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Abstract
Bi-level optimization is a powerful framework to solve a
rich class of problems such as hyper-parameter optimization,
model-agnostic meta-learning, data distillation, and matrix
completion. The existing first-order solutions to bi-level prob-
lems exhibit scalability limitations (for example, in matrix
completion) because of the requirement of projecting solu-
tions onto the feasible set. In this work, we propose a novel
Stochastic Bi-level Frank-Wolfe (SBFW) algorithm to solve
the stochastic bi-level optimization problems in a projection-
free manner. We utilize a momentum-based gradient tracker
that results in a sample complexity of O(ϵ−3) for convex
outer objectives with strongly convex inner objectives. We
formulate the matrix completion problem with denoising as a
stochastic bilevel problem and show that SBFW outperforms
the state-of-the-art methods for the problem of matrix com-
pletion with denoising and achieves improvements of up to
82% in terms of the wall-clock time required to achieve the
same level of accuracy.

Introduction
We consider the two-level hierarchical optimization problem

min
x∈X⊂Rm

Eθ[f(x,y
⋆(x); θ)], (1a)

s.t. y⋆(x) ∈ arg min
y∈Rn

Eξ[g(y,x; ξ)]. (1b)

Here, the outer problem involves minimizing the objective
function F (x,y⋆(x)) := Eθ[f(y

⋆(x); θ)] with respect to
x over the convex compact constraint set X ⊂ Rm. Here
y⋆(x) is a unique solution of the inner optimization prob-
lem, which for a given x, entails minimizing the strongly
convex function G(y,x) := Eξ[g(y,x; ξ)] with respect to
optimization variable y. The function F (·) and G(·) are the
expected values of continuous and proper closed functions
f : Rm → R and g : Rn × Rm → R with respect to
independent random variables θ ∈ Θ and ξ ∈ Ξ, respec-
tively. Observe that for bilevel problems of type (1), the in-
ner and outer problems are interdependent and cannot be
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solved in isolation. Yet, these problems arise in a number of
areas, such as meta-learning (Rajeswaran et al. 2019), con-
tinual learning (Borsos, Mutny, and Krause 2020), reinforce-
ment learning (Zhang et al. 2020a), and hyper-parameter
optimization (Franceschi et al. 2018). To solve such prob-
lems, the first-order stochastic approximation algorithms
have been recently proposed (Yang, Ji, and Liang 2021;
Chen, Sun, and Yin 2021). In some works, such as (Khan-
duri et al. 2021b), the constraint set X in the outer optimiza-
tion problem is taken to be X = Rm, resulting in a sim-
pler unconstrained outer optimization problem. However, in
applications such as meta-learning, personalized federated
learning, and corsets (Borsos, Mutny, and Krause 2020), the
constraint set X is a strict subset of X ⊂ Rm. The stan-
dard approach to deal with such constraint sets is to project
the updates of the outer optimization problem onto X at ev-
ery iteration. Though popular and widely used, the projected
gradient approaches may not necessarily be practical, for in-
stance, in cases where the projection sub-problem is too ex-
pensive to be solved at every iteration. The difficulties sur-
rounding projection-based methods have motivated the de-
velopment of projection-free algorithms that use the Frank-
Wolfe (FW) updates. These FW-based algorithms only re-
quire solving a linear program over X , which could be sig-
nificantly cheaper than solving a non-linear projection prob-
lem, as in the case of ℓ1-norm or nuclear norm ball con-
straints. Projection-free algorithms for single-level stochas-
tic optimization algorithms are well-known, and state-of-
the-art algorithms achieve a sample complexity of O(ϵ−2)
(Xie et al. 2020; Akhtar and Rajawat 2022). These algo-
rithms rely on a recursive gradient tracking approach that al-
lows the samples to be processed sequentially and achieves
variance reduction without the use of checkpoints or large
batches. Motivated by these developments, we ask the fol-
lowing question:

“Is it possible to develop efficient projection-free algo-
rithms for bi-level stochastic optimization problems?”

This work puts forth the Stochastic Bi-level Frank-Wolfe
(SBFW) algorithm, which is the first projection-free algo-
rithm for bi-level problems. Our main contributions are:

• We propose a novel projection-free SBFW algorithm,
utilizing the idea of momentum-based gradient update
(Cutkosky and Orabona 2019) to track the gradient of the
outer objective function. The proposed algorithm is able



Reference Projection Free Problem Type SFO Complexity (Outer) SFO Complexity (Inner)
SFW(Mokhtari, Hassani, and Karbasi 2020) yes Single-Level O(ϵ−3) -

ORGFW (Xie et al. 2020) yes Single-Level O(ϵ−2) -
SFW++(Zhang et al. 2020b) yes Single-Level O(ϵ−3) -

BSA (Ghadimi and Wang 2018) no Bi-Level O(ϵ−2) O(ϵ−3)
stocBiO1 , STABLE2, MSTSA3 no Bi-Level O(ϵ−2) O(ϵ−2)

TTSA (Hong et al. 2020) no Bi-Level O(ϵ−2.5) O(ϵ−2.5)
SUSTAIN (Khanduri et al. 2021b) no Bi-Level O(ϵ−1.5) O(ϵ−1.5)

SBFW (proposed) yes Bi-Level O(ϵ−3) O(ϵ−1.5)

Table 1: Comparision of the stochastic first-order complexity (SFO) for the outer and inner optimization problems.1(Ji, Yang, and Liang
2020), 2 (Chen, Sun, and Yin 2021), 3 (Khanduri et al. 2021a)

to achieve a sample complexity of O(ϵ−3).
• We test the proposed algorithm on matrix completion

and establish the efficacy of the proposed techniques
compared to state-of-the-art algorithms (cf. Sec. 4). We
achieve an improvement of up to 82% in the computation
time for the proposed algorithm as compared to state-of-
the-art methods.

