
Bridging the Gap to Real-World Language-Grounded
Visual Concept Learning

Whie Jung Semin Kim Junee Kim Seunghoon Hong
School of Computing, KAIST

{whieya, seminkim, kje0312, seunghoon.hong}@kaist.ac.kr

Abstract
Human intelligence effortlessly interprets visual scenes along a rich spectrum
of semantic dimensions. However, existing approaches to language-grounded
visual concept learning are limited to a few predefined primitive axes, such as
color and shape, and are typically explored in synthetic datasets. In this work, we
propose a scalable framework that adaptively identifies image-related concept axes
and grounds visual concepts along these axes in real-world scenes. Leveraging
a pretrained vision-language model and our universal prompting strategy, our
framework identifies a diverse image-related axes without any prior knowledge.
Our universal concept encoder adaptively binds visual features to the discovered
axes without introducing additional model parameters for each concept. To ground
visual concepts along the discovered axes, we optimize a compositional anchoring
objective, which ensures that each axis can be independently manipulated without
affecting others. We demonstrate the effectiveness of our framework on subsets of
ImageNet, CelebA-HQ, and AFHQ, showcasing superior editing capabilities across
diverse real-world concepts that are too varied to be manually predefined. Our
method also exhibits strong compositional generalization, outperforming existing
visual concept learning and text-based editing methods. The code is available at
https://github.com/whieya/Language-grounded-VCL.

1 Introduction
Perceiving the world through visual concepts such as color, shape, and texture, as human intelligence
does, has long been a goal in computer vision. Representing an image as a composition of these
concepts not only improves compositional generalization [8, 25, 36, 37], but also offers interpretable
explanations [14] and enhances visual reasoning tasks [9, 38]. Early work primarily used discrete
language descriptors, ranging from object labels in classification and detection [7, 15, 20, 31] to
sentence-level captions [1, 34]. A recent method [16] shows that continuous concept embeddings,
grounded along language-informed axes, can capture subtle visual nuances, e.g., slight color variations,
beyond the reach of purely text-based approaches. Thanks to the visual nuances embedded in
continuous representations, this method enables the transfer of subtle, image-dependent details in
downstream tasks such as image-editing tasks, where discrete text descriptor-based approaches [3, 24]
often struggle due to limited linguistic expressiveness.

Despite this promise, extending the recent approach [16] to learn diverse visual concepts in real-world
scenes remains underexplored. A central challenge is the reliance on predefined concept axes, such
as color or shape, for visual grounding, which fails to capture the rich diversity of real images
and limits extension to datasets where relevant factors are unknown in advance. Moreover, since
each image consists of a wide variety of concept axes, relying on a specialized concept encoder for
every axis quickly becomes infeasible, substantially increasing model complexity. Constraining each
concept embedding to contain information relevant only to a specific concept axis presents another
significant challenge. Although directly matching concept embeddings to textual descriptors—already
a disentangled term in nature—offers a simple remedy for disentanglement [16], it compromises
instance-specific details, as textual descriptors are image-agnostic.
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In this work, we take a step toward a scalable approach for visual concept learning in real-world
scenes. We leverage a pretrained vision-language model (VLM) to adaptively identify image-related
axes, replacing fixed predefined ones. Using a universal prompt design, we guide the VLM to identify
diverse image-related axes without relying on prior knowledge. Our universal concept encoder then
binds visual features to these discovered axes within a single unified architecture. To ensure that
the discovered axes remain disentangled while preserving image-specific details, we introduce a
compositional anchoring objective that constrains changes within each axis so that they only affect
the corresponding axis in the generated images. We demonstrate that our scalable framework can
capture diverse real-world concepts and enable novel compositions of visual concepts.

In summary, our contributions are as follows:

1. We introduce a scalable framework that grounds visual concepts along diverse, language-
specified axes in real-world images.

2. We propose adaptively identifying image-related axes with a pretrained VLM and designing
a universal concept encoder that binds visual features to these axes.

3. We design a novel objective for disentangling discovered concept axes in real-world scenes.
4. We evaluate our framework on real-world concept editing tasks, showing superior editing

capabilities and compositional generalization compared to language-informed visual concept
learning methods and text-based editing methods.

2 Problem Setup
Our goal is to develop a scalable framework for extracting visual concepts grounded along image-
related linguistic axes in real-world images. To this end, we first outline a general formulation
of language-grounded visual concept learning and identify the key challenges in scaling to real-
world scenarios. Given an input image x ∈ RH×W×C , the objective is to extract a set of concept
representations Z = {z1, . . . , zK}, where zi ∈ RD encodes visual concepts relevant to concept
axis yi. To define interpretable axes among infinitely many concept axes in real-world images, we
define each concept axis yi with natural languages, e.g., age, gender, and expression. Then the goal
is to learn a set of concept encoders Eθi mapping x to visual concepts zi corresponding to each
concept axis yi. A typical approach to train such encoders is training jointly with a decoder D with an
auto-encoding objective. The decoder D is often replaced by a frozen pre-trained text-to-image (T2I)
generative model [16] due to training efficiency and remarkable generation capabilities. Formally,
the encoders are optimized with the denoising objective:

LDiff({θi}) = Eϵ,t

[
||D(x, t, {Eθi(x)})− ϵ||22

]
(1)

where ϵ ∼ N (0, I) and t ∼ U(0, 1) denote noise and timestep, respectively.

Since Equation 1 does not guarantee the disentanglement of visual concepts along the concept axes,
prior work [16] introduces additional regularization to ground each visual concept zi to the text
embeddings vi, which are obtained by querying the pretrained VLM [18] with predefined templates,
e.g., "what is the color of the object". We denote by vi, e.g., red or blue, the textual descriptions for
each axis, and define vi = T (vi) as their embeddings, where T is a pretrained text encoder.

