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Abstract

We show that reinforcement learning with verifiable reward using one training
example (/-shot RLVR) is effective in incentivizing the mathematical reasoning
capabilities of large language models (LLMs). Applying RLVR to the base model
Qwen2.5-Math-1.5B, we identify a single example that elevates model performance
on MATHS500 from 36.0% to 73.6% (8.6% improvement beyond format correc-
tion), and improves the average performance across six common mathematical
reasoning benchmarks from 17.6% to 35.7% (7.0% non-format gain). This result
matches the performance obtained using the 1.2k DeepScaleR subset (MATHS500:
73.6%, average: 35.9%), which contains the aforementioned example. Furthermore,
RLVR with only two examples even slightly exceeds these results (MATHS500:
74.8%, average: 36.6%). Similar substantial improvements are observed across
various models (Qwen2.5-Math-7B, Llama3.2-3B-Instruct, DeepSeek-R1-Distill-
Qwen-1.5B), RL algorithms (GRPO and PPO), and different math examples. In
addition, we identify some interesting phenomena during 1-shot RLVR, including
cross-category generalization, increased frequency of self-reflection, and sustained
test performance improvement even after the training accuracy has saturated, a
phenomenon we term post-saturation generalization. Moreover, we verify that
the effectiveness of 1-shot RLVR primarily arises from the policy gradient loss,
distinguishing it from the "grokking" phenomenon. We also show the critical role
of promoting exploration (e.g., by incorporating entropy loss with an appropriate
coefficient) in 1-shot RLVR training. We also further discuss related observations
about format correction, label robustness and prompt modification. These findings
can inspire future work on RLVR efficiency and encourage a re-examination of
recent progress and the underlying mechanisms in RLVR. Our code, models, and
data are open source at https://github. com/ypwang61/0ne-Shot-RLVR.

1 Introduction

Recently, significant progress has been achieved in enhancing the reasoning capabilities of large
language models (LLMs), including OpenAl-ol [1]], DeepSeek-R1 [2], and Kimi-1.5 [3]], particularly
for complex mathematical tasks. A key method contributing to these advancements is Reinforcement
Learning with Verifiable Reward (RLVR) [4} 5,2, 3], which commonly employs reinforcement learn-
ing on an LLM with a rule-based outcome reward, such as a binary reward indicating the correctness
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Figure 1: RLVR with 1 example (green) can perform as well as using datasets with thousands of
examples (blue). Left/Right corresponds to MATH500/Average performance on 6 mathematical rea-
soning benchmarks (MATH500, AIME24, AMC23, Minerva Math, OlympiadBench, and AIME25).
Base model is Qwen2.5-Math-1.5B. 7; and 73 are examples defined by Eqn. 2] and detailed in
Tab. 2] and they are from the 1.2k DeepScalerR subset (DSR-sub). Setup details are in Sec. We
find that RLVR with 1 example {713} (35.7%) performs close to that with 1.2k DSR-sub (35.9%),
and RLVR with 2 examples {71, 713} (36.6%) even performs better than RLVR with DSR-sub and
as well as using 7.5k MATH train dataset (36.7%). (-011) (Appendix [C.2.3) serves
as a baseline for format correction. Detailed results are in Appendix [C.1.1] Additional results for
non-mathematical reasoning tasks are in Tab. E}

of the model’s final answer to a math problem. Several intriguing empirical phenomena have been
observed in RLVR, such as the stimulation or enhancement of specific cognitive behaviors [6] (e.g.,
self-reflection) and improved generalization across various downstream tasks [} 2| [3]].

Currently, substantial efforts are directed toward refining RL algorithms (e.g., PPO [7] and GRPO [8]])
to further enhance RLVR’s performance and stability [9H16]. Conversely, data-centric aspects of
RLVR remain relatively underexplored. Although several studies attempt to curate high-quality
mathematical reasoning datasets [[17, 18} [11], there is relatively limited exploration into the specific
role of data in RLVR. Thus, critical questions remain open: How much data is truly necessary? What
data is most effective? How do the quality and quantity of the training data relate to observed empirical
phenomena (e.g., self-reflection and robust generalization)? The most relevant study to these problems
is LIMR [19], which proposed a metric called learning impact measurement (LIM) to evaluate the
effectiveness of training examples. Using the LIM score, they maintain model performance while
reducing the number of training examples by sixfold. However, this study does not explore how
aggressively the RLVR training dataset can be reduced. Motivated by these considerations, in this
paper, we specifically investigate the following research question:

"To what extent can we reduce the training dataset for RLVR while maintaining comparable perfor-
mance compared to using the full dataset?"

We empirically demonstrate that, surprisingly, the training dataset for RLVR can be reduced to
as little as ONE example! This finding supports recent claims that base models already possess
significant reasoning capabilities [[13 20} 16, [21]], and further shows that a single example is sufficient
to substantially enhance the base model’s mathematical performance. We refer to this setup as /-shot
RLVR. We summarize our contributions and findings below:

* We find that selecting one specific example as the training dataset can achieve similar
downstream performance to that of the 1.2k DeepScaleR subset (DSR-sub) containing that
example. Specifically, this improves the Qwen2.5-Math-1.5B model from 36.0% to 73.6%
on MATHS500, and from 17.6% to 35.7% on average across 6 mathematical reasoning
benchmarks, including non-trivial improvements beyond format correction (Fig.[I). Notably,
these two examples are relatively easy for the base model, which can solve them with high
probability without any training (Sec.[3.2.1). Additionally, 1-shot RLVR on math examples
can improve model performance on non-mathematical reasoning tasks, even outperforming
full-set RLVR (Tab. [T).

¢ We confirm the effectiveness of 1(few)-shot RLVR across different base models (Qwen2.5-
Math-1.5/7B, Llama3.2-3B-Instruct), models distilled from long Chain-of-Thought (CoT)
data (DeepSeek-R1-Distill-Qwen-1.5B), and different RL algorithms (GRPO, PPO).

* We highlight an intriguing phenomenon in 1-shot RLVR: post-saturation generalization.
Specifically, the training accuracy on the single example rapidly approaches 100%, yet the
model’s test accuracy continues to improve. Moreover, despite using only one training



example, overfitting does not occur until after approximately 1.4k training steps. Even
post-overfitting, while the model’s reasoning outputs for the training example become
incomprehensible multilingual gibberish mixed with correct solutions, its test performance
remains strong, and the reasoning outputs for the test examples remain human-interpretable.

* In addition, we demonstrate the following phenomena: (1) 1-shot RLVR is viable for many
examples in the full dataset when each example is individually used for training. We
also discuss its connection with format correction in Appendix [C.2.3] (2) 1-shot RLVR
enables cross-category generalization: training on a single example from one category (e.g.,
Geometry) often enhances performance in other categories (e.g., Algebra, Number Theory).
(3) As 1-shot RLVR training progresses, both the response length for the training example
and the frequency of self-reflective terms in downstream tasks increase.

* Through ablation studies, we show that policy gradient loss primarily drives the improve-
ments observed in 1-shot RLVR, distinguishing it from “grokking”, which heavily depends
on regularization methods like weight decay. Additionally, we emphasize the importance of
promoting diverse exploration in model outputs, showing that adding an entropy loss with
an appropriate coefficient further enhances performance.

* Lastly, we find that employing entropy loss alone, even without any outcome reward, yields
a performance boost, although it remains weaker than the format-reward baseline. Similar
improvements are observed for Qwen2.5-Math-7B and Llama-3.2-3B-Instruct. We also
discuss label robustness and prompt modification in RLVR (Appendix [C.2).

2 Preliminary

Table 1: 1-shot RLVR with math
RL Loss Function. In this paper, we adopt GRPO [8, 2] examples m1/m13 improves model
as the RL algorithm for LLMs unless stated otherwise. We  performance on ARC, even better
briefly introduce three main components in the loss function than full-set RLVR. Base model is
as below and provide more details in Appendix Qwen2.5-Math-1.5B, evaluation tasks
are ARC-Easy (ARC-E) and ARC-
Challenge (ARC-C). We select the
checkpoints achieving the best aver-
age across 6 math benchmarks.

(1) Policy gradient loss: it encourages the model to produce
responses with higher rewards, assigning weights according
to their group-normalized advantages. Thus, better-than-
average solutions are reinforced, whereas inferior ones are
penalized. Since we focus on mathematical problems, the
reward is defined as binary (0-1), where a reward of 1 is

Dataset Size | ARC-E ARC-C

granted only when the outcome of the model’s response Base NA | 480 302

correctly matches the ground truth. We do not include the MATH 7500] 516 328

format reward when using theloutcome reward, but format- DSR-sub 1209| 422 299

reward RLVR is used as a baseline for Qwen models. Further

discussion can be found in Appendix [C.2.3} {m} 1 520 322
{ms} 1 558 334

(2) KL loss: it helps to maintain general language quality by {m1,m13} 2 52.1 324

measuring the divergence between current model’s responses
and those from reference model.

(3) Entropy loss [22]: applied with a negative coefficient, it incentivizes higher per-token entropy to
encourage exploration and generate more diverse reasoning paths. We note that entropy loss is not
strictly necessary for GRPO training, but it is included by default in verl [22] used in our experiments.
Its effect on 1-shot RLVR is discussed in Sec. d.1]

Data Selection: Historical Variance Score. To explore how extensively we can reduce the
RLVR training dataset, we propose a simple data selection approach for ranking training examples.
We first train the model for £ epochs on the full dataset using RLVR. Then for each example
i € [N] ={1,..., N}, we can obtain a list of historical training accuracy L; = [s; 1, ..., SiE],
which records its average training accuracy for every epoch. Note that some previous work has shown
that the variance of the reward signal [23] is critical for RL training, we simply rank the data by their
historical variance of training accuracy, which is directly related to the reward:

v = Var(s“,...’s@E) (1)
Next, we define a permutation 7 : [N] — [N] such that v(1) > -+ > vr(n). Under this ordering,
7(7) (denoted as 7; for convenience) corresponds to the example with the j-th largest variance v;:

m; = 7(j) = argsort{v, : | € [N]} ()
j



We then select examples according to this straightforward ranking criterion. For instance, 7y,
identified by the historical variance score on Qwen2.5-Math-1.5B, performs well in 1-shot RLVR
(Sec. 3.3)). We also choose additional examples from diverse categories among {71, ..., 717}
and evaluate them under 1-shot RLVR (Tab. [3), finding that 713 likewise achieves strong performance.
Importantly, we emphasize that this criterion is not necessarily optimal for selecting single
examples for 1-shot RLVRH In fact, Tab. |3| shows that many examples, including those with
moderate or low historical variance, can individually produce improvements on MATHS00 when
used as a single training example in RLVR. This suggests a potentially general phenomenon that is
independent of the specific data selection method.

3 Experiments

3.1 Setup

Models. We by default run our experiments on Qwen2.5-Math-1.5B [24} [25]], and also verify the
effectiveness of Qwen2.5-Math-7B [25], Llama-3.2-3B-Instruct [26l], and DeepSeek-R1-Distill-
Qwen-1.5B [2] for 1-shot RLVR in Sec. We also include the results of Qwen2.5-1.5B and
Qwen2.5-Math-1.5B-Instruct in Appendix

Dataset. Due to resource limitations, we randomly select a subset consisting of 1209 examples from
DeepScaleR-Preview-Dataset [18]] as our instance pool (“DSR-sub”). For data selection (Sec. @), as
described in Sec. 2] we first train Qwen2.5-Math-1.5B for 500 steps, and then obtain its historical
variance score (Eqn. [T)) and the corresponding ranking (Eqn. 2)) on the examples. To avoid ambiguity,
we do not change the correspondence between {m;}12%% and examples for all the experiments,
i.e., they are all ranked by the historical variance score of Qwen2.5-Math-1.5B. We also use the
MATH [27] training set (consisting of 7500 instances) as another dataset in full RLVR to provide a

comparison. More details are in Appendix

Training. As described in Sec. 2} we follow the verl [22] pipeline, and by default, the coefficients for
KL divergence and entropy loss are 5 = 0.001 and o = —0.001, respectively. The training rollout
temperature is set to 0.6 for vLLM [28]]. The training batch size and mini-batch size are 128}’ and we
sample 8 responses for each prompt. Therefore, we have 8 gradient updates for each rollout step. By
default, the maximum prompt length is 1024, and the maximum response length is 3072, considering
that Qwen2.5-Math-1.5B/7B’s context length are 4096. For a fairer comparison on Qwen models, we
include the format-reward baseline, which assigns a reward of 1 if and only if the final answer can be
parsed from the model output (see Appendix [C.2.3|for details). More details are in Appendix [B.4]

Evaluation. We use the official Qwen2.5-Math evaluation pipeline [25] for our evaluation. Six
widely used complex mathematical reasoning benchmarks are used in our paper: MATHS00 [27, [29],
AIME 2024 [30], AMC 2023 [31]], Minerva Math [32], OlympiadBench [33]], and AIME 2025 [30].
We also consider non-mathematical reasoning tasks ARC-Easy and ARC-Challenge [34]]. More
details about benchmarks are in Appendix @ For AIME 2024, AIME 2025, and AMC 2023, which
contain only 30 or 40 questions, we repeat the test set 8 times for evaluation stability and evaluate
the model with temperature = 0.6, and finally report the average pass@1 (avg@8) performance.
And for other 3 mathematical benchmarks, we let temperature be 0. The evaluation setup for
DeepSeek-R1-Distill-Qwen-1.5B and other evaluation details are provided in Appendix [B.5]

3.2 Observation of 1/Few-Shot RLVR

In Fig. [T} we have found that RLVR with 1 or 2 examples can perform as well as RLVR with
thousands of examples, yielding significant improvements in both format and non-format aspects.
Tab.[I] further shows that 1(few)-shot RLVR with these math examples enable better generalization
on non-mathematical reasoning tasks (More details are in Appendix [C.I]). To better understand this
phenomenon, we provide a detailed analysis of 1-shot RLVR in this section.

