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Figure 1: (I) Architectures: We propose that the simple encoder-decoder (d) pipeline is strong enough
for All-in-One IR. (II) Average Performance: our ExDA consistently produced better results across
six challenging All-in-One benchmarks. (III–XI) Qualitative Comparison: Please zoom in for details.

ABSTRACT

All-in-one image restoration (IR) aims to recover high-quality images from di-
verse degradations, which in real-world settings are often mixed and unknown.
Unlike single-task IR, this problem requires a model to approximate a family of
heterogeneous inverse functions, making it fundamentally more challenging and
practically important. Although recent focus has shifted toward large multimodal
models, their robustness still depends on faithful low-level inputs, and the princi-
ples that govern effective restoration remain underexplored. We revisit attention
mechanisms through the lens of all-in-one IR and identify two overlooked bottle-
necks in widely adopted Restormer-style backbones: (i) the value path remains
purely linear, restricting outputs to the span of inputs and weakening expressivity,
and (ii) the absence of an explicit global slot prevents attention from encoding
degradation context. To address these issues, we propose two minimal, backbone-
agnostic primitives: a nonlinear value transform that upgrades attention from a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

selector to a selector–transformer, and a global spatial token that provides an ex-
plicit degradation-aware slot. Together, these additions improve restoration across
synthetic, mixed, underwater, and medical benchmarks, with negligible overhead
and consistent performance gains. Analyses with foundation model embeddings,
spectral statistics, and separability measures further clarify their roles, positioning
our study as a step toward rethinking attention primitives for robust all-in-one IR.

1 INTRODUCTION

Image restoration (i.e., IR) aims to recover high-quality images from degraded observations. In
real-world scenarios, images often suffer from complex degradations—noise, blur, haze, rain, and
their unpredictable mixtures—each corresponding to a distinct inverse function that must be learned
and applied adaptively. This multiplicity of inverse mappings makes all-in-one image restoration
fundamentally more challenging than single-task variants: rather than learning one specialized
function, the model must approximate a family of heterogeneous inverse transformations while
remaining robust to mixed and unseen degradations. The stakes for robust low-level vision have never
been higher. As computer vision increasingly relies on large multimodal models and foundation
architectures, their effectiveness hinges critically on the quality of input images. Corrupted inputs
propagate errors throughout the entire pipeline, making reliable image restoration not merely a
specialized tool, but a foundational prerequisite for robust vision systems.

Recent advances are dominated by Transformer-based architectures that skillfully balance global
context modeling with local spatial priors. The multi-dconv head transposed attention (MDTA) and
gated-dconv feed-forward network (GDFN) introduced in Restormer (Zamir et al., 2022b) exemplify
this trend, replacing computationally prohibitive token-wise self-attention with efficient channel-wise
attention. This design has become the de-facto standard for high-resolution IR, spawning numerous
variants and establishing strong empirical baselines across diverse restoration tasks. However, when
viewed through the lens of all-in-one IR, this prevalent design exposes two critical yet overlooked
limitations that reflect a deeper tension between single-task efficiency and unified IR capability.

First, the attention mechanism’s value path remains purely linear: while queries and keys interact
through nonlinear softmax operations, values are merely linearly aggregated, constraining outputs
to lie within the convex hull of input features. This expressivity bottleneck becomes particularly
severe in all-in-one settings, where the model must navigate between vastly different inverse map-
pings—from high-frequency noise removal to low-frequency haze correction—yet is constrained by
linear combinations of its inputs. Although (Katharopoulos et al., 2020; Shen et al., 2024; Aksenov
et al., 2024; Shazeer, 2020) use of nonlinearities on queries and keys enables an efficient linearized
softmax, we argue that the value space is more critical for learning robust representations. Second,
unlike standard ViTs that employ class tokens for global aggregation, channel-wise attention discards
the notion of explicit global slots entirely. This forces the degradation context to be encoded implicitly
across spatial channels, making the model less capable of explicit degradation inference—a capability
that proves essential when corruption types are unknown and mixed. These limitations matter less
in single-task settings where the inverse function is fixed and known, but become fundamental
bottlenecks in all-in-one scenarios that demand both expressivity and adaptability.

In this work, we address these bottlenecks through a principled rethinking of attention primitives for
all-in-one IR. We introduce two minimal, backbone-agnostic extensions that transform any Restormer-
style architecture into a more expressive and degradation-aware system. Our nonlinear value
transform breaks the linear span constraint by augmenting values with lightweight convolutional
mappings before aggregation, upgrading attention from a feature selector to a feature selector–
transformer. Our global spatial token (GST) restores explicit global context by providing learnable
slots that adaptively aggregate degradation-relevant statistics and inject them back into the attention
computation. These innovations are both theoretically motivated and empirically validated: from
a function approximation perspective, we show that pre-aggregation nonlinear transformations
fundamentally expand the realizable function family, while diagnostic analyses involving foundation
model embeddings, spectral decompositions, and cluster separability measures demonstrate that
global tokens capture meaningful degradation context. Extensive experiments across synthetic, mixed,
underwater, and medical benchmarks reveal consistent improvements over strong baselines, with
negligible computational overhead and robust transfer across different backbone architectures.
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Our contributions address a fundamental gap in understanding attention mechanisms for unified IR:

• We identify and theoretically analyze two overlooked bottlenecks in prevalent Restormer-
style architectures—linear value constraints that limit expressivity and absent global slots
that limit degradation-awareness.

• We propose two minimal, backbone-agnostic primitives that address these bottlenecks:
nonlinear value transforms that expand the realizable function family, and global spatial
tokens that provide explicit degradation context.

• We provide theoretical motivation, diagnostic analyses, and extensive empirical validation
across diverse benchmarks, demonstrating consistent improvements while maintaining
computational efficiency.

2 RELATED WORK

Image Restoration (IR). IR aims to solve a highly ill-posed problem: reconstructing high-quality
images from degraded observations. Owing to its broad importance, IR has been widely applied
in numerous applications (Richardson, 1972; Xie et al., 2025; Banham & Katsaggelos, 1997; Li
et al., 2023b; Zamfir et al., 2024). Early approaches were dominated by model-based solutions that
searched for closed-form results under handcrafted formulations. With the advent of deep learning,
learning-based IR methods have rapidly gained popularity. Recent studies include regression-based
techniques (Lim et al., 2017; Lai et al., 2017; Liang et al., 2021; Chen et al., 2021; Li et al., 2023a;
Zhang et al., 2024) and generative pipelines (Gao et al., 2023; Wang et al., 2023b; Luo et al., 2023;
Yue et al., 2023; Zhao et al., 2024), built upon a variety of architectures such as convolutional
networks (Dong et al., 2015; Zhang et al., 2017b;a; Wang et al., 2018), MLP-based designs (Tu
et al., 2022), state space models (Guo et al., 2024a; Zhu et al., 2024; Gu & Dao, 2023; Dao & Gu,
2024), and Vision Transformers (ViTs) (Liang et al., 2021; Ren et al., 2023a; Li et al., 2023a; Zamir
et al., 2022b; Dosovitskiy et al., 2020; Liu et al., 2023). Among them, Restormer (Zamir et al.,
2022b) introduced a channel-wise attention mechanism (MDTA) to achieve linear complexity while
handling high-resolution inputs, and has since become a widely adopted backbone in IR due to its
strong balance of efficiency and accuracy. Despite these advances, the majority of IR models are still
designed for specific degradation types, such as denoising (Zhang et al., 2017b; 2019), dehazing (Ren
et al., 2020; Wu et al., 2021), deraining (Jiang et al., 2020; Ren et al., 2019), and deblurring (Kong
et al., 2023; Ren et al., 2023b).

