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ABSTRACT

Visual Question-Answering (VQA) is a challenging multimodal task that requires
integrating visual and textual information to generate accurate responses. While
multimodal Retrieval-Augmented Generation (mRAG) has shown promise in en-
hancing VQA systems by providing more evidence on both image and text sides,
the default procedure that addresses VQA queries, especially the knowledge-
intensive ones, often relies on multi-stage pipelines of mRAG with inherent depen-
dencies. To mitigate the inefficiency limitations while maintaining VQA task per-
formance, this paper proposes a method that trains a multimodal planning agent,
dynamically decomposing the mRAG pipeline to solve the VQA task. Our method
optimizes the trade-off between efficiency and effectiveness by training the agent
to intelligently determine the necessity of each mRAG step. In our experiments,
the agent can help reduce redundant computations, cutting search time by over
60% compared to existing methods and decreasing costly image retrieval calls.
Meanwhile, experiments demonstrate that our method outperforms all baselines,
including a carefully designed prompt-based method, on average over six various
datasets. Code will be released at https://github.com

1 INTRODUCTION

Visual Question-Answering (VQA) is a fundamental task in multimodal artificial intelligence that
requires the ability to understand and integrate both visual and textual information to produce correct
answers (Cheng et al., [2025} |Lu et al.,[2024b; Bai et al.,|2025b). Recent studies have demonstrated
advancements in this area, focusing on improving model performance across different types of VQA
queries. These include knowledge-intensive questions that require external factual information (Wen
et al.,[2024)) as well as dynamic queries where answers may change over time (Li et al., [2025]). Var-
ious methods have been studied to integrate multimodal Retrieval-Augmented Generation (nRAG)
to better solve various types of VQA queries. These studies typically enhance the capabilities of
models by incorporating retrieved evidence from both visual and textual sources (Chen et al., 2025}
Xue et al.l 2024} |Xenos et al.l 2023)), and further advance Multimodal Large Language Models’
(MLLMs) potential in real-world applications.

However, a key limitation constrains the practical efficiency and scalability of existing mRAG sys-
tems. Current implementations typically employ rigid, multi-stage pipelines, possibly involving
image grounding (Adjali et al., [ 2024)), image retrieval (Jian et al.,|2024)), and query rewriting (poten-
tially using retrieved contexts) (Zhu et al., 2024} [Liu & Mozafari, 2024), followed by text passage
retrieval (Li et al., 2025} |Adjali et al.| [2024). Besides, these steps may also exhibit inherent potential
dependencies. For instance, effective query rewriting often necessitates prior image retrieval to pro-
vide additional information about the image content, while text retrieval has a critical dependency on
query rewriting (Ma et al.| [2023)). These static workflows are inefficient and remain data-agnostic,
often lacking dynamic selection mechanisms between processing stages. Also, redundant retrieval
steps introduce overly long input length. Consequently, valuable computational resources are ex-
pended even when the original input query might be sufficiently answered using readily available
cues alone, or when certain steps provide marginal benefit for a relatively simple query.

To mitigate inefficiency without compromising performance, this paper introduces a multimodal
planning agent designed to enhance the efficiency of mRAG pipelines in VQA tasks by dynamically
adapting to diverse queries. The agent takes necessary steps given a VQA query on a workflow
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Figure 1: Workflow of our agent on solving VQA with dynamic mRAG strategies. The agent selects
a sub-path based on different VQA inputs, which may require s s s
or both.

as illustrated in Fig.[I] In general, facing various VQA queries at test time, the agent optimizes
computational resource allocation by intelligently omitting redundant operations. Specifically, for
queries necessitating external knowledge or specialized tools, the agent strategically decomposes
the mRAG workflow, selectively executing only those components essential for generating accurate
responses (path 2 or 2), thereby departing from rigid pipeline architectures (path 4). In addition, for
simpler queries resolvable via the model’s intrinsic capabilities, the agent learns to bypass extraneous
processing steps entirely (path 1).

Through experiments across six diverse VQA datasets, we demonstrate the efficiency and effec-
tiveness of our method. The agent helps achieve substantial gains in inference efficiency compared
to both the complete mRAG setting and a designed prompt-based method OmmniSearch (Li et al.,
2025)). Notably, compared to OmniSearch, we reduce the search time by 60%+ on average, and sig-
nificantly lower the number of expensive image-search calls. Furthermore, this significant efficiency
improvement is attained while enhancing or maintaining the VQA task performance on average over
six datasets compared to the default complete mRAG setting and all other baseline methods.

To sum up, our contributions are as follows

1. The paper proposes a multimodal planning agent that dynamically optimizes mRAG
pipelines while maintaining VQA performance with higher efficiency.

2. Experimental results across diverse VQA datasets show that the agent significantly reduces
search time (60%+ compared to a designed prompt-based method) and costly retrieval op-
erations compared to baseline methods. In addition, we obtain improved performance on
average over six test datasets.

2 RELATED WORK

Recent advances in MLLMs have enabled more sophisticated agent-based systems for multimodal
tasks like the VQA task (Xie et al.| [2024; |Gao et al 2023} Jiang et al., [2024). These agents of-
ten integrate RAG mechanisms to enhance reasoning by dynamically retrieving and incorporating
external knowledge from both visual and textual modalities (Song et al., |2025). A common ap-
proach involves multi-stage pipelines where agents sequentially perform operations such as image
retrieval, query refinement (Zhu et al.| 2024), and text retrieval before generating an answer. While
this paradigm improves accuracy by leveraging external evidence, it introduces inefficiencies due to
rigid step-by-step execution, where later stages depend on the outputs of earlier ones. Besides, it
may lead to improper use of tools (e.g., unnecessary retrieval) and the incorporation of excessively
long contexts into the input.

2.1 EXISTING MULTIMODAL PLANNING AGENT FOR VQA

Recent work has explored prompt-based methods to optimize mRAG pipelines. These approaches
typically depend on the inherent capabilities of the underlying pretrained models and complicated
prompt engineering. Within the prompt-based paradigm, multimodal models are prompted to select
actions from a predefined action space and perform these selected actions on external tools, such
as retrieval systems. Subsequently, the outputs from these tools, in conjunction with the original
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input, are iteratively fed back into the model in a recurrent manner, enabling continuous reasoning
and interaction. [Li et al.| (2025)) proposes OmniSearch, which emulates human behavior in inference
stage and dynamically decomposes complex multimodal questions into sub-question chains with re-
trieval action via designed prompts. Such methods primarily rely on the model’s strong capability in
following instructions, as the output generated from tool invocation must adhere to a relatively strict
format, such as JSON. Any deviation or error in the output format will lead to the failure of the en-
tire approach. A model that lacks reliable instruction-following capabilities becomes fundamentally
uncontrollable in VQA settings with mRAG.

Besides prompt-based methods, |Chen et al.|(2025)) introduced an automated process for detecting the
“knowledge boundary” by fine-tuning an MLLM based on automatically sampled data. The knowl-
edge boundary stands for a concept of dividing line between what the model knows and what the
model does not know. The fine-tuning better guarantees the instruction-following ability. However,
classifying a VQA query as inside or outside the knowledge boundary does not, by itself, provide a
mechanism for handling insufficient knowledge. Specifically, it cannot determine whether external
textual or visual information should be retrieved to ensure an accurate response.

In this work, we extend |Chen et al| (2025)’s method by endowing the model with the ability
to dynamically select necessary components in a predefined workflow like an agent, rather than
merely detecting knowledge boundaries. This enhancement significantly improves adaptability in
open-domain VQA scenarios at inference time across various questions. By integrating actionable
decision-making into the retrieval process, our method advances beyond static knowledge assess-
ment toward intelligent, adaptive multimodal planning.

