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ABSTRACT
Slow task detection is a critical problem in cloud operation and
maintenance since it is highly related to user experience and can
bring substantial liquidated damages. Most anomaly detectionmeth-
ods detect it from a single-task aspect. However, considering mil-
lions of concurrent tasks in large-scale cloud computing clusters,
it becomes impractical and inefficient. Moreover, single-task slow-
downs are very common and do not necessarily indicate a malfunc-
tion of a cluster due to its violent fluctuation nature in a virtual
environment. Thus, we shift our attention to cluster-wide task slow-
downs by utilizing the duration time distribution of tasks across a
cluster, so that the computation complexity is not relevant to the
number of tasks. The task duration time distribution often exhibits
compound periodicity and local exceptional fluctuations over time.
Though transformer-based methods are one of the most powerful
methods to capture these time series normal variation patterns, we
empirically find and theoretically explain the flaw of the standard
attention mechanism in reconstructing subperiods with low am-
plitude when dealing with compound periodicity. To tackle these
challenges, we propose SORN (i.e., Skimming Off subperiods in
descending amplitude order and Reconstructing Non-slowing fluc-
tuation), which consists of a Skimming Attention mechanism to
reconstruct the compound periodicity and a Neural Optimal Trans-
port module to distinguish cluster-wide slowdowns from other
exceptional fluctuations. Furthermore, since anomalies in the train-
ing set are inevitable in a practical scenario, we propose a picky loss
function, which adaptively assigns higher weights to reliable time
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slots in the training set. Extensive experiments demonstrate that
SORN outperforms state-of-the-art methods on multiple real-world
industrial datasets.
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1 INTRODUCTION
Slow task detection is a critical issue in cloud operations and main-
tenance, as it directly impacts user experience and can lead to
significant penalties for service level agreement violations [39].
Most existing anomaly detection methods focus on detecting task
slowdowns at the individual task level [23, 34, 44, 46]. However,
with millions of tasks running concurrently [23, 49] in large-scale
cloud computing clusters, these approaches become impractical and
inefficient. Moreover, single-task slowdowns are common and may
not indicate a cluster malfunction, given the random and dramatic
fluctuations in task duration time within a virtual environment. To
address these challenges, we pivot towards detecting slowdowns on
a cluster-wide scale, which are more indicative of cluster malfunc-
tions and can be identified without examining each individual task.
Furthermore, unlike the random fluctuations observed in single-
task duration time, the duration time of cluster-wide tasks exhibits
more regular patterns, making slowdown detection more feasible.
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Particularly, we detect cluster-wide task slowdowns using the du-
ration time distribution of a cluster, as illustrated in Fig. 1(a), in
which for each time slot we partition the range of task duration
time into intervals and calculate the proportion of tasks falling into
each interval. This strategic shift not only significantly reduces the
computational complexity of our algorithm, making it independent
of the number of tasks, but also enhances the accuracy of cluster
malfunction detection.

Nonetheless, the distribution of normal task duration time is
not stable but varies over time. Hence, there arises a necessity
to discern the patterns of distribution variation and differentiate
routine slowdowns from anomalies. Among the various methods
for extracting normal patterns, transformer-based methods stand
out as one of the most powerful and effective unsupervised anomaly
detection approaches, resulting in numerous distinguished methods
[19, 37, 43, 44]. Despite the abundance of powerful neural networks
available for normal pattern extraction, several challenges persist:

• Compound periodicity: The distribution of cluster-wide task du-
ration time often exhibits compound periodic variation patterns.
Since different tasks exhibit different periodicity, the periodic-
ity of cluster-wide task duration time distribution is compound
and complicated. For example, in Fig. 1(b), it shows periodicity
on both a weekly and daily basis. As depicted in Fig.1(c), when
integrating two periodicities with different amplitudes and fre-
quencies into a unified representation, the attention mechanism
shows subpar performance in reconstructing the subperiodic-
ity with relatively low amplitude in the presence of compound
periodicity.

• Non-slowing exceptional fluctuations: The temporal evolution of
task duration timewithin the cluster manifests periodic character-
istics on a global scale, interspersing with localized non-periodic
exceptional fluctuations. Within these exceptional fluctuations,
only a small fraction corresponds to cluster-wide slowdowns,
while others are not the focus of our work (e.g., we are not con-
cerned about exceptional task speedups). However, traditional
anomaly detection methods can not reconstruct all of the excep-
tional fluctuations well and detect all of them as anomalies. To
distinguish cluster-wide task slowdowns, it is imperative to accu-
rately reconstruct other exceptional fluctuations while excluding
the cluster-wide slowdowns.

• Anomalies in the training set: In consideration of the substantial
costs linked tomanually labeling anomalies, ourmethodology has
been intentionally crafted to function in an unsupervised manner.
Nevertheless, it is noteworthy that several unsupervised methods
operate on the assumption that anomalies are infrequent within
the training set, a premise that tends to be overly optimistic in
practical scenarios.

Addressing these challenges is imperative for improving the de-
tection accuracy of compound periodic time series and enhancing
model robustness against anomaly contamination in the training
set. Therefore, we propose SORN, which Skims Off the subperi-
odicity with different amplitudes layer by layer and selectively
Reconstructs the Non-slowing fluctuations excluding the cluster-
wide task slowdowns. It contains three innovative mechanisms to
tackle the aforementioned three issues correspondingly: Skimming
Attention, Neural Optimal Transport (OT), and Picky Loss.

Specifically, we first theoretically prove that the standard at-
tention mechanism tends to allocate more attention to subperiods
with higher amplitudes in compound periodic time series. This
bias prevents it from effectively reconstructing subperiods with
relatively low amplitudes. Building on this analysis, we introduce
a skimming attention mechanism to capture the compound peri-
odicity pattern, where we sequentially skim off subperiods from
the original sequence in descending order of amplitudes and re-
construct iteratively from the remaining series. In this way, the
subperiods with higher amplitudes are initially well reconstructed
and skimmed off from the original time series. After that, the subpe-
riods with low amplitudes in the original series become subperiods
with relatively high amplitudes in the remaining series and can be
better reconstructed.