All-in-One Blind Image Restoration. Training separate task-specific models for individual degrada-
tions can deliver strong results, yet maintaining one model per task is impractical and environmentally
costly. In practice, images are frequently affected by mixtures of degradations, making it unrealistic to
handle each corruption independently. This has motivated the study of All-in-One image restoration,
where a single model is expected to generalize across multiple degradation types (Zamfir et al., 2025;
Zeng et al., 2025; Zheng et al., 2024). Different strategies have been explored: AirNet (Li et al.,
2022) learns contrastive degradation representations to guide reconstruction, whereas IDR (Zhang
et al., 2023) formulates degradations as physical components and leverages a meta-learning pipeline.
Prompt-based approaches (Potlapalli et al., 2024; Wang et al., 2023a; Li et al., 2023c) push this idea
further by conditioning restoration on learned visual prompts, later extended to frequency-aware
prompts (Cui et al., 2025) or larger-scale dynamic architectures (Dudhane et al., 2024). Although
effective, these methods often incur high training costs and reduced efficiency (Cui et al., 2025),
which hinders practical deployment. More recently, besides these regression-based approaches,
distribution-oriented models also show decent performance while with a larger model size Tian et al.
(2025); Luo et al. (2025). In this work, we take a different route. Instead of relying on auxiliary
prompt modules or complex extra multi-stage strategies, we revisit the backbone design itself. In
parallel, recent studies have attempted to enhance attention expressivity (Chefer et al., 2021) and
incorporate degradation-aware priors directly into the backbone design (Tang et al., 2025). These
directions motivate a closer examination of the attention operator itself rather than adding heavier
auxiliary modules. By examining Restormer-style channel-wise attention, we identify two overlooked
bottlenecks, linear values and the lack of an explicit global slot, and propose minimal primitives that
directly improve expressivity and provide degradation-aware context for efficient all-in-one Blind IR.

3
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Figure 2: Comparison of (a) standard ViT attention with CLS in high-level tasks, (b) Restormer-style
channel-wise attention in IR, (c) Our proposed attention design that augments values space with
nonlinearity and introduces an explicit global slot.

3 THE PROPOSED METHOD

3.1 REVISITING RESTORMER-STYLE ATTENTION: HIDDEN BOTTLENECKS

Transformers have recently become central to low-level vision tasks such as image restoration (IR),
where they are often re-designed to balance efficiency and spatial detail recovery. A representative
example is Restormer (Zamir et al., 2022b), which replaces spatial token-wise self-attention (Fig. 2a)
with channel-wise attention (Fig. 2b) and substitutes the standard MLP feed-forward layers with
gated-dconv feed-forward networks. These design choices make the model computationally feasible
for high-resolution inputs and have set a strong baseline for single-degradation IR.

However, in the broader context of low-level vision, two overlooked limitations emerge. (i), the
value (V ) path remains purely linear. While queries (Q) and keys (K) interact through a nonlinear
softmax, values are only linearly aggregated, constraining outputs to lie within the span of the
inputs. In the standard ViTs, this limitation is less severe because the MLP-based feed-forward
networks provide strong nonlinear transformations. In contrast, IR backbones such as Restormer
adopt gated-dconv feed-forward networks, where one branch is essentially linear. As a result, a
portion of the information bypasses any nonlinear transformation, leaving the overall block with
weaker nonlinearity. This makes the expressivity bottleneck of linear values particularly pronounced
in all-in-one restoration, where the model must approximate a family of diverse inverse functions
rather than a single degradation. (ii), there is no explicit global slot to summarize degradation context.
Standard ViTs include a CLS token to aggregate global semantics (Fig. 2a), yet in low-level vision,
this token is often discarded as “useless” for pixel-level predictions (Liang et al., 2021; Li et al.,
2023a; Ren et al., 2024). Restormer’s channel-wise attention follows this practice (Fig. 2b), relying
instead on local depth-wise convolutions. While sufficient for single-task restoration, this design
implicitly assumes that the degradation type is fixed and known. In the all-in-one setting, however,
the model must infer degradation type directly from the input. Without a dedicated global slot,
there is no explicit mechanism to encode degradation statistics into the representation. What may
appear redundant in single-task IR thus becomes indispensable in all-in-one IR, where such a slot can
naturally evolve into a degradation embedding, capturing global statistics not only across channels
but also explicitly across spatial structure (Fig. 2b). These two limitations motivate our subsequent
exploration of nonlinear values and explicit global tokens.

3.2 NONLINEARITY MATTERS IN VALUES FOR EXPRESSIVITY

Building on the identified bottleneck in Sec. 3.1, we empirically validate the critical role of nonlinear
values in all-in-one restoration. The linear value constraint severely limits the model’s ability to
approximate diverse inverse mappings required across different degradations.

To isolate this effect, we design experiments with multi-faceted degradations that mirror all-in-one
restoration complexity. Our synthetic function combines nonlinear sensor response, blur kernels, addi-
tive/multiplicative noise, and quantization effects. Our MNIST restoration applies realistic corruptions
including nonlinear response curves, motion blur, spatially-varying noise, and compression artifacts.
Both scenarios require modeling multiple degradation characteristics simultaneously, analogous to
all-in-one restoration challenges.

Fig. 3 reveals consistent patterns across both settings. In the synthetic function approxi-
mation setting (a), linear value attention systematically fails in critical regions (orange high-
lights), achieving 50.4% worse convergence as it encounters inherent expressivity limitations.
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Algorithm 1 GST: Content-Adaptive Global Spatial Token Generation

Require: Input features X ∈ RB×C×H×W , heads h, tokens per head K, stride s
Ensure: Degradation-aware global tokens G ∈ RB×h×K×HW

1: Efficient Spatial Compression: X̃ = AvgPools(X) ∈ RB×C×H
s ×W

s

2: Multi-Head Token Projection: Φ = Wproj ⋆ X̃ ∈ RB×hK×Hs×Ws

3: Content-Adaptive Spatial Attention:
4: Gcompact = Softmaxspatial (Reshape(Φ, [B, h,K,−1]))
5: Resolution Recovery: G = BilinearUpsample(Gcompact, size = (H,W ))

6: return G ∈ RB×h×K×HW ▷ Ready for attention concatenation

Degraded CleanLinear V Nonlinear V

19.5 dB 25.5d B

19.6 dB 26.5d B

(a) Function approximation and convergence with nonlinear value gains.