3 METHOD

We propose a method that initially performs data annotation via VQA query decomposition, fol-
lowed by fine-tuning of an MLLM agent. This section begins by establishing the requisite mathe-
matical notations. Subsequently, we elaborate on the automated annotation process and detail the
procedures for agent training and inference. The fine-tuned agent operates in alignment with the
workflow illustrated in Fig. [T}

3.1 NOTATIONS

Let g = (i,t) represent a VQA query composed of image input ¢ and a textual question component
t, and let a denote the corresponding ground truth answer. In general VQA tasks, the original textual
query t may require reformulation into an optimized query q, (henceforth may be referred to as
gold query) to more accurately characterize the information needs expressed in q. For example,
in a situation where the query q asks “When did this sorority established a chapter at American
University”, the gold query g, should be “When was (Name) established at American University?”,
and (Name) refers to the actual sorority name in the image. Let k; denote the set of multimodal
contextual elements retrieved using visual input 2. Let k; denote textual contexts obtained through
the optimized query q,. For an MLLM Mjy parameterized by 6, the answer generation process,
when relying solely on the MLLM, can be formally characterized by:

Yn = My(y|q) (1)

Generation with retrieval information from image retrieval, text retrieval, and both sides can be
formulated as:

yi = Mo(ylq, ki);  ye = Mo(ylg, ke);  yie = Mo(ylq, ki, k) 2

3.2 AGENT TRAINING DATA

Visual Query Decomposition To construct the training data of the agent, given one (g, a) pair
as an example, we further expand it into two derived queries q; and q,. g; refers to a image query
that queries what is in the image (e.g., asking the entity in the image). g, refers to a gold query that
combines ¢ and ¢ and more comprehensively describes the required information. Accordingly, we
also need the corresponding gold answer for image query g; and gold query g,. The answer to g; is
basically the image entity or a detailed description of the image ¢, and the answer to g is a.
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Figure 2: Proposed data annotation method.

This decomposition necessitates the generation of three new components: image query g;, image
entity a;, and gold query q,. Due to the large size of the training set, we adopt a strong MLLM
to annotate these three components. g; and a; are generated conditioned on the original question g
and answer a. The gold query is re-written conditioned on q and a. Notably, g, is used during both
training and inference. Its generation at inference time requires an alternative annotation procedure
that does not rely on the availability of the gold answer a and is defined later. Detailed prompts of
these procedures are shown in Sec[A]

Data Annotation Based on the three queries g, g; and g, and their corresponding answers, we
consider partitioning g into four categories ¢;_4, as illustraed in Fig. [2}

¢1:] No mRAG is needed, if My (y|q) is correct.

@4 More contexts k; related to the textual input are needed, if Mpy(y|q) is incorrect but
My (yli, q;) is correct.

€37 More contexts k; related to the visual input are needed, if My(y|q) is incorrect but
My (y|qy) is correct.

¢4 Both k; and k, are needed, if all My (y|q), Mo (y|q;) and My(y|q,) are incorrect.

Strictly speaking, the model may incorrectly answer g while correctly answering g; and q,. These
cases were rare in our experiments, and we excluded them from training as they conflict with con-
ventional logic (if a model successfully recognizes the image and correctly answers the gold query,
it should be sufficient to answer the original query).

3.3 AGENT TRAINING AND INFERENCE

Training For VQA query g = (7, t), with its category label ¢ properly annotated according to the
previous section, we can fine-tung'| the MLLM M, to operate like an agent. 6 is optimized w.r.t.
minimizing

J(0) = — Z log Py(clg,T) (3)

qeD

where Py(a|b) stands for the probability model parameterized by 6 predicting on a given input b.
Denote the optimized parameters by 0*. T refers to prompts towards predicting category c. Detailed
form of 7' is shown in Sec.[A.2] D stands for the training set.

Inference With optimized 6*, the agent selects one of the four categories defined in Sec. [3.2] with
prompt T', operating as an agent adhering to the workflow depicted in Fig.[T] It is worth noting that
gold queries g, are usually missing at inference time. Thus, it becomes difficult to retrieve k; if the
agent predicts category [€3] or [¢éz . Here we provide a specific formulation of g, at inference time and
the following inference process with task model M (¢ can be either 6 or other open/closed-source
models). Given a VQA query g and prompt 7', if the agent predicts to adopt:

I'This paper considers the setting where the agent model to be trained is the same as the one used for data
annotation, thereby we can choose open-source models.
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¢1. No mRAG, generating a gold query is unnecessary. Downstream models M, directly run
inference on q: My (y|q).

€3. More contexts k;, the gold query q, is rewritten given the original VQA query g by an
MLLMﬂ Contexts k; are retrieved using g,. The inference is My (y|q, k).

€3" More contexts k;, generating a gold query is unnecessary, and only k; will be supplemented
in the following inference process: My(y|q, k;).

¢4. Both k, and k;, k; will be first retrieved using image ¢. Following that, k; and the original
VQA query q are used to rewriteE] the gold query g,. The inference is My(y|q, ki, k)

4 EXPERIMENT

4.1 SETUP

4.1.1 TRAINING SETTING

When constructing the training set according to Sec.[3.2] we experiment with Qwen2.5-VL-7B-Inst
(Bai et al., 2025a) as My. Qwen-Max (Team, 2024) is prompted to evaluate the correctness of the
responses. Qwen2.5-VL-72B (Bai et al., [2025a) is used to perform query rewriting and generate
gold query g, image query q; and the answer a; to g;. We apply LoRA (Hu et al., [2021) and full
fine-tuning to train the agent and find that LoRA with rank 32 works fairly well compared to full fine-
tuning. In the subsequent sections, we default to showing the results of training using LoRA. The
result of full fine-tuning is also reported in Sec. Refer to Sec. for detailed hyperparameter
and training cost.

4.1.2 TRAINING DATA

We adopt InfoSeek (Chen et al., [2023) and VQAv2.0 (Goyal et al., 2017), following |Chen et al.
(2025), as source datasets to construct the training set. Additionally, we introduce WanWu, a Chi-
nese VQA dataset covering news figures, events, animals, and plant-related questions. WanWau is
also incorporated as a source training set. We report detailed statistics of training data in Table|[T]

4.1.3 TEST DATA

The proposed agent is designed to address diverse types of VQA queries, including knowledge-
intensive ones, queries with static or dynamic knowledge, etc. To validate its performance, we
evaluate our method across the following six test datasets with varying characteristics. All test
datasets are completely isolated from the training sets. The specific quantities and properties of each
dataset are summarized in Table 2]

Dyn-VQA (ch/en) is introduced by |Li et al.| (2025) with Chinese and English versions. It com-
prises three distinct question categories: (1) questions with time-sensitive answers, (2) questions
demanding multi-modal knowledge, and (3) multi-hop reasoning questions. Due to its complexity,
this dataset serves as a challenging benchmark in our evaluation. We generate the gold query g
according to the procedure stated in Sec.[3.3]instead of the provided ones.

Life VQA is introduced by [Chen et al.| (2025), consisting of real-world visual questions curated
from daily life scenarios, specifically targeting cases where existing MLLMs exhibit poorly.

Private VQA constitutes an internal collection encompassing diverse categories such as fauna,
flora, architectural structures, and geographical settings. The intricate background compositions
and frequent multi-object scenarios present in this dataset establish it as a significant benchmark for
evaluating sophisticated visual comprehension and reasoning capabilities.

NoCaps (Agrawal et al., 2019) is built upon the Open Images dataset (Krasin et al., [2017), eval-
uates open-domain image captioning performance across diverse object categories and scene types.
For our experiments, we utilize a randomly selected subset of 500 instances.

?Refer to Sec. for detailed prompt to obtain g,. In this paper, we employ a fixed query rewriting model
across all experimental settings to ensure methodological consistency.
3Refer to Sec. for detailed prompt to obtain g, when k; is available.
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Training Data Source  Quantity
InfoSeek 53,999

VQAV2.0 53,180 Test Data Quantity mRAG Effect
Wanwu 66,076 Life VQA 149 High
Total (Raw) 173255 Private VQA 500 Medium
Final Training Set (by Category) Dyn-VQA ch 737 H%gh
Dyn-VQA en 715 High
No mRAG 30,000
. NoCaps 500 Low
Image mRAG 8806 )
Visual7W 574 Low
Query mRAG 30,000 Mix 600 Mixed
Both mRAG 30,000
Total (Final) 98806

Table 2: Test data property illustration of quan-
Table 1: Statistics of the training dataset.  tity and whether mRAG is helpful.

Visual7W  (Zhu et al.} 2016), derived from MS COCO images (Lin et al.,|2014), presents question-
answer pairs spanning seven fundamental interrogative types (who, what, when, where, how, why,
and which). This benchmark comprehensively assesses both basic visual recognition and advanced
contextual reasoning capabilities.

Mix dataset contains 100 random samples from each source test dataset, combining their distinct
features to simulate real-world conditions. The effect of applying mRAG on this dataset becomes
mixed and unpredictable because it contains various types of VQA queries.

