moreover, we

define t(f) := SUP(4,y)esupp(p) SWPye{yh(w,)} |/ * 9I-

Lemma 3 (Marteau-Ferey et al.| (2019), Proposition 15). Let Assumptions[IH3]| be satisfied, A > 0
and f1, fo € H. Then, we have

Hy(f1) < = 2H, (fo). (15)

Lemma 4 (Marteau-Ferey et al.|(2019); |[Zellinger et al.|(2023)). Under the conditions of Lemma
we have, with probability at least 1 — 29,

t(fu — ) <log(2), t(f* — ) <log(2) t(fu — F) < 2log(2). (16)

12
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Lemma 5 (Marteau-Ferey et al.|(2019), Rudi & Rosasco|(2017)). Let the conditions of Lemmag]be
satisfied. Then, it holds, with probability at least 1 — 0,

H,(f) < 2HA(f). (a7
If, in addition, 0 < ||H(f)||,,, then it holds, for all
1685 2
M+ N > log(> , (18)
I ~\6
with probability at least 1 — 0,
~ 3
HL(f) < SHA(). (19

We will need another technical assumption in order to apply equation [19[to a sequence of models:
Assumption 6. For the sequence (M\p)E_ | there exists b* > 0 with b* <

minge(1,.. K} HH(P"”) ‘H

We are now in the position to formulate and prove a detailed version of our finite sample bounds for
aggregation of empirical DR-estimators:

Theorem 2. Let assumptions|[I}-[6|be fulfilled. Consider K > 1 and a sequence \j, of regularization
parameters and associated empirical risk minimizers ]/D"‘ for0 < k < K, as defined in Lemma
Then we have that for B of Algorithm equation || applied with

Let moreover § € |

Br = g(f*):

2 #]
eI296) 91 oK I*

o _ _2ratao
Br(8,8) = Br(B.g(f)) < C(M + N)~7e51T, 20)
with probability at least 1 — (9 + 2K)0 for M + N larger than equationand C given by equa-
tion[22]

Proof. If the inequalities that we are going to state hold with high probability (under conditions
mentioned in the theorem), we will write <,. Let us start by following|Menon & Ong| (2016):

BF<ﬂ,g<Za;Pk>> — Br(B,9(fn)) ( (Zaﬂk)—n(fm).
k=1

Next we apply equation[TT] combine it with equation[I5]and equation [I6]to obtain:
2

K K
BF<B,9<Z@P'«>> Br(8.9(fn) <o 2 Zakfk— <o 8| arf = fu
k=1 (A) Hy, (f1) (B) k=1 H,, (F*0)
An application of equation|17|then yields
K 2 K 2
8(> anf - fu <, 16|> " anfr — fa
k=1 Ha, (F20) (&) k=1 H, (f0)
K 2
=16 i B
N DRLE A L
k=1 o (Fr0)
<16 (T . @1
K} f /\o(f)\o)

where the last inequality follows from equation E} Next we use that Ay < Ag to upper-bound
equation [21] by:

k k
el 1P =l gy < el [P = 1l
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We can further apply equation [T9} which is valid due to assumption [6] and moreover, we use equa-
tion[I5]and equation [I€] so that we end up with:

16 min H . H <, 24 min H . H <, 96 min H : H
ke{1,.. K} U Hj, (,’%)v kef{l,... K} J =T H,, (,’%)v ke{l,.. K} f —In Hy, (f#)
(D) (B)

_ _2rata
Sp C(M_|_ N) Tratotl
~~
(F)

where (F) follows from invoking equation[I3]and the constant is given by

L2 (22)
so that equationis established. Note that by Lemma (F) holds with probability 1 — (4 + 2K)d
and (A)-(E) all hold with probability 1—4, so that equationis valid with probability 1—(9+2K)J,
yielding the mentioned admissible range for . Moreover, taking into account the requirements
equation [T4]and equation [I8] we obtain that M/ + N needs to be at least as large as

By (8-4142B; 12965 16B; (2
max {5184 " log ( W; ) , LZ)\(1J+2T+1/Q’ = log 5) (- (23)

a+42ra
12 2\ TH2arta
C := 96C* = 96 - 16560¢™ax(1+2r1/e) 12 (%S> ,

O

B DERIVATION OF LOSS AND HESSIAN FOR LR

Starting with F, g of LR from Example[T|we have
F(z) :=zlog(x) — (1 4+ x)log(1l+ )
g(z) :=e€”

From Theorem 1 from Zellinger| (2025) we have

-1 L g(x)
P (2) = T+g@)
i) o

1—¢~1(2)

e (2) 0= 2] (o 2 oo 25) o

Using these terms leads after simplification to

V(7 @) = F () (147 (@) = {5 log(1+¢") -

70 =g (- (s () = (o e (4725 0 =)

Taking the result for loss function ¢(y, x) from Zellinger|(2025) gives us further after simplifying
U(-1,2) =y(¥~ ! (z)) — w*@cw’(w*l(x))
:1+x+log(1+e)—x— x( x) = log(1 + €%)
v(w‘l( )+ (1=~ @) (v (2))

1+
i
— +log(1 +¢e") < - > z) =log(l+e™)

(1, x)

1+

14
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which is the loss function for LR.. In the next step we derive the Hessian term h(z,y) used in
Algorithm Again, now using model PO we get after simplification

B PO

1, o) =

( f (x)) 1+ef/\o(z)
N o)

l/l _1’ )\0 — € _ ,
(1 77(@) (1+ ePo@)2
~ 1
', o)) = ———

(1L 7@w) =~

o0 (@)

" o _
! (17f (SU)) - (1+e]’c‘xo(w))2'

with the second order derivatives being h(z,y). Other loss functions with respective Hessians can
be derived analogously.

C DETAILS ON EXPERIMENTS

C.1 DETAILS ON DATASET WITH KNOWN DENSITY RATIOS

To evaluate the accuracy of our aggregation algorithm, we build upon the methodologies proposed
by [Kanamori et al| (2012b); Nguyen et al,| (2010). Specifically, we construct high-dimensional
data with precisely known density ratios, enabling a systematic analysis of the estimation accu-
racy. Our approach extends and generalizes the settings used in prior studies. For instance, widely
used datasets such as Ringnorm and Twonorm (Breimanl [1996)) represent specific cases of Gaus-
sian mixture models, where the mean and covariance parameters are set to predefined values for
each mixture component. Similarly, the experiments described in Nguyen et al.|(2010) can also be
framed within a Gaussian mixture model structure. To introduce greater complexity, we generate
distributions by randomly sampling the number, weights, and covariances of the mixture compo-
nents from 50-dimensional space, which exceeds the dimensionality considered in existing studies.
More concretely, the means are sampled uniformly from [0, 0.5]%°, while the weights of the mixture
components are sampled from [0, 1] and subsequently normalized to sum to 1. Each distribution
(source and target) is assigned a distinct Gaussian Mixture distribution. In each experiment, the
maximum number of mixture components is restricted to four. The number of components for the
source distribution, n, is randomly selected from {1, 2, 3}, while the target distribution gets assigned
4 — n components, ensuring variability across datasets.

C.2 DETAILS ON DOMAIN ADAPTATION DATASETS

Image data for domain adaptation. The DomainNet-2019 dataset (Peng et al.,[2019)) includes the
six distinct image domains “Real”, ”Clipart”, ”Quickdraw”, ’Sketch”, ”Painting”, and ~Infograph”.
Following the approach of Zellinger et al| (2017) we utilize a simplified version of this dataset
known as MiniDomainNet. This reduced version narrows the focus to the five largest classes in the
training set across all six domains. To optimize computational efficiency we use a ResNet-18 (He
et al., [2016) trained on ImageNet (Krizhevsky et al.,2012). This pre-trained backbone is assumed
to have already learned low-level filters effective for the "Real” image domain requiring adaptation
only for the remaining five domains resulting in five domain adaptation tasks.

Time-series (sensory) data for domain adaptation. The Heterogeneity Activity Recognition
dataset (Stisen et al., 2015) explores the variations specific to sensors, devices, and workloads for
human activity recording. It utilizes data collected from 36 different smartphones and smartwatches
comprising 13 different device models from four manufacturers. Our experimental setup incorpo-
rates all five domain adaptation scenarios analyzed in (Ragab et al., [2023)).

Text data for domain adaptation. The Amazon Reviews dataset (Blitzer et al., 2006) contains
bag-of-words representations of textual reviews across four categories: books, DVDs, kitchen, and
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electronics with binary labels indicating the class of review. Each category represents a different
domain from which a total of twelve domain adaptation tasks are constructed by pairing each domain
as a source domain with every other domain as a target domain.

C.3 DETAILS ON EXPERIMENTAL SETUP

C.3.1 METHODS

To test our aggregation approach we pick four popular representatives of the large class of widely
used DRE methods that can be modeled as Bregman divergences as in equation (I). For this we
use the methods presented in Example |1} KuLSIF (Kanamori et al., 2009), Exp (Menon & Ong,
2016), SQ (Menon & Ong| 2016), and LR (Bickel et al.l 2009) with cross-validation as hyperpa-
rameter selection procedure as a baseline and compare this for each of the four methods against
our aggregation approach. For KuLSIF, which offers a closed-form solution, no numerical opti-
mization is required. For the other methods, we utilize the CG algorithm from Python’s SciPY
library (Virtanen et al., 2020), employing the Polak-Ribiere line search strategy (Hager & Zhang,
2006). In our domain adaptation experiments, we adhere to the evaluation protocol established
by [Dinu et al.|(2023)); |Gruber et al.| (2024). Specifically, we calculate an ensemble of various deep
neural networks using the importance-weighted functional regression approach. We use the density
ratio estimates from the aggregated and non-aggregated versions of KuLSIF, Exp, SQ, and LR as
importance weights. To comprehensively assess the impact on different domain adaptation tech-
niques, we generate ensemble model candidates for 11 domain adaptation methods. These include
Minimum Discrepancy Estimation for Deep Domain Adaptation (MMDA) (Rahman et al., [2020),
the Convolutional deep Domanin Adaptation model for Time-Series data (CoDATS) (Wilson et al.,
2020), Domain-Adversarial Neural Networks (DANN) (Ganin et al.| [2016)), Conditional Adversar-
ial Domain Adaptation (CDAN) (Long et al.| [2018), Deep Subdomain Adaptation (DSAN) (Zhou
et al} [2021), the DIRT-T approach to Unsupervised Domain Adaptation (DIRT) (Shu et al.,|2018),
Adversarial Spectral Kernel Matching (AdvSKM) (Liu & Xue, 2021), Higher-order Moment Match-
ing (HoMM) (Chen et al.} 2020), Deep Domain Confusion (DDC) (Tzeng et al.,[2014])), Correlation
Alignment via Deep Neural Networks (Deep Coral) (Sun et al.| [2017), and Central Moment Dis-
crepancy (CMD) (Zellinger et al., | 2017). Altogether, this benchmark involved training over 9,000
deep neural network models and evaluating the complete ensembling benchmark proposed by Dinu
et al.|(2023) for Amazon Reviews, MiniDomainNet, and HHAR. The experiments on these datasets
were conducted to compare 8§ DRE methods (with and without aggregation).