2.1 Challenges and Desiderata
While prior work [16] demonstrated the extraction of primitive visual concepts, e.g., color, shape,
and style, primarily on simple synthetic datasets, extending this method to complex real-world scenes
poses three key challenges. We briefly outline these challenges and desiderata in this section, and
discuss how they are addressed in Section 3.

Adaptive Concept Axes Concept axes for visual grounding should be determined adaptively for
each image, since real-world images exhibit a vast diversity of attributes that cannot be covered by a
fixed set of predefined axes. Rather than relying on predefined primitive axes, i.e., color or shape, an
adaptive mechanism is required to automatically identify relevant concept axes for each image.

Scalable Encoder Architecture To support adaptive concept axes, the encoder architecture should
be scalable. Implementing Eθ with a set of specialized concept encoders for each concept axis yi
would incur a prohibitive number of model parameters, considering infinitely many potential concept
axes in real-world scenes.
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Figure 1: Overview of our method. Our framework first identifies image-related concept axes by
leveraging VLM. We design an universal prompt that guides the VLM to find concept axes across
different datasets. Given discovered axes for each image, our universal concept encoder binds visual
features to those axes without introducing any specialized concept encoder for each axis. Finally,
the encoded concept representations are regularized with a compositional anchoring loss to promote
disentanglement between concept axes. Specifically, we randomly swap a concept representation with
the one in an identical concept axis extracted from different images, and constrain composite images,
rendered from randomly swapped representations, to be aligned with composite text descriptions.

Concept Disentanglement Given adaptive concept axes, each representation zi should capture only
the semantics of its corresponding axis yi, while preserving image-specific details. A straightforward
solution is to align zi with the text embedding vi [16], since texts are already disentangled along
concept axes in nature. However, since vi does not encode any instance-specific information,
this alignment often leads to a suboptimal trade-off in zi between encoding visual nuisance and
disentanglement of the concepts.

3 Approach
Based on the desiderata outlined in Section 2.1, we present a scalable framework for language-
grounded visual concept learning (Figure 1). To extract concept axes adaptive to given images, we
propose to leverage a pretrained VLM with our simple yet effective prompting strategy (Section 3.1).
Given adaptive concept axes for each image, our universal concept encoder maps the image features
to their corresponding visual concept embeddings (Section 3.2). We then train this encoder to
disentangle visual concepts along the discovered axes by maximizing compositional anchoring of the
representations (Section 3.3). Instead of directly aligning zi with the image-agnostic text embedding
T (vi), compositional anchoring ensures that changes in zi affect only its corresponding concept axes
yi in the generated image space D(Z). Below, we describe each component in detail.

3.1 Adaptive Concept Axes Discovery

Given an image x, we query a pretrained VLM with a prompt P to extract image-dependent concept
axes Y = {y1, . . . , yK} and their corresponding textual descriptions V = {v1, . . . , vK}. Note that
K varies per image, and the extracted descriptions V will be used for visual grounding in Section 3.3.
The prompt P should be universal, generalizing across arbitrary images and properly guiding the
VLM to capture rich image-related concepts. To this end, we design a universal prompt with two
key components: a general task description and an output exemplar. The general task description
instructs the VLM to enumerate all visually relevant concept axes presented in a given image. On
the other hand, the output exemplar demonstrates the desired granularity of axes by providing a
specific instance. By specifying axes in the exemplar, VLM can be steered to find more detailed
axes, e.g., hair color, hair texture, and avoid overly coarse categories, e.g., color, texture. Remarkably,
a single exemplar is sufficient to steer the VLM to identify diverse image-related concepts beyond
those provided in the exemplar and to generalize to new domains. For example, given an instance of
a human face that includes the axis ’hair color’, the VLM discovers unspecified attributes such as
’eye color’ or ’lip color’ for different human faces, and identifies analogous axes for animal images,
e.g., fur color. See Appendix A.4 for more details.
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We also instruct the VLM to structure the output as a dictionary mapping each concept axis to a
corresponding textual description, e.g. {’age’: ’young’, ’gender’: ’male’,...}. While prior work [16]
employs the VLM to gather textual descriptions for a few predefined axes, they query the model
separately for each predefined concept axis (e.g., “What is the color of the image?”). In contrast, our
prompting strategy extracts all concept axes and corresponding textual descriptions in a single query,
greatly enhancing efficiency and covering a broader range of potential axes beyond typical predefined
categories. The complete prompt and outputs are provided in Appendix A.4. We find this universal
prompt effectively captures diverse image-related concepts across multiple datasets, including novel
concepts, e.g., breed, eye color, and nose color, which were not present in the exemplar.

3.2 Universal Concept Encoder
In our framework, the concept encoder Eθ requires to encode visual concepts adaptive to image-
related concept axes Y . Rather than defining specialized concept encoders for each concept, we
construct Eθ to encode all concept representations Z conditioned on a set of concept axes Y , i.e.,
Z = Eθ(x, Y ). The architecture for Eθ should support adaptive binding of visual features to given
axes Y and produce distinct concept representations within a single parameterized model. To this
end, we adapt the Querying Transformer (Q-Former) [18], which was designed to extract visual
features from a frozen vision encoder and align them with pretrained text embeddings. The Q-Former
consists of a lightweight transformer with learnable queries to interact with visual features via a
cross-attention module. In our adaptation, we replace the learnable queries with the text embeddings
T({yi}) of each axis encoded from a pretrained text encoder T . Initial queries T (yi) are then updated
in subsequent transformer layers by interacting with visual features through cross attention layers.
This way, visual features can dynamically bind to arbitrary concept axes within a single architecture.