4.2 MAIN RESULTS

In this section, we present the result where we adopt Qwen2.5-VL-7B-Inst as the task model. Be-
sides the officially released instructed version, we also experiment with Qwen2.5-VL-7B parameter-
ized by 6* (i.e., the fine-tuned agent itself is applied to VQA tasks). We present the results of more
MLLMs serving as task models in Sec.[5.2]

We report the task performance and ratios of each retrieval type in Table[3] Scores shown in the table
(except for the % ones) are LLM evaluation scores, ranging from 0 to 100. Higher scores refer to
higher performances. We also report the performance evaluated with a static metric, token accuracy,
in Sec.[A.5] % columns represent the proportion of the agent’s predictions corresponding to each
mRAG type. For instance, the notation % +k; indicates the ratio of scenarios where the agent’s
decision exclusively adopts image retrieval.

First, the results in the Mix row, which considers all kinds of VQA queries and simulates a real
situation, show that with the mRAG planning agent, our methods outperform all other baseline
settings. Notably, while the +-k; ; configuration establishes a remarkably strong baseline at the cost
of computational efficiency, our proposed method consistently surpasses its performance both on
the Mix dataset and in terms of unweighted average (Avg.) metrics.

Second, as shown by the % columns, our planning agent dynamically predicts the retrieval type
regarding different datasets. For example, the agent predicts not to adopt mRAG (~60%) on Nocaps
and Visual7W datasets, where the queries tend to be solvable using MLLM only. Also, compared
to the Prompt-based baseline, where the model is overly confident in adopting mRAG, our agent
performs better at utilizing image retrieval and text retrieval tools on other datasets.

Lastly, the result across the first four datasets reveals that one or more of k;, k; and k; ; can sig-
nificantly enhance performance on VQA tasks, indicating that these particular data types benefit
more substantially from mRAG. Our method demonstrates that: (1) it achieves performance com-
parable to or even surpassing the optimal mRAG configuration. E.g., our method reaches 56.48 on
Dyn-VQA (en) data while the +k; ; setting reaches 56.34; (2) it enables more efficient mRAG de-
ployment by eliminating the need for simultaneous searches across both textual and visual content,
e.g., we maintain the performance on Private VQA while keeping only 36.4% +k; : mRAG.

5 ANALYSIS

In this section, we first compare our method with a designed prompt-based method, OmniSearch
(L1 et al. 2025). OmniSearch incorporates tools including image-to-image, text-to-text, and text-
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. No Pt.- % % % % % % % %

Metric: LLM Eval. mRAG TR TR FRie paced  No ki 4k +kit Ours  No 4k 4k ki
Life Qwen2.5  59.19 7540 5523 7405 59.19 993 0.7 0.0 0.0 7181 8.1 228 383 309
VQA *-Agent 57.85 7091 49.66 70.74 57.85 993 0.7 0.0 0.0 6756 8.1 228 383 309
Private Qwen2.5 50.46 59.78 4898 57.74 5090 972 28 0.0 0.0 5640 5.6 18.6 394 364
VQA *.Agent 5042 5530 4631 5524 5044 972 28 0.0 0.0 5486 56 186 394 364
Dyn- Qwen2.5 4373  47.12 50.80 57.58 4445 80.1 199 0.0 0.0 55.51 1.6 130 560 293
VQA (ch) *-Agent 42.40 4178 47.15 5645 4324 80.1 199 0.0 0.0 52.29 1.6 13.0 560 293

VQA (en) *-Agent 44.71 4229 51.34 5327 4392 69.1 303 0.6 0.0 5379 141 34 622 203

Qwen2.5 7572 7088 6742 6524 7543 976 24 0.0 0.0 71.38 60.1 14 308 7.7

Visual’W . fgent 7547 6526 6096 5997 7519 976 24 00 00 | 7042 601 14 308 77
NoCaps  QWen25 8044 7730 8070 7660 8030 986 04 00 10 | 8036 588 00 404 08
PS  iAgent 7944 7280 7866 6828 7940 986 04 00 10 | 7886 588 00 404 08

Mix Qwen25 5881 6279 5851 6441 5868 890 108 00 02 | 6493 248 05 433 223
“Agent 5653 5823 5441 6093 57.08 89.0 108 0.0 02 | 6276 248 05 433 223

Ave Qwen25 5985 6343 5925 6450 5989 903 94 0.1 02 | 6532 247 99 445 209

Dyn- Qwen2.5 4953  50.10 5239 5634 49.04 69.1 303 0.6 0.0 ‘56448 141 34 622 203
‘62.96 247 99 445 209

*-Agent 5838  58.06 55.68 60.66 5834 903 94 0.1 0.2

Table 3: Main result on fine-tuned Qwen2.5-VL-7B serving as mRAG planning agent. Qwen2.5
refers to the officially released Qwen2.5-VL-7B-Inst as the VQA solver and its fine-tuned version
serving as the mRAG planning agent. *-Agent stands for the result where the fine-tuned agent itself
is also used to infer VQA queries. No mRAG refers to the setting where MLLM does not rely on any
form of RAG. Pt.-based refers to the prompt-based baseline methods where the original Qwen2.5-
VL-7B-Inst is prompted to output one of the mRAG types defined in Sec. +k.. columns stand
for the performances when universally adopting the corresponding mRAG on all examples.

to-image search, and also supports multi-round conversations. We conduct a comparative analysis
of our method and OmniSearch on several datasets we evaluated in the main result section. Subse-
quently, we investigate the transferability of our agent model by evaluating its performance when
applied to other MLLMSs. In the last subsection, we present an empirical analysis of the agent’s
training dynamics, examining both full fine-tuning and LoRA with rank 8 and 32.

5.1 COMPARE WITH OmniSearch

OmniSearch is a strong method with the capability to intelligently invoke tools for solving VQA
tasks. This subsection presents a comparative analysis between our method and OmniSearch. The
comparison encompasses first the performance on the VQA task, and second, the number of tool
retrieval operations required, as well as the corresponding execution time when processing the same
test set. Tools consist of image-to-image (i2i), text-to-text (t2t), and text-to-image (t2i) search.
Search time is calculated by multiplying the average time for each searching tool by the count and
taking the sum. Empirical measurements of the average processing duration for image-to-image,
text-to-text, and text-to-image retrieval operations through our API endpoints yielded results of 6.4
seconds, 1.4 seconds, and 1.9 seconds, respectively. In our measurements, agent inference takes 1.65
s/sample on a single A100-SXM-80G GPU. Search time and agent inference latency comparison is
shown in Tabled] Detailed components of searching time are shown in Fig[3]

The experimental results demonstrate that our method consistently achieves superior performance
compared to OmniSearch, exhibiting an average reduction of 66.7% in search time during testing.
Specifically, on the Dyn-VQA (en) dataset, our method reduces image-to-image search operations
by 87.4% and text-to-text search operations by 69.8%, while simultaneously enhancing overall task
performance. It is noteworthy that image-to-image search operations represent a significant bot-
tleneck in vision-language agents, contributing substantially to increased latency. In our method,
decreased retrieval frequency results in shorter input sequences, which subsequently reduces the
computational burden during inference. Considering the agent’s inference time, our method still
reduces the time by 52%.

5.2 AGENT APPLYING TO MORE MLLMSs

We also apply the fine-tuned agent model across diverse MLLMs: a same-scale 7B model
(DeepSeek-VL-Chat; [Lu et al.|2024a), two larger-scale variants from the same source (Qwen-VL-
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No Pt.- % % % % % % % %
mRAG TR TR FRi paced  No 4k ke +kie | O™ Noo ks ke ki

DS-7B 4121 4638 40.54 7114 4134 993 0.7 0.0 0.0 | 5859 &1 228 383 309
Life GPT-40 63.11 7072 5738 7141 63.11 993 0.7 0.0 00 | 6897 81 228 383 309
VQA Q-Max 59.33  68.81 5342 7107 59.19 993 0.7 00 00 | 6937 81 228 383 309
Q-latest  62.79 72.01 6134 73.62 6279 993 0.7 0.0 00 | 7574 81 228 383 309

DS-7B 3776 4898 3752 50.62 38.14 972 28 0.0 0.0 | 4667 56 186 394 364
Private GPT-40 57.68 5560 5444 6148 5770 972 28 0.0 00 | 5886 56 186 394 364
VQA Q-Max 51.80 57.33 49.04 5744 5244 972 28 00 00 | 5628 56 18.6 394 364
Q-latest 5536  57.86 53.74 5928 5536 972 28 0.0 00 |5934 56 186 394 364

DS-7B 35.17 3583 46.01 5541 3521 80.1 199 0.0 00 | 4995 16 130 560 293
Dyn- GPT-40 64.13 6386 5939 6893 6520 80.1 199 0.0 00 | 6476 1.6 130 560 293
VQA (ch) Q-Max 5355 46,51 5410 5993 5193 80.1 199 0.0 00 |57.18 1.6 130 560 293
Q-latest 6149 5744 5896 63.15 6099 80.1 199 0.0 00 |6322 16 130 560 293

DS-7B 37.52 38.86 4993 5442 3799 69.1 303 0.6 0.0 | 5095 141 34 622 203
Dyn- GPT-40 67.65 6736 59.08 6336 6857 69.1 303 0.6 0.0 | 6444 141 34 622 203
VQA (en) Q-Max 57.68 4899 5555 57.57 5441 69.1 303 0.6 0.0 | 5878 141 34 622 203
Q-latest 6144 5371 5994 6147 5859 69.1 303 0.6 0.0 | 6380 141 34 622 203

DS-7B 76.63  70.23 57.80 64.18 7630 97.6 24 0.0 00 | 6952 601 14 308 7.7

Metric: LLM Eval.