Subsequently, we use a Neural OT module to adjust the recon-
structed series of skimming attention, where we innovatively trans-
form the traditional optimal transport problem into a neural net-
work, and by intricately designing a transportation cost matrix, we
can selectively reconstruct the non-slowing fluctuations.

Furthermore, to mitigate the negative effect of anomaly contam-
ination in the training set, we design a novel picky loss function,
which allocates different weights to time slots in the loss function
according to their reliability.

Accordingly, this work presents several novel and distinctive
contributions to the field of cluster-wide slow task detection:

• We present the first attempt to formalize the cluster-wide slow-
down problem with the identification of the problem specifica-
tions and relevant challenges.

• We provide a theoretical explanation for the limitations of the
standard attention mechanism in effectively reconstructing sub-
periods with low amplitude in compound periodicity. Moreover,
we introduce a novel skimming attention mechanism designed
to extract subperiodic components with varying amplitudes and
aggregate them to ensure accurate reconstruction of both high
and low-amplitude subperiods.

• We introduce a novel Neural OT module tailored to reconstruct
the normal non-periodic fluctuations observed in the duration
time distribution, while effectively filtering out the cluster-wide
slow-down anomalies.

• We propose a picky loss function that assigns higher weights to
reliable time slots within the loss function.

Besides, we conducted extensive experiments and demonstrated
that our method outperforms the state-of-the-art (SOTA) methods
in F1 score on real-world industrial datasets.

2 PRELIMINARY
2.1 Optimal Transport (OT)
It is given a set of value intervals 𝐼 = {(𝑠1, 𝑠2], (𝑠2, 𝑠3], . . . , (𝑠𝑛−1, 𝑠𝑛]}
and two distributions a ∈ 𝑅𝑁 and b ∈ 𝑅𝑁 , where a𝑖 = 𝑃 (𝑠𝑖 < 𝑥 ≤
𝑠𝑖+1), 𝑥 ∼ a. Similarly, b𝑖 = 𝑃 (𝑠𝑖 < 𝑥 ≤ 𝑠𝑖+1), 𝑥 ∼ b. The Optimal
Transport problem aims at transforming distribution a to b by mov-
ing a fraction of the amount in each interval of a to another interval.
Moving a unit from 𝑗𝑡ℎ interval to 𝑖𝑡ℎ interval costs a price 𝐶𝑖, 𝑗 .
The Optimal Transport problem gropes for an optimal transport
strategy 𝑃 costing the lowest price, where 𝑃𝑖, 𝑗 denotes the amount
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(a) The task duration time distribution (b) The compound periodicity (c) The reconstruction series of attention

Figure 1: (a) At each time slot, we use a stacked histogram bar to plot the frequency distribution of the duration time at that
slot. We use a darker color to denote the interval requiring more duration time. The stacked histogram bar is ordered in time
order. (b) The compound periodicity of task duration time. (c) The original series and series reconstructed by standard attention
are plotted in one figure, where the subperiod with low amplitude can not be well reconstructed.

of unit moving from 𝑗𝑡ℎ interval to the 𝑖𝑡ℎ , as shown in Eq.1, where
< 𝑃,𝐶 > denotes the Frobenius dot-product.

min
𝑃

< 𝑃,𝐶 >,

𝑠 .𝑡 . 𝑃 · ®1 = b, 𝑃𝑇 · ®1 = a.
(1)

2.2 Problem Setup
Definition 1. 𝑓𝑡 and 𝑓 ∗𝑡 are used to denote the real-time distribu-
tion and expected distribution at time slot 𝑡 . 𝑓𝑡 (𝛼) and 𝑓 ∗𝑡 (𝛼) are
used to denote the 𝛼-quantile of distribution 𝑓𝑡 and 𝑓 ∗𝑡 . T is used
to denote the threshold for tolerable fluctuation range of duration
time distribution.
Definition 2. If there is a slowdown at time slot 𝑡 , thenmax𝛼 𝑓𝑡 (𝛼)−
𝑓 ∗𝑡 (𝛼) > T ,∀𝛼 .
Definition 3. (Input data & output data) Given a set of intervals
𝐼 = {[𝑠1, 𝑠2), [𝑠2, 𝑠3), . . . , [𝑠𝐷 , 𝑠𝐷+1)}, the input data is a 𝑇−length
and𝐷 dimensional multivariate time series 𝑥 ∈ 𝑅𝑇×𝐷 , where 𝑥 [𝑡, 𝑑]
is the number of tasks whose duration time falls into the 𝑑𝑡ℎ inter-
val [𝑠𝑑 , 𝑠𝑑+1). The reconstruction series of SORN is denoted by ¤̃𝑥 .
Problem Formalization.We use a SORN to obtain a reconstruc-
tion series ¤̃𝑥 from the original input data 𝑥 . Subsequently, we use
an anomaly score function AnomalyScore( ¤̃𝑥, 𝑥, 𝐼 ). We aim to maxi-
mize the anomaly score gap between the slow-down time slots and
the others.

3 METHODOLOGY
The overview of SORN is depicted in Fig. 2(a). We sequentially mask
each time slot in 𝑥 and employ a multi-layer Skimming Attention
mechanism to reconstruct the time slot by leveraging compound
periodic information. Subsequently, we utilize Neural OT to fine-
tune the reconstructed series obtained from Skimming Attention,
capturing aperiodic but typical fluctuations in the time series. Fi-
nally, we apply the picky loss function to assign higher weights
to normal time slots while assigning lower weights to occasional
anomalous slots in the loss function.