3.3 Disentanglement with Compositionality
To constrain zi to encode only the information relevant to its axis yi, we introduce a compositional
anchoring objective that ensures modifying a concept along one axis alters the generated output only
in that axis, leaving other attributes unchanged. We implement such variations by randomly swapping
a subset of concept representations Z ′ ⊆ Z with those drawn from the same axis of different images,
producing composite representations Zc. As discovered axes vary across images, we first search
for candidate images within each batch that share the same axis yi, and then randomly swap their
corresponding zi among these candidates. When each representation zi is disentangled along yi, the
composite image xc = D(Zc) should change only the swapped attributes, leaving others unchanged.
Since ground-truth images for such a composition are generally unavailable, we instead measure
alignment between the composite image xc and composed textual descriptions set V c, constructed by
taking the corresponding descriptions from each swapped axis.

We quantify this alignment using a lightweight regression network gϕ that predicts the textual
descriptions of a given image. Instead of constructing gϕ with an additional image encoder, we
reuse Eθ to encode xc back into concept representations, and a lightweight regression network gϕ
predicts each attribute on top of the representations. Note that gϕ is shared across the axes. Formally,
let Ẑc = {ẑci}Ki=1 = Eθ′(xc, Y ) be re-encoded concept representations from composite image Zc,
where Eθ′ is a fixed copy of Eθ. Then, the compositional anchoring objective is defined as:

LComp(θ) =

K∑
i=1

d
(
gϕ

(
ẑci
)
, vc

i

)
, (2)

where d(·, ·) is a cosine distance and vc
i is a text embedding for axis yi in V c. Note that this objective

only updates θ by propagating the gradient through xc and prevents updating gϕ and Eθ′ to avoid
corruption from out-of-distribution samples of D(zc). For gϕ, we simply train it by predicting the
text embeddings vi from non-swapped concept representations zi:

LReg(θ, ϕ) =

K∑
i=1

d
(
gϕ

(
zi), vi

)
, (3)

It is worth noting that our objectives do not force zi = vi, which compromises instance-specific
details in zi. Instead, disentanglement is encouraged by verifying that each axis remains independent
in the generated output. As a result, our objective ensures concept disentanglement while retaining
instance-dependent information, particularly crucial in complex real-world scenarios.
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3.4 Learning objectives

In this section, we summarize our complete framework and learning objectives. Given an image x, the
VLM extracts a set of image-related axes Y . The universal concept encoder Eθ is then trained with an
autoencoding objective, while the pretrained decoder D remains fixed. To encourage disentanglement
among axes, we randomly swap each concept representation zi with another from the same axis in
the batch, and measure the alignment of composite image xc = D(Zc) with its corresponding text
embeddings vc through a lightweight regression network gϕ. The overall objective is:

LTotal(θ, ϕ) = LDiff(θ) + λCompLComp(θ) + λRegLReg(θ, ϕ), (4)

where λComp and λReg are hyper-parameters controlling the importance of each term.

4 Related Work
Visual Concept Learning As language offers a human-interpretable interface, grounding visual
concepts in natural language has long been a central goal in computer vision. Early efforts primarily
aligned images with word-level annotations or object labels, supporting classification and detection
tasks [15, 20, 31]. Extensions to neuro-symbolic frameworks [19, 22], integrating with visual concept
learning, further advanced visual reasoning. Such language-based grounding not only enhanced
interpretability [14], but also improved downstream performance on vision tasks [17, 18]. However,
discrete text descriptors inherently limit the representational capacity to a fixed vocabulary. To
address this, LIVCL [16] followed Textual Inversion-based approaches [10] by optimizing concept
encoders with a pretrained T2I model to reconstruct the given images. While promising, the scope of
the work was limited to a few predefined primitive concept axes.

Representation Learning with Compositionality Another line of research explores object-centric
learning to uncover generative factors. Recent methods [12, 35] compose latent representations from
multiple images similar to our framework, but under more restrictive assumptions. For instance,
L2C [12] randomly mixes object representations to produce composite images and maximizes the
likelihood of these composites to learn object-centric representations. Wiedemer et al. [35] provides
a theoretical analysis for compositional generalization and measures compositional consistency
through a cyclic distance between latent representations and their reconstructions. However, this
formulation relies on architectural constraints such as additive decoders, making them effective
mainly on synthetic or low-complexity data. Without additive decoders, it can lead to a trivial solution
where a single latent encodes all. In contrast, our approach employs a pretrained T2I model without
imposing additional constraints, addressing real-world scenes with diverse concept axes. Instead
of focusing on isolated objects, our compositional consistency objective promotes disentanglement
among discovered concept axes and does not require a specialized decoder structure.

5 Experiment
5.1 Experiment Setup
Implementation Details We leverage InternVL [4] for an open-sourced VLM. To handle complex
real-world images, we employ DINO-v2 [26] to encode the image into visual features followed by
our concept encoder, and employ Stable Diffusion-based T2I decoder [30] finetuned at 256×256 res-
olution. When generating composite images with the T2I decoder, we iteratively decode for 10 steps
using DDIM [33]. Since propagating gradients through all these decoding steps is computationally
expensive, we follow [6, 27] and truncate gradients at the last few decoding iterations. Lastly, we
employ 2-layer MLPs for gϕ. See Appendix A.3 for additional implementation details.