Visual7W GPT-40  76.00 74.67 71.60 6878 7599 97.6 24 00 00 | 73.19 60.1 14 308 7.7
Q-Max 77.00 63.02 7026 64.16 7665 97.6 24 0.0 00 | 7195 60.1 14 308 7.7

Q-latest  76.20 5990 71.64 6432 7589 976 24 00 00 | 7220 60.1 14 308 7.7

DS-7B 75.64 66.87 5352 6084 7530 986 04 0.0 1.0 | 66.84 588 0.0 404 0.8

NoCaps GPT-40 82,66 7190 83.10 77.78 8270 98.6 04 0.0 1.0 | 8330 588 0.0 404 08
P Q-Max 82.16 6436 8388 7730 82.10 98.6 04 0.0 1.0 | 83.14 588 0.0 404 0.8
Q-latest 8236 6476 8398 7698 8240 986 04 0.0 1.0 | 8326 588 0.0 404 08

DS-7B 50.60 51.00 47.57 58.13 5022 89.0 108 0.0 02 | 57.02 248 95 433 223

Mix GPT-40 6722 6707 6300 6785 6777 89.0 108 0.0 02 | 6779 248 95 433 223
Q-Max 63.09 55.68 6028 6328 6124 89.0 108 0.0 02 | 6502 248 95 433 223

Q-latest 6550 59.80 63.55 6597 6478 89.0 10.8 0.0 02 | 68.60 248 95 433 223

DS-7B 50.66  51.19 4755 5944 5071 903 94 0.1 02 | 57.09 247 99 445 209

Avg GPT-40 6854 6735 64.17 68.62 6888 903 94 0.1 02 | 6892 247 99 445 209

Q-Max 63.59 58.17 61.04 6458 6279 903 94 0.1 02 | 6612 247 99 445 209
Q-latest  66.61 6095 6493 6647 66.00 903 94 0.1 02 | 6959 247 99 445 209

Table 5: Result of Qwen2.5-VL-7B serving as mRAG planning agent on other MLLMs. DS-7B
refers to DeepSeek-VL-Chat-7B. Q-Max refers to Qwen-VL-Max stable version and Q-latest refers
to Qwen-VL-Max latest version released up to August 2025.

Max and Qwen-VL-Max-latest; Bai et al.|2023), and a distinct larger-scale model (GPT-4o0; [Hurst:
et al.|2024])). The potential for cross-model applicability arises from the observation that, in address-
ing VQA queries, the types of external knowledge or tools that could provide relevant information
often exhibit some degree of commonality (Chen et al.,|2025). This may be partially explained by
the fact that modern MLLMs tend to share certain foundational characteristics, including overlap-
ping pretraining corpora (e.g., Qwen-VL and DeepSeek-VL both leverage datasets such as LAION
(Schuhmann et al.}|2022)) and COCO (Lin et al.,2014)), similar visual encoder architectures (primar-
ily variants of CLIP), and textual knowledge derived from large-scale web data. Given these shared
elements, we assess whether our fine-tuned 7B-scale agent can effectively enhance performance
across more MLLMs without additional fine-tuning.

Results with the same setting as the Main Result Section ({#.2) are shown in Table[5} First, with our
agent, other MLLMs consistently outperform both the no-mRAG and the prompt-based baseline.
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For instance, on average, our method boosts the Qwen-VL-Max-latest model’s score to 69.59, an
improvement over the 66.61 (no-mRAG) and 66.00 (Prompt-based). Second, our agent consistently
achieves improved performance compared to any setting when employing GPT-40 and Qwen-VL-
Max as base models, both on average and on the Mix dataset. This result underscores the potential
effectiveness of our 7B-scale agent in applying to more MLLMs that are closed-source and thus
impossible to perform further fine-tuning.

5.3 TRAINING DYNAMICS

To identify the optimal fine-tuning strategy for our agent, we compared full fine-tuning (FFT) with
LoRA at ranks 8 and 32. The training and evaluation dynamics for loss and token accuracy|’| are
presented in Fig. @] and 5]

The LoRA (r=8) configuration demonstrated insufficient capacity, as its training loss plateaued at
a high level and its evaluation loss spiked since 2500 steps (right in Fig[5). In contrast, both the
LoRA (r=32) and FFT methods demonstrate strong learning capabilities for this task. Their training
loss curves in Fig. [f] exhibit a rapid and stable convergence to a minimal level, with training token
accuracies reaching around 1.0. Furthermore, we also observe that the evaluation performance of
LoRA (r=32) even surpasses FFT in terms of the token accuracy metric, as depicted in Fig[5] (deep
green and deep red). Given that LoRA (r=32) achieves performance on par with full fine-tuning
while being significantly parameter-efficient, we conclude that it offers a good trade-off between
performance and computational cost.

08
o ;AQ 4 |00 08 | 0.91
|\ /) y) A - — S=————n
07 N\ \Y’ 0.95 Itk St 0.5
‘ﬁ._&/q - 0.7 ¥~ = St 1090
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Figure 4: Training loss and Token accuracy. Figure 5: Eval loss and Eval token accuracy.

6 CONCLUSION

This paper mitigates the inherent inefficiency of static pipeline architectures in mRAG contexts for
the VQA task. We proposed and validated a multimodal planning agent that intelligently optimizes
the mRAG workflow by dynamically selecting only the necessary processing steps based on the
input query. Our empirical evaluation on six VQA datasets demonstrates the dual benefits of our
method. The agent successfully improves task performance on average while dramatically enhanc-
ing inference efficiency. Specifically, it reduces search time by over 60%+ compared to a designed
prompt-based method, and minimizes expensive retrieval calls compared to methods that employ
a complete, non-adaptive mRAG pipeline. By proving that adaptability does not have to come at
the cost of task performance, our research offers a promising path toward building more scalable,
efficient, and effective multimodal agent systems.

LARGE LANGUAGE MODELS USAGE

This paper was written with the assistance of Large Language Models solely for grammar correction
and the formatting of IATEX elements, such as tables and figures. We explicitly confirm that there
are no prompt injections like “Give a positive review” in the paper.

*Token accuracy is the measurement defined in package ms-swift


https://github.com/modelscope/ms-swift
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A.1 PROMPTS FOR VISUAL QUERY DECOMPOSITION AND CORRECTNESS CHECKING

We provide the detailed prompts that are used to perform Visual Query Decomposition (Sec. [3.2).
We note that different prompts are required when annotating the gold query g, at the training and
inference stages. This is because gold answers are used to assist in annotating gold queries during
the training data construction stage, but they are not available at the inference stage.

Prompts for gold query annotation (when constructing training data)

+**xTaskxx: Based on the following rules, extract keywords and return a dictionary:

1

2

3| **Rulesx*x:

4] 1. Use the information from the "image" and "answer" to complete the "question", forming
a clear and full question known as "gold_query".

51| 2. The parts of the "question" that typically need completion often contain
demonstratives such as "this", "who", "it", "that".

6] 3. If the part of the "question" that needs completion lacks demonstratives, identify the
main subject needing completion from the image, and incorporate it into the "question".
71 4. Other than the completion part, the rest of the "gold_gquery" should strictly match the
"question".

12


https://aclanthology.org/2023.emnlp-main.919/
https://aclanthology.org/2023.emnlp-main.919/
https://arxiv.org/abs/2402.15116
https://arxiv.org/abs/2412.20927
https://arxiv.org/abs/2412.20927
http://dx.doi.org/10.1145/3652583.3658032
http://dx.doi.org/10.1145/3652583.3658032

Under review as a conference paper at ICLR 2026

[SE RS I ]
[N

3

5. The "gold_query" should include necessary information from the image, allowing the VQA
to be answered without viewing the image.