3.2.1 Dissection of 77;: A Not-So-Difficult Problem

2Nevertheless, as shown in Tab. E] (Sec. , selection based on historical variance scores outperforms
random selection in RLVR on Qwen2.5-Math-7B.

3Note that verl sets drop_last=True for training dataloader, so the dataset must be at least as large as the
training batch size. To enable RLVR with very few examples, we duplicate the selected example until reaching
128 samples and store them as a new dataset.



Table 2: Example 7. It is selected from DSR-sub (Sec. [3.1).

Prompt of example 7:

The pressure \\( P \\) exerted by wind on a sail varies jointly as the area \\( A \\) of the sail and the

cube of the wind’s velocity \\( V \\). When the velocity is \\( 8 \\) miles per hour, the pressure on a

sail of \\( 2 \\) square feet is \\( 4 \\) pounds. Find the wind velocity when the pressure on \\( 4 \\)

square feet of sail is \\( 32 \\) pounds. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 12.8.

First, we inspect the examples that produce such strong results. Tab. [2|lists the instances of 71, which
is defined by Eqn. 2] We can see that it’s actually an algebra problem with a physics background.
The key steps for it are obtaining ¥ = 1/256 for formula P = kAV?, and calculating V =
(2048)1/ 3 ~ 12.699. Interestingly, we note that base model already almost solves 7. In Fig.|3| the
base model without any training already solves all the key steps before calculating (2048)'/3 with
high probabilityﬂ Just for the last step to calculate the cube root, the model has diverse outputs,
including 4, 10.95, 12.6992, 84, 12.70, 12.8, 13, etc. Specifically, for 128 samplings from the base
model, 57.8% of outputs are “12.7” or “12.70”, 6.3% of outputs are “12.8”, and 6.3% are “13”. More
examples used in this paper are shown in Appendix [E] In Appendix [C.2.5] we show that interestingly,

even though the key step in solving 7 is computing v/2048, including only this question in the
training example leads to significantly worse performance compared to using full 7.

3.2.2 Post-saturation Generalization: Generalization After Training Accuracy Saturation
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Figure 2: Post-saturation generalization in 1-shot RLVR. The training accuracy of RLVR with
w1 (Left) and 713(Middle) saturates before step 100, but their test performance continues improving.
On the other hand, the training accuracy for RLVR with 1.2k DSR-sub dataset (Right) still has not
saturated after 2000 steps, but there is no significant improvement on test tasks after step 1000.

Then, we show an interesting phenomenon in 1-shot RLVR. As shown in Fig. 2] since we only have
one training example, it’s foreseeable that the training accuracy for m; and 713 quickly saturates
before the 100th step. However, the performance on the test set still continues improving: 1-shot
RLVR with 7, gets 3.4% average improvement from step 100 to step 1540, while using 713 yields
a 9.9% average improvement from step 500 to step ZOO(ﬂ Besides, this phenomenon cannot be
observed when using full-set RLVR with DSR-sub currently, as the test performance has started to
drop before training accuracy converges.

Moreover, we compare the training and evaluation responses in Fig. E} Surprisingly, we find that
at the final stage of 1-shot RLVR, the model overfits the single tralmng example by mixing the
correct calculation process into long unintelligible multilingual outputs in its outputted reasoning.
Nonetheless, the test responses still remain normally and maintain high accuracy, indicating that
post-saturation generalization still holds even after overfitting the training example. In particular,
overfitting in RLVR occurs quite late (7; after 1400 steps and ;3 after 1800 steps). Considering that
each example is sampled 1024 times per step, the single training example is not overfitted until after
millions of rollouts. Further analysis is provided in Sec.[4.1]

3.2.3 1-shot RLVR is Effective for Many Examples & Brings Improvements across Categories

In this section, we investigate whether different data behave differently in 1-shot RL, and whether
1-shot RLVR with one training example from a specific category can help the model better gen-
eralize to other categories. We select data with high (7, ..., m17), medium (7g05, Tg06), and low

* A more precise answer for 1 should be 12.7 rather than 12.8, but this slight deviation does not affect the
experimental results. We show that both values yield strong performance in Tab. E]m Sec.
5This behavior looks similar to “grokking”, but we do not emphasize the sudden onset of generalization after
training saturates. In Sec. E], we show that post-saturation generalization is distinct from grokking.



Training Response

: Evaluation Response (MATH500)

Problem: As shown in Table 2
Answer: 12.8

] Problem: Find the roots of §(x - 3)"3 + (x -7)A3 = (2x - 10)*3.$
1 Answer: 3, 5,7

Step 0: “Step 1:..\\[ P = KAVA3\\] ...Step 2: .. \[k = \\frac{4}{1024} =
\\frac{1}{256} \\]... Step 3: .\[ V = \\sqri[3]{2048} W\n\n\[ V = 12.88
...final answer is:\n\n\\[ \\boxed{12.88} \\]"

1 Step 0: “"Find the roots of $(x - 3)*3 + (x -7)"3 = (2x -
1 10)"3.8.Highlightin.Highlightin.Highlight\n.Highlight\n......(no final
y answer).”

Step 500: “We start by writing the mathematical relationship for the
pressure \\( P \):\n\\[ P = k \\cdot A \\cdot VA3 \\\nwhere \\( k \\) is a
constant...\\[ 4 = k \\cdot 2 \\cdot 83 \\|...\[ k = \\frac{1}{256}\\] ...\\[
32 = \\frac{1}256} \\cdot 4 \\cdot VA3\\] ...\\[ 2048 = VA3 \\n\\[ V =
\\sqrt[3]{2048} W\n\\[ V = 12.8 \|\nThus, the wind velocity is \\(
\\boxed{12.8} \\) miles per hour”

| Step 500: ... simplifies to:\MnW\\n(x - 3)3 + (x - 7)*3 = (2x - 10)((x
-3)"2- (x- 3)(x - 7) + (x - 7)*2)\n\\\n\nThis equation is true if \\(2x -
10 = 0\\) or if the expression \\((x - 3)*2 - (x - 3)(x - 7) + (x - 7)"2 =

1 0\))...S0 \\(x = 5\\) is a solution...Since the discriminant is negative,

1 there are no real solutions to this quadratic equation...the final

] answer is:\n\n\\\n\\boxed{5}\n\\]..."

Step 1300: “First, substituting the initial known scenario conditions
into the corresponding variant......\\[ P = k \\cdot A \\cdot VA3
W)\...From specific of WA =2 W), \\(V =8 ), \( P = 4 \\),\n\nthen
required equation will be line up out:\n\\[4 = k \\cdot 2 \\cdot
813...\\[4 = k \\cdot 2 \\cdot 512\\\n\\[4 = 1024k\\]\nthus solving can
then seek toward \\( k \\):\n\[k = \\frac{4}{1024} = \\frac{1}{256}\\]
...For a moment press onward investing concrete data to
pinpoint...\\[32 = \\frac{1}{256} \\cdot 4 \\cdot \/3\\]...now
simplification further solving thusly for final...n\\[VA3 = 2048 \\] then
calculate in:\n\\[V = \\sqrt[3]{2048} = 12.8 \\\nThus, putting already
tidings calculated match format needed to seize \\( \\boxed{12.8}...”

| Step 1300: ... First, let's simplify the equation... \\n(2x - 10)((x -
3)A2- (x-3)(x - 7) + (x - 7)"2 - (2x - 10)"2) = 0O\n\\\n\nThis gives us
two cases to consider:\n\n1. \\(2x - 10 = 0W)\n2. \\((x - 3)2 - (x -
3)(x-7) + (x- 7)*2 - (2x - 102 = 01)...So \\(x = 5\\) is a solution.

I Now let's solve the second case...\\n(x - 3)(x - 7) = 0 \implies x =

13 \ext{ or } x = 7\n\\[\n\nSo the solutions to the equation are \\(x =
5\), \\(x = 3\), and \\(x = 7\\). Let's verify these solutions using
Python. ***python \nfrom sympy **“output\n[5, 3, 7]\n""\nThe
solutions to the equation \\((x - 3)*3 + (x - 7)*3 = (2x - 10)*3\\) are

T\(x = 5\)), \(x = 3\\), and \\(x = 7\\). Therefore, the roots of the

] equation are:\n\n \\[\n\\boxed{3, 5, 7\\n\\]"

Step 1860: “Lon Pharmacconditioncomputerone advoc Played
Miglik§idx DependencyPropertyiciente witch unexpected.Function
blendDesigner.xlsx € %-)\r\rin kon(Application tileSizewow addUser
=koreaFx ZL — \telemnpasnentmp Finds...liMetricupyrow’} ,\n\n
1 \\n\\begin{alignedf\nP &= k \\cdot A \\cdot V* n4 &=k \\cdot
2\\cdot (8)*3 \implies 4 = k \\cdot 2 \\cdot 512 \\implies k =
\\frac{4}{1024} = \\frac{1}{256} W\n\\text{ nno & &} 3|allocate
\nHere A2 Hifl Ob@ n...\tss —3EF assurances  \n\\\n32 =
\\frac{1}{256} \\cdot 4 \\cdot VA3 \implies 32 = \\frac{\/"3}{64}
\limplies VA3 = 2048 \implies V = \\sqrt[3]{2048} = 12.8\n T1v2a
frivol.;\n 06s13P:spock-TF- 32 % f9:0> WorkE  nnondopm\M '
"):\n\\-St(SIG(groupld frau &jumpcod\\):',\n\\n\\boxed{12.8}"

|Step 1860: “Let's solve the equation \\((x - 3)*3 + (x - 7)"3 = (2x -
10)"3\\) step by step...we need to solve:\n\n\\nx"3 - 15xA2 + 71x -
105 = 0\n\\]\n\nWe can use the Rational Root Theorem to find the
possible rational roots of this polynomial. The possible rational roots
lare the factors of the constant term (105) divided by the factors of
Ithe leading coefficient (1). The factors of 105 are \\(\pm 1, \\pm 3,
|\\pm 5,\\pm 7, \\pm 15, \\pm 21, \\pm 35, \\pm 105\\). By testing
these values, we find that \\(x = 5\\) is a root:\n\n\\[\n5"3 - 15(5"2) +
I71(5) - 105 =125 - 375 + 355 - 105 = O\n.... we get:\n\n\\[\nx*3 -
115x52 + 71 - 105 = (x - 5)(xA2 - 10x + 21)\n\]..\[InxA2 - 10x + 21
1= (x - 3)(x - 7) = 0\n\\]\n\nSo the roots are \\(x = 3\\) and \\(x =
17\)...The final answer is:\n\n\\\n\tboxed(3, 5, 7hn\"

Figure 3: The model can still generalize on test data after overfitting training example for 1-shot
RLVR’s post-saturation generalization. Here we show model’s response to training example 7y
and a selected MATH500 problem. Green/Red are used for marking Correct/Wrong answers. The
model converges on 7; (before step 500) and later attempt to generate longer solutions for 7 in
different styles (step 1300), and gradually performs better on evaluation task. But it significantly
overfits training data 7r; at step 1860 (when model achieves 74% MATHS500 accuracy), as it mixes
the correct process (cyan) with meaningless output. However, the test response is normal, even trying
a different strategy (‘“Rational Root Theorem”) from step-1300 responses.