Dataset We validate our framework on complex and unstructured real-world data, where each
image contains a diverse set of conceptual axes that is infeasible to manually predefine these axes
to cover all possible variations within the data. To this end, we first conduct experiments on a
subset of the ImageNet dataset. We randomly sampled 20 classes from ImageNet (referred to as
ImageNet-S20), covering categories such as animals (e.g., tree frog, American black bear, sulphur
butterfly, giant panda), everyday objects (e.g., padlock, grand piano, motor scooter), and scenes (e.g.,
boathouse, water tower), yielding approximately 28k training images (∼1.4k images per class). This
dataset presents a challenging scenario as each class contains diverse, image-specific visual concepts
that are often not shared by other classes. Given the infeasibility of manually defining all the concept
axes in ImageNet-S20 for prior visual concept learning methods [16], we additionally compare our
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Table 1: Comparisons on visual concept editing task. Our method consistently outperforms recent
text-based editing methods [3, 11, 23, 24] and language-informed visual concept learning [16].

ImageNet-S20 CelebA-HQ AFHQ-Dog AFHQ-Cat
Method CLIP (↑) BLIP (↑) CLIP (↑) BLIP (↑) CLIP (↑) BLIP (↑) CLIP (↑) BLIP (↑)

SDEdit [23] 0.195 0.381 0.200 0.447 0.250 0.493 0.257 0.474
InstructPix2Pix [3] 0.198 0.383 0.202 0.425 0.230 0.467 0.246 0.471

NullText Inversion [24] 0.189 0.341 0.193 0.422 0.251 0.489 0.255 0.476
DDPM-Inversion [11] 0.243 0.467 0.220 0.483 0.266 0.516 0.266 0.494

LIVCL [16] - - 0.226 0.469 0.270 0.518 0.268 0.480
Ours 0.251 0.474 0.239 0.496 0.272 0.535 0.271 0.514

Age

Hair Length

Hair Color

Breed

Ear Shape

Fur Color

Tgt Src OursLIVCLInstruct
pix2pixSDEditDDPM

Inv.
NullTex

Inv.

CelebA-HQ

AFHQ-Cat

Target 
Concept

Eye Color

Accessory

Nose Color

Background

AFHQ-Dog

SDEdit
Instruct
Pix2PixSDEdit DDPM

Inv.
NullText

Inv.Ours LIVCLTargetSource
Target 

Concept

Cap Color

Species

Vehicle Type

Stem Color

Age

Accessory

Fur Color

Eye Color

Ear shape

Breed

Flower color

N
ot

 A
pp

lic
ab

le
 

Figure 2: Qualitative results on ImageNet-S20, CelebA-HQ and AFHQ datasets. Our framework
grounds visual concepts to diverse concept axes in real-world images. Note that red concepts are not
provided by our prompt but rather adaptively discovered by VLM. Since it’s infeasible to predefine
all axes covering the whole dataset like ImageNet-S20, LIVCL was not applicable for ImageNet-S20.

approach with [16] using relatively controlled datasets with diverse concept axes, such as CelebA-
HQ [13], AFHQ-Dog, and AFHQ-Cat [5]. We collect the frequently observed axes discovered by
our method per dataset and use them to train the baseline [16] All images are resized to 256×256
for our experiments. For training and validation, we use the following splits: 28k/0.6k images for
ImageNet-S20, 27k/3k for CelebA-HQ, and around 5k/0.5k for AFHQ-Dog and AFHQ-Cat.
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Evaluation Protocol To evaluate whether the concept representations faithfully capture their
associated semantics and are disentangled from other axes, we perform a visual concept editing
task. In this task, we select source and target images and identify the concept axes to be edited.
The objective is to transfer a visual concept from the source to the target image without affecting
other attributes. For evaluation, we use the top-50 and top-10 most frequently discovered axes
per dataset for ImageNet-S20 and the remaining datasets, respectively, excluding axes that remain
constant across the dataset, such as the subject type in CelebA-HQ, which is always human. For
quantitative evaluation, we measure the CLIP-Score [29] and BLIP-Score [17] between the edited
images and their corresponding swapped text descriptions V c. Specifically, we construct text prompts
V c such as "a photo of a cat with brown, fluffy, striped fur, against a black background," and evaluate
the alignment with the images using CLIP and BLIP. Additionally, we conduct human evaluation,
collecting responses from 10 participants per dataset via Prolific [28], following the procedure in Lee
et al. [16]. Details on the human evaluation setup are provided in Appendix A.5.

Baselines We compare our method to LIVCL [16], a recent visual concept learning approach that
extracts concept representations along predefined primitive axes such as color, category, and style.
As LIVCL explored in low resolution images, e.g., 64×64 pixels, we replace its T2I decoder and
pretrained image encoder with Stable Diffusion [30] and DINO- v2 [26], respectively. Since LIVCL
requires predefined axes for training, we used the top-50/10 most frequent axes discovered by our
method for ImageNet-S20 and the others, respectively. We also compare our method to four recent
text-based image editing methods— SDEdit [23], InstructPix2Pix [3], Null-text Inversion [24], and
DDPM-Inversion [11]. Although these baselines lack mechanisms for extracting visual concepts
from source images, we instead edit the image with GT text descriptions given by the VLM. For each
method, we used a prompt including target attributes to be changed, such as "a photo of a dog with
brown fur" for editing. We used default hyper-parameters for text-based editing methods.