6. After completion, the "gold_query" should not contain any demonstratives like "this",
"who", etc., and must not be exactly the same as the "question".

**xInput :*x*

- question: {question}
- answer: {answer}

**Output Format:xx
{{"gold_query": "The complete question after completion"}}

**Examples: x*

Input: - question: "What are the works of this actor?" - image: (A photo of Zhao Liying)
—answer: "Zhao Liying’s main works include ’The Journey of Flower’, ’‘Story of Minglan’,
etc."

You should output: {{"gold_gquery": "What are the works of Zhao Liying?"}}

Input: - question: Who is the sole student author presenting this type of neural network
architecture? - image: (A diagram of LSTM) -answer: "Sepp Hochreiter"

You should output: {{"gold query": "Who is the sole student author presenting the LSTM

neural network architecture?"}}

Input: - question: When was it released? - image: (A photo of Tesla Model Z) -answer: "
Tesla Model Z is set to release in 2024"

You should output: {{"gold_query": "When was the Tesla Model Z released?"}}

Input: - question: When did OpenAI release? - image: (A logo of GPT-40) -answer: "OpenAIl
released GPT-40 in May 2024"

You should output: {{"gold query": "When did OpenAI release GPT-407?"}}

Prompts for gold query annotation with image retrieval information (at inference stage)

w

16

B W=

[}

6

10
1

12

Given the following rules, return a dictionary.

1. Based on the image search results, the original question, and the image, rewrite the

original question into a clearer query known as the ’‘gold_query’

2. If the image search results are empty, please ignore this part. The search results for
images may not be accurate. You can refer to them selectively.

3. The rewritten "gold_guery’ should not contain demonstrative pronouns like "this" or "

that, " and should accurately include entities from the image whenever possible.

Output format:
{{"gold_query": "rewritten gold_query"}}

Example:
Image Search Result: (Photos of Zhao Liying from the web)
Image Title: Actress - Zhao Liying

Original Question: What are the works of this actress?
Original Image: (A photo of Zhao Liying)

You should output: {{"gold query": "What are the works of Zhao Liying?"}}

Prompts for gold query annotation without image retrieval information (at inference stage)

Task: Based on the following rules, extract keywords and return a dictionary:

*xRules*x*:

1. Use the information from the image and question to complete the question, forming a
clear and full question known as "gold_query".

2. The parts of the "question" that typically need completion often contain
demonstratives such as "this", "who", "it", "that".

3. If the part of the "question" that needs completion lacks demonstratives, identify the
main subject needing completion from the image, and incorporate it into the "question".
4. Other than the completion part, the rest of the "gold_query" should strictly match the

"question".
5. The "gold_query" should include necessary information from the image, allowing the VQA
to be answered without viewing the image.

Output Format:
{{"gold_query": "The complete question after completion"}}

13
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.

13 | Example 1:

14 | Input: - question: "What are the works of this actor?" - image: (A photo of Zhao Liying)
15 | You should output: {{"gold_query": "What are the works of Zhao Liying?"}}
16

17 | Example 2:

18 | Input: - question: Who is the sole student author presenting this type of neural network
architecture? - image: (A diagram of LSTM)

19 | You should output: {{"gold_query": "Who is the sole student author presenting the LSTM
neural network architecture?"}}

20

21 Example 3:

22 Input: - question: When was it released? - image: (A photo of Tesla Model Z)

23 | You should output: {{"gold_query": "When was the Tesla Model Z released?"}}

24

25 | Example 4:

26 | Input: - question: When did OpenAI release? - image: (A logo of GPT-40)

27 | You should output: {{"gold_query": "When did OpenAI release GPT-40?"}}

Prompts for image query and image entity annotation

*xTask+*x: Based on the following rules, extract keywords and return a dictionary:

*xRules*x*:

1. Compare the "question" with the "gold_query" to identify information that is included
in the "gold_query" but missing from the "question". Based on this missing information
and the image, formulate a question about the content of the image, known as "image_query
", and provide an answer called "image_entity".

B =

51 2. Composition rules for "image_query": If the "question" includes the words "this"/"this
"/"that" followed by a noun, form the query as "Who is this?" or "What is this?" If there
is no noun following "this", the "image_query" should be "What is this?" If there are no

clear demonstratives like "this" or "that", further guidance is needed.
7 *xInputx*:

9| - question: {question}
10 | - gold_query: {gold_query}

12 | x*Output Format#x*:

14 {{"image_query": "", "image_entity": ""}}

17 | x+Examples#x*:

19 | Input: - question: "What are this actor’s works?" - gold_query: "What are Zhao Liying’s
works?" - image: (A photo of Zhao Liying)

20 | You should output: {{"image_query": "Who is this actor?", "image_entity": "Zhao Liying"}}

2

22 Input: - question: "When did Epic Gaming first release this?" - gold_query: "When did
Epic Gaming first release Minecraft?" - image: (A photo of Minecraft)

3 | You should output: {{"image_query": "What is this?", "image_entity": "Minecraft"}}

24

25 | Input: - question: "Who is the current CTO of this organization?" - gold_query: "Who is
the CTO of Alibaba Cloud?" - image: (A photo of Alibaba Cloud)

26 | You should output: {{"image_query": "What is this organization?", "image_entity": "
Alibaba Cloud"}}

27

28 Input: - question: "How much bigger is 4?" - gold_query: "How much bigger is 3 than 4°?"

image: (A photo of the number 3)
29 | You should output: {{"image_query": "What is this?", "image_entity": "3"}}

Prompts for evaluating the correctness of model output

This prompt references Llamalndex’s evaluation. The score is then scaled to a range of 0-100 and
reported.

1 You are an expert evaluation system for a visual question answering chatbot. The visual
information is omitted and you do not need it.

5
3 | You are given the following information:
4| - a user query,

5| - a generated answer, and

6 - gold answer (s)

7

14
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8| Your job is to judge the relevance and correctness of the generated answer according to
the given gold answer.

9 | Do not use your personal opinion.

10 | Output a single score that represents a holistic evaluation.

11 You must return your response in a line with only the score.

12 Do not return answers in any other format.

14 | Follow these guidelines for scoring:

15 — Your score has to be between 1 and 5, where 1 is the worst and 5 is the best.
16 | = If the generated answer is relevant but contains mistakes, \

17 | you should give a score between 2 and 3.

18 - If the generated answer is close to the given gold answer(s), \

19 | you should give a score between 4 and 5.

20 | - If there are multiple gold answers, you can use the most likely one as the reference \
21 | and there is no need to consider all of them.
22 | - The score does not have to be integer.

24 | Example Response:
25| 4.0

27 ## User Query
28 {query}

30 | ## Gold Answer
{reference_answer}

## Generated Answer
4 {generated_answer}

A.2 TRAINING EXAMPLES

VQA query q = (%, t) with prompts 7T is constructed to a training example as follows:

1 You are an assistant designed to solve Visual-Question-Answering (VQA) tasks. The
following VQA query may involve knowledge-intensive or time-sensitive content, which
might exceed your current capabilities. Please evaluate and respond with one of the
following options:

My existing knowledge is sufficient to answer this question
Additional visual information about the image would be helpful
Additional contextual information about the text would be helpful
Both visual and textual information would be helpful

W

W
Uauwpr

8 | Example Output:
91| c.

Il | <image>
12 {text_query}

14 | Your Output:

The <image> refers to the special tokens that take the place of an image. This token varies depend-
ing on the MLLM input format.

A.3 TRAINING SETTING AND COST

We experiment with LoRA and full fine-tuning when training the agent. We give the detailed training
settings of both approaches in Table[6] The LoRA optimization was performed on 2 NVIDIA A100
SXM (80GB) GPUs with a completion time of 20 hours, while the full fine-tuning required 4 GPUs
of the same configuration and took 25 hours to complete.

A.4 FULL FINE-TUNING AGENT

Our experimental results in Section[.2|demonstrate that training the agent model using LoRA yields
comparable performance to full fine-tuning. The quantitative comparison between these approaches
is presented in Table[7] As indicated in Table [3] (see *-Agent lines), we further investigate using
the LoRA-finetuned agent as the base model for VQA tasks and observe that it remains effective.
In contrast, the fully fine-tuned agent model fails to properly respond to standard VQA queries. We
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LoRA  Full Fine-tune

Learning Rate le-4 2e-5
LoRA Rank 32 -
LoRA Alpha 128 -
Epoch 3

Batch Size 1
Gradient Accumulation Steps 16
Gradient Checkpointing false true
Eval Steps 500
DeepSpeed - ZeRO3

Table 6: Hyperparameter configuration.