(b) MNIST restoration showing nonlinear value improves quality.

Figure 3: Nonlinear value transforms out-
perform linear value attention in both (a)
function approximation and (b) MNIST
restoration, achieving better convergence,
higher PSNR/SSIM, and improved quality.

MNIST restoration (b) confirms this on realistic image
data, where nonlinear values achieve 5.92 dB PSNR
improvement (19.2→25.1 dB) and produce visually su-
perior reconstructions compared to blurry, artifact-laden
outputs from linear value attention.

These findings confirm our analysis: in Restormer-style
architectures where gated FFN allows information to
bypass nonlinear transformations, the linear value con-
straint becomes a critical expressivity bottleneck for
all-in-one restoration requiring diverse degradation mod-
eling. This motivates enhancing value expressivity
through V ′ = fθ(V ), where fθ introduces nonlinear-
ity beyond the linear span of inputs. We adopt a residual
formulation to balance preservation and transformation:

V ′ = V + gθ(V ),

gθ = Conv1×1 → DWConv3×3 → GELU → Conv1×1.
(1)

Two insights guide this design. First, pre-aggregation
placement is essential since attention Softmax(QK⊤/

√
d)V ′ constrains outputs to linear

combinations—post-aggregation nonlinearity cannot escape this fundamental limitation. Second, the
lightweight gθ provides sufficient expressivity for diverse degradation modeling while maintaining
efficiency. This transforms channel-wise attention from a linear feature selector into a nonlinear
feature transformer, fundamentally addressing the expressivity gap between single-task and all-in-one
restoration requirements.

3.3 GLOBAL CONTEXT AND THE MISSING SLOT

Building on the analysis in Sec. 3.1, we now address the second identified limitation: the absence
of explicit global context mechanisms in Restormer-style architectures. While Sec. 3.2 tackled the
expressivity bottleneck through nonlinear value transforms, the degradation inference challenge
requires a fundamentally different approach, introducing explicit degradation-aware slots that can
capture global spatial statistics. The core issue is that without dedicated global tokens, degradation
context can only be distributed implicitly across local channel interactions or captured through
cross-channel attention mechanisms. This becomes particularly problematic in all-in-one settings
where the model must distinguish between fundamentally different corruption types. These global
spatial signatures are best captured through explicit global analysis rather than relying solely on local
depth-wise convolutions or implicit cross-channel attention.

We address this through Global Spatial Tokens (GST), which provide explicit degradation-aware
slots while maintaining computational efficiency. As detailed in Alg. 1, our design generates content-
adaptive spatial attention maps through stride-s spatial compression and learnable projection. The
key innovation lies in content-adaptive pooling: rather than fixed global averaging, GST learns spatial
attention maps through learnable projections followed by spatial softmax normalization, enabling each
token to naturally develop distinct spatial emphasis patterns that correspond to different degradation
characteristics. This enables natural specialization during training—noise tokens activate scattered

5
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Table 1: Comparison to state-of-the-art on three degradations. PSNR (dB, ↑) and SSIM (↑) metrics
are reported on the full RGB images. Best performances is highlighted. ‘-’ means unreported results.

Method Venue. Params. Dehazing Deraining Denoising Average
SOTS Rain100L BSD68σ=15 BSD68σ=25 BSD68σ=50

BRDNet (Tian et al., 2020) NN’20 - 23.23 .895 27.42 .895 32.26 .898 29.76 .836 26.34 .693 27.80 .843
LPNet (Gao et al., 2019) CVPR’19 - 20.84 .828 24.88 .784 26.47 .778 24.77 .748 21.26 .552 23.64 .738
FDGAN (Dong et al., 2020) AAAI’20 - 24.71 .929 29.89 .933 30.25 .910 28.81 .868 26.43 .776 28.02 .883
DL (Fan et al., 2019) TPAMI’19 2M 26.92 .931 32.62 .931 33.05 .914 30.41 .861 26.90 .740 29.98 .876
MPRNet (Zamir et al., 2021) CVPR’21 16M 25.28 .955 33.57 .954 33.54 .927 30.89 .880 27.56 .779 30.17 .899
AirNet (Li et al., 2022) CVPR’22 9M 27.94 .962 34.90 .967 33.92 .933 31.26 .888 28.00 .797 31.20 .910
NDR (Yao et al., 2024) TIP’24 28M 25.01 .860 28.62 .848 28.72 .826 27.88 .798 26.18 .720 25.01 .810
PromptIR (Potlapalli et al., 2024) NeurIPS’23 36M 30.58 .974 36.37 .972 33.98 .933 31.31 .888 28.06 .799 32.06 .913
MoCE-IR-S (Zamfir et al., 2025) CVPR’25 11M 30.98 .979 38.22 .983 34.08 .933 31.42 .888 28.16 .798 32.57 .916
AdaIR (Cui et al., 2025) ICLR’25 29M 31.06 .980 38.64 .983 34.12 .935 31.45 .892 28.19 .802 32.69 .918
MoCE-IR (Zamfir et al., 2025) CVPR’25 25M 31.34 .979 38.57 .984 34.11 .932 31.45 .888 28.18 .800 32.73 .917

ExDA (Ours) 2025 22M 31.58 .982 39.13 .985 34.22 .937 31.56 .895 28.32 .808 32.96 .921

Methods with the assistance of vision language, multi-task learning, natural language prompts, or multi-modal control

DA-CLIP (Luo et al., 2024) ICLR’24 125M 29.46 .963 36.28 .968 30.02 .821 24.86 .585 22.29 .476 - -
ArtPromptIR (Wu et al., 2024) ACM MM’24 36M 30.83 .979 37.94 .982 34.06 .934 31.42 .891 28.14 .801 32.49 .917
InstructIR-3D (Conde et al., 2024) ECCV’24 16M 30.22 .959 37.98 .978 34.15 .933 31.52 .890 28.30 .804 32.43 .913
UniProcessor (Duan et al., 2025) ECCV’24 1002M 31.66 .979 38.17 .982 34.08 .935 31.42 .891 28.17 .803 32.70 .918
VLU-Net (Zeng et al., 2025) CVPR’25 35M 30.71 .980 38.93 .984 34.13 .935 31.48 .892 28.23 .804 32.70 .919
Perceive-IR (Zhang et al., 2025) TIP’25 42M 30.87 .975 38.29 .980 34.13 .934 31.53 .890 28.31 .804 32.63 .917
DFPIR (Tian et al., 2025) CVPR’25 31M 31.87 .980 38.65 .982 34.12 .935 31.47 .893 28.25 .806 32.88 .919
DA-RCOT (Tang et al., 2025) TPAMI’25 50M 31.26 .977 38.36 .983 33.98 .934 31.33 .890 28.10 .801 32.60 .917

high-frequency regions, blur tokens emphasize smooth low-frequency areas, and haze tokens respond
to large-scale illumination structures, all without explicit supervision or degradation labels.