(1201, - - - T1209) historical variance (Eqn. |I|) and from different topics. We determine the categories
of the questions based on their characteristics. We show their detailed MATH500 performance for
both overall and subclasses in Tab. [3] More performance curves are in Appendix [C.1]

We observe that (1) 1-shot RLVR improves performance across all categories in MATH500. Almost
all examples yield a > 30% improvement over the base model, except for the incorrect example
w1207 and the extremely difficult example 71508, which cause the model to fail to generate any
correct solutions. (2) 1-shot RLVR can perform at least as well as the format-reward baseline
(except w1207 and 7120g), and with appropriate examples, 1-shot RLVR with outcome reward can
achieve additional non-trivial improvements. From Tab. 3] we observe that the improvements of
some examples (e.g., 77, 711, and Tgog) mainly come from format correction. However, many
other examples (e.g., 71, 713, and m1209) still exhibit non-trivial improvements beyond format fixing.
Further discussion is provided in Appendix [C.2.3] (3) Counterintuitively, test data belonging to the
same category as the single training example does not necessarily exhibit better improvement. For
instance, 711 belongs to Number Theory, but RLVR trained with 717 achieves a relatively low Number
Theory score compared to using other examples (e.g., o5 from Precalculus). This may indicate that
the reasoning capability stimulated by an instance cannot be simply predicted by superficial features
such as categories [35]]. Additional analysis on prompt complexity is provided in Appendix[C.2.3]

3.2.4 More Frequent Self-Reflection on Test Data

In this section, we show another empirical observation of 1-shot RLVR: it can increase the frequency
of self-reflection [6] in the model responses as training progresses. To study this, we check the
output patterns of different checkpoints from the RLVR training on Qwen2.5-Math-1.5B. We find



Table 3: 1(Few)-Shot RLVR performance (%) for different categories in MATHS00. Here for
MATHS500, we consider Algebra (Alg.), Count & Probability (C.P.), Geometry (Geo.), Intermediate
Algebra (I. Alg.), Number Theory (N. T.), Prealgebra (Prealg.), Precalculus (Precal.), and MATH500
Average (Avg.). We report the best model performance on MATHS500 and AIME24 separately (As
illustrated in Appendix.[B.3)). “Size” means dataset size, and "Step" denotes the checkpoint step that
model achieves the best MATHS00 performance. Data with red color means the model (almost) never
successfully samples the ground truth in training (71297 has wrong label and 71205 is too difficult).
“Format” denotes the format reward baseline (Appendix [C.2.3) for format correction. We further
mention related discussions about prompt complexity in Appendix [C.2.3]

Dataset | Size | Step | Type | Alg. C.P. Geo. L Alg. N. T. Prealg. Precal.| MATH500 | AIME24

Base | O | 0 | NA |37.1 316 390 433 242 366 339 | 360 | 67
MATH 7500|1160 | General | 91.1 65.8 63.4 59.8 823 81.7 66.1 75.4 20.4
DSR-sub | 1209|1160 | General | 91.9 68.4 58.5 57.7 85.5 793 67.9 75.2 18.8
Format | 1209| 260 | General | 81.5 60.5 53.7 52.6 72.6 683 53.6 65.6 10.0

{m1} 1 |1860 Alg. 88.7 63.2 56.1 629 79.0 81.7 643 74.0 16.7

{m2} 1 220 N.T. 839 579 56.1 557 774 829 60.7 70.6 17.1

{74} 1 80 N.T. 79.8 579 53.7 516 71.0 744 53.6 65.6 17.1

{m7} 1 580 1. Alg. 75.8 60.5 51.2 56.7 59.7 70.7 57.1 64.0 12.1
{mi1} 1 20 N.T. 75.8 65.8 56.1 50.5 66.1 732 50.0 64.0 133
{mi3} 1 |1940 Geo. 89.5 658 634 557 839 81.7 66.1 74.4 17.1
{16} 1 600 Alg. 86.3 63.2 56.1 51.6 67.7 732 51.8 67.0 14.6
{m17} 1 220 C.P 80.7 65.8 51.2 58.8 67.7 78.1 482 67.2 133
{605} 1 [1040| Precal. 84.7 632 585 495 823 781 625 71.8 14.6
{7606} 1 460 N.T. 839 63.2 537 495 58.1 756 464 64.4 14.2
{m1201} 1 940 Geo. 89.5 68.4 585 53.6 79.0 732 625 71.4 16.3
{m1207} 1 100 Geo. 67.7 50.0 439 412 532 634 427 54.0 9.6
{71208} 1 240 C.P 58.1 553 439 32.0 403 48.8 321 45.0 8.8
{m1200} 1 |1140| Precal. 86.3 71.1 65.9 55.7 758 768 643 722 17.5

{mi...me6}| 16 |1840| General | 90.3 63.2 61.0 55.7 69.4 80.5 60.7 71.6 16.7
{m1,m2} 2 |1580| Alg/N.T. | 89.5 63.2 61.0 60.8 823 744 589 72.8 15.0
{m1,m13} 2 12000| Alg./Geo.| 92.7 71.1 585 57.7 790 842 714 76.0 17.9
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Figure 4: (Left, Middle) Average response length on training data and entropy loss. After
around 1300/1700 steps, the average response length of 1-shot RLVR with 7/m3 significantly
increases, corresponding to that model tries to solve the single problem with longer CoT reasoning
in a more diverse way (Fig.[3] step 1300), which is also confirmed by the increase of entropy loss.
These may also indicate the gradual overfitting (Fig. [3] step 1860). (Right) Number of reflection
words detected in evaluation tasks. The number of reflection words (“rethink”, “recheck”, and
“recalculate”) appearing in evaluation tasks increases in 1-shot RLVR with 7;/7;3, especially after
around 1250 steps, matching the increase of response length. On the other hand, RLVR with DSR-sub
contains fewer reflection words as the training progresses.

that their self-reflection process often appears with words “rethink”, “recheck” and “recalculate”.
Therefore, we count the number of responses that contain these three words when evaluating 6
mathematical reasoning tasks. The results are in Fig.[d] First, after around 1.3k steps, the response
length and entropy loss increase significantly, which may imply the attempt of diverse output patterns
or overfitting (Fig.[3). Second, for the evaluation task, the base model itself already exhibits self-
reflection processes, which supports the observation in recent works [13} 21]. Third, the number of
self-recheck processes increases at the later stages of 1-shot RL training, which again confirms that
the model generalizes well on test data and shows more complex reasoning processes even after it



Table 4: 1(few)-shot RLVR is viable for different models and RL algorithm. “Random” denotes
the 16 examples randomly sampled from 1.2k DSR-sub. Format reward (Appendix [C.2.3) serves as a

baseline for format correction. More details are in Appendix and we also include the results of
Qwen2.5-Math-1.5B-Instruct and Qwen2.5-1.5B in Appendix|C.1.

RL Dataset | MATH AIME AMC Minerva Olympiad- AIME Av

Dataset Size 500 2024 2023  Math  Bench 2025 &

Qwen2.5-Math-7B [24] + GRPO

NA NA 51.0 12.1 35.3 11.0 18.2 6.7 22.4

DSR-sub 1209 78.6 25.8 62.5 33.8 41.6 14.6 42.8

Format Reward 1209 | 65.8 24.2 54.4 243 30.4 6.7 | 343

{m} 1 79.2 23.8 60.3 279 39.1 10.8 40.2

{m1, m13} 2 79.2 21.7 58.8 353 40.9 12.1 413

{m1, T2, T13, T1200 ) 4 78.6 225 619 36.0 43.7 12.1 | 425

Random 16 76.0 22.1 63.1 31.6 35.6 12.9 40.2

{m1,...,m6} 16 77.8 30.4 62.2 353 39.9 9 42.5

Llama-3.2-3B-Instruct [26] + GRPO

NA NA 40.8 8.3 25.3 15.8 13.2 1.7 17.5

DSR-sub 1209 43.2 11.2 27.8 19.5 16.4 0.8 19.8

(71} 1 45.8 79 253 16.5 17.0 12 | 19.0

{m1, m13} 2 49.4 7.1 31.6 18.4 19.1 0.4 21.0

{1, T2, T13, T1200 } 4 46.4 6.2 29.1 21.0 15.1 1.2 19.8

Qwen2.5-Math-1.5B [24] + PPO

NA NA 36.0 6.7 28.1 8.1 22.2 4.6 17.6

DSR-sub 1209 72.8 19.2 48.1 279 35.0 9.6 35.4

{m1} 1 | 724 11.7 51.6 26.8 333 7.1 | 338

DeepSeek—-R1-Distill-Qwen-1.5B [2] + GRPO (Eval=32k)

NA NA 82.9 29.8 63.2 26.4 43.1 23.9 44.9

DSR-sub 1209 84.5 32.7 70.1 29.5 46.9 27.8 48.6

{m1} 1 83.9 31.0 66.1 28.3 44.6 241 46.3

{m1, T2, T13, 1209 } 4 84.8 322 66.6 27.7 455 24.8 46.9

(71,...,m6) 16 84.5 343 69.0 30.0 46.9 252 | 483

overfits the training data. Interestingly, for the 1.2k DeepScaleR subset, the frequency of reflection
slightly decreases as the training progresses, matching the decreasing response length.

3.3 1/Few-shot RLVR on Other Models/Algorithms

We further investigate whether 1(few)-shot RLVR is feasible for other models and RL algorithms.
We consider setup mentioned in Sec. and the results are shown in Tab. ] (Detailed results on
each benchmark are in Appendix . We can see (1) for Qwen2.5-Math-7B, 1-shot RLVR with
71 improves average performance by 17.8% (5.9% higher than format-reward baseline), and 4-shot
RLVR performs as well as RLVR with DSR-sub. Moreover, {7, ..., T} performs better than the
subset consisting of 16 randomly sampled examples. (2) For Llama-3.2-3B-Instruct, the absolute
gain from RLVR is smaller, but 1(few)-shot RLVR still matches or surpasses (e.g., {71, 713}) the
performance of full-set RLVR. We also show the instability of the RLVR process on Llama-3.2-
3B-Instruct in Appendix [C.I] (3) RLVR with 71 using PPO also works for Qwen2.5-Math-1.5B
with PPO. (4) For DeepSeek-R1-Distill-Qwen-1.5B, the performance gap between few-shot and
full-set RLVR is larger. Nevertheless, few-shot RLVE still yield improvement. More results are in

Appendix[C]

4 Analysis



Table 5: Ablation study of loss function and label correctness. Here we use Qwen2.5-Math-1.5B
and example 7. “+” means the component is added. “Convergence” denotes if the training accuracy
saturates (e.g. Fig.[2). “-0.003” is the coefficient of entropy loss (default -0.001). We report the best
model performance on each benchmark separately (Appendix [B.3). (1) Rows 1-8: The improvement
of 1(few)-shot RLVR is mainly attributed to policy gradient loss, and it can be enhanced by adding
entropy loss. (2) Rows 9-10: Simply adding entropy loss alone can still improve MATHS500, but still
worse than the format reward baseline (Tab. [3} MATHS500: 65.6, AIME24: 10.0). (3) Rows 5,11-13:
further investigation into how different labels affect test performance.

Row Policy = Weight KL Entropy Label Training MATH AIME
Loss Decay Loss Loss Convergence 500 2024
1 12.8 NO 39.8 7.5
2 + 12.8 71.8 15.4
3 + + 12.8 71.4 16.3
4 + + + 12.8 70.8 15.0
5 + + + + 12.8 74.8 17.5
6 + + + +, —0.003 12.8 73.6 15.4
7 + + 12.8 75.6 17.1
8 + 12.8 NO 39.0 10.0
9 + + + 12.8 NO 65.4 7.1
10 + 12.8 NO 63.4 8.8
11 + + + + 73.4 17.9
12 + + + + 4 57.0 9.2
13 + + + + 929725 NO 64.4 9.6
In this section, we concentrate on exploring the potential mech- Average on 6 benchmarks
anisms that allow RLVR to work with only one or a few exam-  »° g ey e

ples. We hope the following analyses can provide some insight —_**| v 07 8T

X300

for future works. Additional experiments and discussions about =] |

the format correction (Appendix [C.2.3), prompt modification ~ gzso |

(Appendix[%b and the reasoning capabilities of base models ~ <22s| wio Entropy Loss, ¢~ 0.6
a

. . . . W T , t=1.0
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4.1 Ablation Study: . .
Policy Gradient Loss is the Main Contributor, and Entropy Figure 5: Encouraging ex-

Loss Further Improve Post-Saturation Generalization ploration can improve post-
saturation generalization. ¢ is the

As discussed in Sec. [3:2.2] 1-shot RLVR shows the property —temperature parameter for training
of post-saturation generalization. This phenomenon is similar rollouts.

to “grokking” [36,[37]], which shows that neural networks first

memorize/overfit the training data but still perform poorly on

the test set, while suddenly improve generalization after many training steps. A natural question is
raised: Is the performance gain from 1-shot RLVR related to the “grokking” phenomenon? To answer
this question, noting “grokking” is strongly affected by regularization [36,138-41]] like weight decay,
we conduct an ablation study by removing or changing the components of the loss function one by
one to see how each of them contributes to the improvement.

The results are shown in Tab. [5] (Test curves are in Appendix [C.2.T). We see that if we only add
policy gradient loss (Row 2) with 71, we already get results close to that of the full loss training
(Row 5). In addition, further adding weight decay (Row 3) and KL divergence loss (Row 4) has
no significant impact on model performance, while adding entropy loss (Row 5) can further bring
4.0% improvement for MATHS00 and 2.5% for AIME24. Here we need to be careful about the
weight of the entropy loss, as a too large coefficient (Row 6) might make the training more unstable.
These observations support that the feasibility of 1(few)-shot RLVR is mainly attributed to policy
gradient loss, rather than weight decay, distinguishing it from ‘“grokking’’, which should be
significantly affected by weight decay. To double check this, we show that only adding weight decay
and KL divergence (Row 8) has little influence on model performance, while using only policy
gradient loss and entropy loss (Row 7) behaves almost the same as the full GRPO loss.