No Pt.- % % % % % % % %
mRAG TR TRe  tkie paced  No +k;  +ki  +kig Ours N +ki 4k +kig

Q-7B 59.19 7540 5523 7405 59.19 993 0.7 0.0 0.0 7248 27 94 396 483
DS-7B 4121 4638 4054 71.14 4134 993 07 0.0 0.0 6242 27 94 396 483

Metric: LLM Eval.

I“,lgA GPT-40 63.11 7072 57.38 7141 63.11 993 07 00 0.0 69.17 27 94 396 483
Q-Max 59.33 6881 5342 7107 59.19 993 07 0.0 0.0 70.13 2.7 94 396 483
Q-latest  62.79  72.01 61.34 73.62 6279 993 0.7 00 0.0 7671 27 94 396 483
Q-7B 50.46  59.78 4898 57.74 5090 972 28 0.0 0.0 5634 14 64 358 564
Private DS-7B 37.76 4898 3752 5062 3814 972 28 00 0.0 4685 14 64 358 564
VOA GPT-40 57.68 5560 5444 6148 5770 972 28 00 0.0 60.56 14 64 358 564

Q-Max 51.80 57.33 49.04 5744 5244 972 28 00 0.0 56.16 14 64 358 564
Q-latest 5536 57.86 53.74 5928 5536 972 28 00 0.0 5974 14 64 358 564

Q-7B 4373  47.12 50.80 57.58 4445 80.1 199 0.0 0.0 5533 04 13.0 465 400
DS-7B 3517 3583 46.01 5541 3521 80.1 199 0.0 0.0 5022 04 13.0 465 400
GPT-40 6413 63.86 5939 6893 6520 80.1 199 00 0.0 6453 04 13.0 465 400
Q-Max 5355 46,51 5410 5993 5193 80.1 199 0.0 0.0 56.51 04 13.0 465 400
Q-latest 61.49 5744 5896 63.15 6099 80.1 199 00 0.0 62.14 04 13.0 465 400

Q-7B 49.53  50.10 52.39 56.34 49.04 69.1 303 0.6 0.0 5498 126 4.1 631 203
DS-7B 3752 3886 4993 5442 3799 69.1 303 0.6 0.0 5053 126 4.1 63.1 203
GPT-40 67.65 6736 59.08 6336 6857 69.1 303 0.6 0.0 6399 126 4.1 631 203
Q-Max 57.68 4899 5555 5757 5441 69.1 303 0.6 0.0 5779 126 4.1 63.1 203
Q-latest 6144 5371 5994 6147 5859 69.1 303 0.6 0.0 6253 126 41 631 203

Q-7B 75772 70.88 6742 6524 7543 976 24 0.0 0.0 73.11 798 0.5 18.1 1.6
DS-7B 76.63 7023 57.80 64.18 7630 976 24 0.0 0.0 72.19 798 05 18.1 1.6
Visual’W  GPT-40  76.00 74.67 71.60 68.78 7599 97.6 24 0.0 0.0 7421 798 0.5 181 1.6
Q-Max 77.00 63.02 7026 64.16 76.65 976 24 0.0 0.0 7494 798 05 18.1 1.6
Q-latest 7620 5990 71.64 6432 7589 97.6 24 00 0.0 7439 798 0.5 181 1.6

Q-7B 80.44 7730 80.70 76.60 8030 98.6 04 0.0 1.0 80.14 784 0.0 188 28
DS-7B 75.64 66.87 5352 60.84 7530 986 04 0.0 1.0 7120 784 0.0 188 28
NoCaps GPT-40 82,66 7190 83.10 77.78 8270 98.6 04 0.0 1.0 8232 784 0.0 188 28
Q-Max 82.16 6436 8388 7730 8210 98.6 04 00 1.0 8232 784 00 188 28
Q-latest 8236 6476 8398 7698 8240 98.6 04 0.0 1.0 82.60 784 0.0 188 28

Q-7B 58.81 6279 5851 6441 58.68 89.0 108 0.0 0.2 6433 293 50 360 297
DS-7B 50.60 51.00 47.57 58.13 5022 89.0 108 0.0 0.2 5865 293 50 360 297
Mix GPT-40 6722 67.07 63.00 6785 67.77 89.0 108 0.0 0.2 68.55 293 50 360 297
Q-Max 63.09 55.68 60.28 6328 6124 89.0 108 0.0 0.2 6523 293 50 360 297
Q-latest 6550 59.80 63.55 6597 6478 89.0 10.8 0.0 0.2 67.52 293 50 360 297

Q-7B 59.85 6343 5925 6459 59.89 887 112 0.1 0.0 6540 194 6.7 406 333
DS-7B 50.66  51.19 4755 5944 5071 887 112 0.1 0.0 5890 194 6.7 406 333
Avg GPT-40 6854 6735 64.17 68.62 6888 887 112 0.1 0.0 69.13 194 6.7 406 333
Q-Max 63.59 5817 61.04 6458 6279 887 112 0.1 0.0 6631 194 6.7 406 333
Q-latest  66.61 6095 6493 6647 6600 887 11.2 0.1 0.0 69.69 194 6.7 406 333

Table 7: Result when apply full fine-tuning 6.

hypothesize that this degradation stems from excessive alignment with the predefined workflow in-
structions during full fine-tuning, which may overly constrain the model’s generalization capability.
This observation suggests that the parameter-efficient LoORA approach better preserves the model’s
original functionality in this task.

A.5 TOKEN ACCURACY METRIC

Due to the potentially inherent unreliability and internal variance associated with LLM-based scor-
ing, we also report a static evaluation metric, token accuracy. The results are presented in Table [§]
and 9] Four out of the five reported models outperform all baseline methods on average (Avg.),
achieving reduced retrieval calls in both training settings.
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. No Pt.- %o % ) % % % % %
Metric: Token Acc. mRAG +k; +k, Ak based No +ki +k, ki, Ours No +ki +he ks
Q-7B 9.42 13.15 835 13.11 942 993 07 00 0.0 | 1286 81 228 383 309
Life DS-7B 443 1.10 474 1136 443 993 0.7 00 0.0 730 81 228 383 309
VOA GPT-40 1088 13.56 898 1281 1088 993 0.7 0.0 0.0 | 1237 81 228 383 309
Q-Max 9.11 1178 799 1259 9.11 993 0.7 0.0 0.0 1122 81 228 383 309
Q-latest 11.63 1429 1147 1486 1163 993 0.7 0.0 0.0 | 1461 81 228 383 309
Q-7B 7.96 971 7.06 924 802 972 28 0.0 0.0 9.06 56 186 394 364
Private DS-7B 4.20 4.55 3.92 7.21 430 972 28 0.0 0.0 5.80 5.6 186 394 364
VOQA GPT-40 9.89 883 872 1149 984 972 28 0.0 0.0 | 1013 56 186 394 364
Q-Max 8.12 942 732  9.05 829 972 28 0.0 0.0 9.02 56 186 394 364
Q-latest 10.14 1149 994 11.70 1021 972 28 0.0 0.0 | 1155 56 186 394 364
Q-7B 8.38 9.17 9.63 1125 858 80.1 199 0.0 0.0 |1083 1.6 13.0 560 293
Dyn- DS-7B 5.62 493 852 1049 549 80.1 199 0.0 0.0 9.02 1.6 130 560 293
VOA (ch) GPT-40 1217 11.55 1096 13.66 1229 80.1 199 0.0 0.0 | 1213 1.6 130 560 293
Q-Max 9.49 7.93 994 1122 9.13 80.1 199 0.0 0.0 10.54 1.6 13.0 56.0 293
Q-latest 1254  10.81 12.10 13.11 1223 80.1 199 0.0 0.0 | 1274 1.6 13.0 560 293
Q-7B 7.84 797 943 1033 793 69.1 303 0.6 0.0 | 1048 141 34 622 203
Dyn- DS-7B 5.35 5.25 8.71 9.48 526 69.1 303 0.6 0.0 8.89 141 34 622 203
VOA (en) GPT-40 11.60 11.54 10.02 1036 1188 69.1 303 0.6 0.0 | 1134 141 34 622 203
Q-Max 8.91 7.50 9.76  10.00 842 69.1 303 0.6 0.0 1049 141 34 622 203
Q-latest 1059  7.62 1126 1071 9.72 69.1 303 0.6 0.0 | 12.08 141 34 622 203
Q-7B 13.06 11.21 1128 1065 1295 97.6 24 0.0 0.0 | 1207 601 14 308 7.7
DS-7B 11.89 11.07 895 10.09 11.84 976 24 0.0 0.0 10.92  60.1 14 308 7.7
Visual’ZW  GPT-40  12.61 1123 1025 923 1262 976 24 0.0 0.0 | 1151 601 14 308 7.7
Q-Max 12.61 8.95 11.38 9.59 1256 97,6 24 0.0 0.0 11.61 60.1 14 308 7.7
Q-latest 1359  8.66 12.65 10.82 1353 976 24 00 0.0 | 1268 60.1 14 308 7.7
Q-7B 10.83 1093 1132 10.69 10.83 98.6 04 0.0 1.0 1093 588 0.0 404 0.8
DS-7B 1194 1039 862 950 11.94 986 04 0.0 1.0 | 1076 588 0.0 404 0.8
NoCaps GPT-40 1135 841 11.64 1027 1137 98.6 04 0.0 1.0 1155 588 0.0 404 0.8
Q-Max 1122 7.81 1244 1064 1123 986 04 0.0 1.0 | 11.72 588 0.0 404 0.8
Q-latest 1130  7.76 1246 1052 1132 986 04 0.0 1.0 1179 588 0.0 404 0.8
Q-7B 9.17 10.13  9.14 1071 928 89.0 10.8 0.0 0.2 | 1066 248 95 433 223
DS-7B 7.22 6.13 7.21 9.30 7.19 89.0 108 0.0 0.2 897 248 95 433 223
Mix GPT40 10.89 10.60 9.82 11.15 1098 89.0 108 0.0 0.2 | 1121 248 95 433 223
Q-Max 9.59 8.45 9.55 1040 9.16 89.0 10.8 0.0 0.2 1041 248 95 433 223
Q-latest 11.37 991 1125 1190 11.15 89.0 108 0.0 02 | 1230 248 95 433 223
Q-7B 8.21 888 815 932 825 774 81 0.1 0.1 946 212 85 382 179
DS-7B 6.20 533 621 830 6.18 774 81 0.1 0.1 753 212 85 382 179
Avg GPT-40 9.79 930 865 9.69 984 774 81 0. 0.1 986 212 85 382 179
Q-Max 8.49 7.63 840 9.01 839 774 81 0.1 0.1 923 212 85 382 179
Q-latest  9.97 866 998 1025 9.81 774 81 0. 0.1 1078 212 85 382 179