C.3.2 KNOWN DENSITY RATIOS

Building upon [Kanamori et al.|(2012b) we create ten distinct datasets using Gaussian Mixture dis-
tributions in a 50-dimensional space. These distributions feature a varying number of mixture com-
ponents in {1, 2, 3} for either distributions P and Q). Each component gets assigned a unique mean
within [0, 0.5]°° with corresponding covariance matrix. For all datasets the exact density ratio % is
known as it is fully determined by the ratio of the Gaussian Mixtures. For each Gaussian mixture
dataset 5,000 samples are drawn from the underlying distributions. The selection and evaluation of
the baseline DRE methods are conducted using a standard train/validation/test split approach with
split ratios 64/16/20 respectively. The corresponding aggregated DRE methods are trained and eval-
uated on the same splits while the aggregation weights are computed on the respective validation
sets. The regularization parameter \ is selected from the range {10=¢,1075,...,10*}, and each
experiment is repeated 10 times to ensure statistical robustness. Consistent with [Kanamori et al.
(2012a), a Gaussian kernel is employed for all density ratio estimation methods, with the kernel
width determined using the median heuristic (Scholkopf & Smolal 2002).

C.3.3 ABLATION STUDIES

We additionally add an ablation study as proof of concept that our aggregation algorithm can also be
used in a heuristic setting for which we can’t prove fast convergence rates as in Theorem [I] For this
we train several deep neural networks based logistic regression models (DeepLLR) with different hy-
perparameter settings and optimize objective (@) as done for the other DRE methods. In Table 3| we
can see that even in the absence of theoretical guarantees our aggregation approach improves exper-
imental results on all datasets compared to its baseline model that was selected by cross-validation.
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Ablation 1: Deep Learning

Methods ¢3,d1.70 c2,d1.72 c2d1.59 cldl.55 c2d1.78 c2d1.55 c3d1.57 c2d1.61

c3d1.46

DeepLR 7.280(+£0.011)  14.539(+0.010)  13.001(£0.008)  9.963(£0.012)  9.857(+0.013)  10.992(£0.009)  13.421(£0.010)  11.892(£0.011)
Agg. DeepLR ~ 6.504(+0.012) 14.249(+0.013) 12.733(+£0.009) 9.631(+0.014) 9.569(+0.014) 10.428(+0.008) 12.733(+0.011) 11.229(0.010)

9.573(£0.006)
8.954(-£0.005)

Ablation 2: Averaging

Methods ¢3,d1.70 c2,d1.72 ¢2d1.59 cldl.55 ¢2d1.78 c2d1.55 c3d1.57 c2d1.61 c3d1.46
Avg. KuLSIF  8.553(=£0.009) 13.151(%0.008) 12.597(£0.007) 11.803(£0.011)  9.533(%0.010) 10.292(£0.009) 12.011(=£0.005) 11.524(£0.003) ~ 10.357(40.006)
Agg. KuLSIF  8.320(+0.004) 12.854(+0.007) 12.422(+0.010) 11.625(-:0.004) 9.425(+0.013) 10.001(+0.002) 12.003(£0.007) 11.365(+0.003) 9.421(-:0.003)

Table 3: Mean and standard deviation (after +) of twice the Bregman divergence error on the geo-
metrically constructed datasets following [Kanamori et al.| (2012b) over ten different sample draws
from P and Q.

—e— Error of Individual Model

10-6 1073 10-4 1073 102 101 100
Weights (log scale)

Figure 2: Plot of the value of the aggregation weights against twice the Bregman diveregence error
on the geometrically constructed dataset c3,d1.70”. More accurate models get assigned higher
weights.

In the second ablation study we compare our method to a naive aggregation approach where model
outputs are averaged. Results in Table [3| suggest that averaging model outputs cannot compete with
our aggregation algorithm. For the first ablation study we use a deep neural network based logis-
tic regression model trained with binary cross-entropy loss and different regularization parameters
in {107,107°,...,10%}. The model is optimized by gradient descent for 125 epochs. We eval-
vate this model on geometrically-constructed datasets by using the exact same data splits as for
the other DRE methods. In the second ablation study we compare our aggregation algorithm to
a model averaging approach. We use the exact same experimental setup as for our algorithm and
replace aggregation by averaging model outputs on geometrically-constructed datasets. In Figure [2]
we illustrate the value of the weights assigned to KuLSIF estimators with different regularization
parameter settings evaluated on dataset ’c3,d1.70”. It can be seen that more accurate models get
assigned higher weight values.

C.3.4 DOMAIN ADAPTATION

The results of the domain adaptation benchmark experiment were computed using gradient-based
training across a total of 9,174 models. The implementation of certain components is based on the
codebase by |Dinu et al.| (2023); (Gruber et al.|(2024). The specifics of the experimental setup are as
follows:

* MiniDomainNet (image data): 11 methods x 8 parameters X 5 domain adaptation tasks
x 3 seeds = 1320 trained models

* AmazonReviews (text data): 11 methods x 14 parameters x 12 domain adaptation tasks
x 3 seeds = 5544 trained models

* HHAR (sensory data): 11 methods x 14 parameters x 5 domain adaptation tasks x 3 seeds
= 2310 trained models

Consistent with [Dinu et al.| (2023), we utilized 11 domain adaptation methods from the AdaTime
benchmark (Ragab et al., [2023). For each method and domain adaptation modality (text, image,

17



Under review as a workshop paper at ICLR 2025

sensory), we evaluated all 8 density ratio estimation approaches across 22 domain adaptation sce-
narios. The model implementation for domain adaptation methods and experimental configurations
also followed Dinu et al.| (2023). Specifically, fully connected networks were used for Amazon Re-
views, while a pretrained ResNet-18 backbone was employed for MiniDomainNet. For training and
selecting/aggregating the density ratio estimation methods within this pipeline we perform an addi-
tional train/val split of 80/20 on the datasets that are used for training the domain adaption methods.
For the regularization parameter A we use {107¢,1075,... 10*} as hyperparameter space. Fol-
lowing [Kanamori et al.| (2012a), we use a Gaussian kernel with kernel width set according to the
median heuristic (Scholkopf & Smolal [2002) for all DRE methods. In the results tables, we report
the classification accuracy on the respective test sets of the target distribution for all compared DRE
methods.

C.4 DETAILED EXPERIMENTAL RESULTS FOR DOMAIN ADAPTATION

Domain Adaptation: Amazon Reviews

Cross-Validation for Binary Classifier | Aggregation

DA-Method KuLSIF Exp LR SQ \ KuLSIF Exp LR SQ

MMDA 0.786(+0.010)  0.771(+0.009)  0.784(+0.010) 0.780(+0.008) | 0.794(+0.008) 0.782(+0.008) 0.790(+0.010) 0.789(+0.006)
CoDATS 0.795(+0.012)  0.777(+0.011)  0.794(+0.012)  0.788(+0.009) | 0.803(+0.010) 0.790(+0.010) 0.797(+0.012) 0.793(+0.008)
DANN 0.794(+0.011)  0.779(+0.011)  0.793(+0.012)  0.790(+0.010) | 0.804(+0.009) 0.792(+0.010) 0.800(+0.012) 0.799(+0.008)
CDAN 0.787(+0.012)  0.772(+0.010)  0.787(+0.010)  0.785(+0.009) | 0.792(+0.010) 0.783(+0.009) 0.790(+0.010) 0.792(+0.007)
DSAN 0.794(+0.011)  0.778(0.012)  0.793(+0.013)  0.790(+0.011) | 0.803(+0.009) 0.790(+0.011) 0.798(+0.013) 0.798(-0.009)
DIRT 0.787(+0.011)  0.776(+0.011)  0.788(+0.012)  0.784(+0.010) | 0.797(+£0.009) 0.787(+0.010) 0.790(+0.012) 0.794(0.008)
AdvSKM  0.779(£0.011)  0.761(£0.009) 0.777(£0.010) 0.772(+0.008) | 0.784(£0.009) 0.774(£0.008) 0.781(+0.010) 0.782(+0.006)
HoMM 0.777(£0.009)  0.760(£0.010)  0.774(£0.011)  0.770(£0.009) | 0.786(+0.007) 0.772(+0.009) 0.779(+0.011) 0.779(+0.008)
DDC 0.780(£0.011)  0.764(£0.011)  0.778(£0.012)  0.774(£0.010) | 0.787(+0.009) 0.777(+0.010) 0.782(+0.012) 0.783(+0.008)
DeepCoral 0.784(40.010)  0.767(£+0.010) 0.781(£0.011) 0.776(£0.009) | 0.794(+0.008) 0.779(+0.009) 0.785(+0.011) 0.784(+0.007)
CMD 0.790(£+0.013)  0.773(£0.011)  0.786(+0.012) 0.781(+0.011) | 0.797(+0.011) 0.783(+0.011) 0.790(+0.012) 0.787(+0.008)
Avg. 0.787(+0.011)  0.771(£0.010)  0.785(£0.011)  0.781(£0.009) | 0.795(+0.009) 0.783(£0.009) 0.789(+0.011) 0.789(+0.007)