5.2 Main Results
Table 2: Human evaluation results.

Method CelebA-HQ AFHQ-Dog AFHQ-Cat

SDEdit 0.448 0.486 0.464
InstructPix2Pix 0.465 0.385 0.416

NullText Inversion 0.414 0.514 0.442
DDPM-Inversion 0.528 0.548 0.584

LIVCL 0.465 0.478 0.471
Ours 0.636 0.589 0.623

Quantitative Results We report quantitative compar-
ison of our method to the baselines in Table 1. Our
methods consistently outperform all baselines on all of
the datasets by a clear margin. High CLIP and BLIP
scores demonstrate the effectiveness of our method in
capturing image-related visual concepts. A human eval-
uation in Table 2 provides a more direct assessment
of reflecting subtle visual nuances. Since text-based
editing methods are inherently independent of source
images and LIVCL struggles to encode image-dependent details due to its training objective, the
performance gap becomes even more pronounced in the human evaluation. These results validate the
effectiveness of our framework in visual grounding with diverse axes in real-world scenes.

Qualitative Comparison Figure 2 presents the qualitative results on visual concept editing. Our
method identified a diverse set of image-related axes and discovered novel concepts such as species,
cap color, vehicle type, eye color, and breed, which were not specified in the prompt. It demonstrates
that our universal prompt can generalize to unseen domains. Within the discovered axes, our method
accurately alters each concept without affecting others. In contrast, LIVCL often fails to encode
image-specific details, such as generating different glasses in the seventh row, last column, or
disentangling from other axes like changing fur color and texture in the eighth row, last column. We
attribute this to the inherent trade-off in LIVCL’s objective between concept disentanglement and
capturing image-dependent details. Thanks to our compositional anchoring objective, our method
achieves both disentanglement along each axis and the preservation of image-specific details, e.g.,
transferring similar glasses in the seventh row of third column. Text-based approaches also struggle
with concept-wise manipulation, often modifying the global color of images (InstructPix2Pix and
NullText-Inversion) or leaving them unchanged (SDEdit and DDPM-Inversion). Even when they
transfer the correct attribute, they fail to capture the visual nuances of source attributes. For further
visual inspection, please refer to additional qualitative results in Appendix A.6.

Compositional Generalization Interestingly, our method demonstrates superior compositional
generalization to unseen combinations of concepts compared to the baselines, as shown in Figure 3. In
the figure, our method successfully generates novel compositions, such as a large frog with a panda’s
fur pattern, pandas with red eyes, or scooters floating on water, which do not exist in the real world. In
contrast, the baselines either alter multiple attributes simultaneously or change nothing at all, and fail
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Figure 3: Compositional generalization to unseen concept combination. Given OOD combination
of concepts such as frog with panda’s fur pattern, only our method generates plausible results.

to generate plausible generalizations. For instance, when modifying species or eye color, body colors
are also changed as seen in the fifth and sixth columns of the first row, and the fifth column of the third
row. Furthermore, while all baselines struggle with manipulating ear shapes or nose colors, which are
strongly correlated with dog breed, our method shapes the ears of a Labrador into a triangle (third
column of fourth row) and renders a dog’s nose in pink (third column of fifth row). We conjecture
that such compositional generalization arises from our compositional anchoring objective, which
explicitly promotes random composite images to exhibit corresponding compositions of attributes.

Composition From Multiple Images To further analyze the quality of extracted visual concepts,
we consider the more challenging multi-image composition task. For each target image, we select N
source images and randomly sample unique concept axes from each source, i.e., N different axes.
We then edit the target image along those axes to produce composite images. We conduct this task
only on CelebA-HQ and AFHQ, as the high image diversity within ImageNet classes (e.g., partial
views, different viewpoints, or varying light conditions) often leads to cases where the concept axes
are not consistently shared among the same class images, resulting in noisy evaluations. In contrast,
CelebA-HQ and AFHQ have more controlled structures, making them better suited for this task.

Table 3 presents CLIP and BLIP scores for editing up to four axes. Our method again consistently
outperforms all baselines. Moreover, all baselines suffer a clear drop in both metrics as N increases,
whereas our method shows only a marginal decrease. This robustness indicates that our concept
representations are well disentangled and faithfully capture the correct semantics of the input images.
Figure 4 shows qualitative results for N = 3. Composite images from our method are faithfully
modified to reflect all of the source images’ concepts. In contrast, the baseline models often omit or
distort certain attributes. For example, all baselines fail to render the short hairstyle and blue earrings
(first row), and some either drop the facial expression (InstructPix2Pix, DDPM Inversion) or misapply
the hair color (LIVCL, SDEdit) in the composite outputs (second row).

Visual Nuance Transfer In contrast to text-based editing methods, visual concept learning methods
can capture visual nuances in the continuous representation space. Since LIVCL is not applicable
to ImageNet-S20, we compare our methods to LIVCL on the CelebA-HQ and AFHQ datasets.
Figure 5 highlights visual nuances captured in the concept representation of our method. In the
figure, our method transfers subtle visual details such as detailed fur patterns, subtle differences in
smiles, or hair color tones. In contrast, LIVCL struggles to correctly transfer these visual details,
e.g., the resulting image always exhibits the same expressions in Figure 5(b). It even fails to
reconstruct the original images in Figure 5(c). This implies the suboptimal trade-off between concept
disentanglement and image-dependent encoding induced by the objective in LIVCL. While pushing
concept representations zi closer to text embeddings vi, i.e., zi = vi, can achieve disentanglement,
it sacrifices visual information. In contrast, our compositional anchoring objective bypasses such
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Table 3: Comparisons of visual concept editing. Our method outperforms recent text-based editing
methods [3, 11, 23, 24] and language-informed visual concept learning [16].