Related Works
A series of works proposed to solve the problem of the
form (1) has appeared recently (Yang, Ji, and Liang 2021;
Chen, Sun, and Yin 2021; Khanduri et al. 2021b; Huang
and Huang 2021). The seminal works in (Ghadimi and Wang
2018; Yang, Ji, and Liang 2021) proposed a class of double-
loop approximation algorithms to iteratively approximate
the stochastic gradient of the outer objective and incurred
a sample complexity of O(ϵ−2) in order to achieve the
ϵ-stationary point. The double loop structure of these ap-
proaches made them impractical for large-scale problems;
(Ghadimi and Wang 2018) required solving an inner op-
timization problem to a predefined accuracy, while (Yang,
Ji, and Liang 2021) required a large batch size of O(ϵ−1)
at each iteration. To address this issue, various single-loop
methods involving simultaneous updates of inner and outer
optimization variables have been developed (Chen, Sun, and
Yin 2021; Khanduri et al. 2021b; Yang, Ji, and Liang 2021).
A single-loop two-time scale stochastic algorithm proposed
in (Hong et al. 2020) incurred a sub-optimal sample com-
plexity of O(ϵ−2.5). This is further improved recently in
(Chen, Sun, and Yin 2021; Khanduri et al. 2021b; Yang,
Ji, and Liang 2021), in which the authors have utilized
the momentum-based variance reduction technique from
(Cutkosky and Orabona 2019) to obtain optimal conver-
gence rates. While all of the above-mentioned works seek to
solve (1), they all require a projection onto X at every itera-
tion. In this work, we are interested in developing projection-
free stochastic optimization algorithms for bi-level prob-
lems, which is still an open problem and the subject of the
work in this paper. A comprehensive list of all existing re-
lated works is provided in Table 1.

Motivating Example
In general, for noise-free data, the data matrix in the matrix
completion problem can be modeled as a low-rank matrix
motivating the use of the nuclear norm constraint. Low-rank
matrix completion problem arises in various applications

such as image processing, multi-task learning, and collabo-
rative filtering. However, under noisy observations, directly
solving the matrix completion problem with just the nu-
clear norm constraints can result in sub-optimal performance
(McRae and Davenport 2021). Further, noise is present in
many vision applications, and using only low-rank priors is
insufficient to recover the underlying matrix. A common ap-
proach to tackle the noise is to apply a denoising algorithm
as a pre-processing step. In general, however, it is neces-
sary to apply some heuristics since denoising algorithms re-
quire access to the full matrix, which is not available in the
pre-processing stage. Denoising is also impractical in on-
line settings, where a random subset of the matrix entries is
observed at every iteration. The bilevel optimization frame-
work provides a way out, allowing the incorporation of de-
noising steps within the inner-level sub-problem. Mathemat-
ically, the bi-level matrix completion with denoising prob-
lem can be written as

min
∥X∥∗≤α

1

|Ω1|
∑

(i,j)∈Ω1

(Xi,j −Yi,j)
2, (2)

s. t. Y ∈ argmin
V

{ 1

|Ω2|
∑

(i,j)∈Ω2

(Vi,j −Mi,j)
2

+ λ1∥V∥1 + λ2∥X−V∥2F
}
,

where M ∈ Rn×m is the given incomplete noisy matrix,
∥V∥1 :=

∑
i,j |Vi,j | is the sum-absolute-value (ℓ1) norm,

λ1 and λ2 are regularization parameters, and Ω1 and Ω2 rep-
resents the set of available entries at outer and inner level
respectively. Note that the regularization over the discrep-
ancy between X and denoised matrix Y results in bilevel
formulation (2). A similar technique in deterministic settings
is utilized in various other applications in machine learning
and signal processing problems (Crockett and Fessler 2021).
The problem in (2) is a special case of general formulation
in (1) with f(x, y⋆) :=

∑
i,j(Xi,j − Yi,j)

2 with x := X,
y⋆ := Y and g := ∥X − V∥2F with y := V. However, when
the entries are revealed in the form of randomly selected sub-
sets Ωt

1 ⊂ Ω1 and Ωt
2 ⊂ Ω2 at every iteration, it becomes

stochastic in nature. The main challenge here is due to the
nuclear norm constraint, which makes it quite computation-
ally expensive (sometimes even impractical) to solve (2) us-
ing projection-based bilevel algorithms. In Sec. 4, we will
show experimentally that the proposed algorithm SBFW is
best suited to address such challenges.



Algorithm Development
We note that solving the bi-level optimization problem in
(1) is NP-hard in general, but we restrict our focus to prob-
lems where the inner objective is continuously twice differ-
entiable in (x,y) and also strongly convex w.r.t y with pa-
rameter µg > 0. Such an assumption is common in the re-
lated works (Ghadimi and Wang 2018; Chen, Sun, and Yin
2021; Yang, Ji, and Liang 2021) and ensures that y⋆(x) is
unique for any x ∈ X . A stochastic projected gradient de-
scent update to solve (1) can be written as

xt+1 = PX [xt − αh(xt,yt; θt, ξt)] , (3)

where we can write the biased estimate h(xt,yt; θt, ξt) as

h(xt,yt; θt, ξt) (4)

= ∇xf(xt,yt; θt)−M(xt,yt; ξ̃t) · ∇yf(xt,yt; θt),

where ∇xf(xt,yt; θt) is an unbiased estimate of
∇xF (xt,yt), ∇yf(xt,yt; θt) is an unbiased estimate
of ∇yF (xt,yt), and M(xt,yt; ξ̃t) is a biased estimate
of product ∇2

xyG(yt,xt) · [∇2
yyG(yt,xt)]

−1. Here, we
have used ξt in LHS to highlight the fact that the hessian
of the function g(·) is also random in nature. The term
M(xt,yt; ξ̃t) is a biased estimation of [∇2

yyG(yt,xt)]
−1

with bounded variance. The explicit form of M(xt,yt; ξ̃t)
is

M(xt,yt; ξ̃t) =∇2
xyg(yt,xt; ξt,0)× (5)

×
[
k

Lg
Πl

i=1

(
I− 1

Lg
∇2

yyg(yt,xt; ξt,i)

)]
,

here, ξ̃t is a collection of k + 1 i.i.d. samples i.e. ξ̃t :=
{ξt,i : i ∈ {0, 1, · · · , k}}, with ξt,0 being the sample
of ∇2

xyg(yt,xt) and ξt,1, · · · , ξt,k being the i.i.d. samples
of ∇2

yyg(yt,xt). Further, the parameter l is selected uni-
formly from {1, · · · , k} and for l=0, we use the convention
Πl

i=1

(
I − 1

Lg
∇2

yyg(xt,yt; ξt,i)
)
=I . Here, I is the iden-

tity matrix, and Lg is the Lipschitz parameter for gradient
∇yg(x,y).

Similar to the update in (3), a significant challenge that
remains unaddressed to date in the literature for the bi-level
problems is associated with the projection operator in (3).
The projection is easy to evaluate when the constraint set
is a simple convex set (onto which projection operation is
computationally cheap such as probability simplex) or has a
closed-form solution (set of unit-ball). However, the projec-
tion step is often computationally costly (e.g., nuclear norm
constraint), and its complexity could be comparable to the
problem at hand (Jaggi 2013). In this work, we alleviate this
issue by proposing projection-free algorithms for bi-level
optimization problems, which is the key novel aspect of our
work.