The generated GST tokens G ∈ RB×h×K×HW are seamlessly integrated into channel-wise attention
through direct concatenation with query, key, and value representations:

[Q∗,K∗, V ∗] = [Q⊕G,K ⊕G,V ′ ⊕G] ∈ RB×h×(C+K)×HW , (2)

where ⊕ denotes channel-wise concatenation and V ′ is the nonlinear-enhanced value from Sec. 3.2.
After standard attention computation Attn = Softmax(Q∗K∗⊤/τ)V ∗, we separate local channel
features and global token contributions, re-injecting GST influence via learnable residual scaling:

Output = Attn[:,:,:C,:] + α · Attn[:,:,C:,:], (3)

where α is initialized to 0.1 for gradual learning without overwhelming local features.

This design transforms the discarded CLS token concept into a valuable primitive for all-in-one
scenarios. By providing explicit degradation-aware slots that naturally specialize during training, GST
enables coherent global strategies while maintaining channel-wise attention efficiency. The content-
adaptive nature allows each attention head to learn specialized global patterns without requiring
explicit degradation labels or supervisory signals.

4 EXPERIMENTS

We evaluate ExDA under six All-in-One IR benchmarks, i.e., (i) All-in-One (3Degradations), (ii)
All-in-One (5Degradations), (iii) Mixed Degradation, (iv) Adverse Weather Removal, (v) Real-world
WeatherBench, and (vi) Medical All-in-One. The macro architecture of our model, the datasets, and
implementation details are provided in our appendix.

4.1 MAIN RESULTS.

3-Degradation Setting. The results in Tab. 1 show that ExDA consistently outperforms other
methods, even outperforming those with the assistance of language, multi-task, or text/visual prompts.
Notably, 0.23 dB higher than the recent MoCE-IR on PSNR, while with 3M fewer parameters.

5-Degradation Setting. Building on the previous setting, we further include deblurring and low-light
enhancement as two additional degradation types (Li et al., 2022; Zhang et al., 2023). As shown in
Tab. 2, our method achieves the highest average PSNR, surpassing even substantially larger models, as
well as those leveraging additional modalities or pretraining. Moreover, for dehazing and deblurring,
our approach also delivers competitive results compared to existing methods.
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Table 2: Comparison to state-of-the-art on five degradations. PSNR (dB, ↑) and SSIM (↑) metrics
are reported on the full RGB images with (∗) denoting general image restorers, others are specialized
all-in-one approaches. Best performance is highlighted.

Method Venue Params. Dehazing Deraining Denoising Deblurring Low-Light Average
SOTS Rain100L BSD68σ=25 GoPro LOLv1

NAFNet∗ (Chen et al., 2022a) ECCV’22 17M 25.23 .939 35.56 .967 31.02 .883 26.53 .808 20.49 .809 27.76 .881
DGUNet∗ (Mou et al., 2022) CVPR’22 17M 24.78 .940 36.62 .971 31.10 .883 27.25 .837 21.87 .823 28.32 .891
SwinIR∗ (Liang et al., 2021) ICCVW’21 1M 21.50 .891 30.78 .923 30.59 .868 24.52 .773 17.81 .723 25.04 .835
Restormer∗ (Zamir et al., 2022b) CVPR’22 26M 24.09 .927 34.81 .962 31.49 .884 27.22 .829 20.41 .806 27.60 .881
MambaIR∗ (Guo et al., 2024a) ECCV’24 27M 25.81 .944 36.55 .971 31.41 .884 28.61 .875 22.49 .832 28.97 .901

DL (Fan et al., 2019) TPAMI’19 2M 20.54 .826 21.96 .762 23.09 .745 19.86 .672 19.83 .712 21.05 .743
Transweather CVPR’22 38M 21.32 .885 29.43 .905 29.00 .841 25.12 .757 21.21 .792 25.22 .836
TAPE (Liu et al., 2022) ECCV’22 1M 22.16 .861 29.67 .904 30.18 .855 24.47 .763 18.97 .621 25.09 .801
AirNet (Li et al., 2022) CVPR’22 9M 21.04 .884 32.98 .951 30.91 .882 24.35 .781 18.18 .735 25.49 .847
IDR (Zhang et al., 2023) CVPR’23 15M 25.24 .943 35.63 .965 31.60 .887 27.87 .846 21.34 .826 28.34 .893
PromptIR (Potlapalli et al., 2024) NeurIPS’23 36M 30.41 .972 36.17 .970 31.20 .885 27.93 .851 22.89 .829 29.72 .901
MoCE-IR-S (Zamfir et al., 2025) CVPR’25 11M 31.33 .978 37.21 .978 31.25 .884 28.90 .877 21.68 .851 30.08 .913
AdaIR (Cui et al., 2025) ICLR’25 29M 30.53 .978 38.02 .981 31.35 .889 28.12 .858 23.00 .845 30.20 .910
MoCE-IR (Zamfir et al., 2025) CVPR’25 25M 30.48 .974 38.04 .982 31.34 .887 30.05 .899 23.00 .852 30.58 .919

ExDA (Ours) 2025 22M 31.14 .981 39.23 .985 31.52 .893 29.06 .878 23.19 .859 30.83 .919

Methods with the assistance of natural language prompts or multi-task learning

InstructIR-5D (Conde et al., 2024) ECCV’24 16M 36.84 .973 27.10 .956 31.40 .887 29.40 .886 23.00 .836 29.55 .908
ArtPromptIR (Wu et al., 2024) ACM MM’24 36M 29.93 .908 22.09 .891 29.43 .843 25.61 .776 21.99 .811 25.81 .846
VLU-Net (Zeng et al., 2025) CVPR’25 35M 30.84 .980 38.54 .982 31.43 .891 27.46 .840 22.29 .833 30.11 .905
Perceive-IR (Zhang et al., 2025) TIP’25 42M 28.19 .964 37.25 .977 31.44 .887 29.46 .886 22.88 .833 29.84 .909
DFPIR (Tian et al., 2025) CVPR’25 31M 31.64 .979 37.62 .978 31.29 .889 28.82 .873 23.82 .843 30.64 .913
DA-RCOT (Tang et al., 2025) TPAMI’25 50M 30.96 .975 37.87 .980 31.23 .888 28.68 .872 23.25 .836 30.40 .911

Table 3: Comparison on composited degradations. PSNR (dB, ↑) and SSIM (↑) are reported.