Table 8: Results of token accuracy when training by LoRA.
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. No Pt.- %o % ) % % % % %
Metric: Token Acc. mRAG +k; +ki  HAkig based No +k; +ki ki Ours No +ki +he ks
Q-7B 9.42 13.15 835 13.11 942 993 07 00 0.0 | 1241 27 94 396 483
Life DS-7B 443 1.10 474 1136 443 993 0.7 00 0.0 9.00 27 94 396 483
VOA GPT-40 1088 13.56 898 1281 1088 993 0.7 0.0 0.0 | 1233 27 94 396 483
Q-Max 9.11 1178 799 1259 9.11 993 0.7 0.0 0.0 1181 27 94 396 483
Q-latest 11.63 1429 1147 1486 1163 993 0.7 0.0 0.0 | 1514 27 94 396 483
Q-7B 7.96 971 7.06 924 802 972 28 0.0 0.0 9.08 14 64 358 564
Private DS-7B 4.20 4.55 3.92 7.21 430 972 28 0.0 0.0 6.04 1.4 64 358 564
VOQA GPT-40 9.89 883 872 1149 984 972 28 0.0 0.0 | 1078 14 64 358 564
Q-Max 8.12 942 732  9.05 829 972 28 0.0 0.0 897 14 64 358 564
Q-latest 10.14 1149 994 11.70 1021 972 28 0.0 0.0 | 1160 14 64 358 564
Q-7B 8.38 9.17 9.63 1125 858 80.1 199 0.0 0.0 | 1083 04 13.0 465 400
Dyn- DS-7B 5.62 493 852 1049 549 801 199 0.0 0.0 9.03 04 13.0 465 400
VOA (ch) GPT-40 1217 11.55 1096 13.66 1229 80.1 199 0.0 0.0 | 1231 04 13.0 465 400
Q-Max 9.49 7.93 994 1122 9.13 80.1 199 0.0 0.0 10.51 04 13.0 465 400
Q-latest 1254  10.81 12.10 13.11 1223 80.1 199 0.0 0.0 | 1264 04 13.0 465 400
Q-7B 7.84 797 943 1033 793 69.1 303 0.6 0.0 994 126 41 63.1 203
Dyn- DS-7B 5.35 5.25 8.71 9.48 526 69.1 303 0.6 0.0 8.68 126 4.1 63.1 203
VOA (en) GPT-40 11.60 11.54 10.02 1036 1188 69.1 303 0.6 0.0 | 11.19 126 41 63.1 203
Q-Max 8.91 7.50 9.76  10.00 842 69.1 303 0.6 0.0 10.17 126 4.1 63.1 203
Q-latest 1059  7.62 1126 1071 9.72 69.1 303 0.6 0.0 | 11.63 126 41 63.1 203
Q-7B 13.06 11.21 1128 1065 1295 97.6 24 0.0 0.0 | 1253 798 05 18.1 1.6
DS-7B 11.89 11.07 895 10.09 11.84 976 24 0.0 0.0 1122 798 0.5 18.1 1.6
Visual’ZW  GPT-40  12.61 1123 1025 923 1262 976 24 0.0 0.0 | 1190 798 05 18.1 1.6
Q-Max 12.61 8.95 11.38 9.59 1256 97,6 24 0.0 0.0 12.09 798 0.5 18.1 1.6
Q-latest 1359  8.66 12.65 10.82 1353 976 24 00 0.0 | 1296 798 0.5 18.1 1.6
Q-7B 10.83 1093 1132 10.69 10.83 98.6 04 0.0 1.0 1080 784 0.0 188 2.8
DS-7B 1194 1039 862 950 11.94 986 04 0.0 1.0 | 1132 784 0.0 188 238
NoCaps GPT-40 1135 841 11.64 1027 1137 98.6 04 0.0 1.0 1134 784 0.0 188 238
Q-Max 1122 7.81 1244 1064 1123 986 04 0.0 1.0 | 1139 784 00 188 238
Q-latest 1130  7.76 1246 1052 1132 986 04 0.0 1.0 1151 784 0.0 188 238
Q-7B 9.17 10.13  9.14 1071 928 89.0 10.8 0.0 02 | 1060 293 50 360 297
DS-7B 7.22 6.13 7.21 9.30 7.19 89.0 108 0.0 0.2 921 293 50 360 297
Mix GPT40 10.89 10.60 9.82 11.15 1098 89.0 108 0.0 02 | 1144 293 50 360 297
Q-Max 9.59 8.45 9.55 1040 9.16 89.0 10.8 0.0 0.2 10.69 293 50 36.0 29.7
Q-latest 11.37 991 1125 1190 11.15 89.0 108 0.0 02 |1230 293 50 360 297
Q-7B 8.21 888 815 932 825 774 81 0.1 0.1 937 250 48 31.7 242
DS-7B 6.20 533 621 830 6.18 774 81 0.1 0.1 790 250 48 317 242
Avg GPT-40 9.79 930 865 9.69 984 774 81 0. 0.1 998 250 48 31.7 242
Q-Max 8.49 7.63 840 9.01 839 774 81 0.1 0.1 928 250 48 31.7 242
Q-latest  9.97 866 998 1025 9.81 774 81 0. 0.1 10.78 250 4.8 31.7 242