Moreover, we also argue that encouraging greater diversity in model outputs—for instance, adding
proper entropy loss — can enhance post-saturation generalization in 1-shot RLVR. As shown in
Fig. 5| without entropy loss, model performance under 1-shot RLVR shows limited improvement
beyond step 150, coinciding with the point at which training accuracy saturates (Fig. 2l Left). By
adding entropy loss, the model achieves an average improvement of 2.3%, and further increasing



the temperature to ¢ = 1.0 yields an additional 0.8% gain. More discussions about entropy loss and
post-saturation generalization are in Appendix

4.2 Entropy-Loss-Only Training & Label Correctness

Table 6: Training with only en-
In Tab. El, we find that when llSiIlg 1207 and m190g, it is difficult tropy loss using 7 can par-
for model to output the ground truth label and receive rewards tially improve base model perfor-
during 1-shot RLVR training, resulting in a very sparse policy mance, but still perform worse
gradient signal. Nevertheless, they still outperform the base than format-reward baseline. De-
model, although their performance remains lower than that of tajls are in Tab. E}

the format-reward baseline. To investigate this, we remove the
policy loss from the full GRPO loss (Tab.[5] Row 9) or even Model | M500 | Avg.

retain only the entropy loss (Row 10), and again observe similar  Qwen2.5-Math-1.5B 360 | 17.6
improvement. Furthermore, this phenomenon also happens on  +Entropy Loss, 20 steps | 63.4 | 25.0
Qwen2.5-Math-7B and Llama-3.2-3B-Instruct, although only Format Reward 65.0 | 28.7

improve at the first several steps. These results implies entropy 7 ama-3.2-3B-Instruct | 408 | 17.5
loss may independently contribute to performance gains from +Entr0py. Loss, 10 steps 478 | 195
format correction, which, although much smaller than those ’

from policy loss, are still nontrivial. Qwen2.5-Math-7B 51.0 | 224
+Entropy Loss, 4 steps | 57.2 | 25.0
Moreover, we conduct an experiment by altering the label to Format Reward 65.8 | 343

(1) the correct one (“12.7,” Row 11), (2) an incorrect one that
model can still overfit (“4,” Row 12), and (3) an incorrect one
that the model can neither guess nor overfit (9292725, Row 13). We compare them with (4)
the original label (“12.8,” Row 5). Interestingly, we find the performance rankings are (1) ~ (4)
> (3) > (2). This suggests that slight inaccuracies in the label do not significantly impair 1-shot
RLVR performance. However, if the incorrect label deviates substantially while remaining guessable
and overfittable, the resulting performance can be even worse than using a completely incorrect
and unguessable label, which behaves similarly to training with entropy loss alone (Row 10). In
Appendix[C.2.4] we also discuss label robustness on full-set RLVR by showing that if too many data
in the dataset are assigned random wrong labels, full-set RLVR can perform worse than 1-shot RLVR.

5 Conclusion

In this work, we show that 1-shot RLVR is sufficient to trigger substantial improvements in reasoning
tasks, even matching the performance of RLVR with thousands of examples. The empirical results
reveal not only improved task performance but also additional observations such as post-saturation
generalization, cross-category generalization, more frequent self-reflection and also additional anal-
ysis. These findings suggest that the reasoning capability of the model is already buried in some
base models, and encouraging exploration on a very small amount of data is capable of generating
useful RL training signals for igniting these LLM’s reasoning capability. It also demonstrates the
anti-overfitting property of the RLVR algorithm with zero-mean advantage, as we can train on a
single example millions of times without performance degradation. Our work also emphasizes the
importance of better selection and collection of data for RLVR. We discuss directions for future work
in Appendix and also discuss limitations in Appendix [D.T}
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state 1. the benchmarks and models we are using; 2. the empirical
improvement and observation; 3. the methods, key insights and the analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in supplementary materials.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We don’t include theoretical results.
Guidelines:
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* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main results and several analysis are in the Sec.[3] Sec. ] and Appendix [C]
We also provide experiment details in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be provided according to Neurips code submission guidance.
After got accepted, we will open source that.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide full experiment details in Sec. [3.T]and Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: RLVR training is always resource intensive. In our paper, we train RLVR for
1k-2k steps for full convergence, which may take 2-4 days of training on 8 80G A100 GPUs.
Besides, most of the current work on RLVR, like Dr. GRPO, DeepScaleR, SimpleRL-Zoo,
etc., also runs the training only once. Nevertheless, the numerous experiments in Sec. [3.2.3]
and Sec.dlhave cross-validated the effectiveness of 1-shot RLVR.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

¢ The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the information on the compute resources in Appendix [B.4]and

Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This research focuses on using one example in RLVR to perform as well as
full-set RLVR, so the social impact of 1-shot RLVR should be the same as that of all the
full-set RLVR works.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use public models and datasets, and the widely-used public training
pipeline verls, so we don’t include any new pretrained models or new datasets that may have
these kinds of risks.

Guidelines:

¢ The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:|Yes]

Justification: We cite the verl [22] pipeline we used for our code, and all the data/models
(e.g. DeepScaleR [[18]]) used to evaluate and train.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
All metrics are fixed evaluations.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Reinforcement Learning with Verifiable Reward (RLVR). RLVR, where the reward is computed
by a rule-based verification function, has been shown to be effective in improving the reasoning
capabilities of LLMs. The most common practice of RLVR when applying reinforcement learning to
LLMs on mathematical reasoning datasets is to use answer matching: the reward function outputs a bi-
nary signal based on if the model’s answer matches the gold reference answer [4} 5,2 [3]142H44]). This
reward design avoids the need for outcome-based or process-based reward models, offering a simple
yet effective approach. The success of RLVR is also supported by advancements in RL algorithms,
including value function optimization or detail optimization in PPO [7] (e.g., VinePPO [9]], VC-
PPO [10]], VAPO [12]), stabilization and acceleration of GRPO [2] (e.g., DAPO [L1], Dr. GRPO [13]],
GRPO+[14]], SRPO [16l]), and integration of various components (e.g., REINFORCE++[15]]). There
are also some recent works that focus on RLVR with minimal human supervision (without using
labeled data or even problems), such as Absolute-Zero [45]], EMPO [46], and TTRL [47].

Data Selection for LL.M Post-Training. The problem of data selection for LLM post-training has
been extensively studied in prior work [48]], with most efforts focusing on data selection for supervised
fine-tuning (instruction tuning). These approaches include LL.M-based quality assessment [49],
leveraging features from model computation [S0], gradient-based selection [51]], and more. Another
line of work [52H54] explores data selection for human preference data in Reinforcement Learning
from Human Feedback (RLHF) [55]]. Data selection for RLVR remains relatively unexplored.
One attempt is LIMR [19]], which selects 1.4k examples from an 8.5k full set for RLVR to match
performance; however, unlike our work, they do not push the limits of training set size to the extreme
case of just a single example. Another closely related concurrent work [56] shows that RLVR using
PPO with only 4 examples can already yield very significant improvements; however, they do not
systematically explore this observation, nor do they demonstrate that such an extremely small training
set can actually match the performance of using the full dataset.

B Experiment Setup

B.1 Details of Loss Function

As said in the main paper, we contain three components in the GRPO loss function following verl [22]]
pipeline: policy gradient loss, KL divergence, and entropy loss. Details are as follows. For each
question ¢ sampled from the Question set P(Q), GRPO samples a group of outputs {01, 02, ...,05}
from the old policy model 7y, and then optimizes the policy model 7y by minimizing the following
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loss function:

‘CGRPO(Q) =E q~P(Q) [E%G—GRPO('7 9) + ﬁ‘ci(L(a 0, eref) + a['l/intropy('? 9>‘| ’ 3)

{0i}&, ~mo,,(Olq)

where  and « are hyper-parameters (in general 8 > 0, @ < 0), and “-” is the abbreviation of sampled
prompt-responses: {q, {0;}&_,}. The policy gradient loss and KL divergence loss are:

G
1 . 79 (0i|q) . .
/ NG - _ _o\9%4d) 4 _mo(oila) 1 _ .
Lo creo(¢: {0i}i21,0) = P (mm (Weold(OiM) Aj, Chp(wezd(o”q),l g, 1+ e)Al)) 4)
/ G T e (Oi ‘ q) T Orer (Oi | q)
7 '73030re =D e =" ] 7—17 5
k(g {0i}iq t) = Dxr(mo || mo,) ro(old) % o (oila) ©)

Here 6, is the reference model, € is a hyper-parameter of clipping threshold. Notably, we use the
approximation formulation of KL divergence [57], which is widely used in previous works [8} [2].
Besides, A; is the group-normalized advantage defined below.

o ri—mean({rl,rg,...,rg}) .
AZ o Std({’/‘l,’l"g, P ,Tg}) € [G] (6)

Since we focus on math questions, we let the reward r; be the 0-1 accuracy score, and r; is 1 if
and only if the response o; gets the correct answer to the question q. What’s more, the entropy loss
Egmmpy calculates the average per-token entropy of the responses, and its coefficient o < 0 implies

the encouragement of more diverse responses.

The details of entropy loss are as follows. For each query ¢ and set of outputs {o,;}l-Gzl, the model
produces logits X that determine the policy distribution 7. These logits X are the direct computa-
tional link between inputs ¢ and outputs o - specifically, the model processes ¢ to generate logits X,
which after softmax normalization give the probabilities used to sample each token in the outputs o.
The entropy loss is formally defined below.

2ob,s Mo, - Hys(X)
Eb,s Mb,S

Here M, s represents the response mask indicating which tokens contribute to the loss calculation
(excluding padding and irrelevant tokens), with b indexing the batch dimension and s indexing the
sequence position. The entropy Hy, s(X) is computed from the model’s logits X

‘C/Entropy(% {Oi}iGzla 9) = (7

Hb,S(X) = IOg(E eXb"S’v) - § Db,s,v 'Xb,s,v (8)
where v indexes over the vocabulary tokens (i.e., the possible output tokens from the model’s
X 5,V
vocabulary), and the probability distribution is given by pj s, = softmax (X, ), = %

B.2 Training Dataset

DeepScaleR-sub. DeepScaleR-Preview- Dataset [[18]] consists of approximately 40,000 unique
mathematics problem-answer pairs from AIME (1984-2023), AMC (pre-2023), and other sources
including Omni-MATH [58]] and Still [59]. The data processing pipeline includes extracting answers
using Gemini-1.5-Pro-002, removing duplicate problems through RAG with Sentence-Transformers
embeddings, and filtering out questions that cannot be evaluated using SymPy to maintain a clean
training set. We randomly select a subset that contains 1,209 examples referred to as "DSR-sub".

MATH. Introduced in [27], this dataset contains 12,500 challenging competition mathematics
problems designed to measure advanced problem-solving capabilities in machine learning models.
Unlike standard mathematical collections, MATH features complex problems from high school math-
ematics competitions spanning subjects including Prealgebra, Algebra, Number Theory, Counting
and Probability, Geometry, Intermediate Algebra, and Precalculus, with each problem assigned a
difficulty level from 1 to 5 and accompanied by detailed step-by-step solutions. It’s partitioned into a
training subset comprising 7,500 problems (60%) and a test subset containing 5,000 problems (40%).
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B.3 Evaulation Dataset

All evaluation sets are drawn from the Qwen2.5-Math evaluation repositoryﬂ with the exception of
AIME2029] We summarize their details as follows:

MATHS500. MATHS500, developed by OpenAl [29]], comprises a carefully curated selection of 500
problems extracted exclusively from the test partition (n=5,000) of the MATH benchmark [27]. It is
smaller, more focused, and designed for efficient evaluation.

AIME 2024/2025. The AIME 2024 and 2025 datasets are specialized benchmark collections, each
consisting of 30 problems from the 2024 and 2025 American Invitational Mathematics Examination
(AIME) I and II, respectively [30].

AMC2023. AMC 2023 dataset consists of 40 problems, selected from two challenging mathematics
competitions (AMC 12A and 12B) for students grades 12 and under across the United States [31]].
These AMC 12 evaluates problem-solving abilities in secondary school mathematics, covering
topics such as arithmetic, algebra, combinatorics, geometry, number theory, and probability, with all
problems solvable without calculus.

Minerva Math. Implicitly introduced in the paper "Solving Quantitative Reasoning Problems
with Language Models" [32]] as OCWCourses, Minerva Math consists of 272 undergraduate-level
STEM problems harvested from MIT’s OpenCourseWare, specifically designed to evaluate multi-
step scientific reasoning capabilities in language models. Problems were carefully curated from
courses including solid-state chemistry, information and entropy, differential equations, and special
relativity, with each problem modified to be self-contained with clearly-delineated answers that are
automatically verifiable through either numeric (191 problems) or symbolic solutions (81 problems).

OlympiadBench. OlympiadBench [33]is a large-scale, bilingual, and multimodal benchmark
designed to evaluate advanced mathematical and physical reasoning in Al systems. It contains 8,476
Olympiad-level problems, sourced from competitions and national exams, with expert-annotated
step-by-step solutions. The subset we use for evaluation consists of 675 open-ended text-only math
competition problems in English.

We also consider other non-mathematical reasoning tasks: ARC-Challenge and ARC-Easy [34]].

ARC-Challenge/Easy. The ARC-Challenge benchmark represents a subset of 2,590 demanding
science examination questions drawn from the broader ARC (AI2 Reasoning Challenge) [34] collec-
tion, specifically selected because traditional information retrieval and word co-occurrence methods
fail to solve them correctly. This challenging evaluation benchmark features exclusively text-based,
English-language multiple-choice questions (typically with four possible answers) spanning diverse
grade levels, designed to assess science reasoning capabilities rather than simple pattern matching or
information retrieval. The complementary ARC-Easy [34]] subset contains 5197 questions solvable
through simpler approaches. We use 1.17k test split for ARC-Challenge evaluation and 2.38k test
split for ARC-Easy evaluation, respectively.

B.4 More Training Details

For DeepSeek-R1-Distill-Qwen-1.5B, we let the maximum response length be 8192, following the
setup of stage 1 in DeepScaleR [18]. The learning rate is set to le-6. The coefficient of weight decay
is set to 0.01 by default. We store the model checkpoint every 20 steps for evaluation, and use 8§ A100
GPUs for each experiment. For Qwen2.5-Math-1.5B, Qwen2.5-Math-7B, Llama-3.2-3B-Instruct,
and DeepSeek-R1-Distill-Qwen-1.5B, we train for 2000, 1000, 1000, and 1200 steps, respectively,
unless the model has already shown a significant drop in performance. We use the same approach
as DeepScaleR [[L8] (whose repository is also derived from the verl) to save the model in safetensor
format to facilitate evaluation.