method
CelebA-HQ AFHQ-Dog AFHQ-Cat

CLIP BLIP CLIP BLIP CLIP BLIP

N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4 N=2 N=3 N=4

SDEdit 0.203 0.202 0.204 0.443 0.440 0.439 0.251 0.254 0.255 0.493 0.496 0.494 0.257 0.254 0.254 0.466 0.456 0.443
InstructPix2Pix 0.201 0.199 0.197 0.416 0.413 0.411 0.225 0.224 0.221 0.456 0.458 0.453 0.248 0.250 0.249 0.462 0.463 0.450
NullText Inv. 0.206 0.199 0.194 0.428 0.420 0.417 0.247 0.250 0.250 0.479 0.482 0.480 0.256 0.257 0.258 0.471 0.469 0.468
DDPM Inv. 0.213 0.207 0.203 0.463 0.449 0.437 0.262 0.260 0.257 0.506 0.501 0.493 0.261 0.258 0.253 0.473 0.458 0.440
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Figure 4: Composition of visual concepts from multiple images. Only our method accurately reflects
all of the attributes of source images.

Ours

LIVCL

Target

Source

(b) Expression(a) Fur Color (c) Hair Color

Figure 5: Examples of visual nuance transfer. Even when transferring the same attributes, e.g., black
and white fur or blonde hair, the outputs reflect subtle details of source images.

a trade-off and thereby achieves both disentanglement and rich image-dependent details within
representations. More qualitative results on visual nuance transfer are provided in Appendix A.6.

5.3 Ablation Study
In this section, we conduct an ablation study on VLM choices, architectural design choices, and
objective functions to examine the robustness and effectiveness of our choices. All of the experiments
are evaluated on the visual concept editing task in the CelebA-HQ dataset.

VLM choices Since the discovery of concept axes in our method is directly affected by the quality
of VLM outputs, we examine the robustness of our framework on two additional popular open-
sourced VLMs (Qwen2.5-VL[2], Ovis2[21]), which have ranked highly on reasoning benchmarks.
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Table 4: Ablation study on VLM choices.

VLM choices CLIP BLIP

Qwen2.5-VL [2] 23.72 48.64
Ovis2 [21] 23.48 48.35
InternVL2-5 (Ours) 23.88 49.58
InternVL2-5 + 10% drop 23.52 48.69
InternVL2-5 + 20% drop 23.65 48.61

Table 5: Ablation study on Architectural choices.

Archiectural choices Metrics

Decoder Vision Encoder Concept Encoder CLIP BLIP

Frozen T2I Dinov2 UCE 23.88 49.58
LoRA-finetuned T2I Dinov2 UCE 23.67 49.62

Frozen T2I CLIP UCE 22.03 46.21
Frozen T2I Dinov2 Shared MLP 21.63 46.8

Moreover, as it is difficult to directly control or quantify VLM performance, we instead control output
quality by dropping partial axes (e.g., 10% and 20%) from the VLM outputs. It is a practical scenario
as VLMs cannot always capture the complete axes for a given scene. Table 4 shows that our method
is robust to both VLM choices and missing axes. We hypothesize that this is because even though
some image-related axes can be missed in each example, those axes will eventually be repeatedly
exposed across the dataset. Additionally, since our compositional anchoring loss encourages the
compositionality of the concept representations, our framework might be internally trained for better
compositional generalization, which improves adaptation with fewer samples. In fact, our method
is capable of generating OOD samples (Figure 3). The robustness of our framework regarding the
performance of VLMs suggests that it can scale to more complex real-world datasets, as VLMs do
not always need to capture complete axes for every scene.

Architectural choices Table 5 presents the ablation studies on architectural choices as follows: (1)
Frozen T2I decoder versus LoRA-finetuned decoder, (2) choice of vision encoder (Dinov2 versus
CLIP), and (3) universal concept encoder (UCE in the Table 5) versus shared MLP architectures. First,
finetuning the decoder with LoRA does not affect overall performance. Large-scale pretrained T2I
models have already learned expressive data priors on natural images, facilitating faster training of
the generation model. Therefore, the frozen T2I model does not bottleneck our framework. Replacing
the Dinov2 encoder with the CLIP encoder causes a significant performance drop, as CLIP is trained
for text-alignment, making its discriminative properties inferior to those of recent self-supervised
methods like Dinov2. Lastly, replacing our universal concept encoder with a shared MLP architecture,
which is a naive version of an axis-agnostic encoder, also results in a severe drop. Specifically, the
visual feature is mean-pooled into a vector, concatenated with axis embeddings, and passed through
shared MLP layers to encode concept representations. To make this encoder generally work for
diverse concept axes, we shared this MLP layer for all of the axes. This approach likely fails because
the shared MLP treats each concept independently, blocking complex interactions between concepts.
It clearly highlights the effectiveness of our universal concept encoder.

Table 6: Ablation study on our
method. Both LComp and gϕ con-
tribute to concept disentanglement.

LComp gϕ CLIP (↑) BLIP (↑)

✓ ✗ 21.1 44.72
✗ ✓ 22.89 47.47
✓ ✓ 23.88 49.58

Component-wise Contribution We conduct an ablation
study on each component in our objective for concept disentan-
glement, i.e., gϕ and LComp, and report the results in Table 6.
Without employing gϕ and instead directly regressing each con-
cept representation zi to vi in Equation 2 and 3, we observe
significant drops in both CLIP-Score and BLIP-Score. This
result indicates the importance of gϕ in preventing a direct trade-
off between disentanglement and encoding image-dependent
details. Furthermore, removing LComp also leads to suboptimal CLIP- and BLIP-Score. This is
because minimizing Equation 3 only guarantees zi to have information of vi but does not prevent it
from encoding entangled information related to other concept axes.