Domain Adaptation: HHAR
Cross-Validation for Binary Classifier | Aggregation

DA-Method KuLSIF Exp LR SQ \ KuLSIF Exp LR SQ

MMDA 0.780(£0.008)  0.670(+0.098)  0.773(+0.013)  0.736(+0.006) | 0.826(+£0.023) 0.711(+0.085) 0.786(+0.007) 0.763(£0.005)
CODATS 0.723(+0.130)  0.776(+0.021)  0.779(+0.021)  0.741(+0.011) | 0. 765(i0 120) 0.818(+0.016) 0.793(+0.015) 0.767(+0.010)
DANN 0.697(+0.179)  0.785(+0.024)  0.795(+0.021)  0.757(+0.011) | 0.738(+0.170) 0.828(+0.015) 0.807(+0.015) 0.780(0.010)
CDAN 0.792(+0.029)  0.706(+0.166)  0.788(+0.029)  0.751(+0.022) | 0.834(+0.031) 0.750(+0.144) 0.804(+0.024) 0.775(+0.021)
DSAN 0.754(+0.128)  0.528(+0.228)  0.792(+0.015) 0.754(+0.014) | 0.794(+0.133) 0.572(+0.219) 0.805(+0.013) 0.775(+0.013)
DIRT 0.731(+0.084)  0.790(+0.040)  0.790(+0.023) 0.753(+0.014) | 0.774(+0.086) 0.828(+0.023) 0.801(+0.017) 0.779(+0.013)
AdvSKM  0.752(+0.007)  0.746(+0.013)  0.746(+0.018)  0.708(+0.008) | 0.793(+0.024) 0.790(+0.019) 0.759(+0.012) 0.735(--0.006)
HoMM 0.759(£0.009)  0.662(+0.096) 0.754(£0.021) 0.716(0.011) | 0.803(+£0.022) 0.707(:0.083) 0.768(+0.016) 0.749(+0.010)
DDC 0.748(40.017)  0.454(+0.215)  0.744(£0.019)  0.706(£0.009) | 0.794(+£0.018) 0.496(-£0.196) 0.759(+0.013) 0.732(+0.009)
DeepCoral ~ 0.701(£0.115)  0.749(+0.021)  0.758(£0.015)  0.720(%0.006) | 0.745(£0.118) 0.791(£0.013) 0.769(+0.011) 0.743(+0.005)
CMD 0.671(£0.170)  0.770(£0.015)  0.770(£0.016) 0.732(£0.008) | 0.714(+0.164) 0.814(+0.017) 0.780(+0.010) 0.754(+0.007)
Avg. 0.737(4+0.080)  0.694(+0.085) 0.772(£0.019) 0.734(£0.011) | 0.780(+0.082) 0.737(+£0.075) 0.785(+0.014) 0.759(+0.010)

Table 4: Mean and standard deviation (after £) of target classification accuracy on MiniDomainNet,
Amazon Reviews and HHAR datasets over three different random initialization of model weights
and several domain adaptation tasks.

Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

R—C | 0.585(+0.013) 0.590(+0.016)  0.589(+0.024)  0.578(+0.022) | 0.595(+0.011) 0.598(+0.015) 0.596(+0.017) 0.592(+0.021)
R—1 0.377(i0 009) 0.372(40.008)  0.378(+0.007)  0.365(£0.005) | 0.393(+0.007) 0.385(£0.008) 0.394(+0.001) 0.384(+0.004)
R—P | 0.722(£0.004) 0.720(£0.006) 0.725(+0.006) 0.723(0.004) | 0.730(£0.002) 0.743(+0.006)  0.721(+0.000)  0.728(-:0.003)
R—Q | 0.354(£0.008) 0.348(+£0.016)  0.349(£0.014)  0.328(40.013) | 0.356(:0.006) 0.356(+0.016) 0.358(=:0. 008 0.351(£0.012)
R—S | 0.596(£0.009) 0.599(£0.010)  0.600(%0.009)  0.596(+0.007) | 0.606(£0.007) 0.611(+0.009) 0.610(+0.002) 0.618(-:0.006)
Avg. | 0.527(£0.009) 0.528(+0.011)  0.528(£0.012)  0.518(+0.010) | 0.536(+0.007) 0.539(+0.011) 0.536(+0.006) 0.535(+0.009)

Table 5: Mean and standard deviation (after &) of target classification accuracy on MiniDomainNet
computed with domain adaptation method MMDA.
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Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

R—-C 0.597(+0.011)  0.577(£0.010)  0.594(+0.010)  0.576(0.008) | 0.602(+£0.009) 0.587(+0.008) 0.601(+0.005) 0.593(£0.006)
R—1 0.366(£0.012)  0.368(£0.023) 0.349(+0.038)  0.338(40.036) | 0.373(+0.011) 0.385(+0.023) 0.357(+0.031) 0.356(+0.035)
R—P 0.739(£0.015)  0.733(+0.018) U 737(10.017) 0.726(£0.015) | 0.747(+0.014) 0.745(+0.017) 0.750(+0.011) 0.742(+0.014)
R—Q 0.361(£0.013)  0.364(+0.014) 55(£0.027)  0.342(£0.025) | 0.370(+0.010) 0.377(+0.013) 0.369(+0.021) 0.364(+0.023)
R—S | 0.619(+0.008) 0.616(+0.008) 0 616(j:0.()09) 0.601(£0.008) | 0.617(£0.006) 0.624(-£0.008) 0.622(+0.002) 0.607(+0.008)
Avg. | 0.536(+0.012)  0.532(£0.015) 0.530(+0.020) 0.517(+0.018) | 0.542(+0.010) 0.543(+0.014) 0.540(+0.014) 0.533(+0.017)

Table 6: Mean and standard deviation (after &) of target classification accuracy on MiniDomainNet
computed with domain adaptation method CoDATS.

Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.591(£0.015) 0.576(£0.013) 0.579(+£0.012) 0.560(0.009) | 0.597(+£0.013) 0.583(+0.011) 0.587(+0.005) 0.568(+0.007)
R—1 0.374(+0.009)  0.372(+0.011)  0.369(+0.026) 0.354(+0.024) | 0.379(+0.007) 0.387(+0.009) 0.375(+0.021) 0.368(£0.022)
R—P | 0.720(+£0.007) 0.716(+0.008) 0.699(0.032) 0.692(+0.030) | 0.724(0.006) 0.727(+0.008) 0.702(+0.026) 0.699(+0.029)
R—Q | 0.357(+£0.009) 0.340(+0.016) 0.337(+0.016) 0.322(+0.014) | 0.362(£0.005) 0.355(+0.015) 0.348(+0.009) 0.326(+0.013)
R—S | 0.613(£0.007) 0.607(£0.010) 0.614(+0.007) 0.602(+0.005) | 0.619(£0.005) 0.624(+0.010) 0.621(+0.001) 0.632(+0.004)
Avg. | 0.531(£0.009) 0.522(£0.012) 0.520(£0.019) 0.506(£0.016) | 0.536(+0.007) 0.535(+0.011) 0.526(+0.013) 0.519(+0.015)
Table 7: Mean and standard deviation (after ) of target classification accuracy on MiniDomainNet
computed with domain adaptation method DANN.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.592(+0.018) 0.595(+0.029) 0.594(40.023) 0.578(40.021) | 0.594(+0.015) 0.616(+0.028) 0.608(+0.017) 0.598(+0.019)
R—1 0.372(+0.013)  0.381(+0.012)  0.337(40.056) 0.324(40.053) | 0.384(+0.011) 0.384(+0.011) 0.346(+0.050) 0.343(+0.052)
R—P | 0.729(+0.004) 0.720(+0.015) 0.725(+0.011) 0.713(+0.009) | 0.735(+0.001) 0.734(+0.014) 0.731(+0.005) 0.722(+0.008)
R—Q | 0.353(+0.018) 0.352(+0.020) 0.354(+0.017) 0.351(+0.014) | 0.354(+0.014) 0.369(+0.020) 0.364(+0.011) 0.363(+0.012)
R—S | 0.609(+£0.008) 0.607(+0.012) 0.611(£0.009) 0.594(+0.007) | 0.618(+0.005) 0.618(+0.010) 0.623(+0.003) 0.603(+0.006)
Avg. | 0.531(£0.012)  0.531(£0.017) 0.524(£0.023) 0.512(0.021) | 0.537(+0.009) 0.544(+0.017) 0.535(+0.017) 0.526(+0.020)
Table 8: Mean and standard deviation (after &) of target classification accuracy on MiniDomainNet
computed with domain adaptation method CDAN.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.623(£0.015) 0.603(£0.026) 0.596(£0.019) 0.589(£0.017) | 0.622(£0.013) 0.614(-:0.026) 0.606(+0.013) 0.597(+0.016)
R—1 0.374(£0.010)  0.367(£0.008) 0.350(£0.014)  0.339(40.012) | 0.383(-0.008) 0.391(+0.006) 0.363(+0.010) 0.344(+0.011)
R—P 0.720(£0.007)  0.724(£0.008) 0.720(%0.008) 0.708(40.005) | 0.726(+0.004) 0.738(+0.007) 0.729(+0.001) 0.723(+0.004)
R—Q | 0.364(£0.012) 0.355(+0.018) 0.354(£0.018) 0.334(-£0.016) | 0.366(+£0.010) 0.364(-£0.016) 0.359(+0.012) 0.347(+0.015)
R—S 0.616(£0.012)  0.609(£0.015) 0.615(+0.016) 0.598(40.014) | 0.621(+0.011) 0.622(+0.014) 0.618(+0.010) 0.612(+0.013)
Avg. | 0.539(£0.011)  0.532(£0.015) 0.527(£0.015) 0.513(£0.013) | 0.544(£0.009) 0.546(:0.014) 0.535(£0.009) 0.525(£0.012)
Table 9: Mean and standard deviation (after 1) of target classification accuracy on MiniDomainNet
computed with domain adaptation method DSAN.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.572(£0.021) 0.474(+0.176)  0.566(+0.022)  0.555(+0.020) | 0.580(+£0.019) 0.478(+0.175) 0.582(+0.016) 0.575(£0.018)
R—1 0.376(+0.047)  0.236(+0.135)  0.406(£0.025)  0.391(+0.022) | 0.387(+0.045) 0.246(+0.133) 0.407(£0.018) 0.402(+0.022)
R—P | 0.714(£0.026) 0.542(+0.271) 0.713(+0.025) 0.700(0.024) | 0.718(£0.024) 0.550(+0.270)  0.711(+0.020)  0.724(£0.023)
R—Q | 0.336(+£0.018) 0.248(+0.055) 0.329(+0.021)  0.315(+0.019) | 0.340(+0.016) 0.258(+0.054) 0.338(+0.016) 0.325(-0.018)
R—S | 0.586(+0.020) 0.431(+0.245) 0.587(+0.021)  0.585(+0.019) | 0.591(+£0.019) 0.441(+0.244) 0.595(+0.015) 0.598(--0.018)
Avg. | 0.517(£0.026) 0.386(£0.177)  0.520(£0.023)  0.509(£0.021) | 0.523(£0.025) 0.395(+0.175) 0.526(+0.017) 0.525(£0.020)