B.5 More Evaluation Details

In evaluation, the maximum number of generated tokens is set to be 3072 by default. For Qwen-
based models, we use the “qwen25-math-cot” prompt template in evaluation. For Llama and

Shttps://github.com/QwenLM/Qwen2.5-Math
https://huggingface.co/datasets/opencompass/AIME2025
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Table 7: Difference between model downloaded from Hugging Face and initial checkpoint
saved by verl/deepscaler pipeline. Since the performance of stored initial checkpoint has some
randomness, we still use the original downloaded model for recording initial performance.

Model MATH AIME24 AMC23 Minerva Olympiad- AIME Av
500 2024 2023 Math Bench 2025 &
Qwen2.5-Math-1.5B [24]

Hugging Face Model 36.0 6.7 28.1 8.1 222 4.6 17.6
Stored Initial Checkpoint 39.6 8.8 34.7 8.5 22.7 33 19.6
Qwen2.5-Math-7B [24]

Hugging Face Model 51.0 12.1 353 11.0 18.2 6.7 224
Stored Initial Checkpoint 52.0 14.6 36.6 12.1 18.1 4.2 22.9
Llama-3.2-3B-Instruct [26]

Hugging Face Model 40.8 8.3 25.3 15.8 13.2 1.7 17.5
Stored Initial Checkpoint 41.0 7.1 28.4 16.9 13.0 0.0 17.7

distilled models, we use their original chat templates. We set the evaluation seed to 0 and top_p to
1 by default. For evaluation on DeepSeek-R1-Distill-Qwen-1.5B, following DeepSeek-R1 [2] and
DeepScaleR [18]], we set the temperature to 0.6 and top_p to 0.95, and use avg@16 for MATHS500,
Minerva Math, and OlympiadBench, and avg@64 for AIME24, AIME25, and AMC23. Since our
training length is 8192, we provide results for both 8192 (8k) and 32768 (32k) evaluation lengths
(Appendix [C.I1.6). By default, we report the performance of the checkpoint that obtains the best
average performance on 6 benchmarks. But in Sec. [3.2.3] and Sec. . 1] since we only evaluate
MATHS500 and AIME2024, we report the best model performance on each benchmark separately,
i.e., the best MATHS00 checkpoint and best AIME2024 checkpoint can be different (This will not
influence our results, as in Tab.[9]and Tab.[TT] we still obtain similar conclusions as in main paper.) We
use 4 GPUs for the evaluation. Finally we mention that there are slightly performance difference on
initial model caused by numerical precision, but it does not influence our conclusions (Appendix B.6).

B.6 Performance Difference on Initial Model

‘We mention that there is a precision inconsistency between models downloaded from Hugging Face
repositories and initial checkpoints saved by the verl/deepscaler reinforcement learning pipeline in
Tab.[/] This discrepancy arises from the verl/DeepScaleR pipeline saving checkpoints with float32
precision, whereas the original base models from Hugging Face utilize bfloat16 precision.

The root cause appears to be in the model initialization process within the verl framework. The
fsdp_workers.py [*| file in the verl codebase reveals that models are deliberately created in float32
precision during initialization, as noted in the code comment: "note that we have to create model in
fp32. Otherwise, the optimizer is in bf16, which is incorrect". This design choice was likely made
to ensure optimizer stability during training. When examining the checkpoint saving process, the
precision setting from initialization appears to be preserved, resulting in saved checkpoints retaining
float32 precision rather than the original bfloat16 precision of the base model.

Our empirical investigation demonstrates that modifying the torch_dtype parameter in the saved
config. json file to match the base model’s precision (specifically, changing from float32 to
bfloat16) successfully resolves the observed numerical inconsistency. Related issues are docu-
mented in the communityﬂ and we adopt the default settings of the verl pipeline in our experiments.
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Table 8: Detailed 1/2-shot RLVR performance for Qwen2.5-Math-1.5B. Results are reported for
the checkpoint achieving the best average across 6 math benchmarks (Fig.[I). Models’ best individual
benchmark results are listed in Tab.[9] Format reward (Appendix serves as a baseline for
format correction.

RL Dataset/ Dataset | MATH AIME AMC Minerva Olympiad- AIME | Avg.
Method Size 500 2024 2023 Math Bench 2025
NA NA 36.0 6.7 28.1 8.1 222 4.6 17.6
MATH 7500 74.4 20.0 54.1 29.0 34.1 8.3 36.7
DSR-sub 1209 73.6 17.1 50.6 324 33.6 8.3 359
Format Reward 1209 | 65.0 8.3 45.9 17.6 29.9 54 | 287
{m1} 1 72.8 15.4 51.6 29.8 335 7.1 35.0
{m13} 1 73.6 16.7 53.8 23.5 35.7 10.8 35.7
{m1, 713} 2 74.8 17.5 53.1 294 36.7 7.9 36.6

Table 9: Detailed 1/2/4-shot RLVR performance for Qwen2.5-Math-1.5B. Here we record model’s
best performance on each benchmark independently. “Best Avg. Step” denotes the checkpoint step
that model achieves the best average performance (Tab. [g).

RL Dataset | MATH AIME AMC Minerva Olympiad- AIME A Best Avg.
Dataset Size 500 2024 2023 Math Bench 2025 Ve Step
NA NA 36.0 6.7 28.1 8.1 222 4.6 17.6 0
MATH 7500 754 204 54.7 29.8 37.3 10.8 36.7 2000
DSR-sub 1209 752 18.8 525 349 35.1 11.3 359 1560
{m} 1 740 167 544 302 353 9.2 35.0 1540
{m2} 1 706 17.1 528 28.7 34.2 7.9 335 320
{m13} 1 744 171 538 254 36.7 10.8 35.7 2000
{1201} 1 714 163 544 254 36.2 10.0 33.7 1120
{m1200} 1 722 175 509  27.6 342 8.8 33.5 1220
{m1, ™13} 2 76.0 179 541 30.9 37.2 10.8 36.6 1980

{m1, 72, 13, T1200} 4 744 163 563 324 37.0 11.3 36.0 1880

Table 10: Results of more models (base and instruct versions) and more training examples (on
Qwen2.5-Math-7B). We record results from checkpoints achieving best average performance. Test
curves are in Fig.[T0]and Fig.[TT} Analysis is in Appendix [C.1.2] We can see that on Qwen2.5-Math-
7B, different examples have different performance for 1-shot RLVR.

RL Dataset | MATH AIME AMC Minerva Olympiad- AIME Av

Dataset Size 500 2024 2023 Math Bench 2025 g
Qwen2.5-1.5B [24]
NA NA 3.2 0.4 3.1 2.6 1.2 1.7 2.0
DSR-sub 1209 57.2 5.0 30.3 17.6 21.2 0.8 22.0
{m1} 1 43.6 0.8 14.4 12.9 17.6 0.4 15.0
{m1, ™2, T13, T1200 } 4 46.4 2.9 15.9 14.0 19.0 0.8 16.5
{m1,...,m16} 16 53.0 3.8 30.3 19.1 19.6 0.0 21.0
Qwen2.5-Math-1.5B-Instruct [25]
NA NA 73.4 10.8 55.0 29.0 38.5 6.7 35.6
DSR-sub 1209 75.6 13.3 57.2 31.2 39.6 12.1 38.2
{m1} 1 | 74.6 12.1 55.3 30.9 37.9 12.1 37.1
Qwen2.5-Math-7B [25]

NA NA 51.0 12.1 353 11.0 18.2 6.7 22.4
DSR-sub 1209 78.6 25.8 62.5 33.8 41.6 14.6 42.8
{m1} 1 79.2 23.8 60.3 27.9 39.1 10.8 40.2
{7605} 1 77.4 20.4 59.4 23.9 39.0 10.8 38.5
{1200} 1 76.4 16.2 55.0 30.9 41.0 5.4 37.5
{m1,...,mT6} 16 77.8 304 62.2 353 39.9 9.6 42.5

28



Table 11: 1(few)-shot RL still works well for different model with different scales. Here we
record model’s best performance on each benchmark independently.

RL Dataset | MATH AIME AMC Minerva Olympiad- AIME A
Dataset Size 500 2024 2023 Math Bench 2025 Ve

Qwen2.5-Math-7B [24] + GRPO

NA NA 51.0 12.1 35.3 11.0 18.2 6.7 22.4

DSR-sub 1209 81.0 34.6 64.6 39.7 422 14.6 42.8

{m1} 1 79.4 27.1 61.9 32.7 40.3 11.7 40.2

{m1, m13} 1 81.2 23.3 64.1 36.0 42.2 12.1 41.3

{m1, T2, T13, 1200} 4 80.0 26.2 64.4 37.9 43.7 14.6 42.5

Random 16 78.0 24.6 63.1 36.8 38.7 14.2 40.2

(71, .., 716} 16 79.2 304 622 37.9 42.4 1.7 425
Llama-3.2-3B-Instruct + GRPO

NA NA 40.8 8.3 25.3 15.8 13.2 1.7 17.5

DSR-sub 1209 45.4 11.7 30.9 21.7 16.6 11.7 19.8

{m1} 1 46.4 8.3 27.5 19.5 18.2 1.7 19.0

{m1, m13} 2 49.4 9.2 31.6 20.6 20.0 2.1 21.0

{71, 72, T13, T1200} 4 484 92 294 235 17.6 17 198

Qwen2.5-Math-1.5B [24] + PPO

NA NA 36.0 6.7 28.1 8.1 22.2 4.6 17.6

DSR-sub 1209 73.8 21.2 52.8 324 36.3 104 354

{m1} 1 ‘ 74.0 16.7 53.8 28.3 34.1 9.2 33.8
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Figure 6: Different data have large difference on improving MATHS500 accuracy, but they all
improve various tasks rather than their own task. From left to right correspond to 1-shot RL on
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29



Accuracy (%)
I -
ussLuzI

Accuracy (%)

Accuracy (%)
IR
0538533

Accuracy (%)
vy
5588

o w

MATH 500 (avg@1) AIME 2024 (avg@8) AMC 2023 (avg@8)

55
5 ] 1.2k DSR-sub
BT o
A FW{;?“"”{ 18 7.5k MATH train set 50
—— 2shot {m, ms3}
£ 16| — 1shot {ms} = Sas
> 1 shot {m} v >
R UN IRt ,‘4 810
== 1.2k DSR-sub EPTImE Y ‘ } 5 1.2k DSR-sub
=== 7.5k MATH train set g 4 JQ w,\h A <‘(‘j 35 7.5k MATH train set
— 2 shot {my, ms} 10{ Y —— 2shot {my, m}
—— 1shot {m3} s § 30 —— 1shot {m3}
1shot {m} ; 1 shot {m}
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Steps Steps Steps
Minerva Math (avg@1) 38 OlympiadBench (avg@1) AIME 2025 (avg@8)
A ]
4 A 36 & 10
A R AN T [l 3 -
Mg AP UK 5 g
J NN Y 32 Y 1
AW N\/V\ - - b
£ N MMV 830 g il ‘
! == 1.2k DSR-sub S8 1.2k DSR-sub £ 1.2k DSR-sub
H === 7.5k MATH train set E 7.5k MATH train set <\(‘3 7.5k MATH train set
i —— 2shot {m, m3} 26 —— 2shot {m, m3} —— 2shot {m, m3}
i —— 1shot {ms} 2 —— 1shot {ms} 4 —— 1shot {ms}
i 1 shot {m} » 1 shot {m} 1 shot {m}
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Steps
375 Average on 6 benchmarks

1.2k DSR-sub

7.5k MATH train set
—— 2shot {m, m3}
—— 1lshot {ms}

1shot {m}

i

0 250 500 750 1000 1250 1500 1750 2000
Steps

Figure 7: Detailed results for RLVR on Qwen2.5-Math-1.5B.

MATH 500 (avg@1) AIME 2024 (avg@8) AMC 2023 (avg@8)
35 =
f A s 60
30 Aoa
~2s N 50
8 8
; =20 540
A I 8 A 8
I €30
1.2k DSR-sub 515 ---- 1.2k DSR-sub 5 1.2k DSR-sub
16 shot {m...me} § 10 -~ 16 shot {m...me} é(‘j 20 16 shot {m... mg}
—— 4 shot {m, M, M3, Mizos} —— 4 shot {m, 3, M3, M200} —— 4 shot {m, my, M3, Maos}
—— 2 shot {m, m3} 5 —— 2 shot {m, m3} 10 —— 2 shot {m, m3}
—— 1shot {m} o —— 1shot {m} o —— 1shot {m}
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Steps Steps Steps
OlympiadBench (avg@1) AIME 2025 (avg@8)
10 s < - B
o 12
£30 S F10
> H 28
@ 8
1.2k DSR-sub. 520 ---- 1.2k DSR-sub 5 6
16 shot {ny...me} § - 16 shot {m...mg} E ¥ 16 shot {m...me}
—— 4 shot {m, m3, M3, M200} 10 —— 4 shot {m, 1, M3, M200} 4 —— 4 shot {m, m, M3, Ma0e}
—— 2shot {m, m3} —— 2 shot {m, ms} 2 —— 2 shot {m, ms3}
—— 1shot {m} 0 —— 1shot {m} 0 —— 1shot {m}
0 200 400 600 800 1000 [ 200 400 600 800 1000 0 200 400 600 800 1000
Steps Steps Steps

w
S

-~ 1.2k DSR-sub
-~ 16 shot {my...me}

4 shot {my, M5, M3, Miz00}
—— 2 shot {my, ms}

—— 1shot {m}

Accuracy (%)
N
3

k

0 200 40! 600 800 1000

0
Steps

Figure 8: Detailed results for RLVR on Qwen2.5-Math-7B.
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Figure 9: Detailed results for RLVR on Llama-3.2-3B-Instruct.
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Figure 10: Detailed results for RLVR on Qwen2.5-1.5B. The gap between 1-shot RLVR and full-set

RLVR is larger, but the 1-shot RLVR still improves a lot from initial model and 16-shot RLVR
behaves close to full-set RLVR.
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Figure 11: Detailed results for RLVR on Qwen2.5-Math-1.5B-Instruct. Interestingly, 1-shot
RLVR is more stable than full-set RLVR here.