Method Params. CDD11-Single CDD11-Double CDD11-Triple Avg.
Low (L) Haze (H) Rain (R) Snow (S) L+H L+R L+S H+R H+S L+H+R L+H+S

AirNet 9M 24.83 .778 24.21 .951 26.55 .891 26.79 .919 23.23 .779 22.82 .710 23.29 .723 22.21 .868 23.29 .901 21.80 .708 22.24 .725 23.75 .814
PromptIR 36M 26.32 .805 26.10 .969 31.56 .946 31.53 .960 24.49 .789 25.05 .771 24.51 .761 24.54 .924 23.70 .925 23.74 .752 23.33 .747 25.90 .850
WGWSNet 26M 24.39 .774 27.90 .982 33.15 .964 34.43 .973 24.27 .800 25.06 .772 24.60 .765 27.23 .955 27.65 .960 23.90 .772 23.97 .771 26.96 .863
WeatherDiff 83M 23.58 .763 21.99 .904 24.85 .885 24.80 .888 21.83 .756 22.69 .730 22.12 .707 21.25 .868 21.99 .868 21.23 .716 21.04 .698 22.49 .799
OneRestore 6M 26.48 .826 32.52 .990 33.40 .964 34.31 .973 25.79 .822 25.58 .799 25.19 .789 29.99 .957 30.21 .964 24.78 .788 24.90 .791 28.47 .878
MoCE-IR 11M 27.26 .824 32.66 .990 34.31 .970 35.91 .980 26.24 .817 26.25 .800 26.04 .793 29.93 .964 30.19 .970 25.41 .789 25.39 .790 29.05 .881

ExDA (Ours) 22M 27.60 .837 34.44 .991 35.33 .973 36.85 .981 26.95 .834 26.80 .817 26.73 .809 31.17 .968 31.40 .972 25.59 .801 25.86 .799 29.97 .891

Table 4: Comparisons for 4-task adverse weather removal. Missing values are denoted by ’–’.

Method Venue Snow100K-S Snow100K-L Outdoor-Rain RainDrop Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

All-in-One (Li et al., 2020) CVPR’20 – – 28.33 .882 24.71 .898 31.12 .927 28.05 .902
TransWeather (Valanarasu et al., 2022a) CVPR’22 32.51 .934 29.31 .888 28.83 .900 30.17 .916 30.20 .909
Chen et al. (Chen et al., 2022b) CVPR’22 34.42 .947 30.22 .907 29.27 .915 31.81 .931 31.43 .925
WGWSNet (Zhu et al., 2023a) CVPR’23 34.31 .946 30.16 .901 29.32 .921 32.38 .938 31.54 .926
WeatherDiff64 (Özdenizci & Legenstein, 2023) TPAMI’23 35.83 .957 30.09 .904 29.64 .931 30.71 .931 31.57 .931
WeatherDiff128 (Özdenizci & Legenstein, 2023) TPAMI‘23 35.02 .952 29.58 .894 29.72 .922 29.66 .923 31.00 .923
AWRCP (Ye et al., 2023) ICCV’23 36.92 .965 31.92 .934 31.39 .933 31.93 .931 33.04 .941
GridFormer (Wang et al., 2024) IJCV’24 37.46 .964 31.71 .923 31.87 .933 32.39 .936 33.36 .939
MPerceiver (Ai et al., 2024) CVPR’24 36.23 .957 31.02 .916 31.25 .925 33.21 .929 32.93 .932
DTPM (Ye et al., 2024) CVPR’24 37.01 .966 30.92 .917 30.99 .934 32.72 .944 32.91 .940
Histoformer (Sun et al., 2024) ECCV’24 37.41 .966 32.16 .926 32.08 .939 33.06 .944 33.68 .944

ExDA (Ours) 2025 37.97 .968 32.49 .930 32.70 .945 32.66 .944 33.92 .947

Composited Degradation. To better capture real-world complexities, we extend OneRestore (Guo
et al., 2024b) to cover eleven scenarios, including rain, haze, snow, low-light conditions, and their
composite variants. As summarized in Tab. 3, our approach consistently surpasses state-of-the-art
methods such as AirNet (Li et al., 2022), PromptIR (Potlapalli et al., 2024), WGWSNet (Zhu et al.,
2023a), WeatherDiff (Özdenizci & Legenstein, 2023), OneRestore (Guo et al., 2024b), and MoCE-
IR (Zamfir et al., 2025). Notably, our method achieves a 0.92 dB PSNR improvement over MoCE-IR,
underscoring its strength in addressing complex, mixed degradations.

Adverse Weather Removal. Following prior works (Valanarasu et al., 2022b; Zhu et al., 2023b), we
evaluate ExDA on three challenging deweathering tasks: snow removal, rain streak and fog removal,
and raindrop removal. Tab. 4 shows that ExDA consistently outperforms existing SOTA approaches
across nearly all datasets, with the only exception being the PSNR result on RainDrop. These
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Table 5: Comparisons for Real-World WeatherBench (Guan et al., 2025).

Method Venue Dehaze Derain Desnow Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer (Zamir et al., 2022b) CVPR’22 19.30 .687 34.48 .945 27.95 .836 27.25 .823
AirNet (Li et al., 2022) CVPR’22 20.94 .705 33.59 .942 22.05 .780 25.53 .809
TransWeather (Valanarasu et al., 2022a) CVPR’23 19.79 .680 29.34 .903 24.96 .796 24.70 .793
PromptIR (Potlapalli et al., 2024) NeurIPS’23 21.11 .713 34.53 .944 27.93 .836 27.86 .831
WGWS-Net (Zhu et al., 2023a) CVPR’23 13.79 .603 37.08 .961 20.81 .909 23.89 .781
Histoformer (Sun et al., 2024) ECCV’24 17.69 .669 30.70 .916 25.39 .808 24.59 .798
AdaIR (Cui et al., 2025) ICLR’24 23.08 .731 34.87 .946 28.44 .837 28.80 .838

ExDA (Ours) 2025 23.74 .739 35.86 .946 29.42 .868 29.68 .851

Table 6: Comparisons for 3-task Medical Image Restoration. Missing values are denoted by ’–’.

Method Venue MRI-Super-Resolution CT-Denoising PET-Synthesis Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Restormer (Zamir et al., 2022a) CVPR’22 31.72 .936 33.61 .918 37.13 .947 34.16 .934
AirNet (Li et al., 2022) CVPR’22 31.39 .931 33.62 .917 37.17 .945 34.06 .931
Spach Transformer (Jang et al., 2023) TMI’23 31.18 .929 33.47 .916 37.05 .945 33.90 .930
DRMC (Yang et al., 2023) MICCAI’23 29.55 .903 33.28 .915 36.19 .945 33.00 .930
Eformer (Luthra et al.) MedIA’23 29.19 .873 32.44 .908 35.11 .909 32.25 .897
AMIR (Yang et al., 2024) MICCAI’24 31.86 .938 33.68 .918 37.22 .946 34.28 .934

ExDA (Ours) 2025 31.95 .938 33.67 .918 37.27 .947 34.30 .934

substantial improvements across diverse degradations highlight the robustness of ExDA . Especially,
our method achieves a notable 0.24 dB PSNR gain over Histoformer (Sun et al., 2024).