Table 10: Mean and standard deviation (after £) of target classification accuracy on MiniDomainNet
computed with domain adaptation method DIRT.
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Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.568(£0.008) 0.561(£0.013)  0.552(£0.006) 0.535(0.004) | 0.580(+0.006) 0.573(+£0.012) 0.564(+0.000) 0.548(--0.003)
R—1 | 0.382(£0.010) 0.389(+0.007) 0.385(+£0.026) 0.369(+0.024) | 0.381(+0.008) 0.415(+0.006)  0.384(+0.019)  0.384(+0.023)
R—P 0.717(£0.005)  0.712(£0.014)  0.712(£0.010) ~ 0.705(0.008) | 0.717(£0.004) 0.725(+0.013) 0.724(+0.004) 0.723(+0.006)
R—Q | 0.332(£0.005) 0.325(£0.007)  0.324(£0.011)  0.315(0.008) | 0.342(+0.003) 0.329(+0.006) 0.331(+0.004) 0.332(-0.007)
R—S 0.584(+0.004)  0.586(£0.003)  0.588(£0.005)  0.575(0.004) | 0.587(+0.003) 0.602(+0.002) 0.602(+0.001) 0.598(+0.002)
Avg. | 0.516(£0.006) 0.515(£0.009) 0.512(£0.012)  0.500(£0.010) | 0.522(£0.005) 0.529(£0.008) 0.521(+0.006) 0.517(<0.008)
Table 11: Mean and standard deviation (after £) of target classification accuracy on MiniDomainNet
computed with domain adaptation method AdvSKM.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.590(£0.020) 0.588(+0.020) 0.577(£0.020) 0.567(0.018) | 0.604(+0.018) 0.604(-£0.019) 0.589(:0.013) 0.591(:0.017)
R—1 | 0.399(+0.006) 0.407(+0.009) 0.378(+0.025) 0.365(+0.024) | 0.400(+0.004) 0.419(+0.008) 0.386(+0.018) 0.385(+0.023)
R—P | 0.729(£0.002) 0.726(+0.009) 0.726(+0.010) 0.704(+0.008) | 0.736(+0.000) 0.744(+0.008) 0.737(+0.004) 0.725(+0.007)
R—Q | 0.351(£0.005) 0.333(£0.013) 0.333(+£0.013) 0.318(+0.012) | 0.356(+0.003) 0.345(+0.011) 0.341(+0.008) 0.345(+0.011)
R—S | 0.583(£0.008) 0.593(+0.011) 0.592(£0.008) 0.572(+0.005) | 0.599(+0.007) 0.610(+0.009) 0.594(+0.002) 0.595(+0.003)
Avg. | 0.531(£0.008) 0.529(£0.012) 0.521(£0.015) 0.505(0.013) | 0.539(+0.007) 0.544(£0.011) 0.529(+0.009) 0.528(+0.012)
Table 12: Mean and standard deviation (after 1) of target classification accuracy on MiniDomainNet
computed with domain adaptation method HoMM.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.569(£0.027) 0.571(£0.029) 0.563(+0.028) 0.555(+0.027) | 0.584(+0.025) 0.590(+0.029) 0.577(+£0.023) 0.573(+0.027)
R—1 | 0.389(£0.011) 0.391(+£0.016) 0.390(£0.011) 0.369(+0.010) | 0.394(+0.009) 0.399(+0.015) 0.398(+0.006) 0.388(+0.009)
R—P | 0.717(£0.002) 0.721(£0.003) 0.715(+£0.002) 0.701(+0.000) | 0.727(+0.000) 0.726(£0.002) 0.723(+0.003) 0.711(+0.000)
R—Q | 0.333(£0.004) 0.323(+£0.013) 0.324(+0.013) 0.313(+0.010) | 0.337(+0.002) 0.335(+£0.012) 0.336(+0.006) 0.331(+0.009)
R—S | 0.580(£0.005) 0.578(+0.005) 0.579(£0.004) 0.562(+0.003) | 0.594(+0.003) 0.595(£0.004) 0.586(+0.002) 0.574(+0.002)
Avg. | 0.517(£0.010) 0.517(£0.013) 0.514(£0.012) 0.500(0.010) | 0.527(+0.008) 0.529(£0.012) 0.524(+0.008) 0.515(+0.009)
Table 13: Mean and standard deviation (after £) of target classification accuracy on MiniDomainNet
computed with domain adaptation method DDC.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR sQ
R—C | 0.588(£0.021) 0.569(+0.016) 0.567(£0.012)  0.543(£0.010) | 0.593(+0.020) 0.578(+0.015) 0.578(+0.006) 0.548(+0.009)
R—1 | 0.369(£0.012) 0.372(+0.008) 0.381(+0.018) 0.370(£0.017) | 0.371(+0.010) 0.387(+0.008) 0.380(+0.013)  0.379(+0.016)
R—P | 0.735(£0.011) 0.737(+0.010)  0.734(£0.005)  0.722(£0.004) | 0.749(+0.010) 0.749(+0.010) 0.737(+0. 001) 0.732(£0.003)
R—Q | 0.363(£0.011) 0.348(+0.021) 0.349(£0.016)  0.334(£0.014) | 0.363(+0.008) 0.359(+0.020) 0.365(+0.011) 0.355(+0.013)
R—S | 0.621(£0.006) 0.616(+0.009) 0.617(£0.009)  0.604(:0.008) | 0.637(+0.003) 0.629(+0.008) 0.619(+0.003) 0.620(+0.006)
Avg. ] 0.535(£0.012) 0.528(£0.013)  0.530(0.012)  0.514(0.011) | 0.543(£0.010) 0.540(£0.012) 0.536(%0.007) 0.527(+0.009)
Table 14: Mean and standard deviation (after £) of target classification accuracy on MiniDomainNet
computed with domain adaptation method DeepCoral.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
R—C | 0.576(+0.015)  0.560(£0.026) 0.552(+0.017) 0.538(0.015) | 0.585(+0.013) 0.574(4+0.025) 0.560(+0.011) 0.541(+0.014)
R—1 0.383(£0.009)  0.391(£0.021)  0.381(0.033)  0.375(£0.032) | 0.386(+0.008) 0.400(+0.019) 0.384(+0.026) 0.397(+0.031)
R—P 0.739(£0.008)  0.739(£0.016)  0.742(+0.011)  0.723(40.008) | 0.753(+0.006) 0.747(+0.016) 0.747(+0.005) 0.732(+0.006)
R—Q | 0.354(+0.013)  0.336(£0.030) 0.335(+0.028) 0.321(+0.026) | 0.362(+0.011) 0.352(+0.029) 0.341(+0.022) 0.333(0.025)
R—S | 0.595(+0.005) 0.594(+0.010) 0.597(+0.014) 0.590(+£0.013) | 0.594(+0.004) 0.617(+0.010) 0.603(+0.009) 0.605(0.013)
Avg. | 0.529(£0.010)  0.524(+0.021) 0.521(+0.021) 0.510(£0.019) | 0.536(4+0.008) 0.538(+0.020) 0.527(+0.015) 0.521(+0.018)

Table 15: Mean and standard deviation (after £) of target classification accuracy on MiniDomainNet
computed with domain adaptation method CMD.
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Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.795(£0.003) 0.784(40.002) 0.796(+0.003)  0.792(£0.001) | 0.799(£+0.001) 0.794(+0.002) 0.802(+0.003) 0.796(=+0.000)
B—E 0.776(£0.018) 0.752(+0.015) 0.766(+0.016)  0.762(£0.014) | 0.784(+0.016) 0.764(+0.015) 0.770(+0.016) 0.773(+0.012)
B—K 0.793(£0.019) 0.791(+0.020) 0.794(=0. 021) 0.792(4+0.019) | 0.806(+0.017) 0.797(+0.018) 0.804(+0.021) 0.800(+0.017)
D—B 0.799(£0.007) 0.770(£0.005)  0.793(£0.006) 0.794(+0.004) | 0.805(+0.004) 0.790(+0.004) 0.788(+0.006)  0.805(+0.001)
D—E 0.791(£0.008)  0.785(+0.010)  0.790(£0.011)  0.792(£0.010) | 0.797(+£0.007)  0.783(+0.010)  0.800(+0.011) 0.805(+0.008)
D—K 0.802(£0.010) 0.791(+0.008) 0.801(£0.009)  0.797(£0.007) | 0.810(+0.008) 0.803(=+0. 007) 0.808(+0.009) 0.812(+0.005)
E—B 0.709(£0.015) 0.693(+0.010)  0.709(+0.011) 0.705(+0.010) | 0.720(+0.014) 0.708(+0.009) 0.708(+0.011)  0.718(+0.007)
E—-D 0.746(£0.003) 0.729(+0.008) 0.737(+0.009)  0.727(£0.006) | 0.761(+0.002) 0.731(+0.007) 0.744(+0.009) 0.731(+0.004)
E—K 0.878(+0.009) 0.867(40.008) 0.876(4+0.008)  0.881(+0.005) | 0.883(+0.006) 0.878(+0.007) 0.879(+0.008) 0.896(+0.004)
K—B 0.729(=£0.005) 0.723(40.005) 0.732(£+0.006) 0. 727(i[).()04) 0.740(£0.003) 0.734(+0.003) 0.742(+0.006)  0.727(+0.002)
K—D 0.757(£0.015) 0.740(40.011) 0.756(+0.012)  0.750(=£0.010) | 0. 767(i0 013) 0.756(+0.011) 0.766(+0.012) 0.758(+0.008)
K—E 0.857(+0. 008) 0.832(40.007) 0.858(4+0.007)  0.848(+0.005) | 0.855(+0.005) 0.850(+0.005) 0.865(+0.007) 0.854(+0.004)
Avg. | 0.786(+0.010) 0.771(40.009) 0.784(+0.010)  0.780(40.008) | 0.794(+£0.008) 0.782(+0.008) 0.790(+0.010) 0.789(+0.006)

Table 16: Mean and standard deviation (after £) of target classification accuracy on Amazon Re-
views computed with domain adaptation method MMDA.

Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.804(£0.008)  0.778(£0.006) 0.806(+0.007) 0.796(+0.004) | 0.807(+0.006) 0.787(+£0.004) 0.804(+0.007)  0.803(+0.002)
B—-E 0.785(£0.012)  0.763(£0.009) 0.782(+0.010) 0.773(+0.008) | 0.789(+0.011) 0.777(£0.007) 0.777(+0.010)  0.777(£0.005)
B—K 0.807(+0.009)  0.784(+0.005)  0.807(+0.007)  0.797(£0.005) | 0.809(£0.006) 0.799(+0.004) 0.811(+0.007) 0.806(=0.003)
D—B 0.801(£0.005)  0.790(+0.004)  0.802(%0.005)  0.807(£0.003) | 0.817(+0.003) 0.798(+0.003) 0.806(+0.005) 0.812(=+0.001)
D—E | 0.806(£0.011) 0.787(+0.015)  0.804(+0.015)  0.797(+0.013) | 0.815(+0.009) 0.797(+0.014) 0.808(+0.015) 0.805(--0.010)
DK | 0819(+0.012) 0.801(+0.014) 0.819(+0.016)  0.810(+0.013) | 0.830(+0.010) 0.824(+0.013) 0.826(+0.016) 0.812(+0.012)
E—B | 0.719(£0.025) 0.704(+0.031)  0.721(40.031)  0.717(+0.030) | 0.732(+£0.024) 0.716(-0.030) 0.723(+0.031) 0.718(+0.029)
E—D | 0.748(4+0.024) 0.729(+0.017)  0.743(4+0.017)  0.743(+0.015) | 0.755(+0.022) 0.737(+0.016) 0.750(+0.017) 0.748(+0.013)
E—K | 0883(£0.012) 0.868(+0.008) 0.881(+0.009)  0.874(+0.007) | 0.885(+0.010) 0.880(--0.008) 0.888(+0.009) 0.877(+0.005)
K—B | 0.741(£0.008) 0.730(£+0.007)  0.734(+0.008)  0.730(£0.006) | 0.747(+0.007) 0.735(+0.005) 0.737(+£0.008) 0.736(--0.004)
K—D | 0.766(£0.007) 0.745(£0.006)  0.762(+0.007)  0.760(£0.004) | 0.773(+0.005) 0.762(+0.006) 0.765(+0.007) 0.766(--0.002)
K—E | 0.866(£0.008) 0.849(+0.006)  0.865(+£0.007)  0.855(£0.005) | 0.881(+0.006) 0.863(+0.005) 0.873(+£0.007) 0.862(:0.004)
Avg. | 0.795(£0.012) 0.777(+0.011)  0.794(£0.012)  0.788(£0.009) | 0.803(+0.010) 0.790(+0.010) 0.797(+0.012) 0.793(+0.008)

Table 17: Mean and standard deviation (after ) of target classification accuracy on Amazon Re-
views computed with domain adaptation method CoDATS.
Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.802(£0.006)  0.793(£0.008) 0.802(+0.010) 0.805(+0.007) | 0.814(+0.004) 0.812(+0.007) 0.800(+0.010)  0.818(+0.005)
B—E 0.784(£0.012)  0.743(£0.011)  0.763(£0.013)  0.755(+0.010) | 0.793(+0.010) 0.749(+0.010) 0.770(+0.013) 0.762(+0.009)
B—-K 0.801(£0.009)  0.783(£0.007)  0.803(+0.008)  0.802(+0.005) | 0.812(+0.007) 0.795(+0.006) 0.813(+0.008) 0.818(+0.004)
D—B 0.804(£0.003)  0.788(£0.002)  0.799(£0.003)  0.798(+0.001) | 0.812(+0.001) 0.797(£0.001) 0.802(+0.003) 0.805(+0.001)
D—E 0.808(+0.007)  0.787(+0.008) 0.811(+0.009) 0.807(+0.007) | 0.814(+0.004) 0.801(+0.007) 0.810(+0.009) 0.819(=+0.005)
D—K | 0.814(+£0.013) 0.806(+0.017) 0.814(+0.018)  0.813(+0.015) | 0.822(+0.011) 0.818(+0.016) 0.822(+0.018) 0.818(-0.013)
E—B | 0.713(£0.017) 0.706(+0.014)  0.717(+0.014)  0.710(+0.012) | 0.724(+0.015) 0.722(+£0.012) 0.727(+0.014) 0.725(+0.010)
E—D | 0.748(40.009) 0.733(+0.005)  0.748(40.006)  0.751(+0.005) | 0.758(+0.007) 0.752(-0.003) 0.758(+0.006) 0.758(+0.003)
E—K | 0.878(+0.015) 0.866(+0.013) 0.874(+0.015)  0.871(+0.012) | 0.894(+0.013) 0.877(-0.012) 0.884(+0.015) 0.882(+0.010)
K—B | 0.739(£0.014) 0.739(£+0.003)  0.750(+0.003)  0.740(£0.002) | 0.749(+0.012) 0.745(+0.002) 0.760(+£0.003) 0.747(--0.001)
K—D | 0.770(£0.020) 0.752(4+0.037)  0.766(£0.039)  0.760(£0.036) | 0.782(+0.019) 0.767(+£0.036) 0.776(+£0.039) 0.764(--0.033)
K—E | 0.863(£0.011) 0.853(+0.007)  0.865(+0.007)  0.870(£0.005) | 0.879(+0.008) 0.864(+0.006) 0.874(+0.007) 0.878(--0.003)
Avg. | 0.794(£0.011)  0.779(£0.011)  0.793(£0.012) ~ 0.790(%0.010) | 0.804(+0.009) 0.792(+0.010) 0.800(£0.012) 0.799(+0.008)

Table 18: Mean and standard deviation (after +) of target classification accuracy on Amazon Re-
views computed with domain adaptation method DANN.
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Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.802(£0.009)  0.786(+0.010)  0.800(+0.011)  0.800(£0.008) | 0.813(+0.007) 0.793(+0.009) 0.808(+0.011) 0.805(+0.007)
B—E 0.779(£0.009)  0.759(£0.007)  0.777(£0.007)  0.777(£0.004) | 0.778(+0.006)  0.770(+0.006) 0.779(+0.007) 0.784(+0.001)
B —K 0.797(£0.007)  0.776(£0.017)  0.789(+0.018)  0.785(+0.016) | 0.800(+0.005) 0.783(+0.016) 0.794(+0.018) 0.791(+0.014)
D—B 0.797(£0.008)  0.787(£0.006)  0.796(+0.007)  0.797(£+0.004) | 0.813(+0.006) 0.809(+0.006) 0.796(£0.007)  0.814(+0.003)
D—E 0.798(£0.008)  0.791(£0.004)  0.800(+0.005)  0.798(£0.003) | 0.799(+0.006) 0.801(+0.003) 0.802(+0.005) 0.804(+0.002)
D—K 0.804(£0.015)  0.794(+0.015)  0.802(+0.016)  0.803(+0.014) | 0.813(+0.013) 0.796(+0.014) 0.806(+0.016) 0.805(+0.012)
E—B 0.707(£0.020)  0.681(£0.014)  0.705(+0.016)  0.695(+0.014) | 0.711(+0.018) 0.695(+0.014) 0.708(+0.016) 0.705(+0.012)
E—D 0.738(£0.011)  0.724(£0.012)  0.737(+0.013)  0.740(£0.010) | 0.744(+0.008) 0.732(+0.010) 0.744(+0.013)  0.740(=£0.009)
E—K 0.879(£0.011)  0.859(+0.012)  0.875(+0.013)  0.865(+0.011) | 0.880(+0.009) 0.877(+0.010) 0.885(+0.013) 0.877(+0.009)
K—B 0.727(£0.014) 0 717(i0.()06) 0.735(£0.007)  0.733(£0.006) | 0.741(+0.013) 0.730(£+0.005) 0.737(+0.007) 0.744(+0.004)
K—D 0.754(+0.026) 55(+0.008)  0.765(£0.009)  0.765(£0.007) | 0.752(+0.023)  0.758(+0.006) 0.769(+0.009) 0.770(+0.005)
K—E 0.859(=+0.005) 0 841(i0.004) 0.858(+0.005) 0.859(+0.003) | 0.862(+0.003) 0.850(+0.004) 0.854(+0.005) 0.865(+0.000)
Avg. | 0.787(+0.012)  0.772(£0.010)  0.787(£0.010)  0.785(0.009) | 0.792(+0.010) 0.783(+0.009) 0.790(+£0.010) 0.792(+0.007)

Table 19: Mean and standard deviation (after £) of target classification accuracy on Amazon Re-
views computed with domain adaptation method CDAN.

Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—D 0.803(£0.015)  0.790(+£0.011)  0.803(40.011) 0.795(£0.009) | 0.816(+0.013) 0.798(+0.009) 0.813(+0.011) 0.804(+0.007)
B—E 0.788(£0.004)  0.772(£0.015)  0.786(+0.016) 0.782(£0.014) | 0.794(+0.003) 0.792(+0.014) 0.793(+0.016) 0.796(+0.012)
B—-K 0.804(£0.012)  0.797(+0.014)  0.807(+0.015) 0.803(£0.013) | 0.812(+0.009) 0.812(+0.013) 0.809(+0.015) 0.805(+0.011)
D—B 0.801(£0.005)  0.783(£0.003)  0.802(40.005) 0.805(+0.003) | 0.813(+0.003) 0.794(+0.002) 0.810(+0.005) 0.820(+0.001)
D—E 0.803(£0.008)  0.786(+0.008)  0.801(+0.009) 0.804(£0.007) | 0.815(+0.006) 0.791(+0.007) 0.805(+0.009) 0.821(+0.005)
D—K 0.803(£0.029)  0.793(£0.015)  0.805(=£0.017) 0.810(£+0.014) | 0.813(+0.028) 0.809(+0.014) 0.807(+0.017) 0.812(+0.014)
E—B 0.719(£0.021)  0.704(£0.021)  0.719(%0.022) 0.714(£0.020) | 0.733(+0.020) 0.717(+0.020) 0.725(+0.022) 0.724(+0.018)
E—D 0.749(£0.004)  0.735(£0.008)  0.746(=£0.009) 0.738(£0.007) | 0.764(+0.002) 0.754(+0.008) 0.753(+0.009) 0.740(+0.005)
E—K 0.883(£0.010)  0.854(+0.007)  0.881(+0.008)  0.873(+0.007) | 0.898(+0.008) 0.862(+0.007) 0.890(+0.008) 0.871(%0.004)
K—B 0.739(£0.010)  0.720(+0.017)  0.732(40.018) 0.727(£0.016) 0.738(+0.008)  0.731(+0.016)  0.732(£+0.018)  0.732(+0.014)
K—D 0.767(£0.008)  0.753(+0.014) 0.770(+0.015)  0.770(£0.012) | 0.773(+0. 005) 0.764(+£0.013)  0.766(+0.015)  0.782(+0.010)
K—E 0.864(£0.006)  0.847(+0.006)  0.863(+0.007) 0.858(+0.004) | 0.870(+0.004) 0.858(+0.005) 0.870(+0.007) 0.870(+0.002)
Avg. | 0.794(£0.011)  0.778(£0.012)  0.793(=0.013) 0.790(£0.011) | 0.803(£0.009) 0.790(+£0.011) 0.798(+0.013) 0.798(+0.009)

Table 20: Mean and standard deviation (after ) of target classification accuracy on Amazon Re-
views computed with domain adaptation method DSAN.

Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.812(£0.004) 0.795(£0.004) 0.811(+0.005) 0.804(+0.003) | 0.825(+0.003) 0.804(+0.003) 0.810(+0.005) 0.817(+0.000)
B—E 0.786(£0.007)  0.769(£0.008)  0.779(£0.008)  0.771(+0.005) | 0.795(+0.005) 0.784(+0.007) 0.786(+0.008) 0.784(+0.003)
B—K 0.809(£0.006)  0.793(£0.006)  0.797(£0.007)  0.794(+0.005) | 0.816(+0.004) 0.801(£0.004) 0.797(+0.007)  0.805(+0.002)
D—-B 0.806(£0.009) 0.801(£0.008) 0.811(+0.009) 0.807(+0.007) | 0.809(+0.007) 0.812(+0.008) 0.809(+0.009)  0.812(+0.005)
D—E 0.804(+0.012)  0.789(+0.021)  0.802(%+0.022)  0.800(£0.021) | 0.810(+0.011) 0.813(+0.020) 0.806(+0.022) 0.805(=0.020)
D—K 0.830(£0.012)  0.809(£0.017)  0.823(+0.018)  0.817(+0.016) | 0.844(+0.010) 0.826(+0.017) 0.832(+0.018) 0.829(+0.014)
E—B 0.686(+0.016) 0.675(£0.018)  0.685(£0.019)  0.680(+0.017) | 0.696(+0.013) 0.687(+£0.017) 0.689(+0.019) 0.684(+0.016)
E—D 0.711(£0.017)  0.706(£0.016)  0.715(£0.016)  0.708(+0.015) | 0.727(+0.016) 0.711(£0.015) 0.715(+0.016) 0.726(+0.013)
E—K 0.885(+0.009)  0.868(+0.006)  0.880(=0. 008) 0.876(+0.005) | 0.898(+0.008) 0.878(+0.005) 0.886(=+0. 008) 0.885(+0.002)
K—B 0.720(£0.011)  0.717(£0.010) 0.731(+0.011) 0.732(+0.009) | 0.730(+0.010) 0.722(+0.008)  0.729(+0.011)  0.737(+0.007)
K—D 0.729(£0.013)  0.732(£0.009) 0.748(+0.010) 0.750(+0.009) | 0.742(£+0.011) 0.733(+0.008)  0.746(=+0. 010 0.764(+0.007)
K—E 0.863(+0.013)  0.857(£0.008)  0.870(+0.009)  0.867(+0.008) | 0.872(+0.011) 0.872(+0.008) 0.880(=+0. 009) 0.876(+0.005)
Avg. | 0.787(£0.011)  0.776(£0.011)  0.788(£0.012)  0.784(%0.010) | 0.797(+0.009) 0.787(+0.010) 0.790(£0.012) 0.794(%0.008)

Table 21: Mean and standard deviation (after ) of target classification accuracy on Amazon Re-
views computed with domain adaptation method DIRT.
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Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.794(£0.005)  0.770(£0.005)  0.786(%£0.006) 0.778(+0.004) | 0.801(+0.003) 0.787(+0.003) 0.793(+0.006) 0.784(+0.002)
B—E 0.760(£0.012)  0.744(£0.010)  0.756(+0.011) 0.755(+0.009) | 0.764(+0.010) 0.750(£0.010) 0.761(+0.011) 0.762(+0.007)
B—K 0.782(£0.018)  0.765(+0.015) 0.781(+0.017) 0.776(+0.014) | 0.784(+0.015) 0.778(+£0.015) 0.786(+0.017) 0.785(+0.012)
D—B 0.794(£0.010)  0.780(£0.004) 0.794(+0.005) 0.785(+0.003) | 0.798(+0.008) 0.787(+£0.004) 0.795(+0.005) 0.795(+0.001)
D—E 0.783(£0.006)  0.768(£0.004) 0.776(£0.005) 0.776(+0.004) | 0.790(+0.004) 0.791(£0.004) 0.779(+0.005) 0.792(+0.002)
D—K 0.789(£0.013) 0.771(£0.011) 0.789(+0.011) 0.779(+0.009) | 0.786(+0.011)  0.780(£0.010) 0.796(+0.011) 0.785(+0.007)
E—B 0.711(£0.021)  0.694(£0.017) 0.706(£0.018) 0.702(+0.016) | 0.721(+0.019) 0.709(£0.016) 0.706(+0.018)  0.717(+0.014)
E—-D 0.732(£0.007)  0.722(£0.007) 0.731(£0.007) 0.726(+0.005) | 0.746(+0.004) 0.729(+0.007) 0.734(+0. 007) 0.728(+0.003)
E—-K 0.875(£0.011)  0.861(+0.010) 0.874(+0.012) 0.870(+0.010) | 0.882(+0.008) 0.885(+0.009) 0.880(+0.012) 0.876(+0.008)
K—B 0.723(£0.007)  0.701(£0.004) 0.723(£0.005) 0.725(+0.003) | 0.726(+0.005) 0.706(+0.003) 0.729(+0.005) 0.742(+0.001)
K—D 0.748(£0.014)  0.726(£0.014) 0.750(+0.014) 0.743(+0.012) | 0.748(+0.013)  0.740(+0.013) 0.757(+0.014) 0.754(+0.010)
K—E 0.858(£0.008)  0.833(+0.006) 0.854(+0.007) 0.849(+0.005) | 0.867(+0.006) 0.838(+0.005) 0.858(+0.007) 0.858(+0.003)
Avg. | 0.779(£0.011)  0.761(£0.009) 0.777(+0.010) 0.772(0.008) | 0.784(+0.009) 0.774(+0.008) 0.781(+0.010) 0.782(+0.006)

Table 22: Mean and standard deviation (after £) of target classification accuracy on Amazon Re-
views computed with domain adaptation method AdvSKM.

Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.794(£0.007)  0.777(£0.008)  0.792(£0.010)  0.782(+0.008) | 0.794(4+0.006) 0.788(+0.007) 0.798(+0.010) 0.794(+0.006)
B—E 0.761(£0.012)  0.746(£0.018)  0.756(£0.018)  0.755(+0.017) | 0.770(+0.010) 0.766(£0.017) 0.756(+0.018)  0.773(+0.014)
B—K 0.781(+0.017)  0.764(+0.021)  0.776(+0.022)  0.776(£0.020) | 0.792(£0.015) 0.781(+0.020) 0.781(+0.022) 0.787(+0.017)
D—B 0.790(£0.002)  0.776(+0.002)  0.789(+0.003)  0.783(£0.001) | 0.795(+£0.000) 0.792(+0.002) 0.790(+0.003) 0.795(=+0.002)
D—E | 0.781(+£0.004) 0.756(£0.003)  0.772(+0.004)  0.777(£0.002) | 0.790(+0.002) 0.767(+0.002) 0.778(+£0.004) 0.783(--0.000)
DK | 0.789(+0.015) 0.770(+0.014)  0.788(+0.015)  0.785(+0.014) | 0.800(+0.013) 0.783(+0.013) 0.798(+0.015) 0.792(+0.011)
E—B | 0.699(+0.012) 0.679(+0.013)  0.693(4+0.014)  0.689(+0.013) | 0.710(+£0.011) 0.698(-0.012) 0.701(+0.014) 0.699(+0.011)
E—D | 0.735(£0.011) 0.722(+0.009)  0.732(40.010)  0.722(+0.009) | 0.744(+0.008) 0.724(--0.008) 0.734(+0.010) 0.727(+0.007)
E—K | 0.873(£0.009) 0.857(+0.007) 0.872(4+0.008)  0.862(+0.006) | 0.884(+0.007) 0.865(--0.007) 0.881(+0.008) 0.863(+0.005)
K—B | 0.722(£0.006) 0.703(+0.012) 0.717(+£0.013) 0.711(£0.011) | 0.723(+0.003) 0.709(+0.011)  0.713(+£0.013)  0.724(--0.009)
K—D | 0.748(£0.008) 0.734(40.008)  0.752(£0.009)  0.753(0.006) | 0.760(+0.006) 0.742(+0.006) 0.762(+0. 009) 0.759(+0.005)
K—E | 0.856(£0.006) 0.834(+0.007)  0.854(£0.007)  0.847(£0.006) | 0.864(+0.004) 0.849(+0.006) 0.860(+£0.007) 0.857(--0.003)
Avg. | 0.777(£0.009) 0.760(+0.010)  0.774(£0.011)  0.770(£0.009) | 0.786(+0.007) 0.772(+0.009) 0.779(+0.011) 0.779(+0.008)

Table 23: Mean and standard deviation (after ) of target classification accuracy on Amazon Re-
views computed with domain adaptation method HoMM.
Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—-D 0.790(£0.009)  0.775(£0.006)  0.790(£0.008)  0.783(+0.006) | 0.794(+0.007) 0.797(£0.005) 0.796(+0.008) 0.789(+0.004)
B—E 0.763(£0.014)  0.749(£0.015)  0.760(£0.016)  0.750(+0.014) | 0.774(+0.012) 0.759(£0.013) 0.763(+0.016) 0.752(+0.012)
B—-K 0.783(£0.014) 0.774(£0.022)  0.779(£0.022)  0.772(+0.020) | 0.793(+0.012) 0.787(£0.021) 0.786(+0.022) 0.780(+0.018)
D—B 0.795(£0.006)  0.780(£0.007)  0.791(£0.008)  0.783(+0.006) | 0.796(+0.004) 0.799(+0.006) 0.793(+0.008) 0.790(+0.005)
D—E 0.784(+0.004)  0.757(+0.007)  0.778(+0.008)  0.782(£0.005) | 0.790(£0.001) 0.776(+0.007) 0.784(+0.008) 0.792(=+0.004)
D—K | 0.789(£0.021) 0.780(+0.014)  0.790(+£0.015)  0.781(£0.014) | 0.796(+0.018) 0.787(+£0.014) 0.792(+0.015) 0.789(+0.011)
E—B | 0.705(£0.024) 0.680(+0.022)  0.699(4+0.024)  0.702(+0.022) | 0.713(+£0.022) 0.692(-£0.021) 0.700(+0.024) 0.713(+0.020)
E—D | 0.736(+0.007) 0.727(+0.007) 0.740(+0.007) 0.739(+0.005) | 0.746(+£0.005) 0.744(+£0.005) 0.737(+0.007)  0.742(+0.003)
E—K | 0877(+0.011) 0.862(+0.007)  0.874(40.009)  0.879(+0.007) | 0.885(+0.009) 0.880(--0.006) 0.884(+0.009) 0.890(+0.004)
K—B | 0.726(+£0.003) 0.714(+0.006)  0.722(+0.007)  0.719(£0.005) | 0.734(+0.001) 0.721(+0.006) 0.731(+£0.007) 0.737(--0.004)
K—D | 0.751(£0.013) 0.736(£0.007)  0.752(£0.009)  0.750(£0.006) | 0.756(+0.011) 0.750(+0.007) 0.760(+£0.009) 0.759(--0.004)
K—E | 0.856(+£0.008) 0.837(+0.006) 0.856(+0.007)  0.852(£0.005) | 0.862(+0.005) 0.837(+0.004) 0.865(+£0.007) 0.864(--0.003)
Avg. | 0.780(£0.011)  0.764(£0.011)  0.778(£0.012) ~ 0.774(%0.010) | 0.787(+0.009) 0.777(+0.010) 0.782(£0.012) 0.783(%0.008)