3.1 Skimming Attention
The duration time distribution usually exhibits compound periodic
fluctuations, as shown in Fig. 1(b). In a compound periodic series,
different subperiods usually have different amplitudes (i.e., vari-
ation range) [40], as shown in Fig. 3(a). When dealing with this
kind of compound periodicity, the standard attention mechanism
falls short in reconstructing the subperiod with low amplitude, as
shown in Fig.1(c), where we fuse two periodicities with different
amplitudes and frequency, the standard attention only reconstructs
the one with higher amplitude well. We theoretically explain this
phenomenon in Theorem 1 and Theorem 2, where we prove that a
self-attentionmechanism paysmore attention to the subperiod with
relatively higher amplitude in compound periodic series, which
degrades the performance of reconstructing the subperiods with
lower amplitudes in compound periodic series. Thus, we propose
a skimming attention that masks each time slot alternatively and
aims at reconstructing it by compound periodic information. There
are two challenges to achieving this. On the one hand, we need to
prevent it from reconstructing time slots only by leveraging the
similarity of adjacent time slots in each layer but neglecting the
periodic information. On the other hand, we need to reconstruct
every subperiod well rather than just those with high amplitudes.

We deduce Theorems 1-2 using the same setting as the self-
attention mechanism in a patching transformer [25], where a time
series is split into a set of 𝑝-length patches, which constitute the
query, key, and value vectors of a self-attention mechanism. We
start with a simple case and generalize it to a general situation. In
the derivation, we omit the final step of applying softmax to the
attention weights, as softmax does not alter the relative order of the
attention weights assigned to different time slots in the sequence
and will not affect the conclusion.
Definition 4. Given 𝑎, 𝑏 ∈ 𝑍, 𝑎 ≠ 𝑏, we set the patch length 𝑝

to lcm(𝑎, 𝑏), where lcm(𝑎, 𝑏) denotes the least common multiple
of 𝑎 and 𝑏. It is given a series with compound periodicity 𝑓 (𝑡) =
𝑐1 cos(𝜔1𝑡) + 𝑐2 sin(𝜔2𝑡), where 𝜔1 = 2𝑎𝜋

𝑝 , 𝜔2 = 2𝑏𝜋
𝑝 and 𝑐1, 𝑐2 ∈

𝑅, 𝑐1 > 𝑐2. There are two subperiod component in 𝑓 (𝑡): 𝑓1 (𝑡) =

𝑐1 cos(𝜔1𝑡) and 𝑓2 (𝑡) = 𝑐2 sin(𝜔2𝑡). We use𝑇1 and𝑇2 to denote the
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(a) The model architecture of SORN
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(b) A layer of Skimming Attention

Figure 2: The model architecture of the proposed SORN algorithm.

(a) The amplitude of different periods (b) Attention weights along different subpe-
riods

(c) The series from different Skimming
Attention layers

(d) The reconstruction and loss weight
of SORN

Figure 3: (a) The figure shows different amplitudes of different subperiods; (b) The figure shows attention weight along different
subperiods in 𝑓 (𝑡). The width of the shadow is the value of the attention weight divided by 100 at the corresponding time slot.
To distinguish the positive attention weight and negative attention weight we plot them in different colors and denote them by
A+ and A− respectively. (c) & (d) The visualization of SORN.

period length of 𝑓1 and 𝑓2 respectively.
Theorem 1. In 𝑓 (𝑡), when taking the patch starting from 𝑡𝑡ℎ1 time
slot as the query, the attention weight of the patch starting from
𝑡𝑡ℎ2 is 𝑝

2 [𝑐
2
1 cos𝜔1Δ𝑡 + 𝑐2

2 cos𝜔2Δ𝑡], where Δ𝑡 = (𝑡2 − 𝑡1).
Proof. Please refer to Appendix A for more details.

Taking a further look at the attention weight 𝑝
2 [𝑐

2
1 cos𝜔1Δ𝑡 +

𝑐2
2 cos𝜔2Δ𝑡], it is a linear combination of cos𝜔1Δ𝑡 and cos𝜔2Δ𝑡 .
The first one distributes attention weight according to the peri-
odicity of 𝑓1: it assigns the highest attention weight to the time
slot that is 𝑛𝑇1-slots apart from the query time slot, where 𝑛 ∈ 𝑍

(i.e. when Δ𝑡 = 𝑛𝑇1, cos𝜔1Δ𝑡 reaches its maximum value). Simi-
larly, the second one distributes attention weight according to the
periodicity of 𝑓2 and assigns the highest attention weight to the
time slot that is 𝑛𝑇2 apart from the query time slot. Moreover, their
impact on the attention weight is decided by the amplitudes of
their corresponding subperiod. Since 𝑐1 > 𝑐2, cos𝜔1Δ𝑡 contributes
more to the attention weight. Thus, the periodic information of 𝑓1
can obtain higher attention weight and 𝑓1 will be reconstructed

better. As shown in Fig. 3(b), the highest attention weights show
up at the time slot that 𝑛𝑇1-slots apart from the query slot without
concerning the subperiod with period length of 𝑇2.

To generalize Theorem 1 to a general situation, given a time
series 𝑓 (𝑡) with compound periodicity, we use trigonometric series
to decompose it as defined in Definition 5.
Definition 5. Given a compound periodic time series 𝑓 (𝑡) with
period length 𝑝 , we set the patch length to 𝑝 . We decompose 𝑓 (𝑡)
to a linear combination of trigonometric series as: 𝑓 (𝑡) =

𝑎0
2 +∑∞

𝑛=1 (𝑎𝑛 cos𝜔𝑛𝑡 + 𝑏𝑛 sin𝜔𝑛𝑡), where 𝜔𝑛 = 2𝑛𝜋
𝑝 and 𝑎𝑛 and 𝑏𝑛 are

coefficients for triangonometric series.
Theorem 2. In 𝑓 (𝑡), when taking the patch starting from 𝑡𝑡ℎ1 time
slot as the query, the attention weight of the patch starting from
𝑡𝑡ℎ2 is 𝑎2

0𝑝
4 + 𝑝

2
∑∞
𝑛=1 (𝑎2

𝑛 + 𝑏2
𝑛) cos𝜔𝑛Δ𝑡 , where Δ𝑡 = (𝑡2 − 𝑡1).