C Evaluation Result

C.1 Main Experiments
C.1.1 Detailed performance on Qwen2.5-Math-1.5B.

In Tab. 8] we show the detailed performance that shown in Fig. |[I} Results are reported for the
checkpoint achieving the best average performance.

C.1.2 Detailed Performance on More Models and Training Examples.

In Tab. [I0} we also show the 1(few)-shot RLVR results on the base model (Qwen2.5-1.5B [24])) and
instruction model (Qwen2.5-Math-1.5B-Instruct [25]). More detailed test curves are shown in Fig.
and Fig.[TT] We can see that (1) for Qwen2.5-1.5B, the gap between 1-shot RLVR with 7; and full-set
RLVR is larger, but the former still improves model performance significantly (e.g., MATHS500: 3.2%
to 43.6%), and 16-shot RLVR works very closely to full-set RLVR. (2) for Qwen2.5-Math-1.5B-
Instruct, both full-set RLVR and 1-shot RLVR have limited improvement as the initial model already
has good performance. Interestingly, as shown in Fig. we observe that 1-shot RLVR is more
stable than full-set RLVR.

Besides, we also consider other single training examples like 7gp5 and 71209 on Qwen2.5-Math-7B.
We can see that they behave relatively worse than 71, and 16-shot RLVR provides a more consistent
approach to closing the performance gap relative to full-set RLVR.

C.1.3 Detailed performance with best per-benchmark results

In Tab. [0] we present the detailed 1(few)-shot RLVR results for Qwen2.5-Math-1.5B. Here, we
record the model’s best performance on each benchmark individually, so their average can be higher
than the best overall average performance (“Avg.”). We include these results to estimate the upper
limit of what the model can achieve on each benchmark. Additionally, we include several examples
that, while not performing as well as 7 or 713, still demonstrate significant improvements, such as
Ta, T1201, and m1209. We observe that, in general, better results correspond to a larger checkpoint
step for best average performance, which may correspond to a longer post-saturation generalization

8https://github.com/volcengine/verl/blob/main/verl/workers/fsdp_workers.py
“https://github.com/volcengine/verl/issues/296
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process. Similarly, in Tab. [TT} we also include the best per-benchmark results for Qwen2.5-Math-7B,
Llama-3.2-3B-Instruct, respectively, together with Qwen2.5-Math-1.5B with PPO training.

C.1.4 Detailed Test curves on MATHS500 for 1-shot RLVR on Qwen2.5-Math-1.5B.

We plot the performance curves for each subject in MATHS500 under 1-shot RLVR using different
mathematical examples. As shown in Fig. [6] the choice of example leads to markedly different
improvements and training dynamics in 1-shot RLVR, highlighting the critical importance of data
selection for future few-shot RLVR methods.

C.1.5 Detailed RLVR results on eacn benchmark over training process.

To better visualize the training process of RLVR and compare few-shot RLVR with full-set RLVR,
we show the performance curves for each benchamrk on each model in Fig. [7, [8 0] It will be
interesting to see that if applying 1(few)-shot RLVR for more stable GRPO variants [13} 11} 112} |16]
can alleviate this phenomenon. In addition to the conclusions discussed in Sec. we also note that
Llama3.2-3B-Instruct is more unstable during training, as almost all setups start having performance
degradation before 200 steps.

In Appendix [C.1.2] we also test the base model and instruction version models in Qwen family. Their
test curves are also shown in Fig. [I0]and Fig. [IT]

C.1.6 More Evaluation on DeepSeek-R1-Distill-Qwen-1.5B

In Tab. [I2] we show the DeepSeek-R 1-Distill-Qwen-1.5B results at 8k and 32k evaluation lengths.
The experimental setup is illustrated in Appendix [B.3]

Table 12: DeepSeek-R1-Distill-Qwen-1.5B results at 8k and 32k evaluation lengths. Setup details
are in Appendix [B.3] “8k—16k—24k” denotes the length extension process in DeepScaleR training.

RL Train MATH AIME AMC Minerva Olympiad- AIME

Dataset Length 500 2024 2023  Math  Bench 2025 | A&
Eval Length = 8k
NA NA 76.7 20.8 51.3 23.3 354 19.7 379
DSR-sub 8k 84.4 30.2 68.3 29.2 45.8 26.7 474
DeepScaleR (40k DSR)  8k—16k—24k 86.3 35.2 68.1 29.6 46.7 28.3 | 49.0
{m} 8k 80.5 25.1 58.9 27.2 40.2 21.7 423
{m1, ™2, T13, 1209 } 8k 81.2 25.8 60.1 26.8 40.4 22.0 |42.7
(71,...,716) 8k 833 296  64.8 29.3 433 228 |455
Eval Length = 32k
NA NA 82.9 29.8 63.2 26.4 43.1 239 449
DSR-sub 8k 84.5 32.7 70.1 29.5 46.9 27.8 |48.6
DeepScaleR(40k DSR)  8k—16k—24k 87.6 414 73.2 30.6 49.6 313 | 523
{m1} 8k 83.9 31.0 66.1 28.3 44.6 24.1 |46.3
{m1, T2, T13, T1209 } 8k 84.8 32.2 66.6 27.7 45.5 24.8 | 469
(71, ..., 716} 8k 84.5 343 69.0 30.0 46.9 252 |48.3

C.2 Analysis
C.2.1 Test Curves for Ablation Study

In Fig.[12] we can see the test curves for ablation study (Sec.[d.T). We can see that policy gradient loss
is the main contributor of 1-shot RLVR. More discussions about format fixing are in Appendix

C.2.2 Entropy loss

Detailed results of entropy-loss-only training. As in Sec. we show the full results of entropy-
loss-only training in Tab. [I3] Training with only entropy loss for a few steps can improve model
performance on all math benchmarks except AIME2025. The test curves are in Fig.[T2] Notice that
the improvement of entropy-loss-only training on Qwen2.5-Math-1.5B is similar to that of RLVR with
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Figure 12: Test curves for ablation study. Here we consider adding policy gradient loss (PG),
weight decay (WD), KL divergence loss (KL) and entropy loss (Ent) one by one for 1-shot RLVR
training on Qwen2.5-Math-1.5B (Sec. {i.1)). Especially for only-entropy training, the test performance
quickly achieves 0 since too large entropy will result in random output, but before that, the model gets
significant improvement from the first several steps, which is close to the results of format-reward
RLVR training (Appendix [C.2.3). More discussions are in Appendix[C.2.3]

Table 13: Entropy loss alone with 77, can improve model performance, but it still underperforms
compared to the format-reward baseline (Appendix[C.2.3).

MATH AIME24 AMC23 Minerva Olympiad- AIME

Model 500 2024 2023 Math  Bemch 2025 | A&
Qwen2.5-Math-1.5B 36.0 6.7 28.1 8.1 222 4.6 17.6
+Entropy Loss, Train 20 steps 63.4 8.8 33.8 14.3 26.5 33 25.0
Format Reward 65.0 8.3 45.9 17.6 29.9 54 28.7
Llama-3.2-3B-Instruct 40.8 8.3 25.3 15.8 13.2 1.7 17.5
+Entropy Loss, Train 10 steps 47.8 8.8 26.9 18.0 15.1 0.4 19.5
Qwen2.5-Math-7B 51.0 12.1 353 11.0 18.2 6.7 22.4
+Entropy Loss, Train 4 steps 57.2 13.3 39.7 14.3 21.5 3.8 25.0
Format Reward 65.8 24.2 54.4 24.3 304 6.7 343

format reward (Appendix [C.2.3] Tab.[I4), thus we doubt that the effectiveness of entropy-loss-only
training may come from format fixing, and we leave the rigorous analysis of this phenomenon for
future works.

Discussion of entropy loss and its function in 1-shot RLVR. Notably, we observe that the benefit
of adding entropy loss for 1-shot RLVR is consistent with conclusions from previous work [60] on the
full RLVR dataset, which shows that appropriate entropy regularization can enhance generalization,
although it remains sensitive to the choice of coefficient. We conjecture the success of 1-shot
RLVR is that the policy gradient loss on the learned example (e.g., (1)) actually acts as an implicit
regularization by ensuring the correctness of learned training examples when the model tries to
explore more diverse responses or strategies, as shown in Fig. [3](Step 1300). And because of this,
both policy loss and entropy loss can contribute to the improvement of 1-shot RLVR. We leave the
rigorous analysis to future works.

C.2.3 (Only) Format Correction?

As discussed in Dr. GRPO [13]], changing the template of Qwen2.5-Math models can significantly
affect their math performance. In this section, we investigate some critical problems: is (1-shot)
RLVR doing format fixing? And if the answer is true, is this the only thing 1-shot RLVR does?

To investigate it, we consider three methods:

(a). Applying format reward in RLVR. We first try to apply only format reward for RLVR (i.e.,
if the verifier can parse the final answer from model output, then it gets 1 reward no matter if the
answer is correct or not, otherwise it gets O reward), considering both 1-shot and full-set. The results
are shown in Tab.[I4] and the test curves are shown in Fig.[T4]and Fig.[I3] respectively.

Notably, we can find that (1) Applying format reward to full-set RLVR and 1-shot RLVR behave very
similarly. (2) applying only format reward is already capable of improving model performance

34



MATH 500 (avg@1)

AIME 2024 (avg@8) AMC 2023 (avg@8)
70 175 50
e 15.0
601/ N 7 —~40
Es0 ! L K125 S
= ! 1.2k DSR-sub, format reward, no Entropy Loss = = 30 1.2k DSR-sub, format reward, no Entropy Loss
S a0l === 1.2k DSR-sub, format reward G100 S === 1.2k DSR-sub, format reward
g3 1.2k DSR-sub, outcome reward g 7s 320 1.2k DSR-sub, outcome reward
< 1 < 50 < |
20 { - 1.2k DSR-sub, format reward, no Entropy Loss 1 H
} 2.5 1.2k DSR-sub, format reward |
10 Vv 00 1.2k DSR-sub, outcome reward o A AR
0 25 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 25 500 750 1000 1250 1500 1750 2000
Steps Steps Steps
Minerva Math (avg@1) OlympiadBench (avg@1) AIME 2025 (avg@8)
35 35 1.2k DSR-sub, format reward, no Entropy Loss
30 30] Aot 107 --=- 1.2k DSR-sub, format reward
/ Vo 1.2k DSR-sub, outcome reward
R25 Y g2514 i g
>20 : 320 1.2k DSR-sub, format reward, no Entropy Loss || =
g | 3 ---- 1.2k DSR-sub, format reward 8
g1 i g 1.2k DSR-sub, outcome reward 34
< t < i <
10 1.2k DSR-sub, format reward, no Entropy Loss 10 |
s ---- 1,2k DSR-sub, format reward i 2
1.2k DSR-sub, outcome reward 5 Al R
0 25 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000 0 25 500 750 1000 1250 1500 1750 2000
teps Steps
Average on 6 benchmarks
35
30
—~ I,
Sasp [
Z20f | 4
g \
315 Y
2 L
10 1.2k DSR-sub, format reward, no Entropy Loss
5| - 1.2k DSR-sub, format reward
1.2k DSR-sub, outcome reward
0

250 500 750 1000 1250 1500 1750 2000
Steps

Figure 13: Comparison between outcome reward and format reward for full-set RLVR with
1.2k DSR-sub on Qwen2.5-Math-1.5B.
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Table 14: RLVR with only format reward can still improve model performance significantly,
while still having a gap compared with that using outcome reward. Numbers with color
denote in evaluation. Here we consider adding entropy
loss or not for format reward. Detailed test curves are in Fig. [I3|and Fig.[T4] We can see that: (1)
RLVR with format reward has similar test performance between 1.2k dataset DSR-sub and 7. (2)
1 with outcome reward or format reward have similar , but the former still has
better test performance (e.g., +7.4% on MATHS500 and +5.8% on average). (3) Interestingly, RLVR
with DSR-sub using outcome reward can fix the format perfectly, although it still has similar test
performance as 1-shot RLVR with 7 (outcome reward).

Reward | Entropy | MATH AIME AMC Minerva Olympiad- AIME

Dataset  “poe” | Loss 500 2024 2023 Math  Bench 2025 | A&
NA NA | NA | 360, 67. 281 81 22 46 | 176
DSR-sub  Outcome + 73.6 17.1 50.6 324 33.6 8.3 35.9
DSR-sub  Format + 650, 83 459 176 299 54287
DSR-sub  Format 614 96 447 165 295 38 | 276
{m}  Outcome | + 728 154 516 298 335 71 | 350
{m}  Outcome 682 154 494 250 317 58 326
{m}  Format + 654, 88 438 221 316 38 | 292
{m}  Format 616 83 462 154 293 46 |276

significantly (e.g., about 29% improvement on MATHS500 and about 11% gain on average). (3)
There is still significant gap between the performance of 1-shot RLVR with outcome reward
using 7; and that of format-reward RLVR (e.g., +7.4% on MATH500 and +5.8% on average),
although they may have similar ratios of responses that contain “\boxed{}” in evaluation (More
discussions are in (b) part). (4) In particular, format-reward RLVR is more sensitive to entropy loss

based on Fig.[T4]and Fig.[13]

Interestingly, we also note that the best performance of format-reward RLVR on MATHS500 and
AIME24 are close to that for 1-shot RLVR with relatively worse examples, for example, 77 and
711 in Tab. 3] This may imply that I-shot RLVR with outcome reward can at least work as well as
format-reward RLVR, but with proper examples that can better incentivize the reasoning capability
of the model, 1-shot RLVR with outcome reward can bring additional non-trivial improvement.
Appendix provides a prompt 7}, which uses a sub-question of 71, as an example to support our
claim here.
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Figure 15: Relation between the number of \boxed{} and test accuracy. We can see that they
have a strong positive correlation. However, after the number of \boxed{} enters a plateau, the
evaluation results on some evaluation tasks continue improving (like Minerva Math, OlympiadBench
and MATHS500).