Table 9: Results of token accuracy when applying full fine-tuning.
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LLM Eval. No mRAG +k; +ky +kiy Pt-based Ours
GPT-40,Qwen-Max 40 Q-M  Diff 40 Q-M  Diff 40 Q-M  Diff 40 Q-M  Diff 40 Q-M  Diff 40 Q-M  Diff
Life Q-7B | 56.85 59.19 -2.34 | 73.99 7540 -141 | 5299 5523 -2.24 | 7152 7405 -253|56.78 59.19 -241|6949 7181 -2.32
VQA DS 41.74 4121 053 | 37.65 4638 -8.73 | 39.52 40.54 -1.02 | 67.65 71.14 -349 | 41.74 4134 040 | 5536 5859 -3.23
40 60.85 63.11 -226 | 68.63 70.72 -2.09 | 54.77 57.38 -2.61 | 71.54 7141 0.13 | 60.71 63.11 -2.40 | 68.66 6897 -0.31
Private Q-7B | 49.53 5046 -0.93 | 59.07 59.78 -0.71 | 48.09 4898 -0.89 | 57.14 57.74 -0.60 | 50.09 50.90 -0.81 | 5548 56.40 -0.92
VQA DS 40.77 37.76  3.01 | 4459 4898 -439 | 36.58 37.52 -0.94 | 49.76 50.62 -0.86 | 41.07 38.14 293 | 4500 46.67 -1.67
40 54.62 57.68 -3.06 | 55.11 55.60 -0.49 | 53.29 54.44 -1.15 | 61.17 61.48 -0.31 | 5442 57.70 -3.28 | 57.34 5886 -1.52
Dyn- Q-7B | 46.06 43.73 2.33 | 48.84 47.12 1.72 | 51.75 5080 0095 | 59.44 57.58 1.86 | 47.07 4445 2.62 | 5694 5551 143
VQA DS 4242 3517 725 | 3588 3583 0.05 | 46.83 46.01 082 | 5547 5541 0.06 | 40.61 3521 540 | 50.01 49.95 0.06
(ch) 40 6594 64.13 1.81 | 6460 63.86 0.74 | 60.70 59.39 1.31 | 70.17 6893 124 | 66.66 6520 146 | 65.62 6476 0.86
Dyn- Q-7B | 4748 49.53 -2.05 | 4746 50.10 -2.64 | 5430 5239 191 | 57.03 5634 0.69 | 46.81 49.04 -2.23 | 57.19 56.48 0.71
VQA DS 3511 37.52 -2.41 | 37.04 3886 -1.82|50.92 49.93 099 | 5472 5442 030 | 3549 3799 -250 ]| 51.07 5095 0.12
(en) 40 68.43 67.65 0.78 | 68.08 67.36 0.72 | 6040 59.08 1.32 | 64.87 6336 1.51 | 69.67 68.57 1.10 | 65.82 64.44 1.38
Q-7B | 7127 7572 -445 | 69.24 70.88 -1.64 | 6491 6742 -2.51 | 6320 6524 -2.04 | 71.03 7543 -440 | 68.52 7138 -2.86
Visual7W DS 7470 76.63 -1.93 | 68.30 70.23 -1.93 | 5691 57.80 -0.89 | 61.92 64.18 -2.26 | 7423 7630 -2.07 | 6843 69.52 -1.09
40 7322 76.00 -2.78 | 73.56 74.67 -1.11 | 70.78 71.60 -0.82 | 67.11 68.78 -1.67 | 73.06 75.99 -2.93 | 72.13 73.19 -1.06
Q-7B | 8456 80.44 4.12 | 82.00 77.30 4.70 | 83.67 80.70 2.97 | 8045 76.60 3.85 | 84.43 8030 4.13 | 8428 80.36 3.92
Nocaps DS 79.22 75.64 3.58 | 70.65 66.87 3.78 | 59.17 53.52 5.65 | 6578 60.84 494 | 7892 7530 3.62 | 71.22 66.84 4.38
40 8595 82.66 329 | 7822 7190 6.32 | 85.75 83.10 2.65 | 82.04 77.78 4.26 | 85.99 82.70 3.29 | 86.07 8330 2.77
Q-7B | 5841 5881 -0.40 | 62.73 62.79 -0.06 | 58.24 5851 -0.27 | 64.44 6441 0.03 | 58.41 58.68 -0.27 | 64.56 64.93 -0.37
Mix DS 52.02 50.60 1.42 | 48.61 51.00 -2.39 | 49.21 4757 1.64 | 57.54 5813 -0.59 | 51.39 5022 1.17 | 57.83 57.02 0.81
40 66.42 6722 -0.80 | 67.42 67.07 035 | 6249 63.00 -0.51 | 67.69 67.85 -0.16 | 66.97 67.77 -0.80 | 68.02 67.79 0.23

Table 10: LLM evaluation consistency. Experimented with GPT-40 and Qwen-Max.

A.6 LLM EVALUATION CONSISTENCY

We present LLM (Qwen-Max) evaluated scores in text. We address the potential concern of in-
consistency among different scoring models by incorporating GPT-40 as another scoring model, in
Table[T0} From the “Diff.” columns, the differences of the two LLM-eval metrics are mostly within

3 points (out of a range of 100).

A.7 FAILURE CASE STUDY

We give three representative cases where our planning agent fails to choose a proper mRAG strategy
in Fig. |6l We summarize the analysis in each box (Analysis). The task model is Qwen2.5-VL-7B-

Inst.

Source: Dyn-VQA (en)

Question: What shoe company signed he to a new multibillion dollar
celebrity endorsement deal in October 2022?

Ground truth: He was actually dropped by many companies for offensive
comments.

Agent model: No mRAG

Task model: The shoe company that signed Kanye West to a new
multibillion-dollar celebrity endorsement deal in October 2022 is Adidas.

Analysis: mRAG should be adopted to capture related news.

ASSACHUSETT.

Source: Dyn-VQA (en)

Question: Who was the first elected female Governor of this state?
Ground truth: Maura Healey

Agent model: No mRAG

Task model: ...The first woman ... is Elsie Higgins.

Analysis: mRAG should be adopted to capture related information.

Question: What is the car on?

Ground truth: Cement

Agent model: +k; +

Task model: The car appears to be parked on a paved surface, likely a street
or parking area. The specific material of the pavement is not clearly visible,

but it could be concrete or asphalt, which are common materials for paved
surfaces.

Analysis: Though the prediction is acceptable, this is a simple VQA query
and the text/image retrievals can be saved.

Figure 6: Three failure cases.
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A.8 HUMAN VERIFICATION OF ANNOTATION PROCESS

The automated annotation pipeline is a key factor in training data quality. We quantified the quality
of our automated annotation pipeline by having three Ph.D.-level NLP researchers evaluate 100
random samples from each training set. We measured accuracy (correct annotations / total samples)
for both query decomposition and correctness verification stages. Detailed results are shown in
Table@ We see that current procedures are consistent with human in most of the time. For VQAv2,
we note that it is a relatively simple dataset, e.g., “Is this a fancy supermarket?”. It usually does
not involve the recognition of entities in the image content, so the rewriting of the gold query and
image query is often not very meaningful. Besides, most of the time, MLLMs answer the original
q correctly, and performing query decomposition is actually useless (because answering original g
correctly is classified into category c1, and the subsequent steps are omitted).

Person 1 \ Image Query Acc Image Entity Acc  Gold Query Acc LLM Eval Acc

InfoSeek 99% 100% 100% 97%
VQAv2 92% 87% 86% 96%
WanWu 98% 96% 96% 97%

Person 2 \ Image Query Acc  Image Entity Acc  Gold Query Acc LLM Eval Acc

InfoSeek 100% 100% 100% 98%
VQAV2 94% 89% 90% 98%
WanWu 99% 97% 98% 98%

Person 3 \ Image Query Acc  Image Entity Acc  Gold Query Acc LLM Eval Acc

InfoSeek 99% 100% 100% 99%
VQAV2 93% 87% 86% 98%
WanWu 99% 96% 97% 98%

Table 11: Results of human verifying the decomposition and correctness checking process.

A.9 COMPARE WITH DEEP RESEARCH AGENT

We compared our planning agent with WebWatcher [2025), with the results presented in
Table@ On the Mix dataset, which simulates a real-world situation, our method (Qwen2.5-VL-7B-
Inst with the trained planning agent) outperforms WebWatcher. Furthermore, our approach achieves
this with significantly lower tool-call latency, being 3x faster than WebWatcher-7B and 4.5x faster
than WebWatcher-32B.

. No % % % % % Avg. # of
MixT  RAG +k; +k.  +kie  Vist  Code Rounds Latency!
Ours (Q-7B) 64.93 24.8 9.5 433 22.3 - - 1 4058.6
WebWatcher-7B 56.12 1.8 84.8  485.7 - 44.2 6.0 6.6 12907.2
WebWatcher-32B 58.92 0.8 76.0 1143.8 - 493 7.8 9.3 18740.5
Tool Latency (s) +std 0.0 6.4 1.4 7.8 21.0 +34.1 0.05

Table 12: Comparison with WebWatcher-7B and 32B on Mix dataset. The latency column shows
the total time spent on tool calls. The sum of % columns (of WebWatcher’s) is larger than 100%
because WebWatcher solves problems in a multi-round conversational manner, which may invoke
multiple tool calls when answering a single VQA query.
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