Proof. Please refer to Appendix B for more details.
Similar to the analysis of 𝑓 (𝑡), the attention weight of 𝑓 (𝑡) is

a linear combination of cos𝜔𝑛Δ𝑡 . The subperiods with the higher
amplitudes are more decisive to the attention weight distribution
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and the periodic information of these subperiods can obtain higher
attention weights. Thus, the subperiods with higher amplitudes are
more likely to reconstruct better, while the subperiods with low
amplitudes can be poorly reconstructed.

We show the architecture of each skimming attention layer in
Fig.2(b), which aims at preventing the attention mechanism from
directly reconstructing time slots by making use of the similarity
of adjacent time slots. As shown in Fig.2(b), we first use a sliding
window with padding to extend the input data 𝑥 ∈ 𝑅𝑇×𝐷 to 𝑥 ∈
𝑅𝑇×(𝑝+1)×𝐷 , where 𝑝 + 1 denotes the window length of the sliding
window. Subsequently, we take each dimension separately (taking
the 𝑑𝑡ℎ dimension as an example) and use the first 𝑝-length series
in each window as the keys and the final time slot in each window
as the queries and values. This process is shown in Eq.2-Eq.5, where
[: 𝑝 + 1] denotes the time slices from beginning to the 𝑝𝑡ℎ one.

𝑥 = SlidingWindow(𝑥, 𝑝 + 1, 1), (2)
𝑞𝑑 = 𝑥 [:, : 𝑝 + 1, 𝑑], (3)
𝑘𝑑 = 𝑥 [:, : 𝑝 + 1, 𝑑], (4)
𝑣𝑑 = 𝑥 [:, 𝑝 + 1, 𝑑] . (5)

Afterward, as shown in Eq. 6, we apply a standard attention mech-
anism to the queries, keys, and values and obtain a set of attention
weightA ∈ 𝑅𝑇×𝑇 , whereA𝑖, 𝑗 denotes the 𝑗𝑡ℎ attention weight for
the 𝑖𝑡ℎ query. Then, in Eq. 7, we multiply a gate curve 𝐺 ∈ 𝑅𝑇×𝑇

to the A, where 𝐺 [𝑖, 𝑗] = 1 − exp−
(𝑖− 𝑗 )2
𝜎2 , 𝜎 is a learnable param-

eter and ∗ denotes an element-wise multiplication. In this way,
the attention weights of time slots that are closer to the query are
harder to pass through the gate, while the further one can easily
get passed. Consequently, we can force the attention mechanism to
put more weight on the hopping time slots. Finally, we obtain the
reconstruction series in this layer as in Eq. 8, where 𝑥𝑙 denotes the
reconstruction series of the 𝑙𝑡ℎ skimming attention layer:

A = 𝑞𝑑𝑘
𝑇
𝑑
, (6)

Ã = softmax(A ∗𝐺), (7)

𝑥𝑙 [:, 𝑑] = Ã𝑣𝑑 . (8)

We organize different layers of skimming attention as follows to
deal with compound periodic information:

𝑥𝑙 = Skimming AttentionLayer(𝑥𝑙 ),
𝑥𝑙+1 =𝑥𝑙 − 𝑥𝑙 ,

(9)

where 𝑥𝑙 is the 𝑙𝑡ℎ layer input data and 𝑥0 = 𝑥 . There are two
benefits to organizing the skimming attention layers in this way.
On the one hand, each skimming attention layer skims off the
subperiod with the highest amplitude in 𝑥𝑙 and the next layer can
pay more attention to the subperiod with relatively low amplitude
in the remaining series. Consequently, the subperiods with different
amplitudes can be reconstructed well. We show the reconstruction
series of different Skimming Attention layers in Fig. 3(c), where
it reconstructs subperiods in descending amplitude order. On the
other hand, it can also prevent the problem of vanishing gradient
like ResNet does, since the input of every layer can be also reduced
to 𝑥𝑙 = 𝑥 −∑𝑙−1

𝑘=0 𝑥𝑙 .

3.2 Neural OT
Besides the periodic patterns, there are still aperiodic but normal
fluctuations in task duration time distribution. Since we only pay
attention to slow-down anomalies but not others (e.g., the execution
speed of homework has significantly increased), we target modeling
these non-periodic fluctuations but only hinder the reconstruction
of slow-down anomalies. Inspired by the Optimal Transport (OT)
algorithm, we transform a standard OT problem into a neural net-
work and embed it into our model so that our model becomes
end-to-end.

We first establish an OT problem and then transform it into a
neural network. For each time slot 𝑡 , we take its reconstruction
duration time distribution 𝑥 [𝑡] ∈ 𝑅1×𝑑 as a source distribution and
take its original duration time distribution 𝑥 [𝑡] ∈ 𝑅1×𝑑 as a target
distribution. The OT problem gropes for a transport strategy 𝑃 to
transform the source distribution to the target distribution with
a minimum cost < 𝑃 ∗ 𝑥 [𝑡],𝐶 >, where 𝑃 [𝑑, 𝑠] denotes the ratio
of 𝑥 [𝑡, 𝑠] transporting to 𝑥 [𝑡, 𝑑], 𝐶 [𝑑, 𝑠] denotes the cost of trans-
porting a unit from 𝑥 [𝑡, 𝑠] to 𝑥 [𝑡, 𝑑] and ∗ denotes element-wise
multiplication. According to the definition of 𝑃 , 𝑃𝑥 [𝑡] denotes the
distribution after applying the transport strategy 𝑃 to the source
distribution 𝑥 [𝑡], which should approach the target distribution
𝑥 [𝑡], and the sum of each column of 𝑃 should be 1. Thus, we for-
mulate |𝑃𝑥 [𝑡] − 𝑥 [𝑡] | as an optimization goal and the 𝑃𝑇 ®1 = ®1 as a
constraint in our OT problem. To reconstruct anomalies except the
slow ones, we set 𝐶 as follows:

𝐶𝑖, 𝑗 =

{
𝑀 [𝑖] −𝑀 [ 𝑗], 𝑖 > 𝑗

0, 𝑒𝑙𝑠𝑒,
(10)

where 𝑀 [𝑖] is the midpoint of 𝑖𝑡ℎ interval in 𝐼 (𝐼 is defined in
Definition 3). In this way, only the slow-down distribution shift is
penalized by the transporting cost. Based on the setting above, we
formulate an OT problem as:

min .𝜆 < 𝑃 ∗ 𝑥 [𝑡],𝐶 > + |𝑃𝑥 [𝑡] − 𝑥 [𝑡] |2 ,

𝑠 .𝑡 .𝑃𝑇 ®1 = ®1,
(11)

where 𝜆 is a hyperparameter belonging to [0, 1].
Furthermore, we transform it into a neural network. We take 𝑃

as a trainable parameter. To meet its constraint in the OT problem,
we manipulate 𝑃 as softmax(𝑃𝑇 )𝑇 , and the neural layer is specified
as:

¤̃𝑥 = softmax(𝑃𝑇 )𝑇 𝑥 (12)
Besides, we also introduce the optimization objective of the OT
problem to the loss function.

3.3 Picky Loss Function
The reconstruction-based methods assume that there are no anom-
alies in the training set. However, it is inevitable to have some anom-
alies in the training set in the scenario of unsupervised learning.
Thus, we propose a picky loss function, which adaptively attributes
a weightW ∈ 𝑅𝑇 according to trustworthiness to the loss of each
time slot. The more trustful a time slot is, the higher its weight
is. Inspiring by AnomalyTransformer [43], which points out that
the normal points can establish wide-broad informative associa-
tion along the whole series in attention mechanism whereas the
anomalies can only concentrate on adjacent time slots, we utilize
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the attention weight A in subsection. 3.1 to obtain the weight W.
We use a trainable gate curve 𝐺 ∈ 𝑅𝑇×𝑇 to filter out the attention

weight in the adjacent part, where𝐺 [𝑖, 𝑗] = 1 − exp−
(𝑖− 𝑗 )2
�̂�2 and �̂� is

a trainable parameter and obtainW via:

W = softmax[(A ∗𝐺)®1] . (13)

We obtain the final loss function by attributing the weight W to
each time slot and fusing the optimizing objective in Section 3.2,
resulting in the final loss function as follows:

L =

𝑇∑︁
𝑡=0

W[𝑡] (
�� ¤̃𝑥 [𝑡] − 𝑥 [𝑡]

��
2 + 𝜆 ⟨𝑃 ∗ 𝑥 [𝑡],𝐶⟩) . (14)

As shown in Fig. 3(d), the picky loss function renders lower weights
to the anomaly time slots.

3.4 Anomaly Score
Since the duration time distribution of different tasks does not
distribute uniformly, we split the distribution intervals 𝐼 accord-
ing to the distribution density of task duration time. This leads
to the heterogeneous importance of the reconstruction errors for
different intervals. However, the trivial anomaly score, which adds
the reconstruction errors for different intervals together, ignores
this heterogeneity. Thus, we use the difference between the task
duration time expectations of the original distribution and recon-
struction one as the anomaly score:

AnomalyScore[𝑡] = E(𝑇 (𝑥 [𝑡])) − E(𝑇 ( ¤̃𝑥 [𝑡]))

=

𝐷∑︁
𝑑=0

𝑥 [𝑡, 𝑑] ∗𝑀 [𝑑] −
𝐷∑︁
𝑑=0

¤̃𝑥 [𝑡, 𝑑] ∗𝑀 [𝑑],
(15)

where AnomalyScore[𝑡] denotes the anomaly score of 𝑡𝑡ℎ time slot,
and 𝑇 (𝑥 [𝑡]) and 𝑇 ( ¤̃𝑥 [𝑡]) denote two variables: the task duration
time from distributions 𝑥 [𝑡] and ¤̃𝑥 [𝑡] respectively.

4 EXPERIMENT
We have made extensive experiments on four datasets to verify the
following conclusions:

• SORN can achieve the best performances on the four datasets,
compared with the SOTA methods.

• SORN consumes tolerable time and memory overhead.
• SORN is parameter insensitive.
• SORN is resistant to noise and lax periodicity.
• Each module in SORN has contributed to the performance.

4.1 Experiment Setup
Baseline Methods.We compare SORN with the SOTA anomaly
detection methods: DCdetector [44], TranAD [37], AnomalyTrans-
former [43], VQRAE [17], OmniAnomaly [34], MSCRED [46]. Fur-
thermore, we compare SORN with a method specifically designed
for slow-down detection: IASO [26] and a method designed for
distribution shift detection, feature-shift detection [18].

Datasets.We perform our experiments on four datasets. Two of
them (Ali1, Ali2) are monitoring data of industrial cloud clusters
from Alibaba. One of them (Mustang) is disclosed by Carnegie Mel-
lon Parallel Data Laboratory, and we label the slow-down anomalies

Table 1: Statistics of different datasets.

Ali1 Ali2 Mustang Sync
Dimension 14 14 17 14
Anomaly ratio (%) 3.71 6.06 7.75 1
Subsets 25 25 1 10

Table 2: The hyperparameters.

Hyperparameter Value Hyperparameter Value
Batch Size 100 Learning Rate 0.001
Skimming Layer of Ali1 10 Patch Size of Ali1 2
Skimming Layer of Ali2 6 Patch Size of Ali2 2
Skimming Layer of Mut 6 Patch Size of Mut 2
Skimming Layer of Sync 6 Patch Size of Sync 10

in it manually. To further verify the impact of different factors on
the performance, such as noise, periodicity, slow tasks ratio, and
the average task slow-down time, we also introduce a synthetic
dataset (Sync) so that we can keep every factor under control. We
summarize key statistics of different datasets in Table 1.