Stochastic Projection-Free Bi-level Optimization
Before proceeding, we discuss the particular choice of yt in
(3). A popular choice (see (Chen, Sun, and Yin 2021; Hong

Algorithm 1: Stochastic Bi-level Frank Wolfe
Input: x1 ∈ X ,y1 ∈ Rm, ηt, δt, ρt, βt, and

d1 = h1(θ1; ξ1) using (4)
1 for t = 2 to T do
2 Update approximate inner optimization solution

yt = yt−1 − δt∇yg(xt−1,yt−1, ξt)

Gradient tracking evaluate h(xt,yt; θt, ξt)
and h(xt−1,yt−1; θt, ξt) using (4) and compute

dt = (1− ρt)(dt−1 − h(xt−1,yt−1; θt, ξt)

+ h(xt,yt; θt, ξt)

Evaluate feasible direction
st = argmins∈X ⟨s,dt⟩;

3 Update solution xt+1 = (1− ηt)xt + ηtst

4 Output: xT+1 or x̂ selected uniformly from {xi}Ti=1

et al. 2020; Ji, Yang, and Liang 2020)) for yt is the stochas-
tic gradient descent update for the inner optimization prob-
lem given by yt = yt−1 − δt∇yg(yt−1,xt−1; ξt), where
∇yg(yt−1,xt−1; ξt) is the unbiased estimate of the gradi-
ent Eξ [∇yg(yt−1,xt−1; ξ)], and δt > 0 denotes the step
size. Now we are ready to propose the first projection-free
algorithm for bi-level stochastic optimization problems. We
propose to use a conditional gradient method (CGM) based
approach (Jaggi 2013; Hazan and Luo 2016) instead of cal-
culating the projection in (3). That is, we solve a linear min-
imization problem to find a feasible direction st ∈ X for
a given stochastic gradient direction h(xt,yt; θt, ξt), given
by, st := argmins∈X ⟨s, h(xt,yt; θt, ξt)⟩. This reduces the
optimization problem of evaluating the projection operator
in (3) to solving a linear program which is easier to solve in
practice. Hence, the iterate in (3) gets modified to

st := argmin
x∈X

< x, h(xt,yt; θt, ξt) > (6)

xt+1 =(1− ηt+1)xt + ηt+1st, (7)
where ηt > 0 is the step size. To this end, we would like
to emphasize that naive use of h(xt,yt; θt, ξt) in (6) for the
evaluation of st which is then used in (7) can result in the it-
erate divergence due to the non-vanishing variance of the
gradient estimate (Mokhtari, Hassani, and Karbasi 2020).
The standard approach to deal with this issue is to use a
biased gradient estimate with low variance instead of an
unbiased one. For example, a mini-batch approximation is
proposed in (Hazan and Luo 2016; Reddi et al. 2016) with
linearly increasing batch size with iteration index. Such an
approach runs into memory issues when utilized in prac-
tice. To address the issue of memory and iterate divergence,
we took motivation from the momentum-based approach in
(Cutkosky and Orabona 2019) and propose to use the fol-
lowing gradient tracking scheme given by

dt =(1− ρt)(dt−1 − h(xt−1,yt−1; θt, ξt))

+ h(xt,yt; θt, ξt). (8)
We remark that such a tracking technique is recently utilized
in (Khanduri et al. 2021b) for projection-based bi-level op-



timization problems. However, in this work, our focus lies
in developing projection-free algorithms, and hence analy-
sis is significantly different from (Khanduri et al. 2021b).
Our proposed algorithm is summarised in Algorithm 1.

Convergence Analysis: SBFW
We will start with the assumptions required to perform the
analysis in this work that is similar to the assumptions con-
sidered in the existing literature (Hong et al. 2020; Khanduri
et al. 2021a).

Assumption 1 For some σ2
x > 0, σ2

y > 0, σ2
xy > 0, and

σ2
g > 0 we have E[{∇xf(x,y) − ∇xf(x,y, θ)}2] ≤ σ2

x,
E[{∇yf(x,y)−∇yf(x,y, θ)}2] ≤ σ2

y,
E[{∇2

xyg(x,y)−∇2
xyg(x,y, θ)}2] ≤ σ2

xy,
E[{∇yg(x,y)−∇yg(x,y, ξ)}2] ≤ σ2

g .

Assumption 2 For any given x ∈ X , the terms ∇xf(x,y),
∇yf(x,y), ∇yg(x,y), ∇2

xyg(x,y) and ∇2
yyg(x,y) are

Lipschitz continuous with respect to y with Lipschitz param-
eter Lfx , Lfy , Lg , Lgxy and Lgyy , respectively. Similarly,
for any given y ∈ Rn, the terms ∇yf(x,y), ∇2

xyg(x,y)

and ∇2
yyg(x,y) are Lipschitz continuous with respect to x

with positive constants Lfy , Lgxy and Lgyy , respectively.
Note that for the sake of simplicity, here we slightly abused
the notation and used the same constants.

Assumption 3 For all x ∈ X and y ∈ Rn, it holds that
E[∥∇yf(x,y)∥] ≤ Cy and E[∥∇2

xyg(x,y)∥] ≤ Cxy for
some for constants Cy > 0 and Cxy > 0.

Assumption 4 The inner function g(x,y) is µg-strongly
convex in y for any x ∈ X .

We start the analysis by presenting intermediate Lemmas 1-
2 and Corollary 1 which eventually leads to the main result
of this section presented in Theorem 1.

Lemma 1 Consider the proposed Algorithm 1 and xt ∈ N+

be the iterates generated by it, then for the algorithm param-
eter δt ≤ min{ 2

3µg
,

µg

2(1+σ2
g)L

2
g
} and step size ηt, it holds

that
(i) the optimality gap of the lower level problem satisfies

Et[∥yt − y⋆(xt)∥2] ≤
(
1− δtµg

2

)
(9)

Et[∥yt−1 − y⋆(xt−1)∥2] +
2η2t−1

δtµg

(
Cxy

µg

)2

D2 + 4δ2t σ
2
g .