6 Conclusion
In this study, we present a scalable framework for grounding visual concepts along adaptive concept
axes in real-world scenes. Our framework leverages a pretrained VLM and universal prompt design
to adaptively identify diverse, image-related concept axes. A single, unified concept encoder then
binds visual features to these axes, eliminating the need for separate per-concept encoders. To ensure
each axis remains disentangled while preserving instance-level detail, we introduce a compositional
anchoring loss. We randomly swap concept representations across images and regularize the resulting
composite outputs to match their corresponding text descriptions. In the visual concept editing task
on real-world datasets, our method consistently outperforms prior approaches in language-informed
visual concept learning and recent text-based editing methods, demonstrating the effectiveness of
our framework in learning adaptive visual concepts in real-world datasets. Also, our approach
demonstrates successful transfer of subtle visual nuances and stronger compositional generalization.
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A Appendix

A.1 Limitations and Future Work

In our work, as in most previous approaches, we cannot guarantee recovery of every ground-truth
factor of variation. Some subtle or rare attributes may simply fall outside the axes we discover. In fact,
perfectly capturing all underlying factors in a complex, real-world dataset is generally intractable.
Nevertheless, our method still identifies diverse, meaningful concepts, and extending coverage to
additional or more fine-grained factors remains an important direction for our future work. Moreover,
our framework depends on the quality and scope of the pretrained vision language model (VLM),
so it can only discover concepts the VLM recognizes. Fortunately, as VLMs are improving rapidly
and our method is not restricted by a specific VLM, we can adopt stronger models as they become
available.

A.2 Broader Impact

Our approach can extract diverse visual concepts from images and reuse them to synthesize new
content, which could pose privacy issues such as deepfake generation or unauthorized duplication of
digital content.

A.3 Additional Implementation Details

Table 7 summarizes hyper-parameters for model architectures and training used in our experiments.
For baselines, we follow the default hyper-parameters recommended by the official codes. All
baselines used DDIM inversion with guidance of 7.5 and 50 inference steps.

Table 7: Hyperparameters used in our experiments.

General Batch Size 32
Training Steps 100k
Learning Rate 0.00003

Concept Encoder Layers 4
Hidden Dim 768
Number of Heads 8

Regression Network Layers 768
Input Dimension 768
Hidden Dimensio 768
Activation Function ReLU
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A.4 Prompt for Concept Axes Extraction

We provide the complete prompt and examples of the discovered concept axes per image in Figure 6
and Figure 7, respectively. As shown in Figure 7, our prompt successfully steers the VLM to identify
diverse concept axes across different datasets, even when using only a single output exemplar of a
human face.

<image>\n  You are given an image containing any subject (e.g., person, animal, furniture, vehicle, etc.).
Your task is to identify all relevant visual concept axes for the subject in a broad yet comprehensive 
way.Because the subject can vary widely, ensure your approach applies to humans, animals, vehicles, 
objects, and more.These axes should include all essential visible attributes of the subject with enough 
detail to plausibly reconstruct the image. Each axis should be fine-grained enough for distinct, specific 
attributes (for example, "hair_length" rather than "appearance", "fur_color" rather than "fur").
Each chosen axis (key) should map to a short, descriptive value.
Use concise yet precise terms. Avoid vague or overly brief descriptors like "medium" by replacing them 
with more specific language such as "long, past shoulders" or "short, tied back."\ Avoid repeating the same 
detail across multiple axes; keep attributes distinct to prevent overlap.
Return your final answer as a single JSON dictionary.

For example, if the subject is a human:
{"subject_type": "human", "age": "young adult","gender": "female","hair_color": "black","hair_length": 
"short, above ears","hair_texture": "straight","expression": "smiling","background": "white", 
accessory:"gold, dangling earrings"}

Output only the final JSON.

Output Exemplar

General Task Description

Figure 6: Our complete prompt consists of a general task description and output exemplar.

    "subject_type": "dog",
    "breed": "mixed",
    "fur_color": "brown and black",
    "fur_texture": "short",
    "ear_shape": "floppy",
    "eye_color": "brown",
    "expression": "happy",
    "tongue_position": "out",
    "collar_color": "red",
    "collar_type": "chain",
    "background": "grass"

    "subject_type": "animal",
    "species": "dog",
    "breed": "West Highland White Terrier",
    "fur_color": "white",
    "fur_texture": "shaggy",
    "ear_shape": "pointed",
    "eye_color": "dark",
    "nose_color": "black",
    "background": "outdoor, blurred"

    "subject_type": "animal",
    "species": "cat",
    "fur_color": "white",
    "eye_color": "green",
    "ear_position": "upright",
    "background": "green foliage"

    "subject_type": "animal",
    "species": "cat",
    "fur_pattern": "striped",
    "fur_color": "brown and black",
    "eye_color": "green",
    "expression": "aggressive",
    "whiskers": "white",
    "background": "pavement"

    "subject_type": "human",
    "age": "young adult",
    "gender": "female",
    "hair_color": "blonde",
    "hair_length": "medium, past shoulders",
    "hair_texture": "wavy",
    "eye_color": "blue",
    "expression": "neutral",
    "background": "gray"

    "subject_type": "human",
    "age": "young adult",
    "gender": "female",
    "hair_color": "dark brown",
    "hair_length": "long, past shoulders",
    "hair_texture": "straight",
    "expression": "neutral",
    "background": "black",
    "lip_color": "pink",
    "clothing": "pink top"

Figure 7: Examples of outputs from the VLM. Concept axes colored in red are unseen from the given
exemplar.
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A.5 Human Evaluation

For human evaluation, we randomly select 10 pairs of images for each attribute. Then, we replace
an attribute of one image with another one in each pair using each of the methods. We ensure that
randomly selected attributes in each pair are different from each other so that the edited image is
always recognizable. We collect 10 participants for each dataset (a total of 30) on Prolific [28] and
provide a general guideline as in Figure 8 for the task. Our questionnaire (Figure 9) asks participants
to rank the images that most closely adhere to the criteria provided in our guideline. Following [16],
we used Borda score metrics [32] to differentiate the scores according to each ranking, and final
scores are normalized to a 0-1 scale.