Besides, different datasets exhibit different periodicity strictness.
Tomeasure the periodicity strictness of each dataset, for each subset,
if it exhibits periodicity we calculate its autocorrelation coefficient
at intervals of its period length as its periodicity strictness level,
otherwise, we set its periodicity strictness as 0. We show the pe-
riodicity strictness level distribution of subsets in each dataset in
Fig. 4(a). Ali1 and Ali2 show relatively strict periodicity. Mustang
shows lax periodicity. Some subsets of Sync show strict periodicity,
while others are aperiodic.

For more data preprocessing details, please refer to Appendix. C.
Hyperparameters. We show some important hyperparameters

in Table 2, where we use Mut to stand for Mustang.
Evaluation Metrics. We choose three of the most widely-used

metrics to measure the performance of our method as many mar-
velous methods did [7, 9, 19]: the precision, recall, and F1 score.

4.2 Prediction Accuracy
We take 70% of each subset as the training set and take the re-
maining 30% as the testing set. For each subset, we train a unique
model. This training strategy is also adopted by other marvelous
works, such as [7, 34, 46]. We show the performance of SORN and
baselines in Tab. 3, where we use "Pre" and "Rec" to stand for pre-
cision and recall respectively, and highlight the best performance
as the boldfaced. When SORN achieves the best performance, we
underline the best performance among baselines. Otherwise, we
underline the second-best performance among all methods. SORN
achieves the best F1 scores on all datasets compared with the state-
of-the-art methods. Comparing the performance of our method on
four datasets, we observe that it performs best on the Ali1 and Ali2
datasets, followed by Mustang and Sync. It can be seen that the
effectiveness of our method is positively correlated to the strictness
of periodicity in the datasets. It achieves impressive performance
on datasets with strict periodicity, while also demonstrating com-
petitive results on datasets with relaxed periodicity or non-periodic
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(a) Periodicity strictness of each dataset (b) Time and memory overhead (c) Parameter sensitivity

Figure 4: (a) We show the autocorrelation coefficient distribution at the interval of period length for subsets in every dataset.
(b) The time and memory overhead of SORN and baselines on Sync dataset. We use the first two characters to stand for each
method; (c) The hyperparameter sensitivity of the number of skimming layers and patch size on Sync dataset.

(a) The impact of noise and slow task ra-
tio on performance

(b) The impact of periodicity and slow
task ratio on performance

(c) The impact of noise and average slow-
down time on performance

(d) The impact of periodicity and average
slow-down time on performance

Figure 5: (a) We add noise to the original synthetic time series, whose standard deviation is the maximum amplitude of the
original time series multiplied by the "noise" shown in the legend. Then, we test the performance of SORN for different slow
task ratios. (b) For each period in a periodic time series, we extend it by a scaler which is randomly sampled from (1, 1 + 𝑅]. In
this way, the original time series will have a lax periodicity. Then, we test the performance of SORN for different slow task
ratios. (c) Using the same noise setting as (a), we test the performance of SORN for different average slow-down time. (d) Using
the same period setting as (b), we test the performance of SORN for different average slow-down time.

characteristics. We will further discuss the impact of periodicity
strictness in subsection. 4.5.

4.3 Time and Memory Overhead
We evaluated both time and memory overhead on a server equipped
with a configuration comprising 32 Intel(R) Xeon(R) CPU E5-2620
@ 2.10GHz CPUs and 2 K80 GPUs. We use the checkpoint sizes to
stand for the neural network memory overhead and use the time of
training model for one epoch to stand for the time overhead. As for
the non-neural network methods, IASO and feature-shift detection,
we use the maximum memory consumption during its inferring
process as its memory overhead. We show the time and memory
overhead of different methods in Fig. 4(b), where SORN only intro-
duces marginal time and memory overhead compared with some
light methods, such as OmniAnomaly, but can achieve better perfor-
mance on all the datasets. Compared with some transformer-based
methods, such as AnomalyTransformer and DCdetector, we use less
memory overhead yet achieve better accuracy. In this way, SORN
can better meet the real-time requirements of the cloud center.

4.4 Hyperparameter Sensitivity
We test the performance of SORN when setting the number of
skimming layers and patch size as the Cartesian product of {1,3,5,7,9}
for skimming layers and {1,3,5,7,9,11,13} for patch size. We exhibit

the result in Fig. 4(c). Overall, the performance of SORN is parameter
insensitive. As the number of skimming attention layers and patch
size increase, the performance of SORN increases in fluctuations.

4.5 The Impact of Dataset Property
We investigate the impact of four factors on the performance of
SORN on the Sync dataset: the noise, periodicity strictness, slow
task ratio, and average slow-down time in slow-down anomalies.
The noise introduced into the Sync data is a random variable with
a mean of 0 and standard deviation of 𝑛𝑜𝑖𝑠𝑒 ∗ A, where A is the
amplitude of the original time series. To manipulate the periodicity
strictness, we distort each period of the original series by using a
scalar randomly sampled from a distribution (1, 1 + 𝑅] to extend
it. When we test the impact of the noise, we make the time series
strictly periodic before introducing noise and vice versa. The results
are displayed in Fig. 5(a)-Fig. 5(d). Generally, when the time series
is strictly periodic without any noise, SORN can achieve excellent
performance on the Sync dataset. When the noise becomes more
variable and the periodicity is more severely distorted, the perfor-
mance degrades but SORN is still sensitive and accurate: SORN can
achieve an F1 score over 0.9 as long as the slow task ratio over-
passes 10% in all conditions of the noise and periodicity strictness
explored in our experiment; SORN can achieve an F1 score over 0.9
as long as the average slow-down time overpasses 60 minutes in



KDD ’24, August 25–29, 2024, Barcelona, Spain Feiyi Chen et al.

Table 3: Average performance of SORN and baselines on subsets of four datasets.