(ii) Also, for the constant b1 defined as b1 =

max{2q ∥y1 − y⋆(x1)∥2 , (2(Cxy/µg)
2D2 + 16a20

σ2
g)/(2a0 −1)}, it holds that

E[∥yt − y⋆(xt)∥] ≤
b1

(t+ 1)q
, (10)

The proof Lemma 1 is provided in Appendix 4. Lemma 1
quantifies how close yt is from the optimal solution of the
inner problem at xt and establishes the progress of the inner-
level update.
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Figure 1: Left: Comparision between the proposed SBFW algo-
rithm for matrix completion problem on MovieLens 100k dataset
with TTSA (Hong et al. 2020), MSTSA (Khanduri et al. 2021a),
and SUSTAIN (Khanduri et al. 2021b). Right: This figure com-
pares the normalized error concerning computation time required
for SBFW and SUSTAIN(Khanduri et al. 2021a) on MovieLens
1M dataset.

Lemma 2 Consider the proposed Algorithm 1 and xt ∈ N+

be the iterates generated by it, then for the algorithm param-
eter δt, ρt, and ηt, we have

Et[∥dt −∇S(xt,yt)−Bt∥2

≤ (1− ρt)
2Et[∥(dt−1 −∇S(xt−1,yt−1)−Bt−1)∥2]

+ 4Lkδ
2
tL

2
g + 4Lkη

2
t−1D

2 + 2ρ2tσ
2
f . (11)

where the bias Bt is defined as Bt := E[h(xt,yt; θt, ξt)] −
∇S(xt,yt).

The proof of Lemma 2 is provided in Appendix 4, which is
based on the proof of Lemma C.3 of (Khanduri et al. 2021a).
However, different from (Khanduri et al. 2021a), our proof
bounds the term ∥xt − xt−1∥2 using the update equation
xt+1 = (1−ηt)xt+ηtst from Algorithm 1 along with com-
pactness assumption of the domain X . Lemma 2 describe
the tracking error in the gradient approximation ∇S(x,y)
at point xt and yt. The presence of (1 − ρt)

2 term in RHS
of (11) shows that the variance of the tracking error reduces
with iteration. Next, we utilize Lemma 1-(2) to establish a
bound on the gradient estimation error for ∇Q as Corollary
1.
Corollary 1 For the proposed Algorithm 1, with δt = 2a0

tq ,
where a0 = min{ 1

3µg
,

µg

2(1+σ2
g)L

2
g
}, ρt = 2

tq , βt ≤ CxyCy

µg(t+1)q

and ηt ≤ 2
(t+1)3q/2

for 0 < q ≤ 1, the gradient approx-

imation error E ∥∇Q(xt)− dt∥2 converges to zero at the
following rate

E ∥∇Q(xt)− dt∥2 ≤ C1

(t+ 1)q
, (12)

where C1 = 3(max{2q ∥y1 − y⋆(x1)∥2 , (2(Cxy/µg)
2D2

+16a20σ
2
g)/(2a0−1)}+ CxyCy

µg
+8(2LkL

2
g+LkD

2+σ2
f )).

The proof of Corollary 1 is provided in Appendix 4. The
result in Corollary 1 is presented in general form and in-
dicates that for properly chosen parameters q, the gradient
approximation error in expectation decreases at each itera-
tion and approaches zero asymptotically. We will use this
upper bound to prove the convergence of the proposed al-
gorithm SBFW for different types of objective functions in



Dataset #users #movies #ratings Time
SUSTAIN SBFW %imp.

Movielens 100k 1000 1700 105 959 sec. 433 sec. 55%
Movielens latest 600 9000 105 66.6 mins. 12.9 mins. 81%
Movielens 1M 6000 4000 106 10.16 hrs. 1.82 hrs. 82%

Table 2: Comparison of computation time of the proposed algo-
rithm SBFW and the state-of-the-art projection-based algorithm
SUSTAIN over the different sizes of real data sets.

the following theorem. Note that in the analysis of Corollary
1 we have set βt ≤ CxyCy

µg(t+1)q . To satisfy this condition, the
number of samples k at iteration t needed to approximate
the Hessian inverse in (5) is k = O(log((1 + t)q)).

Now we are ready to present the first main result of this
work as Theorem 1.
Theorem 1 Consider the proposed Algorithm 1 with δt =
a0

t2/3
, where a0 = min{ 2

3µg
,

µg

2(1+σ2
g)L

2
g
}, ρt = 2

t2/3
, ηt =

2
t+1 and k =

2Lg

3µg
(log(1 + t)), then the output is feasible

xT+1 ∈ X and satisfies

E[Q(xT+1)−Q(x⋆)] ≤ 12D
√
C1

5(T + 1)
1
3

+
2LQD

2

(T + 1)
. (13)

here LQ =
(Lfy+L)Cxy

µg
+ Lfx + Cy

[
LgxyCy

µg
+

LgyyCxy

µ2
g

]
and C1 = 3(max{2∥y1 − y⋆(x1)∥2, (2(Cxy/µg)

2D2 +

16a20σ
2
g)/ (2a0 − 1)}+ CxyCy

µg
+8(2LkL

2
g +LkD

2 +σ2
f )).

The proof of Theorem 1 is provided in Appendix 4. Theo-
rem 1 shows that the optimality gap for SBFW decays as
O(T−1/3) for general convex objectives, where T is the to-
tal number of iterations. We note that for at each iteration,
SBFW requires 2k + 1 gradient samples to obtain gradi-
ent estimate: 2k samples for outer gradient estimate (8) and
one sample for the inner variable update. Further, we have
set k ≈ O(log(t)). Hence, the SFO complexity of SBFW
for the outer objective is O(log(ϵ−1)ϵ−3) ≈ O(ϵ−3). Simi-
larly, observe that E[∥yt−y⋆(xt)∥] ≤ O((t+1)−q), where
q = 2/3 (as δt = O(t−2/3)). Hence, the SFO complexity of
the inner objective for SBFW is O(ϵ−1.5). It can be seen that
complexity for the inner level objective of the proposed al-
gorithm SBFW is comparable to the projection-based state-
of-the-art methods (Ji, Yang, and Liang 2020; Chen, Sun,
and Yin 2021; Khanduri et al. 2021b); however, it shows
slightly worse performance in terms of the outer level com-
plexity. This is not surprising as we are tackling the outer
level in a projection-free manner.