(b) Observe the change of format in 1-shot RLVR. We then investigate how the output format
of the model, for example, the number of \boxed{}, changes in the 1-shot RLVR progress. The
results are shown in Fig.[T5] We can see that (1) the test accuracy is strongly positively correlated
to the number of \boxed{}, which matches our claim that format fixing contributes a lot to model
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Table 15: 1-shot RLVR does not do something like put the answer into the \boxed{}. “Ratio
of disagreement” means the ratio of questions that has different judgement between Qwen-Eval
and QwQ-32B judge. Here we let QwQ-32B judged based on if the output contain correct answer,
without considering if the answer is put in the \boxed{}.

| Stepd Step20 Step 60 Step 500 Step 1300  Step 1860

Ratio of \boxed{} | 59.6%  83.6% 97.4% 96.6% 96.6% 94.2%
Acc. judge by Qwen-Eval 36.0 53.8 69.8 70.4 722 74.0
Acc. judge by QwQ-32B 358 57.2 70.6 71.8 73.6 74.6

Ratio of disagreement | 4.2% 5% 1.2% 1.4% 1.8% 1.8%

Table 16: m; even performs well for in-context learning on Qwen2.5-Math-7B. Here “Qwen

official 4 examples” are from Qwen Evaluation repository [25] for 4-shot in-context learning on
MATHS500, and “Qwen official Example 1” is the first example.

MATH AIME AMC Minerva Olympiad- AIME

Dataset Methed | 500" "2024 2023 Math  Bench 2025 | AYE:
Qwen2.5-Math-1.5B

NA NA 360 6.7 28.1 8.1 222 4.6 17.6

{m} RLVR 728 154 51.6 298 335 7.1 35.0

{m} In-Context 59.0 83 347 19.9 25.6 5.4 25.5

Qwen official 4 examples | In-Context 49.8 1.7 16.9 19.9 19.9 0.0 18.0

Qwen official Example 1 | In-Context 34.6 25 144 12.1 21.0 0.8 14.2
Qwen2.5-Math-7B

NA NA 51.0 121 353 11.0 18.2 6.7 224

{1} RLVR 79.2 238 603 279 39.1 10.8 40.2

{m1} In-Context 754 158 484  30.1 41.3 13.3 374

Qwen official 4 examples | In-Context 59.2 42 209  20.6 244 0.8 21.7

Qwen official Example 1 | In-Context 54.0 42 234 18.4 21.2 2.1 20.6

improvement in (a), but (2) for some benchmarks like MATH500, Minerva Math and OlympiadBench,
when the number of \boxed{} keeps a relatively high ratio, the test accuracy on these benchmarks is
still improving, which may imply independent improvement of reasoning capability.

In particular, to prevent the case that the model outputs the correct answer but not in \boxed{}, we
also use LLM-as-a-judge [61] with QwQ-32B [62] to judge if the model contains the correct answer
in the response. The results are shown in Tab.[I5] We can see that the accuracy judged by rule-
based Qwen-Eval pipeline and LLM judger QwQ-32B are very close, and as the ratio of \boxed{}
increases, the test accuracy also increases, which implies that the number of correct answers exhibited
in the response also increases, rather than just putting correct answer into \boxed{}.

Notably, we also observe that Qwen2.5-Math models contain lots of repetition at the end of model
responses, which may result in failure of obtaining final results. The ratio of repetition when
evaluating MATHS00 can be as high as about 40% and 20% for Qwen2.5-Math-1.5B and Qwen2.5-
Math-7B, respectively, which is only about 2% for Llama3.2-3B-Instruct. This may result in the large
improvement of format fixing (e.g., format-reward RLVR) mentioned in (a).

(c) In-context learning with one-shot example. In-context learning [63]] is a widely-used baseline
for instruction following (although it may still improve model’s reasoning capability). In this section,
we try to see if 1-shot RLVR can behave better than in-context learning. Especially, we consider the
official 4 examples chosen by Qwen-Eval [25] for in-context learning, and also the single training
example 71. The results are shown in Tab. [T6]

We can find that (1) surprisingly, m; with self-generated response can behave much better than
Qwen’s official examples, both for 1.5B and 7B models. In particular on Qwen2.5-Math-7B, in-
context learning with 7r; can improve MATHS500 from 51.0% to 75.4% and on average from 22.4% to
37.4%. (2) Although in-context learning also improves the base models, 1-shot RLVR still performs
better than all in-context results, showing the advantage of RLVR.
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Table 17: Influence of Random Wrong Labels. Here “Error Rate” means the ratio of data that has
the random wrong labels.

Error | MATH AIME AMC Minerva Olympiad- AIME

Dataset  ‘pote | 500 2024 2023  Math Bench 2025 A&
NA NA | 360 67 281 8.1 22 46 176
Qwen2.5-Math-1.5B + GRPO
DSRsub 0% | 736 171 506 324 336 83 359
DSR-sub  60% | 718  17.1 478 294 34.4 71 346
DSR-sub  90% | 678 146 462  21.0 323 54 312
(1) 0% | 728 154 516 298 335 71 350
Qwen2.5-Math-1.5B + PPO
DSRsub 0% | 728 192  48.1 27.9 35.0 96 354
DSR-sub  60% | 71.6 133 491 272 34.4 121 346
DSR-sub  90% | 682 158 509 261 31.9 46 329
{m) 0% | 724 117 516 268 333 71 338

In short, we use these three methods to confirm that 1-shot RLVR indeed does format fixing and
obtains a lot of gain from it, but it still has additional improvement that cannot be easily obtained
from format reward or in-context learning.

C.2.4 Influence of Random Wrong Labels

In this section, we want to investigate the label robustness of RLVR. It’s well-known that general
deep learning is robust to label noise [64], and we want to see if this holds for RLVR. We try to
randomly flip the labels of final answers in DSR-sub and see their performance. Here we randomly
add or subtract numbers within 10 and randomly change the sign. If it is a fraction, we similarly
randomly add or subtract the numerator and denominator.

The results are in Tab.[T7] We can see that (1) changing 60% of the data with wrong labels can
still achieve good RLVR results. (2) if 90% of the data in the dataset contains wrong labels (i.e.,
only about 120 data contain correct labels, and all other 1.1k data have wrong labels), the model
performance will be worse than that for 1-shot RLVR with 7y (which only contains 1 correct label!).
This may show that RLVR is partially robust to label noise, but if there are too many data with random
wrong labels, they may hurt the improvement brought by data with correct labels.

C.2.5 Change the Prompt of 7,

Table 18: Keeping CoT complexity in problem-solving may improve model performance. Com-

paring 71 and simplified variant 7} (prompt: “Calculate +/2048”), where we only keep the main step
that Qwen2.5-Math-1.5B may make a mistake on. We record the results from the checkpoint with the
best average performance. For 7/, the model’s output CoT is simpler and the corresponding 1-shot
RLVR performance is worse. The additional improvement of 7 is relatively marginal compared with
using format reward, showing the importance of the training example used in 1-shot RLVR.

RL Reward | MATH AIME AMC Minerva Olympiad- AIME Av
Dataset Type 500 2024 2023 Math Bench 2025 &

Qwen2.5-Math-1.5B [24]

NA NA | 360 6.7 28.1 8.1 222 4.6 17.6

{1} outcome 72.8 154 51.6 29.8 33.5 7.1 35.0
Simplified {7}} outcome 65.4 9.6 459 23.2 31.1 5.0 30.0
DSR-sub Format 65.0 8.3 45.9 17.6 29.9 54 28.7

As discussed in Sec.[3.2.1] we show that the model can almost solve 71 but sometimes fails in solving

its last step: “Calculate v/2048”. We use this step itself as a problem (7/), and see how it behaves
in 1-shot RLVR. The results are in Tab. Interestingly, we find that 7} significantly underper-
forms 7; and has only 1.3% average improvement compared with format reward (as illustrated in
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Appendix (a)). We think the reason should be that although solving v/2048 is one of the most
difficult parts of 71, 1 still needs other key steps to solve (e.g., calculating k from P = kAV?3 given
some values) that may generate different patterns of CoT (rather than just calculating), which may
allow more exploration space at the post-saturation generalization stage and maybe better incentivize
the model’s reasoning capability.

C.3 Response Length

In Tab.[T9] we report the average response length on the evaluation tasks. The response length on the
test tasks remains relatively stable compared to that on the training data.

Table 19: Average response length of Qwen2.5-Math-1.5B on evaluation tasks. We use the format-
reward experiment (DSR-sub + format reward in Tab. as the baseline to eliminate differences in
token counts introduced by formats.

MATH AIME24 AMC23 Minerva Olympiad- AIME

Setting 500 2024 2023 Math  Bench 2025 | A&

Format Reward \ 689 1280 911 1018 957 1177 \ 1005

I-shot RLVR w/ m1 (step 100) | 611 1123 939 1072 951 1173 | 978
I-shot RLVR w/ 71 (step 1500) | 740 1352 986 905 1089 1251 | 1054
RLVR w/ DSR-sub (step 100) | 636 1268 874 797 054 1122 | 942
RLVR w/ DSR-sub (step 1500) | 562 949 762 638 784 988 | 780

C.4 Pass@8 Results

In Tab. [20] we report the pass@8 results on the evaluation tasks. Interestingly, we find that (1) 1-shot
RLVR achieves comparable or even slightly better pass@8 performance (51.7(2) full-set RLVR (with
1.2k DSR-sub) exhibits a noticeable downward trend in pass@8 performance after 200 steps, which
is consistent with recent findings that RLVR may sometimes degrade the pass@n performance [20].

Table 20: Pass@8 results on 3 math evaluation tasks using Qwen2.5-Math-1.5B. We also include
the performance of RLVR with format-reward (as in Table[T9) as a stronger baseline.

Setting | AIME24 AIME25 AMC23 | Avg. (3 tasks)
Base Model 26.6 20.0 72.5 39.7
Format Reward(highest) 333 233 72.5 43.1
RLVR w/ DSR-sub (highest, step 160) 36.7 26.7 87.5 50.3
RLVR w/ DSR-sub (step 500) 333 30.0 82.5 48.6
RLVR w/ DSR-sub (step 1000) 333 20.0 75.0 42.8
RLVR w/ DSR-sub (step 1500) 30.0 26.7 67.5 41.3
1-shot RLVR (step 500) 30.0 16.7 80.0 422
1-shot RLVR (highest, step 980) 36.7 333 85.0 51.7
1-shot RLVR (step 1500) 26.6 23.3 87.5 45.8

D Discussions

D.1 Limitations of Our Work

Due to the limit of computational resources, we haven’t tried larger models like Qwen2.5-32B training
currently. But in general, a lot of RLVR works are conducted on 1.5B and 7B models, and they
already achieve impressive improvement on some challenging math benchmarks like OlympiadBench,
so our experiments are still insightful for RLVR topics. Another limitation of our work is that we
mainly focus on the math domain, but haven’t tried 1(few)-shot RLVR on other verifiable domains
like coding. But we also emphasize that all math-related experiments and conclusions in our paper
are logically self-contained and clearly recorded, to ensure clarity and avoid confusion for readers.
And we mainly focus on analyzing this new phenomenon itself, which already brings a lot of novel
observations (e.g., cross-category generalization, post-saturation generalization, and more frequent
self-reflection in 1-shot RLVR, etc.). We leave the few-shot RLVR on other scenarios for future work.
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Figure 16: The norm of policy gradient loss for 1-shot RLVR (71) on Qwen2.5-Math-1.5B.

In particular, we note that our main focus is to propose a new observation rather than propose a new
better method, noting that 1-shot RLVR doesn’t save (and maybe requires more) RL computation.
Besides, 71 is not necessarily the best choice for 1-shot RLVR on other models, since it’s selected
based on the historical variance score of Qwen2.5-Math-1.5B. In general, using few-shot RLVR
may be more stable for training, as we have seen that on DeepSeek-R1-Distill-Qwen-1.5B (Tab. {4)),
Qwen2.5-Math-7B (Tab. EI, 110) and Qwen2.5-1.5B (Tab.[10), RLVR with 16 examples ({71, ..., 716})
works as well as RLVR with 1.2k dataset DSR-sub and outperforms 1-shot RL with 7.

D.2 Reasoning Capability of Base Models

The effectiveness of 1(few)-shot RLVR provides strong evidence for an assumption people proposed
recently, that is, base models already have strong reasoning capability [13} 6,20, 21]]. For example, Dr.
GRPO has demonstrated that when no template is used, base models can achieve significantly
better downstream performance. Recent work further supports this observation by showing that,
with respect to the pass@k metrics, models trained via RLVR gradually perform worse than the base
model as k increases [20]. Our work corroborates this claim from another perspective, as a single
example provides almost no additional knowledge. Moreover, our experiments reveal that using very
few examples with RLVR is already sufficient to achieve significant improvement on mathematical
reasoning tasks. Thus, it is worth investigating how to select appropriate data to better activate the
model during the RL stage while maintaining data efficiency.