Ali1 Ali2 Mustang Sync
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

MSCRED 0.841 0.981 0.878 0.928 0.988 0.954 0.871 0.960 0.896 0.717 0.874 0.779
Omni 0.681 0.981 0.782 0.814 0.987 0.890 0.812 0.968 0.878 0.655 0.997 0.787
AnomalyTr 1.000 0.870 0.923 0.999 0.763 0.857 1.000 0.891 0.935 1.000 0.680 0.809
TranAD 0.784 0.989 0.864 0.827 0.968 0.877 0.865 0.918 0.867 0.247 0.568 0.313
DCdetector 0.984 0.728 0.806 0.994 0.723 0.818 0.968 0.718 0.799 0.936 0.406 0.567
VRGAE 0.811 0.981 0.853 0.966 0.992 0.978 0.871 0.959 0.905 0.624 0.794 0.648
IASO 0.492 0.943 0.618 0.611 0.907 0.708 0.420 0.899 0.524 0.389 0.910 0.533
feature-shift 0.533 1.000 0.647 0.744 0.953 0.790 0.511 1.000 0.629 0.594 0.081 0.142
SORN† 0.891 0.989 0.897 0.955 0.997 0.968 0.895 0.996 0.916 0.963 0.893 0.919
SORN‡ 0.944 0.969 0.939 0.960 0.967 0.955 0.912 0.971 0.919 0.939 0.832 0.874
SORN§ 0.878 1.000 0.891 0.950 0.997 0.965 0.925 0.996 0.938 0.935 0.763 0.826
SORN 1.000 0.966 0.979 0.980 1.000 0.989 0.952 0.974 0.958 0.956 0.926 0.932

all conditions of the periodicity strictness and most of conditions
of the noise. It is worth noting that 60 minutes is slightly over the
maximum interval length in 𝐼 (50 minutes). Since the maximum
interval length is 50 minutes, the slow task with slow-down time
less than that may not bring change to 𝑥 . Thus, our model can
not distinguish them. If there is a need to improve the sensitivity
of SORN to the average slow-down time, we can make it by just
substituting the interval division 𝐼 with a fine-grained one.

4.6 Ablation Study
To evaluate the contribution of each module in SORN, we alter-
natively remove each submodule and test the performance of the
remaining model. Specifically, we denote SORN removing skim-
ming attention as SORN†, denote SORN removing neural OT as
SORN‡ and denote SORN replacing picky loss with MSE as SORN§.
When removing the skimming attention mechanism, we replace
it with a standard attention. When removing the picky loss, we
substitute it with MSE. As shown in Table 3, the completed SORN
achieves the best performance. Thus, each submodule of SORN
does contribute to the performance.

5 RELATEDWORK
To the best of our knowledge, we are the first to investigate the
issue of cluster-wide task slowdowns. While numerous works delve
into slow query detection [22, 51] and disk fail-slow detection
[20, 21], they primarily focus on detecting slowdowns at the level of
individual SQL queries or disks rather than considering the overall
aspect. However, detecting slow tasks at the individual level can be
unreliable in cloud virtual environments, where task duration time
fluctuates randomly and significantly. Single-task slowdowns are
common and do not necessarily indicate a cluster malfunction.

Moreover, time series anomaly detection is another relevant area,
as we need to capture the normal variation pattern and time de-
pendencies of time series [16, 48]. Time series anomaly detection
methods can be broadly categorized into three classes: classical
methods [3, 11, 24, 27], signal-processing-based methods [1, 23, 50],
and deep learning-based methods [6, 14, 30, 35, 41, 42, 47, 52]. Clas-
sical methods typically rely on statistical approaches and have
relatively low computational overhead. However, they often make

specific assumptions that limit their robustness in detecting anom-
alies in cloud environments [23]. Signal-processing-based meth-
ods leverage the sparsity inherent in the frequency domain to re-
duce computational overhead. However, they may overlook lo-
cal subtle features [1] or struggle to handle heavy traffic loads
in real-time scenarios [23]. Deep learning-based anomaly detec-
tion methods have reported promising performance and diversified
into various approaches, including prediction-based [5, 14, 30, 52],
reconstruction-based [6, 8, 10, 13, 15, 32, 36, 45], classification-based
[12, 29, 31, 35, 42], and perturbation-based methods [4, 33]. Among
them, reconstruction-based methods have shown strong advan-
tages over others [17], in which the transformer-based methods
have demonstrated good performance recently [28, 38, 43]. How-
ever, as we mentioned earlier, the standard attention mechanism
may struggle to reconstruct compound periodic time series effec-
tively.

6 CONCLUSION
In this study, we introduce SORN as a method for detecting cluster-
wide task slowdowns in cloud clusters, offering three distinctive
features: 1) Skimming Attention, where we provide a theoretical
explanation for the limitations of standard attention mechanisms
in reconstructing compound periodicity and propose a method
to separately reconstruct subperiodic components to ensure accu-
rate reconstruction of both high and low amplitude subperiods; 2)
Neural OT, which selectively reconstructs non-slowing exceptional
fluctuations; 3) Picky Loss, which assigns weights to time slots in
the loss function based on their reliability. Additionally, extensive
experiments demonstrate that SORN outperforms state-of-the-art
methods in real-world datasets. In the future, we will use large
language models for further analysis of the causes of slow-down
tasks based on this foundation and employ multi-agent systems for
automatic recovery.
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A PROOF OF THEOREM 1
In the following, we use AttentionWeight[t1, t2] to denote the attention weight of the patch starting from 𝑡𝑡ℎ2 time slot, when using the
patch starting from 𝑡𝑡ℎ1 time slot as the query. We use the orthogonality of trigonometric functions when deriving Eq. 16 to Eq.17. Since
cos𝜔1𝑡 cos𝜔1 (𝑡+Δ𝑡) = 1

2 cos(𝜔1𝑡+𝜔1 (𝑡+Δ𝑡))+cos(𝜔1𝑡−𝜔1 (𝑡+Δ𝑡)), sin𝜔2𝑡 sin𝜔2 (𝑡+Δ𝑡) = − 1
2 (cos(𝜔2𝑡+𝜔2 (𝑡+Δ𝑡))−cos(𝜔2𝑡−𝜔2 (𝑡+Δ𝑡))),

and
∫ 𝑡1+𝑝
𝑡1

cos(2𝜔1𝑡 +𝜔1Δ𝑡) 𝑑𝑡 = 0 (because 𝑝 is integer multiple of the period length of cos(2𝜔1𝑡 +𝜔1Δ𝑡)), we derive Eq. 17 to Eq. 18. Since
Δ𝑡 is a constant without relevance to 𝑡 , we derive Eq. 18 to Eq. 19.