Numerical Experiments
In this section, first, we consider the problem of low-rank
matrix completion formulated in (2) to illustrate the per-
formance of our proposed SBFW algorithm. All the exper-
iments are performed in MATLAB R2018a with Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz. To test the scalabil-
ity of our proposed projection-free algorithm, we run an ex-
periment over large-size matrices of MovieLens 1 datasets,

1https://grouplens.org/datasets/movielens/

which contain user ratings of movies ranging from 0 to 5. We
start with Movielens 100k dataset of 105 ratings from 1000
users for 1700 movies. This dataset is denoted by observa-
tion matrix M of size 1000× 1700. For the simulations, we
define the set of observed entries Ω by sampling the matrix
uniformly at random from M with a batch size of b = 500.

Note that as SBFW is a single loop algorithm, we compare
the performance of SBFW with other state-of-the-art sin-
gle loops projection-based bilevel algorithms such as SUS-
TAIN (Khanduri et al. 2021b), TTSA (Hong et al. 2020),
and MSTSA (Khanduri et al. 2021a) . Fig. 1 plots the evo-
lution of normalized error for 2500 iterations for all the al-
gorithms. We note (Fig. 1(left)) that the proposed algorithm
is not the best in terms of the convergence rate when com-
pared to projection-based schemes, which is expected from
the slower theoretical convergence rates. However, when
compared in terms of the amount of clock time required to
achieve the same level of normalized error (0.68 × 10−1),
the proposed scheme outperforms the other state-of-the-art
methods as shown in the bar plot of Fig. 1(left).

To further highlight the importance of the projection-free
bilevel algorithm in practice, we perform additional exper-
iments on a larger dataset (of MovieLens 1M), which con-
tains 1 million ratings from 6000 users and for 4000 movies.
We plot the evolution of normalized error with time in
Fig. 1(right), where we only compare SBFW against SUS-
TAIN, which is the state-of-the-art projection-based bilevel
algorithm. It is interesting to note that even though SUS-
TAIN has a better theoretical convergence rate, it shows in-
ferior performance in actual computation time (due to the
projection operation) compared to SBFW, as evident from
Fig. 1(right). In Table 2, we provide computation time com-
parisons (to complete 103 iteration) of both the algorithms
(under same settings) over different real datasets. Observe
that for large data sets, SBFW is approximately 10× faster
than the SUSTAIN and exhibits an improvement upto 82%
in the computation time. This performance gain in terms of
computation time comes from the fact that other methods re-
quire performing projections over the nuclear norm at each
iteration which is computationally expensive due to the com-
putation of full singular value decomposition. In contrast,
SBFW solves only a single linear program at each iteration,
which only requires the computation of singular vectors cor-
responding to the highest singular value.

Conclusion

This paper presents the first projection-free algorithm for
stochastic bi-level optimization problems with a strongly
convex inner objective function. We utilize the concept of
momentum-based tracking to track the stochastic gradient
estimate and establish the oracle complexities of the pro-
posed SBFW algorithm for the convex outer objective func-
tions. Numerical results show that the proposed projection-
free variant has a significantly reduced wall-clock time as
compared to its projection-based counterparts.

https://grouplens.org/datasets/movielens/


Appendix
We will start with deriving an upper bound on the expected
estimation error when the momentum-based method is em-
ployed to track the function or gradient.
Lemma 3 Let us estimate function Ψ(x) = Eξ[Ψ(x, ξ)] by
yt using step size δt as follows

yt = (1− δt)(yt−1 −Ψ(xt−1, ξt)) + Ψ(xt, ξt). (14)

Then the expected tracking error Et[∥yt−Ψ(xt)∥2] satisfies

Et[∥yt −Ψ(xt)∥2] ≤ (1− δt)
2∥(yt−1 −Ψ(xt−1))∥2

+ 2(1− δt)
2Et[∥Ψ(xt, ξt)−Ψ(xt−1, ξt)∥2]

+ 2δ2tEt[∥Ψ(xt, ξt)−Ψ(xt)∥2]. (15)

Proof: Consider the update equation in (14), add/subtract
the term (1 − δt)Ψ(xt−1) in the right hand side of (14) to
obtain

yt = (1− δt)(yt−1 −Ψ(xt−1, ξ)) + Ψ(xt, ξt)

+ (1− δt)Ψ(xt−1)− (1− δt)Ψ(xt−1). (16)

Subtract Ψ(xt) from both sides in (16) and take norm
square:

∥yt −Ψ(xt)∥2 = ∥(1− δt)(yt−1 −Ψ(xt−1)) (17)

− (1− δt)(Ψ(xt−1, ξt)−Ψ(xt−1)) + Ψ(xt, ξt)−Ψ(xt)∥2.
Now, expand the square and calculate conditional expecta-
tion Et = E[(·)|Ft] to obtain

Et[∥yt −Ψ(xt)∥2] = (1− δt)
2 ∥(yt−1 −Ψ(xt−1))∥2

(18)
− 2⟨(1− δt)(yt−1 −Ψ(xt−1)), (1− δt)(Et[Ψ(xt−1)

−Ψ(xt−1, ξt)]) + Et[Ψ(xt)−Ψ(xt, ξt)]⟩
+Et∥(1−δt)(Ψ(xt−1, ξt)−Ψ(xt−1))+Ψ(xt)−Ψ(xt, ξt)∥2.
Note that Et[Ψ(xt−1) − Ψ(xt−1, ξt)] = 0 and Et[Ψ(xt) −
Ψ(xt, ξt)] = 0, which implies that

Et[∥yt −Ψ(xt)∥2]
= (1− δt)

2 ∥(yt−1 −Ψ(xt−1))∥2 (19)

+Et ∥(1−δt)(Ψ(xt−1,ξt)−Ψ(xt−1))+Ψ(xt)−Ψ(xt, ξt)∥2

≤ (1− δt)
2 ∥(yt−1 −Ψ(xt−1))∥2 +

+ 2(1− δt)
2Et[∥Ψ(xt, ξt)−Ψ(xt−1, ξt)∥2]

+ 2δ2tEt[∥Ψ(xt, ξt)−Ψ(xt)∥2] (20)

where the last inequality holds due to the fact that
E ∥X − E[X] + Y ∥2 ≤ 2E ∥X∥2 + 2E ∥Y ∥2 for any two
random variables X and Y .

Before proceeding, we will discuss some of the existing
results which are useful for the analysis in this paper.
Lemma 4 [(Ghadimi and Wang 2018), Lemma 2.2] Under
Assumption1, the following statements hold.
(a) For any x ∈ X and y ∈ Rn,

∥∇S(x,y)−∇Q(x)∥ ≤ L ∥y⋆(x)− y∥ , (21)

where L := Lfx+
LfyCxy

µg
+Cy

[
Lgxy

µg
+

LgyyCxy

µ2
g

]
and

all the constants are as defined in Assumption1.