Real-world WeatherBench. We further validate our approach on the challenging real-world Weath-
erBench benchmark (Guan et al., 2025), which involves diverse weather degradations such as haze,
rain, and snow. As reported in Table 5, our method achieves the best overall performance, reaching
an average PSNR/SSIM of 29.68/0.851. Notably, it delivers the highest scores on both dehazing
and desnowing, and achieves competitive results in deraining compared with the strongest prior
models. These consistent improvements across multiple degradations highlight the robustness and
generalization ability of our method in handling complex, real-world weather conditions.

Medical All-in-One. Finally, we evaluate our method on medical image restoration tasks using the
AMIR dataset (Yang et al., 2024), which unifies three restoration tasks within a single model. The
results in Tab. 6 demonstrate the strong cross-domain applicability of our method, showing large
gains in MRI super-resolution and competitive performance on the others.

Visual Results. Fig. 1 & 4 shows that our method restores high-quality and faithful results across
diverse all-in-one settings, producing clearer boundaries and more accurate details than others.

4.2 ABLATION STUDY.

Component Analysis & Model Scaling Exploration. We start with two PromptIR-based baselines
(with and without prompts). Unlike these settings, our framework does not depend on extra prompts
for strong performance. Instead, the key improvements come from the proposed nonlinear value
design and GST module. As shown in Fig. 5, adding a nonlinear value (“b + Nonlinear Value”)
provides a clear gain, and further integrating GST (“b + GST”) yields consistent improvements.
When combined (“c + d”), our full model achieves the best performance (32.96/0.921), confirming
the effectiveness of these components. We then examine model scaling. Both the Small and Tiny
versions (“e” and “f”) remain highly competitive despite their reduced size, with the Tiny variant
(only 6M parameters) still approaching the full model’s performance. This demonstrates that once
the core components are well designed, even extremely lightweight models can deliver strong results,
making our framework both effective and scalable. The below ablations are all based on tiny model.

Nonlinear Value Design. To systematically investigate how nonlinear value transformations
should be incorporated, we conduct ablations along three dimensions. First, we compare two
formulations: an in-place nonlinear mapping (V ′ = gθ(V )) versus a residual form (V ′ =
V + gθ(V )). Results consistently favor the residual design, which preserves the original
representation while enriching it with nonlinear transformations. Second, we examine the
choice of gθ(). While non-parametric nonlinearities (e.g., pure Sigmoid or GELU) provide
limited gains, learnable parameterized mappings achieve substantially better performance, con-
firming the need for adaptive flexibility. Third, we analyze where nonlinear values matter
most in all-in-one blind IR by applying them selectively to the encoder, the decoder, or both.
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Figure 4: Visual results under diverse degradations and domains, spanning rain and noise (3-deg),
low-light (5-deg), LHS composite (low-light+haze+snow), raindrop (adverse weather), and medical
imaging. Please zoom in for details.
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Figure 5: Qualitative results on medical restoration.

Table 7: Ablations on Nonlinear Value
Design

Design Choice Results

PSNR (dB, ↑) SSIM (↑)

In-place Nonlinear (Sigmoid) 32.30 .913
Residual Nonlinear (Sigmoid) 32.63 .916
In-place Nonlinear (GELU) 32.45 .914
Residual Nonlinear (GELU) 32.71 .919

Non-parametric (GELU) 32.30 .914
Parametric (Learnable) 32.71 .919

Encoder-only 32.65 .916
Decoder-only 32.60 .915
Encoder + Decoder 32.71 .919

The evidence shows that deploying them in both the
encoder and decoder yields the strongest improvements.
Overall, these findings establish that residual, learnable,
and fully integrated nonlinear value designs form the
most effective strategy, significantly enhancing expres-
sivity for diverse degradations in all-in-one IR (Tab. 7).

GST Configuration. We analyze the effect of the stride
s in GST, which controls the granularity of spatial infor-
mation compression. When s = 1, the model preserves
excessive redundancy and achieves 32.45 dB PSNR.
Larger strides, such as s = 4 and s = 8, oversimplify
spatial structures and reduce performance to 32.52 and
32.40 dB, respectively. The best result is obtained with s = 2, reaching 32.71 dB PSNR, striking the
optimal balance between information preservation and compactness. Therefore, we adopt s = 2 as
the default configuration in our method.

Efficiency Analysis. Fig. 6 summarizes the engineering trade-offs of ExDA-Tiny/Small/Base.
Latency grows smoothly with model size (209.6→385.5 ms), while restoration quality increases
correspondingly (32.71→32.96 dB). ExDA-Small provides the best balance. To illustrate scalability
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( a ) ( b ) ( c ) 

Figure 6: Efficiency trade-offs of ExDA. (a) Resolution–latency scaling (ExDA-Tiny). (b) Model-
size–latency. (c) Model-size–quality (PSNR). ExDA-S provides the best accuracy–efficiency balance.

(a) t-SNE (w/o GST) (b) t-SNE (with GST) (c) UMAP (w/o GST) (d) UMAP (with GST)

Figure 7: t-SNE and UMAP visualizations before (a,c) and after (b,d) applying GST.

Sample: GOPR0384_11_00_000001

Blur Haze Noise Rain Low-Light

Sample: 1Sample: rain-001Sample: 3096Sample: 0001_0.8_0.2

Mixed: Low_Haze_Snow

Sample:  00018

Figure 8: GST-driven attention visualization across 5 degradations and 1 mixed case. GST consistently
highlights degradation-relevant regions, indicating that it captures meaningful degradation cues.
with input resolution, we sweep ExDA-Tiny from 2562 to 10242, observing near-linear O(HW )
growth (54.5→840.1 ms). This confirms that ExDA scales predictably to high-resolution inputs.

Degradation-Aware Representation. As shown in Fig. 7, GST noticeably improves the organization
of the embedding space: without GST, degradation types tend to overlap, while GST produces clearer
and more compact clusters. To ensure a fair comparison given the uneven dataset sizes, we sampled
68 images for noise, blur, haze, and rain, and used all 15 samples for low-light. This balanced
setting leads to substantial improvements in NMI (0.71→0.88) and ARI (0.56→0.89), reflecting
stronger degradation-awareness. Fig. 8 further illustrates this effect by visualizing GST attention
across blur, haze, noise, rain, low-light, and a mixed case (Low + Haze + Snow). Across all settings,
GST consistently attends to degradation-relevant regions—such as blur boundaries, dense haze areas,
noise-heavy textures, rain streaks, dark low-light structures, and mixed artifacts—showing that the
module captures interpretable global cues that align with the improved embedding separation.