Table 24: Mean and standard deviation (after ) of target classification accuracy on Amazon Re-
views computed with domain adaptation method DDC.
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Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—D 0.801(£0.010)  0.795(£0.009)  0.799(+0.011)  0.790(+0.009) | 0.814(+0.008) 0.812(-0.008) 0.804(+0.011) 0.801(+0.006)
B—E 0773(:!:0 008) 0.753(+0.012)  0.763(4+0.012)  0.756(=+0.010) | 0.781(+0.006) 0.762(+0.011) 0.772(+0.012) 0.765(+0.008)
B—+K 0.785(£0.017)  0.765(£0.017)  0.781(£0.018)  0.773(+0.016) | 0.797(+0.016) 0.782(+0.017) 0.789(+0.018) 0.779(+0.013)
D—-B 0.797(£0.004) 0.783(£0.002)  0.794(+0.003)  0.789(+0.001) | 0.803(+0.002) 0.794(-+0.000) 0.804(+0.003) 0.803(+0.000)
D—E 0.785(£0.003)  0.769(£0.009) 0.779(+0.011) 0.769(+0.009) | 0.793(+0.002) 0.778(+0.008) 0.777(+0.011)  0.775(+0.007)
D—-K 0.792(£0.014)  0.774(£0.016)  0.791(£0.016)  0.785(+0.013) | 0.799(+0.012) 0.787(£0.015) 0.792(+0.016) 0.785(+0.010)
E—B 0.710(£0.024)  0.695(£0.022)  0.709(£0.024)  0.706(+0.022) | 0.713(+0.022) 0.704(£0.022) 0.717(+0.024) 0.709(+0.020)
E—D 0.739(£0.004)  0.724(£0.002)  0.739(£0.003)  0.729(+0.000) | 0.747(+0.002) 0.731(£0.002) 0.748(+0.003) 0.738(+0.001)
E—K 0.878(£0.007)  0.863(£0.007)  0.876(+0.009)  0.875(+0.007) | 0.894(+0.005) 0.882(+0.006) 0.878(+0.009) 0.886(+0.005)
K—B 0.739(£0.009)  0.720(£0.007) 0.735(+0.008) 0.738(+0.005) | 0.754(+0.007) 0.735(£0.007) 0.733(+0.008) 0.756(+0.003)
K—D 0.755(+0.015)  0.733(+0.016)  0.749(+0.017)  0.746(£0.014) | 0.770(£0.013) 0.743(+0.015) 0.754(+0.017) 0.753(+0.011)
K—E 0.857(+0.010)  0.830(£0.004) 0.855(+0.005) 0.851(+0.004) | 0.864(+0.008) 0.842(+0.003) 0.850(+0.005) 0.863(+0.002)
Avg. | 0.784(£0.010) 0.767(£0.010)  0.781(£0.011)  0.776(%0.009) | 0.794(+0.008) 0.779(+0.009) 0.785(+0.011) 0.784(+0.007)

Table 25: Mean and standard deviation (after ) of target classification accuracy on Amazon Re-
views computed with domain adaptation method DeepCoral.

Cross-Validation for Binary Classifier Aggregation

Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ

B—D 0.799(£0.005)  0.785(+0.007)  0.794(+0.009)  0.792(£0.007) | 0.809(+0.002) 0.796(+0.007) 0.803(+0.009)  0.790(£0.004)
B—E 0.779(£0.014)  0.747(£0.020) 0.761(+0.021)  0.756(£0.019) | 0.787(+0.012) 0.759(+0.018)  0.756(+0.021)  0.758(+0.017)
B—-K 0.781(£0.029)  0.782(+0.010)  0.793(40.011) 0.783(£0.009) | 0.788(+0.026) 0.791(+0.009) 0.799(+0.011) 0.791(+0.007)
D—-B 0.798(£0.012)  0.791(+£0.006)  0.802(40.007) 0.792(£0.005) | 0.799(+0.010) 0.796(+0.005) 0.806(+0.007) 0.798(+0.003)
D—E 0.795(£0.009)  0.777(£0.009)  0.802(40.010) 0.792(+0.008) | 0.811(+0.007) 0.795(+0.008) 0.812(+0.010) 0.800(+0.006)
D—K 0.799(£0.018)  0.786(+0.013) 0.804(+0.015)  0.796(+0.013) | 0.812(+0.016) 0.797(+0.013)  0.803(+0.015) 0.804(+0.011)
E—B 0.719(£0.014)  0.714(£0.016)  0.721(%0.017) 0.726(£+0.016) | 0.732(+0.012) 0.727(+0.015) 0.727(+0. 017) 0.732(+0.013)
E—-D 0.750(£0.009) 0.730(£0.007)  0.744(%0.008) 0.742(=£0.007) 0.746(£0.007)  0.738(+0.006) 0.752(+0.008) 0.752(+0.005)
E—-K 0.875(£0.015)  0.857(£0.009) 0.875(+0.010)  0.867(£+0.007) | 0.879(+0.013) 0.875(+0.008) 0.872(+0.010) 0.880(+0.004)
K—B 0.745(£0.004)  0.719(£0.004)  0.731(%0.004) 0.731(£0.003) | 0.748(+0.003) 0.727(+0.003) 0.733(+0.004) 0.732(+0.001)
K—D 0.775(£0.019)  0.723(£0.030)  0.740(+0.031) 0.730(£0.029) | 0.783(+0.018) 0.732(+0.030) 0.749(+0.031) 0.740(+0.027)
K—E 0.864(£0.010)  0.859(+0.005)  0.867(+0.006) 0.865(+0.004) | 0.868(+0.008) 0.866(+0.004) 0.870(+0.006) 0.866(+0.002)
Avg. | 0.790(£0.013)  0.773(£0.011)  0.786(%0.012) 0.781(#0.011) | 0.797(+0.011) 0.783(£0.011) 0.790(%+0.012) 0.787(+0.008)

Table 26: Mean and standard deviation (after +) of target classification accuracy on Amazon Re-
views computed with domain adaptation method CMD.

Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.746(£0.008)  0.701(4+0.031)  0.716(+0.026) 0.678(£0.012) | 0.793(£0.022) 0.740(+0.001) 0.728(£0.019) 0.702(+0.011)
1—6 0.897(£0.002)  0.864(£0.009) 0.867(+0.006) 0.829(+0.008) | 0.953(£0.029) 0.906(+0.022) 0.891(+0.000) 0.858(+0.007)
217 0.488(£0.010)  0.484(£0.009) 0.493(£0.009) 0.460(+0.005) | 0.532(£0.021) 0.528(+0.022) 0.494(+0.003) 0.475(+0.004)
358 | 0.839(£0.012) 0.845(+0.032) 0.864(£0.012) 0.826(+0.002) | 0.877(+£0.019) 0.883(+0.000) 0.877(+0.006) 0.859(+0.001)
45 0.928(40.006)  0.456(40.410) 0.923(+0.012) 0.888(+0.002) | 0.975(£0.025) 0.497(+£0.379) 0.938(+£0.006) 0.920(+£0.001)
Avg. ‘ 0.780(40.008)  0.670(£0.098) 0.773(£+0.013)  0.736(=£0.006) ‘ 0.826(+0.023) 0.711(+0.085) 0.786(+0.007) 0.763(+0.005)
Table 27: Mean and standard deviation (after 1) of target classification accuracy on HHAR com-
puted with domain adaptation method MMDA.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.596(£0.048)  0.634(+0.045)  0.631(£0.043)  0.593(£0.029) | 0.638(£0.017) 0.674(+0.012) 0.643(+£0.038) 0.620(+0.028)
16 0.939(+0.006)  0.908(+0.011)  0.906(+0.013)  0.868(+0.001) | 0 982(1—0 024) 0.955(+£0.019) 0.919(+0.006) 0.896(--0.000)
27 0.472(£0.005)  0.470(+0.008)  0.476(+0.008) 0.438(£0.006) | 0.516(£0.025) 0.511(+0.024) 0.493(£0.002) 0.464(+0.005)
3-8 0.960(£0.030)  0.921(£0.028) 0.934(£0.030) 0.896(+0.016) | 1.005(+0.002) 0.964(+0.005) 0.954(+0.024) 0.928(+0.014)
45 | 0.648(£0.562) 0.947(+0.013) 0.947(£0.012) 0.909(£0.002) | 0.682(+0.530) 0.984(+0.018) 0.958(+0.006) 0.925(+0.002)
Avg. ‘ 0.723(+0.130)  0.776(£0.021)  0.779(£0.021)  0.741(+0.011) ‘ 0.765(+0.120) 0.818(+0.016) 0.793(+0.015) 0.767(+0.010)