(b) The inner optimal solution y⋆(x) is Cxy

µg
-Lipschitz con-

tinuous in x, which implies that for any x1,x2 ∈ X , it
holds that ∥y⋆(x1)− y⋆(x2)∥ ≤ Cxy

µg
∥x1 − x2∥.

(c) The gradient of outer objective ∇Q isLQ-Lipschitz con-
tinuous in x, which implies that for any x1,x2 ∈ X , it
holds that ∥Q(x1)−Q(x2)∥ ≤ LQ ∥x2 − x1∥ where

LQ :=
(Lfy+L)Cxy

µg
+ Lfx + Cy

[
LgxyCy

µg
+

LgyyCxy

µ2
g

]
.

Lemma 5 [(Khanduri et al. 2021b), Lemma 4.1] Suppose
Assumption1 holds, and the gradient estimate h(x,y; θ, ξ)
is constructed with k number of samples using (4), then
(a) for any x ∈ X and y1,y2 ∈ Rn, we have

Et∥h(x,y1;θt,ξt)−h(x,y2;θt,ξt)∥2≤LkEt∥y1−y2∥2
(22)

(b) for any y ∈ Rn and x1,x2 ∈ X , we have

Et∥h(x1,y;θt,ξt)−h(x2,y;θt,ξt)∥2≤ LkEt∥x1−x2∥2;

Lk = 2L2
fx+

6k[(Lg−µg)
2(C2

gxy
L2

fy
+C2

fy
L2

gxy
)+k2C2

gxy
C2

fy
L2

gyy
]

µg(2Lg−µg)
.

Lemma 6 [Lemma 2 (Akhtar and Rajawat 2021)] Let ψt be
a sequence of real numbers which satisfy

ψt+1 =

(
1− c1

(t+ t0)r1

)
ψt +

c2
(t+ t0)r2

(23)

for some r1 ∈ (0, 1] such that r1 ≤ r2 ≤ 2r1, c1 > 1, and
c2 ≥ 0. Then, for c = max{ψ1(t0 + 1)r2−r1 , c2

c1−1}, ψt+1

would converge to zero at the following rate

ψt+1 ≤ c

(t+ t0 + 1)r2−r1
, (24)

Lemma 7 Under Assumption 1, consider the estimator de-
fined in (4), then

(i) define bias Bt:=E[h(xt,yt; θt, ξt)]−∇S(xt,yt), it
holds that we have,

∥Bt∥ ≤ (CxyCy/µg) (1− (µg/Lg))
k
, (25)

E∥h(xt,yt; θt, ξt)−∇S(xt,yt)−Bt∥2 ≤ σ2
f , (26)

where σ2
f=σ

2
x + 3

µ2
g

[
(σ2

y+C
2
y)(σ

2
xy+2C2

xy)+σ
2
yC

2
xy

]
.

(ii) For t ≥ 0, it is possible select k (required to approxi-
mate the Hessian inverse in (5)) such that ∥Bt∥ ≤ βt where
βt ≤ cta for some constant c and a > 0.

Proof: For proof of Lemma (7)(i) see [Lemma 11, (Hong
et al. 2020)]. The proof Lemma (7)(ii) is straightforward.
From (25) we have βt =

(
O(1− µg/Lg)

k
)
. Now on setting

k = O(log(t)) we can get the required condition as βt ≤
cta. It shows that with proper selection of k, we can make
the bias to decay polynomially to zero.

Proof of Lemma 1
From the update step 2 of Algorithm 1, we can write

Et[∥yt − y⋆(xt−1)∥2] (27)

= Et[∥yt−1 − δt∇yg(xt−1,yt−1, ξt)− y⋆(xt−1)∥2].



By expanding the square and taking conditional expectation
term inside the inner product terms, we obtain

Et[∥yt − y⋆(xt−1)∥2]
= Et[∥yt−1 − δt∇yg(xt−1,yt−1, ξt)− y⋆(xt−1)∥2]
= Et[∥yt−1 − y⋆(xt−1)∥2]
+ δ2tEt[∥∇yg(xt−1,yt−1, ξt)∥2]
− 2δtEt[⟨yt−1−y⋆(xt−1),∇yg(xt−1,yt−1, ξt)⟩]

(28)

≤ Et[∥yt−1 − y⋆(xt−1)∥2]
+ δ2tEt[∥∇yg(xt−1,yt−1, ξt)∥2]
− 2δtµgEt[∥yt−1 − y⋆(xt−1)∥2] (29)

= (1− 2δtµg)Et[∥yt−1 − y⋆(xt−1)∥2]
+ δ2tEt[∥∇yg(xt−1,yt−1, ξt)∥2] (30)

here (28) comes from the fact that
Et[∇yg(xt−1,yt−1, ξt)] = ∇yg(xt−1,yt−1), while (29)
comes from using the strong convexity property of function
g. Now consider the last term Et∥∇yg(xt−1,yt−1, ξt)∥2 of
(30):

Et[∥∇yg(xt−1,yt−1, ξt)∥2] (31)
= Et∥∇yg(xt−1,yt−1,ξt)+∇yg(xt−1,yt−1)

−∇yg(xt−1,yt−1)∥2

≤ 2Et[∥∇yg(xt−1,yt−1, ξt)−∇yg(xt−1,yt−1)∥2]
+ 2∥∇yg(xt−1,yt−1)∥2, (32)

where we use the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2.
From Assumption 1, we can further upper bound (31) as

Et[∥∇yg(xt−1,yt−1, ξt)∥2]
≤ 2σ2

g(1 + ∥∇yg(xt−1,yt−1)∥2) + 2∥∇yg(xt−1,yt−1)∥2

= 2σ2
g + 2(1 + σ2

g)∥∇yg(xt−1,yt−1)∥2 (33)

≤ 2σ2
g+2(1+σ2

g)∥∇yg(xt−1,yt−1)−∇yg(xt−1,y
⋆(xt−1))∥2

≤ 2σ2
g + 2(1 + σ2

g)L
2
g∥yt−1 − y⋆(xt−1)∥2 (34)

where we used the fact that ∇yg(xt−1,y
⋆(xt−1)) = 0. Sub-

stituting the upper bound in (33) in (30) we obtain

Et[∥yt − y⋆(xt−1)∥2] ≤ [(1− 2δtµg)

+ 2δ2t (1 + σ2
g)L

2
g]Et[∥yt−1 − y⋆(xt−1)∥2] + 2δ2t σ

2
g

≤ (1− δtµg)Et[∥yt−1 − y⋆(xt−1)∥2] + 2δ2t σ
2
g . (35)