Figure 8: General guidelines used in our human evaluation.

Figure 9: Questionnaires used in human evaluation.

3



A.6 Additional Qualitative Results

A.6.1 Additional Qualitative Comparisons on Visual Concept Editing

Figures 10–19 present additional qualitative results along diverse concept axes discovered in
ImageNet-S20, CelebA-HQ, and AFHQ datasets. Across all axes, our method consistently out-
performs the baselines. Whereas the baselines often fail to accurately capture and transfer the
specified visual attributes, our approach reliably extracts the visual concept from the source and
transfers it to the target image. Since LIVCL trains a set of separate encoders only for the top–10
frequent axes, it was unable to evaluate “lip color” in Figure 15 and “collar” in Figure 18, which are
not among the top–10 most frequent concepts in the dataset, and we therefore mark those entries as
N/A.
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Figure 10: Additional qualitative comparison to baselines in ImageNet-S20
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Figure 11: Additional qualitative comparison to baselines in ImageNet-S20
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Figure 12: Additional qualitative comparison to baselines in ImageNet-S20
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Figure 13: Additional qualitative comparison to baselines in CelebA-HQ
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Figure 15: Additional qualitative comparison to baselines in CelebA-HQ
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Figure 17: Additional qualitative comparison to baselines in AFHQ-Dog

11



Instruct
Pix2PixSDEdit DDPM

Inv.
NullText

Inv.Ours LIVCLTargetSource

Fur Texture

Eye Color

Collar

Target 
Concept

N/A

N/A

N/A
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A.6.2 More Qualitative Results on Compositions from Multiple Images

We provide more qualitative results on the composition of visual concepts from multiple images
in Figure 23-27. We extract N distinct visual concepts from N different images and replace the
corresponding visual concepts of the target images with them. Our method successfully transfers
multiple visual concepts to target images, which implies that each visual concept extracted from
source images is disentangled along other axes.

Target Instruct
Pix2PixSDEdit DDPM

Inv.
NullText

Inv.Ours LIVCL
Hair Color

Concepts from Source
Age Clothing

ExpressionGender

BackgroundHair Texture Accessory

ExpressionFur Color Ear Shape

Hair Length

Nose ColorBreed Eye Color

BackgroundFur Texture Expression

ExpressionFur Color Background

Eye ColorFur Pattern Expression

Eye ColorFur Color Background

Figure 21: Compositions of visual concepts from multiple images (N = 3).
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Target Instruct
Pix2PixSDEdit DDPM

Inv.
NullText

Inv.Ours LIVCL
Hair Length

Concepts from Source
Expression AccessoryAge

ClothingHair Color BackgroundGender

ClothingExpression AccessoryGender

Nose ColorEye Color BackgroundFur Color

Fur ColorEar Shape ExpressionNose Color

ExpressionEye Color BackgroundFur Color

Figure 22: Compositions of visual concepts from multiple images (N = 4).
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A.6.3 More Qualitative Results on Visual Nuance Transfer

We provide more qualitative results on transferring visual nuance from source to target images in
Figure 23-27.

Ours

LIVCL

Target

Source

(b) Expression (to smiling)(a) Expression (to surprising) (c) Expression (to smiling)

Figure 23: Transferring Visual Nuances from source to target images

Ours

LIVCL

Target

Source

(b) Hair color (to light brown)(a) Hair color (to blonde) (c) Hair color (to brown)

Figure 24: Transferring Visual Nuances from source to target images.

Ours

LIVCL

Target

Source

(b) Fur color (to white&grey)(a) Fur color (to black) (c) Fur color (to orange)

Figure 25: Transferring Visual Nuances from source to target images.
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Ours

LIVCL

Target

Source

(b) Fur color (to brown)(a) Fur color (to light brown) (c) Background (to green grass)

Figure 26: Transferring Visual Nuances from source to target images.

Ours

LIVCL

Target

Source

(b) Background (to green foliage)(a) Background (to outdoor, blurred) (c) Fur color (to brown)

Figure 27: Transferring Visual Nuances from source to target images.

A.7 Computing Resources

All of our experiments are conducted on a GPU Server that consists of an Intel Xeon Gold 6230 CPU,
256GB RAM, and 8 NVIDIA RTX 6000 GPUs (with 48GB VRAM). It takes about 48 GPU hours
for each dataset.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We states our motivation, contributions, scope of our work in abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We provide limitation of our work in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not claim for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the information needed to reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No] ,

Justification: Our code is not cleaned and prepared enough for sharing.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the details for experimental setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Since our method requires costly GPU cost and time in training the diffusion
model on real images, we were not affordable to conduct and provide repetitive experiments.
We will add it in future.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information of computing resources used for the experiments in
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss it in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: : Our paper possess no risk
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the codes, data, paper, and pretrained model in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: We provide detailed instructions of our human evaluation and we provide
proper rewards to participants through Prolific website.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our method and human evaluation possess no risk.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used VLM for automatic extraction of visual concepts and provide detailed
information in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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