D.3 Why Model Continues Improving After the Training Accuracy Reaches Near 100% ?

A natural concern of 1-shot RLVR is that if training accuracy reaches near 100% (which may occur
when over-training on one example), the GRPO advantage (Eqn. [6) should be zero, eliminating policy
gradient signal. However, entropy loss encourages diverse outputs, causing occasional errors ( 99.x%
training accuracy) and non-zero gradients (advantage becomes large for batches with wrong responses
due to small variance). This shows the importance of entropy loss to the post-saturation generalization
(Fig.[5). Supporting this, Fig.[T6|shows that for 1-shot RLVR training (1) on Qwen2.5-Math-1.5B,
policy gradient loss remains non-zero after 100 steps.

D.4 Future Works

We believe our findings can provide some insights for the following topics:

Data Selection and Curation. Currently, there are no specific data selection methods for RLVR
except LIMR [19]]. Note that 1-shot RLVR allows for evaluating each example individually, it will be
helpful for assessing the data value, and thus help to design better data selection strategy. What’s more,
noting that different examples can have large differences in stimulating LLM reasoning capability
(Tab. E[), it may be necessary to find out what kind of data is more useful for RLVR, which is critical
for the RLVR data collection stage. It’s worth mentioning that our work does not mean scaling
RLVR datasets is useless, but it emphasizes the importance of better selection and collection of data
for RLVR.
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Table 21: Details of example ;3.

Prompt

Given that circle $C$ passes through points $P(0,-4)$, $Q(2,0)$, and $R(3,-1)$. \n$(1)$ Find the equation
of circle $C$. \n$(2)$ If the line $1: mx+y-1=0$ intersects circle $C$ at points $A$ and $B$, and
$|1AB|=4$, find the value of $m$. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): %.

Table 22: Details of example 7.

Prompt:

How many positive divisors do 9240 and 13860 have in common? Let’s think step by step and output the final
answer within \\boxed{}.

Ground truth (label in DSR-sub): 24.

Understanding 1-shot RLVR and Post-saturation Generalization A rigorous understanding
for the feasibility of 1-shot LLM RLVR and post-saturation generalization is still unclear. We think
that one possible hypothesis is that the policy loss on the learned examples plays a role as “implicit
regularization” of RLVR when the model tries to explore more diverse output strategies under the
encouragement of entropy loss or larger rollout temperature. It will punish the exploration patterns
that make the model fail to answer the learned data, and thus provide a verification for exploration.
It’s interesting to explore if the phenomenon has relevance to Double Descent [65]] or the implicit
regularization from SGD [66, 67|, as 1-shot RLVR on 713 (Fig. 2} middle) shows a test curve similar
to Double Descent. We leave the rigorous analysis of this phenomenon for future works, and we
believe that can help us to comprehend what happens in the RLVR process.

Importance of Exploration. In Sec. we also highlight the importance of entropy loss in
1-shot RLVR, and note that a more thorough explanation of why training with only entropy loss can
enhance model performance remains an interesting direction for future work (Sec.[d.2). Relatedly,
entropy loss has also received increasing attention from the community, with recent works discussing
its dynamics [68l 47, |60]] or proposing improved algorithms from the perspective of entropy [46]].
Moreover, we believe a broader and more important insight for these is that encouraging the model
to explore more diverse outputs within the solution space is critical, as it may significantly impact
the model’s generalization to downstream tasks [69]. Adding entropy loss is merely one possible
approach to achieve this goal and may not necessarily be the optimal solution. As shown in our paper
and previous work [60], the effectiveness of entropy loss is sensitive to the choice of coefficient,
which could limit its applicability in larger-scale experiments. We believe that discovering better
strategies to promote exploration could further enhance the effectiveness of RLVR.

Other Applications. In this paper, we focus primarily on mathematical reasoning data; however, it
is also important to evaluate the efficacy of 1-shot RLVR in other domains, such as code generation
or tasks without verifiable rewards. Moreover, investigating methodologies to further improve few-
shot RLVR performance under diverse data-constrained scenarios represents a valuable direction.
Examining the label robustness of RLVR, as discussed in Sec.[4.2] likewise merits further exploration.
Finally, these observations may motivate the development of additional evaluation sets to better assess
differences between 1-shot and full-set RLVR on mathematical or other reasoning tasks.

E Example Details

In the main paper, we show the details of 7;. Another useful example 713 is shown in Tab. Here
we mention that 713 is a geometry problem and its answer is precise. And similar to 71, the initial
base model still has 21.9% of outputs successfully obtaining % in 128 samplings.

Besides, Tab. 22] through [42]in the supplementary material provide detailed information for each
example used in our experiments and for all other examples in {71, ..., m7}. Each table contains
the specific prompt and corresponding ground truth label for an individual example.
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Table 23: Details of example 73.

Prompt:

There are 10 people who want to choose a committee of 5 people among them. They do this by first electing a
set of $1,2,3$, or 4 committee leaders, who then choose among the remaining people to complete the 5-person
committee. In how many ways can the committee be formed, assuming that people are distinguishable? (Two
committees that have the same members but different sets of leaders are considered to be distinct.) Let’s
think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 7560.

Table 24: Details of example 7.

Prompt:

Three integers from the list $1,2,4,8,16,20$ have a product of 80. What is the sum of these three integers?
Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 25.

Table 25: Details of example 75.

Prompt:

In how many ways can we enter numbers from the set $\\{1,2,3,4\\}$ into a $4 \\times 4$ array so that all of
the following conditions hold? (a) Each row contains all four numbers. (b) Each column contains all four
numbers. (c) Each "quadrant" contains all four numbers. (The quadrants are the four corner $2 \\times 2§
squares.) Let\’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 288.

Table 26: Details of example 7g.

Prompt:

The vertices of a $3 \\times 1 \\times 1$ rectangular prism are $A, B, C, D, E, F, G§, and $H$ so that

$A E, B F$, $C G$, and $D H$ are edges of length 3. Point $I$ and point $J$ are on $A E$ so that $A I=I J=J E=183.
Similarly, points $K$ and $L$ are on $B F$ so that $B K=K L=L F=1$, points $M$ and $N$ are on $C G$ so that

$C M=M N=N G=1$%, and points $0$ and $P$ are on $D H$ so that $D 0=0 P=P H=1$. For every pair of the 16

points $A$ through $P$, Maria computes the distance between them and lists the 120 distances. How many of

these 120 distances are equal to $\\sqrt{2}$? Let’s think step by step and output the final answer

within \\boxed{}.

Ground truth (label in DSR-sub): 32.

Table 27: Details of example 7.

Prompt:

Set $u_0 = \\frac{1}{4}$, and for $k \\ge 0% let $u_{k+1}$ be determined by the recurrence\n

\\[u_{k+1} = 2u_k - 2u_k~2.\\]This sequence tends to a limit; call it $L$. What is the least value of $k$
such that\n\\[lu_k-L| \\le \\frac{1}{2-{1000}}?\\] Let’s think step by step and output the final answer
within \\boxed{}.

Ground truth (label in DSR-sub): 10.

Table 28: Details of example 75.

Prompt:

Consider the set $\\{2, 7, 12, 17, 22, 27, 32\\}$. Calculate the number of different integers that can be
expressed as the sum of three distinct members of this set. Let’s think step by step and output the final
answer within \\boxed{}.

Ground truth (label in DSR-sub): 13.

Table 29: Details of example 7.

Prompt:

In a group photo, 4 boys and 3 girls are to stand in a row such that no two boys or two girls stand next to
each other. How many different arrangements are possible? Let’s think step by step and output the final
answer within \\boxed{}.

Ground truth (label in DSR-sub): 144.
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Table 30: Details of example 7.

Prompt:

How many ten-digit numbers exist in which there are at least two identical digits? Let’s think step by step
and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 8996734080.

Table 31: Details of example 717.

Prompt:

How many pairs of integers $a$ and $b$ are there such that $a$ and $b$ are between $1$ and $42$
and $a"9 = b7 \\mod 43$ ? Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 42.

Table 32: Details of example 7.

Prompt:

Two springs with stiffnesses of $6 \\, \\text{kN} / \\text{m}$ and $12 \\, \\text{kN} / \\text{m}$ are
connected in series. How much work is required to stretch this system by 10 cm? Let’s think step by step and
output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 20.

Table 33: Details of example 71,4.

Prompt:

Seven cards numbered $1$ through $7$ are to be lined up in a row. Find the number of arrangements of these
seven cards where one of the cards can be removed leaving the remaining six cards in either ascending or
descending order. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 74.

Table 34: Details of example ;5.

Prompt:

What is the area enclosed by the geoboard quadrilateral below?\n[asy] unitsize(3mm);
defaultpen(linewidth(.8pt)); dotfactor=2; for(int a=0; a<=10; ++a) for(int b=0; b<=10; ++b)

{ dot((a,b)); 3}; draw((4,0)--(0,5)--(3,4)--(10,10)--cycle); [/asy]l Let’s think step by step and output
the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 22%.

Table 35: Details of example 73¢.

Prompt:

If $p, q,$ and $r$ are three non-zero integers such that $p + q + r = 26$ and\\[\\frac{1}{p} + \\frac{i}{q} +
\\frac{1}{r} + \\frac{360}{par} = 1,\\] compute $pqr$.\n Let’s think step by step and output the final answer
within \\boxed{}.

Ground truth (label in DSR-sub): 576.

Table 36: Details of example ;7.

Prompt:

In Class 3 (1), consisting of 45 students, all students participate in the tug-of-war. For the other three
events, each student participates in at least one event. It is known that 39 students participate in the
shuttlecock kicking competition and 28 students participate in the basketball shooting competition. How many
students participate in all three events? Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 22.
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Table 37: Details of example 7¢o5.

Prompt:

Given vectors $$\\overrightarrow {m}=( \\sqrt {3}\\sin x+\\cos x,1), \\overrightarrow {n}=(\\cos x,-f(x)),
\\overrightarrow {m}\\perp \\overrightarrow {n}$$.\n(1) Find the monotonic intervals of $f(x)$;\n(2) Given
that $A$ is an internal angle of $\\triangle ABC$, and $$f\\left( \\frac {A}{2}\\right)= \\frac {1}{2}+
\\frac { \\sqrt {3}}{2},a=1,b= \\sqrt {2}$$, find the area of $\\triangle ABC$. Let’s think step by step
and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): @.

Table 38: Details of example 7g06.

Prompt:

How many zeros are at the end of the product \\( s(1) \\cdot s(2) \\cdot \\ldots \\cdot s(100) \\), where
\\( s(m) \\) denotes the sum of the digits of the natural number \\( n \\)? Let’s think step by step and
output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 19.

Table 39: Details of example 715¢;.

Prompt:

The angles of quadrilateral $PQRS$ satisfy $\\angle P = 3\\angle Q = 4\\angle R = 6\\angle S$. What is the
degree measure of $\\angle P$? Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): 206.

Table 40: Details of example 71207. A correct answer for this question should be 2/3.

Prompt:

A rectangular piece of paper whose length is $\\sqrt{3}$ times the width has area $A$. The paper is divided

into three equal sections along the opposite lengths, and then a dotted line is drawn from the first divider
to the second divider on the opposite side as shown. The paper is then folded flat along this dotted line to
create a new shape with area $B$. What is the ratio $\\frac{B}{A}$7 Let’s think step by step and output the

final answer within \\boxed{}.

Ground truth (label in DSR-sub): %.

Table 41: Details of example 7150g.

Prompt:

Given a quadratic function in terms of \\\\(x\\\\), \\\\(f(x)=ax~{2}-4bx+1\\\\) .\n\\\\((1)\\\\) Let set
AP\, 2, 3NNV and N\ (@=\\\\{-1,1,2,3,4\\\\}\\\\), randomly pick a number from set

APV as \\\\(@\\\\) and from set \\\\(Q\\\\) as \\\\(b\\\\), calculate the probability that the
function \\\\(y=f(x)\\\\) is increasing in the interval \\\\([1,+\\\\infty)\\\\).\n\\\\((2)\\\\) Suppose point
\\\\((a,b)\\\\) is a random point within the region defined by \\\\( \\\\begin{cases} x+y-8\\\\legslant 0
MM x> 0 AN\ y > 0\\\\end{cases}\\\\), denote \\\\(A=\\\\{y=f(x)\\\\) has two zeros, one greater
than \\\\(1\\\\) and the other less than \\\\(1\\\\}\\\\), calculate the probability of event \\\\(A\\\\)
occurring. Let’s think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): %.

Table 42: Details of example 715(9.

Prompt:

Define the derivative of the $(n-1)$th derivative as the $n$th derivative $(n \\in N~{*}, n \\gegslant 2)$,
that is, $£~{(n)}(x)=[£"{(n-1)}(x)]1’$. They are denoted as $£’’(x)$, $£’’(x)$, $f~{(D}I )%, ...,
$E~{()}(x)$. If $£(x) = xe~{x}$, then the $2023$rd derivative of the function $£f(x)$ at the point

$(0, £~{(2023)}(0))$ has a $y$-intercept on the $x$-axis of Let’s think step by step and output the
final answer within \\boxed{}.

Ground truth (label in DSR-sub): — %.
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