The last inequality in (35) is obtained by selecting δt such
that 2δt(1 + σ2

g)L
2
g ≤ µg . To proceed next, we use Young’s

inequality to bound the term Et[∥yt − y⋆(xt)∥2] in (35) as

Et[∥yt − y⋆(xt)∥2] ≤
(
1 + 1

α

)
Et[∥yt − y⋆(xt−1)∥2]

(36)

+ (1 + α)Et[∥y⋆(xt)− y⋆(xt−1)∥2]
≤

(
1 + 1

α

)
Et[∥yt − y⋆(xt−1)∥2]

+ (1 + α)
(

Cxy

µg

)2

Et ∥xt − xt−1∥2]

≤
(
1 + 1

α

)
Et[∥yt−y⋆(xt−1)∥2]+(1+α)

(
Cxy

µg

)2

η2t−1D
2

where the second inequality comes from Lemma 4(b), and
the last inequality comes from the update equation and the
compactness of the domain X . Utilizing (35) into (36), we
get

Et[∥yt − y⋆(xt)∥2]

≤
(
1 +

1

α

)
(1− δtµg)Et[∥yt−1 − y⋆(xt−1)∥2]

+

(
1 +

1

α

)
2δ2t σ

2
g + (1 + α)

(
Cxy

µg

)2

η2t−1D
2. (37)

To proceed next, we substitute α =
2(1−δtµg)

δtµg
which also

implies that
(
1 + 1

α

)
(1− δtµg) = 1− µgδt

2 :

Et[∥yt − y⋆(xt)∥2] ≤
(
1− δtµg

2

)
Et ∥yt−1 − y⋆(xt−1)∥2

+
2− δtµg

δtµg

(
Cxy

µg

)2

η2t−1D
2 +

(
1 +

1

α

)
2δ2t σ

2
g

≤
(
1− δtµg

2

)
Et ∥yt−1 − y⋆(xt−1)∥2+

2η2
t−1

δtµg

(
Cxy

µg

)2

D2

+4δ2t σ
2
g , (38)

where the second inequality comes from the fact that
2−δtµg

δtµg
< 2

δtµg
while in the last inequality, we have assumed

that δt is chosen such that δt ≤ 2
3µg

giving 1 + 1
α ≤ 2. In

Corollary 1 we will see that our choice of step sizes satisfies
these conditions.

To prove part (ii), we start with writing Lemma 1
(i) for t = t + 1 and set δt = 2a0

tq where a0 =

min{ 1
3µg

,
µg

2(1+σ2
g)L

2
g
} and ηt = 2

(t+1)
3q
2

, which gives

Et ∥yt+1 − y⋆(xt+1)∥2 ≤
(
1− 2a0

(t+1)q

)
Et ∥yt − y⋆(xt)∥2

+
2

(t+ 1)3q−q

(
Cxy

µg

)2

D2 +
16a20

(t+ 1)2q
σ2
g (39)

=
(
1− 2a0

(t+1)q

)
Et[∥yt − y⋆(xt)∥2] +

2(Cxy/µg)
2D2+16a2

0σ
2
g

(t+1)2q .

Note such selection of δt ensures that the conditions 2δt(1+
σ2
g)L

2
g ≤ µg and δt ≤ 2

3µg
required in Lemma 1 are sat-

isfied. Now taking full expectation and using Lemma 6 we
get

E[∥yt − y⋆(xt)∥] ≤
b1

(t+ 1)q
, (40)



where b1 = max{2q ∥y1 − y⋆(x1)∥2 , (2(Cxy/µg)
2D2 +

16a20σ
2
g)/(2a0 − 1)}.

Proof of Lemma 2
Starting with update equation (8) and employing Lemma 3
we can write

Et[∥dt −∇S(xt,yt)−Bt∥2 (41)

≤ (1− ρt)
2Et[∥(dt−1 −∇S(xt−1,yt−1)−Bt−1)∥]

+ 2(1− ρt)
2Et∥h(xt,yt; θt, ξt)− h(xt−1,yt−1; θt, ξt)∥2

+ 2ρ2tEt[∥h(xt,yt; θt, ξt)−∇S(xt,yt)−Bt)∥2]
≤ (1− ρt)

2Et[∥(dt−1 −∇S(xt−1,yt−1)−Bt−1)∥]
+ 2Et[∥h(xt,yt; θt, ξt)− h(xt−1,yt−1; θt, ξt)∥2 + 2ρ2tσ

2
f ,

here the last inequality is obtained using (26) and the fact
that (1− ρ2t ) ≤ 1. Now we introduce h(xt,yt−1; θt, ξt) and
bound the second term of RHS of (41) as

Et[∥h(xt,yt; θt, ξt)− h(xt−1,yt−1; θt, ξt)∥2]
= Et∥h(xt,yt; θt, ξt)− h(xt−1,yt−1; θt, ξt)

+ h(xt,yt−1; θt, ξt)− h(xt,yt−1; θt, ξt)∥2

(a)

≤ 2Et[∥h(xt,yt; θt, ξt)− h(xt,yt−1; θt, ξt)∥2

+ 2Et[∥h(xt−1,yt−1; θt, ξt)− h(xt,yt−1; θt, ξt)∥2

(b)

≤ 2LkEt∥yt − yt−1∥2 + 2LkEt∥xt−1 − xt∥2

(c)

≤ 2Lkδ
2
tEt ∥∇yg(xt−1,yt−1, ξt)∥2 + 2Lkη

2
t−1D

2

(d)

≤ 2Lkδ
2
tL

2
g + 2Lkη

2
t−1D

2, (42)

here (a) comes from simple norm property, (b) comes from
Lemma 5, (c) comes from the update equation while (d)
comes from Assumption 1 and from the compactness of the
set. Using (42) in (41), we get the desired expression.