5 CONCLUSION

In this work, we revisited attention mechanisms for all-in-one image restoration and uncovered two
central limitations in Restormer-style architectures: the linear constraint on value aggregation and the
lack of explicit global context modeling. To address these issues, we introduced a nonlinear value
transform and a global spatial token, two minimal yet powerful primitives that are both backbone-
agnostic and lightweight. Our design consistently improves restoration quality across synthetic,
real-world, underwater, and medical benchmarks, while remaining effective even in compact models
with only a few million parameters. Beyond empirical gains, our analyses clarify why nonlinear value
transformations enhance expressivity and why explicit global slots enable degradation-awareness.
These insights highlight a broader principle: rethinking the role of values and global context is key to
building robust, efficient, and general-purpose restoration models.
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This work studies fundamental methods for all-in-one image restoration. Our research focuses on
algorithmic improvements to attention mechanisms and does not involve the collection or annotation
of new data. All datasets used in experiments (including synthetic, mixed, underwater, and medical
benchmarks) are publicly available, widely used in the community, and employed strictly according to
their licenses. The proposed methods are designed to improve robustness and generalization of image
restoration models and do not raise foreseeable ethical concerns beyond the general considerations of
responsible AI research.

REPRODUCIBILITY STATEMENT

We emphasize reproducibility throughout this work. Detailed descriptions of the architecture, training
setups, and evaluation protocols are provided in the main text (see corresponding sections) and in
the Appendix. If the paper is accepted, we will release all source code, pretrained weights, and
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A EXPERIMENTAL PROTOCOLS

A.1 DATASETS

3 Degradation Datasets. For both the All-in-One and single-task settings, we follow the evaluation
protocols established in prior works (Li et al., 2022; Potlapalli et al., 2024; Zamfir et al., 2025),
utilizing the following datasets: For image denoising in the single-task setting, we combine the
BSD400 (Arbelaez et al., 2010) and WED (Ma et al., 2016) datasets, and corrupt the images with
Gaussian noise at levels σ ∈ {15, 25, 50}. BSD400 contains 400 training images, while WED
includes 4,744 images. We evaluate the denoising performance on BSD68 (Martin et al., 2001) and
Urban100 (Huang et al., 2015). For single-task deraining, we use Rain100L (Yang et al., 2020),
which provides 200 clean/rainy image pairs for training and 100 pairs for testing. For single-task
dehazing, we adopt the SOTS dataset (Li et al., 2018), consisting of 72,135 training images and 500
testing images. Under the All-in-One setting, we train a unified model on the combined set of the
aforementioned training datasets for 120 epochs and directly test it across all three restoration tasks.

5 Degradation Datasets. The 5-degradation setting is built upon the 3-degradation setting, with
two additional tasks included: deblurring and low-light enhancement. For deblurring, we adopt the
GoPro dataset (Nah et al., 2017), which contains 2,103 training images and 1,111 testing images.
For low-light enhancement, we use the LOL-v1 dataset (Wei et al., 2018), consisting of 485 training
images and 15 testing images. Note that for the denoising task under the 5-degradation setting, we
report results using Gaussian noise with σ = 25. The training takes 130 epochs.

Composited Degradation Datasets. Regarding the composite degradation setting, we use the
CDD11 dataset (Guo et al., 2024b). CDD11 consists of 1,183 training images for: (i) 4 kinds of
single-degradation types: haze (H), low-light (L), rain (R), and snow (S); (ii) 5 kinds of double-
degradation types: low-light + haze (l+h), low-light+rain (L+R), low-light + snow (L+S), haze +
rain (H+R), and haze + snow (H+S). (iii) 2 kinds of Triple-degradation type: low-light + haze + rain
(L+H+R), and low-light + haze + snow (L+H+S). We train our method for 150 epochs (fewer than
200 epochs than MoCE-IR (Zamfir et al., 2025)), and we keep all other settings unchanged.

Adverse Weather Removal Datasets. For the deweathering tasks, we follow the experimental setups
used in TransWeather (Valanarasu et al., 2022a) and WGWSNet (Zhu et al., 2023a), evaluating the
performance of our approach on multiple synthetic datasets. We assess the capability of ExDA across
three challenging tasks: snow removal, rain streak and fog removal, and raindrop removal. The
training set, referred to as “AllWeather”, is composed of images from the Snow100K (Liu et al.,
2018), Raindrop (Qian et al., 2018), and Outdoor-Rain (Li et al., 2019) datasets. For testing, we
evaluate our model on the following subsets: Snow100K-S (16,611 images), Snow100K-L (16,801
images), Outdoor-Rain (750 images), and Raindrop (249 images). Same as Histoformer (Sun et al.,
2024), we train ExDA on “AllWeather” with 300,000 iterations.

Real-World WeatherBench. For the real-world WeatherBench, we adopt newly released benchmark
from Guan et al. (2025), which contains in total 41,402 training pairs across 3 kinds of degradations
(i.e., rain, haze, and snow). There are 600 pairs for testing and 200 pairs per degradation. Under the
All-in-One setting, we train a unified model on the combined set of the datasets for 120 epochs, and
directly test it across all three restoration tasks

Medical All-in-One Dataset. AMIR dataset (Yang et al., 2024) include three important medical
image restoration tasks, include (i) MRI super-resolution dataset from public LXI MRI benchmark.
We use the public IXI MRI dataset, containing 578 high-quality T2-weighted MRI volumes. Low-
quality images are generated by 4× k-space downsampling (retaining 6.25% of central data). The
dataset is split 405/59/114 for training/validation/testing. (ii) CT Denoising dataset from NIH AAPM-
Mayo Clinic Low-Dose CT Grand Challenge, These images originate from 10 patients, with 8
allocated for training, 1 for validation, and 1 for testing purposes, after slicing we get 18531/128/211
for training/validation/testing. (iii) PET Synthesis include 159 HQ PET images acquired by (Yang
et al., 2024). The 3D volumes have dimensions of 192×192×400. Each volume is divided into 192
axial slices (192×400), excluding slices containing only air. Patient data is split into 120 training, 10
validation, and 29 testing cases.
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Figure A: ExDA Model Architecture Framework. (a) Demonstrates the overall pipeline for ExDA,
(b) details the ExDA block design.

A.2 IMPLEMENTATION DETAILS

Implementation Details. Our ExDA framework is designed to be end-to-end trainable, removing the
need for multi-stage optimization of individual components. The architecture adopts a robust 4-level
encoder-decoder structure, with a varying number of Mixed Degradation Attention Blocks (MDAB)
at each level—specifically [3, 5, 5, 7] from highest to lowest resolution in the Tiny variant. Following
prior works (Potlapalli et al., 2024; Zamfir et al., 2025), we train the model for 120 epochs with a
batch size of 32 in both the 3-Degradation All-in-One and single-task settings. The optimization
uses a combination of L1 and Fourier loss, optimized with Adam (Kingma & Ba, 2015) (initial
learning rate of 2 × 10−4, β1 = 0.9, β2 = 0.999) and a cosine decay schedule. During training,
we apply random cropping to 128×128 patches, along with horizontal and vertical flipping as data
augmentation. All experiments are conducted on a single NVIDIA H200 GPU (140 GB). Memory
usage is approximately 42 GB for the Tiny (i.e., ExDA -T) model and 56 GB for the Small model
(i.e., ExDA -S).

A.3 OPTIMIZATION OBJECTIVES

The overall optimization objective of our approach is defined as:

Ltotal = L1 + λfre × LFourier (4)

Here, LFourier denotes the real-valued Fourier loss computed between the restored image and the
ground-truth image, and LSPD represents our proposed contrastive learning objective in the SPD
(Symmetric Positive Definite) space.