AttentionWeight[t1, t2] =
∫ 𝑡1+𝑝

𝑡1

(𝑐1 cos𝜔1𝑡 + 𝑐2 sin𝜔2𝑡) [𝑐1 cos𝜔1 (𝑡 + Δ𝑡) + 𝑐2 sin𝜔2 (𝑡 + Δ𝑡)] 𝑑𝑡 (16)

=

∫ 𝑡1+𝑝

𝑡1

𝑐2
1 cos(𝜔1𝑡) cos𝜔1 (𝑡 + Δ𝑡) + 𝑐2

2 sin(𝜔2𝑡) sin𝜔2 (𝑡 + Δ𝑡) 𝑑𝑡 (17)

=

∫ 𝑡1+𝑝

𝑡1

1
2
𝑐2

1 cos(𝜔1Δ𝑡) +
1
2
𝑐2

2 cos(𝜔2Δ𝑡) 𝑑𝑡 (18)

=
𝑝

2
(𝑐2

1 cos𝜔1Δ𝑡 + 𝑐2
2 cos𝜔2Δ𝑡) (19)

B PROOF OF THEOREM 2
We prove Theorem 2 in a similar way as in Theorem 1.

AttentionWeight[𝑡1, 𝑡2] =
∫ 𝑡1+𝑝

𝑡1

(𝑎0
2

+
∞∑︁
𝑛=0

𝑎𝑛 cos𝜔𝑛𝑡 + 𝑏𝑛 sin𝜔𝑛𝑡) · [
𝑎0
2

+
∞∑︁
𝑛=0

𝑎𝑛 cos𝜔𝑛 (𝑡 + Δ𝑡) + 𝑏𝑛 sin𝜔𝑛 (𝑡 + Δ𝑡)] 𝑑𝑡

=
𝑎2

0𝑝

4
+

∞∑︁
𝑛=0

∫ 𝑡1+𝑝

𝑡1

𝑎2
𝑛 cos𝜔𝑛𝑡 cos𝜔𝑛 (𝑡 + Δ𝑡) + 𝑏2

𝑛 sin𝜔𝑛𝑡 sin𝜔𝑛 (𝑡 + Δ𝑡) 𝑑𝑡

=
𝑎2

0𝑝

4
+ 𝑝

2

∞∑︁
𝑛=0

(𝑎2
𝑛 + 𝑏2

𝑛) cos𝜔𝑛Δ𝑡

(20)

C DATA PREPROCESSING
The code and some datasets are available at https://github.com/gyhswtxnc/SORN.

• Ali1 & Ali2 (periodic): We collect these datasets by tracing 25 industrial cloud clusters from Alibaba for 15 days. Most of the labels in
these two datasets are assigned manually according to the experience of our engineers. Some of the labels are assigned according to our
customer’s feedback. These two datasets were collected on server clusters in different regions, and there is a significant difference in the
anomaly proportion between them. Each subset in Ali1 and Ali2 stands for a cluster.

• Mustang (lax periodic) [2]: Mustang is a dataset that records task duration time for 5 years. We preprocess the original dataset as shown
in Appendix. C and label the slow-down anomalies manually. Then, we equally divide the five years of tracing data into 35 intervals and
constitute 35 subsets.

• Sync (mixture of periodic and aperiodic): We synthesize this dataset by combining cosine waves with different frequencies and amplitudes.
Then, we manually insert noise, distorted period and slow-down anomalies.

For every dataset, we count a task duration time distribution 𝐼 at each time slot and divide the intervals in 𝐼 according to the distribution
density of the execution time. We show the interval division for every dataset in Tab. 4.

Table 4: The interval division for each dataset.

Dataset Edges of 𝐼
Ali1 {0, 10, 20, 30, 40, 70, 110, 150, 190, 230, 280, 330, 380, 430}
Ali2 {0, 10, 20, 30, 40, 70, 110, 150, 190, 230, 280, 330, 380, 430}
Mut {0, 5, 10, 20, 30, 40, 70, 110, 150, 190, 230, 280, 330, 380, 430, 900, 1200, 9000}
Sync {0, 10, 20, 30, 40, 70, 110, 150, 190, 230, 280, 330, 380, 430}

D HYPERPARAMETER SEARCHING SPACE
We use grid-search to figure out the optimal hyperparameter settings. We list the ranges for important hyperparameters in Tab.5.
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Table 5: The searching ranges for important hyperparameters.

Hyperparameter Searching Range
Skimming layers {1,3,5,7}
Patch size {2,3,4,5,7,9,11,15}
Window length {10,20,30,40,50,80}
Learning rate {0.0001,0.001,0.01}

E BASELINES INTRODUCTION
• DCdetector: DCdetector is one of the most SOTA anomaly detection methods, which assembles a novel dual attention asymmetric design
and a pure contrastive loss.

• TranAD: TranAD is an influential and novel anomaly detection method, which is assisted by meta-learning and shows the high accuracy
of anomaly detection.

• AnomalyTransformer: AnomalyTransformer is one of the founders who introduced the deep transformer into the area of anomaly
detection, which is verified with strong performance.

• VQRAE: VQRAE is a novel and sharp anomaly detection method, which also delves into the problem that there are anomalies in the
training set. Thus, we also include this method in our baseline.

• OmniAnomaly: OmniAnomaly is one of the most widely-recognized and widely-used anomaly detection methods with small time and
memory overhead.

• MSCRED: MSCRED is an anomaly detection method garnering widespread attention with strong efficacy, which not only considers the
temporal correlation but also takes the interdependency between features into account.

• IASO: IASO is a method specifically designed to detect the slow-down data retrieval of disks.
• Feature-shift detection: The feature-shift detection method is designed to detect whether the distribution of features has shifted.
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