Proof Corollary 1
We start with setting δt = 2a0

(t)q , ηt = 2

(t+1)
3q
2

and ρt = 2
(t)q

in Lemma 2 to obtain

Et[∥dt+1 −∇S(xt+1,yt+1)−Bt+1∥2] (43)

≤
(
1− 2

(t+ 1)q

)
Et[∥(dt −∇S(xt,yt)−Bt)∥2]

+
16LkL

2
g + 16LkD

2 + 8σ2
f

(t+ 1)2q
, (44)

here the last inequality is obtained using the fact 1/(t +
1)3q ≤ 1/(t+ 1)2p. Application of Lemma 6 gives

Et[∥dt −∇S(xt,yt)−Bt∥2] ≤
b2

(t+ 2)q
, (45)

where b2 = max{2q ∥d1 −∇S(x1,y1)−B1∥2 , 8(2LkL
2
g+

LkD
2 + σ2

f )} = 8(2LkL
2
g + LkD

2 + σ2
f ). As,

we have initialize d1 = h(x1,y1; θ1, ξ1) we

can use the bound ∥d1 −∇S(x1,y1)−B1∥2 =

∥h(x1,y1; θ1, ξ1)−∇S(x1,y1)−B1∥2 ≤ σ2
f . Next,

we can bound the term E ∥∇Q(xt)− dt∥2 as follows

E ∥∇Q(xt)− dt∥2 (46)

= E ∥∇Q(xt)− dt +Bt +∇S(xt,yt)−Bt −∇S(xt,yt)∥2

≤ 3E ∥∇Q(xt)−∇S(xt,yt)∥2 + 3 ∥Bt∥2

+ 3E ∥∇S(xt,yt) +Bt − dt∥2

≤ 3E ∥y⋆(xt)− yt∥2 + 3β2
t +

3b2
(t+ 1)q

≤ 3b1
(t+ 1)q

+
3b3

(t+ 1)q
+

3b2
(t+ 1)q

:=
C1

(t+ 1)q
, (47)

here second inequality comes from simple norm prop-
erty, while the third inequality is obtained using Lemma
(4)(a) on the first term, Lemma 7 on the second term,
and (45) on the third term. The last inequality comes
from (40) and using βt ≤ CxyCy

µg(t+1)q := b3
(t+1)q and

the constant C1 = 3(b1 + b2 + b3) is defined as
C1 = 3(max{2q ∥y1 − y⋆(x1)∥2 , (2(Cxy/µg)

2D2 +

16a20σ
2
g)/(2a0 − 1)}+8(2LkL

2
g +LkD

2 + σ2
f ) +

CxyCy

µg
).

Proof of Theorem 1
From the initialization of variable x, we have x1 ∈ X .
Also since we obtain st solving a linear minimization prob-
lem over the set X , we have st ∈ X . Thus, xt+1 which
is a convex combination of xt and st, i.e. xt+1 = (1 −
ηt+1)xt+ηt+1st will also lie in the set X . Hence xT+1 ∈ X
and x̂ ∈ X . Now, starting with definition of Q(·), we
have Q(x) = Eθ[f(x,y

⋆(x); θ)]. Also note that we have
set k =

qLg

µg
(log(1 + t)), this ensures that the condition

βt ≤ CxyCy

µg(t+1)q required in the analysis of Corollary (1) is
satisfied. Hence, we can use results from Corollary (1) with
q = 2/3 for convex case.

Using the smoothness assumption of Q we can write

Q(xt+1)−Q(xt)

≤⟨∇Q(xt),xt+1 − xt⟩+
LQ

2
∥xt+1−xt∥2

= ηt⟨∇Q(xt), st − xt⟩+
LQη

2
t

2
∥st − xt∥2 , (48)

where LQ =
(Lfy+L)Cxy

µg
+Lfx +Cy

[
LgxyCy

µg
+

LgyyCxy

µ2
g

]
(see Lemma 4). Here, in the last expression we have replace
term xt+1 − xt = ηt(st − xt). Now adding and subtracting
ηt⟨dt, st − xt⟩ in (48) we get

Q(xt+1) ≤ Q(xt) + ηt⟨∇Q(xt)− dt, st − xt⟩

+ ηt⟨dt,x
⋆ − xt⟩+

LQη
2
tD

2

2
, (49)

here in last the inequality is obtained using optimality of st.
Now introducing ηt⟨∇Q(xt),x

⋆ − xt⟩ in RHS of (49) and



regrouping the terms we obtain

Q(xt+1)−
LQη

2
tD

2

2
(50)

≤ Q(xt) + ηt⟨∇Q(xt)− dt, st − x⋆⟩
+ ηt⟨∇Q(xt),x

⋆ − xt⟩
≤ Q(xt) + ηtD ∥∇Q(xt)− dt∥+ ηt⟨∇Q(xt),x

⋆ − xt⟩
≤ Q(xt) + ηtD ∥∇Q(xt)− dt∥ − ηt(Q(xt)−Q(x⋆)),

here in the second inequality we use bound ηt⟨∇Q(xt) −
dt, st − x⋆⟩ ≤ ηt ∥∇Q(xt)− dt∥ ∥st − x⋆∥ ≤
ηtD ∥∇Q(xt)− dt∥ and in last inequality we used the
bound ⟨∇Q(xt),x

⋆ − xt⟩ ≤ Q(x⋆) − Q(xt). Subtracting

Q(x⋆), taking expectation and using E ∥X∥ ≤
√
E ∥X∥2

we get

E[Q(xt+1)−Q(x⋆)] ≤ (1− ηt)E[Q(xt)−Q(x⋆)]

+ ηtD

√
E ∥∇Q(xt)− dt∥2 +

LQη
2
tD

2

2
.

(51)

Further, setting q = 2/3 hence, ηt = 2
t+1 and us-

ing Corollary 1, we can bound the second term of (51)

ηtD

√
E ∥∇Q(xt)− dt∥2 ≤ 2D

√
C1

(t+1)4/3
. which gives

E[Q(xt+1)−Q(x⋆)] ≤
(
1− 2

t+ 1

)
E[Q(xt)−Q(x⋆)]

+
2D

√
C1

(t+ 1)
4
3

+
2LQD

2

(t+ 1)2
. (52)

Multiplying both side by t(t+ 1) we can write

t(t+ 1)E[Q(xt+1)−Q(x⋆)] (53)

≤ t(t− 1)E[Q(xt)−Q(x⋆)] +
2tD

√
C1

(t+ 1)
1
3

+
2tLQD

2

t+ 1

≤ t(t− 1)E[Q(xt)−Q(x⋆)] + 2D
√
C1(t+ 1)

2
3 + 2LQD

2,

Summing for t = 1, 2, · · · , T and rearranging we get

E[Q(xT+1)−Q(x⋆)]

≤ 1

T (T + 1)

(
6

5
D
√
C1(T + 1)

5
3 + 2LQD

2T

)
≤ 12D

√
C1

5(T + 1)
1
3

+
2LQD

2

(T + 1)
, (54)

here we use the fact that
∑T

t=1(t+ 1)2/3 ≤ 3
5 (T + 1)5/3.
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