Table 28: Mean and standard deviation (after £) of target classification accuracy on HHAR com-
puted with domain adaptation method CoDATS.
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Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.604(40.036)  0.652(40.043)  0.657(+0.027) 0.619(+0.013) | 0.647(+0.006) 0.690(+0.010) 0.669(+0.021) 0.637(+0.012)
16 0.936(£0.002)  0.890(£0.038)  0.906(+0.010) ~ 0.868(£0.004) | 0.977(£0.028) 0.935(+0.006) 0.916(+£0.004) 0.891(+0.002)
27 0.327(£0.284)  0.511(£0.026)  0.533(£0.045)  0.495(£0.031) | 0.367(£0.253) 0.552(+0.006) 0.541(£0.038) 0.513(+0.030)
3-8 0.964(£0.006)  0.919(£0.007)  0.923(£0.015)  0.885(£0.001) | 1.005(£0.026) 0.964(+0.026) 0.939(£0.008) 0.900(+0.001)
45 0.654(£0.566)  0.951(+0.005)  0.957(£0.010) 0.919(£0.004) | 0.696(£0.536) 0.998(+0.026) 0.969(£0.004) 0.960(+0.003)
Avg. | 0.697(£0.179)  0.785(£0.024) 0.795(£0.021) 0.757(£0.011) | 0.738(+0.170) 0.828(+0.015) 0.807(+0.015) 0.780(+0.010)
Table 29: Mean and standard deviation (after &) of target classification accuracy on HHAR com-
puted with domain adaptation method DANN.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.622(£0.009)  0.507(+0.281)  0.666(+0.014)  0.628(£0.000) | 0.660(+0.022) 0.558(+0.249) 0.685(+0.008) 0.658(+0.002)
16 0.933(+0.000)  0.906(+0.008)  0.908(+0.006) 0.870(+0.008) | 0.982(+0.031) 0.940(+0.025) 0.922(+0.001) 0.899(+0.007)
27 0.550(£0.061)  0.547(+0.061)  0.552(40.066) 0.514(+0.052) | 0.592(+0.030) 0.592(+0.029) 0.562(+£0.060) 0.533(+0.050)
3-8 0.874(£0.076)  0.863(+0.059)  0.862(40.056) 0.829(+0.042) | 0.911(+£0.043) 0.910(+0.028) 0.878(+£0.050) 0.850(+0.041)
45 0.980(%0.000)  0.707(40.423)  0.954(40.006) 0.916(+0.008) | 1.025(+0.031) 0.749(+0.391) 0.972(+0.001) 0.935(+£0.007)
Ave. | 0.792(£0.029) 0.706(£0.166) 0.788(£0.029) 0.751(£0.022) | 0.834(+0.031) 0.750(+0.144) 0.804(+0.024) 0.775(+0.021)
Table 30: Mean and standard deviation (after 1) of target classification accuracy on HHAR com-
puted with domain adaptation method CDAN.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
0—6 0.719(£0.070)  0.350(£0.289)  0.705(£0.043)  0.667(£0.029) | 0.753(:£0.039) 0.391(+0.257) 0.720(£0.038) 0.686(+0.028)
16 0.929(£0.000)  0.410(+0.429)  0.893(+0.023)  0.855(£0.009) | 0.975(+0.031) 0.464(+0.396) 0.911(+0.018) 0.870(+0.008)
27 0.496(£0.000)  0.495(+0.002)  0.495(+0.001)  0.457(+0.013) | 0.538(+0.031) 0.538(+0.030) 0.509(+0.006) 0.482(+0.012)
3-8 0.971(£0.005)  0.926(+0.005)  0.927(40.005)  0.889(£0.009) | 1.009(£0.027) 0.965(+0.028) 0.937(+£0.001) 0.913(+0.008)
45 0.654(£0.566)  0.460(+0.417)  0.939(£0.005) 0.901(£0.009) | 0.694(+0.535) 0.503(+0.385) 0.947(+0.001) 0.925(+0.008)
Ave. | 0.754(£0.128)  0.528(£0.228) 0.792(£0.015) 0.754(£0.014) | 0.794(£0.133) 0.572(£0.219) 0.805(+0.013) 0.775(+0.013)
Table 31: Mean and standard deviation (after &) of target classification accuracy on HHAR com-
puted with domain adaptation method DSAN.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.693(+0.072)  0.694(£0.050)  0.709(£0.043)  0.671(+0.029) | 0.737(£0.041) 0.729(+0.018) 0.729(+0.037) 0.701(+0.027)
1-6 0.938(40.000)  0.884(+0.029)  0.904(+0.010)  0.866(+0.004) | 0.985(+0.031) 0.923(+0.004) 0.909(+0.004) 0.887(+0.004)
27 0.194(£0.336)  0.582(£0.090)  0.545(£0.041)  0.507(£0.027) | 0.234(£0.306) 0.620(+0.058) 0.548(£0.036) 0.541(+0.026)
3-8 0.848(£0.007)  0.839(£0.022)  0.842(£0.011)  0.804(£0.003) | 0.887(+0.024) 0.879(+0.011) 0.856(£0.006) 0.823(+0.002)
45 0.984(£0.004)  0.949(£0.008)  0.951(£0.009)  0.919(£0.005) | 1.026(£0.026) 0.989(+0.024) 0.964(£0.002) 0.941(+0.004)
Avg. | 0.731(£0.084) 0.790(£0.040) 0.790(£0.023) 0.753(£0.014) | 0.774(+0.086) 0.828(+0.023) 0.801(+0.017) 0.779(+0.013)
Table 32: Mean and standard deviation (after &) of target classification accuracy on HHAR com-
puted with domain adaptation method DIRT.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.718(£0.009)  0.714(£0.010)  0.705(£0.020)  0.667(£0.006) | 0.766(£0.022) 0.755(+0.022) 0.721(+£0.014) 0.690(+0.005)
16 0.857(£0.006)  0.835(+0.026)  0.836(40.025) 0.798(£0.011) | 0.893(+0.025) 0.894(+0.007) 0.840(+0.019) 0.823(+0.010)
27 0.490(£0.014)  0.497(+0.010)  0.502(40.024)  0.464(+0.010) | 0.526(+0.017) 0.541(+0.022) 0.519(+0.018) 0.492(+0.008)
3-8 0.810(40.002)  0.806(+0.005) 0.807(+0.005) 0.769(+0.009) | 0.856(+0.029) 0.840(+0.027) 0.819(+0.001) 0.796(+0.008)
45 0.884(£0.005)  0.875(+0.014)  0.878(40.017)  0.840(£0.003) | 0.924(+0.026) 0.921(+0.019) 0.897(+£0.011) 0.874(+0.002)
Ave. | 0.752(£0.007) 0.746(£0.013)  0.746(£0.018)  0.708(£0.008) | 0.793(+0.024) 0.790(+0.019) 0.759(+0.012) 0.735(0.006)

Table 33: Mean and standard deviation (after 1) of target classification accuracy on HHAR com-
puted with domain adaptation method AdvSKM.
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Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
0—6 0.732(£0.010)  0.719(£0.025)  0.725(£0.024)  0.687(£0.010) | 0.782(£0.021) 0.764(+0.007) 0.742(+0.018) 0.721(+0.008)
156 0.879(+0.011)  0.856(+0.019) 0.853(+0.024) 0.815(+0.010) | 0.917(+£0.020) 0.899(+£0.013) 0.866(+£0.017) 0.845(+0.009)
27 0.455(+0.015)  0.466(+0.029) 0.474(+0.024) 0.436(+0.010) | 0.499(+£0.016) 0.515(+£0.002) 0.491(+0.018) 0.466(-0.009)
3-8 0.818(40.005) 0.820(+0.008) 0.822(+0.004) 0.784(+0.010) | 0.859(+0.026) 0.863(+0.024) 0.835(+0.002) 0.820(+0.009)
45 0.911(40.005)  0.449(+0.399) 0.899(+0.031) 0.861(+0.017) | 0.958(+0.026) 0.496(+0.366) 0.905(+0.025) 0.894(+0.016)
Avg. | 0.759(£0.009)  0.662(£0.096) 0.754(£0.021) 0.716(£0.011) | 0.803(£0.022) 0.707(+0.083) 0.768(+0.016) 0.749(+0.010)
Table 34: Mean and standard deviation (after &) of target classification accuracy on HHAR com-
puted with domain adaptation method HoMM.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.697(+0.013)  0.349(+0.286)  0.690(+0.011)  0.652(+0.003) | 0.748(+0.018) 0.397(+£0.255) 0.709(+0.005) 0.680(+0.003)
156 0.882(+0.017)  0.639(+0.413) 0.873(+0.014) 0.835(+0.000) | 0.924(+£0.014) 0.677(+0.381) 0.886(+£0.009) 0.864(+0.001)
27 0.439(40.041)  0.440(40.036) 0.439(+0.037) 0.401(+0.023) | 0.486(+£0.010) 0.476(+£0.004) 0.452(+0.032) 0.422(+0.023)
3-8 0.818(40.008)  0.621(40.342) 0.823(+0.006) 0.785(+0.008) | 0.858(£0.022) 0.663(+0.310) 0.840(+£0.001) 0.813(+0.007)
45 0.905(40.008)  0.219(40.000) 0.895(+0.025) 0.857(+0.011) | 0.955(£0.023) 0.266(£0.032) 0.908(+£0.019) 0.879(+0.010)
Avg. | 0.748(£0.017)  0.454(£0.215)  0.744(£0.019)  0.706(£0.009) | 0.794(+0.018) 0.496(+0.196) 0.759(+0.013) 0.732(+0.009)
Table 35: Mean and standard deviation (after 1) of target classification accuracy on HHAR com-
puted with domain adaptation method DDC.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
06 0.728(40.019)  0.700(£0.032)  0.717(40.025) 0.679(+0.011) | 0.768(+£0.012) 0.739(+£0.001) 0.733(+£0.019) 0.694(+0.010)
16 0.886(40.009)  0.845(40.039) 0.861(+0.014) 0.823(40.000) | 0.924(£0.022) 0.890(+£0.008) 0.865(+0.009) 0.842(+0.001)
27 0.460(£0.012)  0.470(+0.014)  0.480(£0.020)  0.442(+0.006) | 0.509(+0.019) 0.512(+0.017) 0.488(0.015) 0.462(+0.005)
3-8 0.812(£0.000)  0.810(+0.003) 0.811(£0.001) 0.773(£0.013) | 0.849(+0.031) 0.852(+0.029) 0.832(+0.004) 0.804(+0.011)
45 0.618(£0.536)  0.919(+0.020)  0.923(£0.016)  0.885(+0.002) | 0.672(+0.504) 0.963(+0.012) 0.929(-0.009) 0.911(+0.000)
Avg. | 0.701(£0.115)  0.749(£0.021)  0.758(£0.015) 0.720(£0.006) | 0.745(£0.118) 0.791(+0.013) 0.769(+£0.011) 0.743(+0.005)
Table 36: Mean and standard deviation (after &) of target classification accuracy on HHAR com-
puted with domain adaptation method Deep Coral.
Cross-Validation for Binary Classifier Aggregation
Scenario KuLSIF Exp LR SQ KuLSIF Exp LR SQ
0—6 0.693(£0.012)  0.713(£0.012)  0.693(£0.010)  0.655(£0.004) | 0.739(+0.019) 0.757(+0.020) 0.706(+0.004) 0.667(+0.002)
1-6 0.907(£0.006)  0.885(+0.018)  0.896(£0.008)  0.859(+0.006) | 0.947(+0.024) 0.924(+0.015) 0.904(0.001) 0.891(+0.005)
27 0.320(40.277)  0.503(+0.027) 0.513(+0.040) 0.475(+0.026) | 0.370(£0.247) 0.542(+£0.003) 0.523(+£0.035) 0.493(+0.024)
3-8 0.811(+0.011)  0.813(+0.009) 0.813(+0.011) 0.775(+0.003) | 0.856(+0.019) 0.860(+£0.023) 0.825(+£0.005) 0.797(+£0.002)
45 0.625(+0.541)  0.937(+0.011)  0.934(+0.013)  0.896(+0.001) | 0.660(+0.511) 0.989(+0.021) 0.945(+0.007) 0.921(+0.001)
Avg. | 0.671(£0.170)  0.770(£0.015)  0.770(£0.016) 0.732(£0.008) | 0.714(+£0.164) 0.814(+0.017) 0.780(+0.010) 0.754(+0.007)

Table 37: Mean and standard deviation (after &) of target classification accuracy on HHAR com-
puted with domain adaptation method CMD.
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