Specifically, we adopt an ℓ1 loss that adopted in IR tasks (Potlapalli et al., 2024; Zamfir et al., 2025;
Li et al., 2022; Cui et al., 2025; Ren et al., 2024), defined as L1 = |x̂− x|1, to enforce pixel-wise
similarity between the restored image x̂ and the ground-truth image x. LFourier, as utilized in MoCE-
IR (Zamfir et al., 2025; Cui et al., 2025), to enhance frequency-domain consistency, the real-valued
Fourier loss, is defined as:

LFourier = ∥Freal(x̂)−Freal(x)∥1 + ∥Fimag(x̂)−Fimag(x)∥1 , (5)

where x̂ and x denote the restored and ground-truth images, respectively. Freal(·) and Fimag(·)
represent the real and imaginary parts of the 2D real-input FFT (i.e., rfft2). The final loss is computed
as the ℓ1 distance between the real and imaginary components of the predicted and target frequency
spectra. Same as MoCE-IR (Zamfir et al., 2025), λfre is set to 0.1 throughout our experiments.

B MACRO ARCHITECTURE INTRODUCTION

The overall architecture of ExDA is illustrated in Fig. A. At a macro level, it adopts a U-shaped
network with four hierarchical levels. Initially, a convolutional layer extracts shallow features from the
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Table A: The details our the tiny and small version of our ExDA . FLOPs are computed on an image
of size 224 × 224 using a NVIDIA Tesla A100 (40G) GPU.

ExDA -Base ExDA -S ExDA -T

The Number of the MDAB crosses 4 scales [4,6,6,8] [4, 6, 6, 8] [3, 5, 5, 7]
The Input Embedding Dimension 48 32 26
The FFN Expansion Factor 2 2 2
The Number of the Refinement Blocks 4 3 3

Params. (↓) 22.42M 10.05M 5.83 M
FLOPs (↓) 109G 47 G 27 G

degraded input, creating a patch embedding of size H×W ×C. As in standard U-Nets, each encoder
stage doubles the embedding dimension and halves the spatial resolution, with skip connections
transferring information to the corresponding decoder stage. In the decoder, features are merged with
the previous decoding stage via linear projection. Finally, a global skip connection links input to
output, preserving high-frequency details and producing the restored image.

Unlike most recent approaches that rely on additional prompts or large language models (LLMs), we
argue that a simple encoder–decoder architecture, as illustrated in Fig. 1(I)(d), is sufficient to tackle
the challenges of all-in-one image restoration. The key lies in identifying and addressing the latent
bottlenecks.

Model Scaling. We propose two scaled variants of our ExDA , namely Tiny (ExDA -T) and Small
(ExDA -S). As detailed in Tab. A, these variants differ in terms of the number of MDAB blocks across
scales, the input embedding dimension, the FFN expansion factor, and the number of refinement
blocks.

Efficiency Comparison. Tab. A presents a detailed comparison of PSNR, memory usage, parameter
count, and FLOPs. Our Tiny model (ExDA -T) achieves the best efficiency-performance trade-off:
with only 6.21M parameters and 16G FLOPs, it outperforms all prior methods, including larger
models like PromptIR (Potlapalli et al., 2024) and MoCE-IR-S (Zamfir et al., 2025). Notably, ExDA
-T surpasses MoCE-IR-S by +0.26 dB while requiring less than half the computational cost. Even
our Small variant (ExDA -S) exceeds full MoCE-IR in both PSNR (+0.18 dB) and FLOPs (27G vs.
75G). These results validate that our design achieves strong restoration quality without sacrificing
computational efficiency.

C ADDITIONAL EXPLANATION OF THE NONLINEAR VALUE PATH

This section provides a more detailed explanation of the operator-level effect and motivation behind
introducing a nonlinear value transform into Restormer-style channel-wise attention.

Structural limitation of linear-value attention. As discussed in Sec. 3.1 of the main paper, when
the value projection is strictly linear, the attention operator is fundamentally constrained to lie within
the linear span of the input features X . For any attention head, we may write the attention operator
as:

Attn(Q,K, V ) = AV, A = Softmax(QK⊤). (6)
Since V is a linear transformation of X , its output is restricted by:

Range(Attn) ⊆ span(X ), (7)

a limitation that cannot be removed by widening the FFN or adding post-aggregation nonlinearities,
as these operations act after the linear mixing in Eq. 6.

Effect of the residual nonlinear value transform. To relax this structural constraint, the proposed
module applies a residual non-affine transform to the value branch:

V ′ = V + gθ(V ), (8)

where gθ includes depth-wise convolutions and a GELU activation. Because gθ is non-affine, we
have:

gθ(X ) ̸⊆ span(X ), (9)
which enlarges the admissible value subspace:

span(X ) ⊊ span
(
X ∪ gθ(X )

)
. (10)
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Figure B: Qualitative comparison of GST-driven attention maps across different stride values s. For
five degradations (noise, blur, haze, rain, low-light), we visualize the GST heatmaps obtained with
s ∈ {1, 2, 4, 8}. Smaller strides preserve finer spatial cues, while larger strides yield overly smoothed
responses. Please zoom in for more details.

This is an operator-level property that directly increases the functional rank of the attention mechanism,
independent of the global universal-approximation capacity of the entire network.

Empirical validation. Sec. 3.2 of the main paper provides evidence of the limitations of linear-value
attention through synthetic function fitting and MNIST restoration experiments.

D ADDITIONAL ANALYSIS

To complement the quantitative stride ablation in the main paper, we further visualize in Fig. B
how the GST-driven attention maps change with different stride values s ∈ {1, 2, 4, 8} across the
five degradations (noise, blur, haze, rain, low-light). A clear trend emerges: (i) s=1 preserves the
most spatial detail but also introduces redundant high-frequency responses; (ii) s=2 maintains fine
structures while producing clean and well-localized degradation cues; (iii) larger strides (s=4 and
s=8) overly downsample the spatial statistics and yield noticeably blurred or weakened attention
responses. These observations align with our quantitative findings, showing that s=2 provides the
best balance between preserving degradation-relevant information and avoiding redundancy.
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Figure C: More qualitative comparisons under 3-deg setting. Zoom in to see more details.

E ADDITIONAL VISUAL RESULTS

E.1 3-DEGRADATION

We additionally put more visual results on 3 Degradation settings, please refer to Fig. C for more
detailed information.

E.2 5-DEGRADATION

We additionally put more visual results on 5 Degradation settings, please refer to Fig. D for more
detailed information.

E.3 COMPOSITED DEGRADATION

We additionally put more visual results on Composited Degradation settings, please refer to Fig. E
for more detailed information. Here, we selected the scenes composited by lowlight, haze and snow
or lowlight, haze and rain, which are the most difficult settings. Our results indicated that our method
can easily handle difficult and severe weather degradation.
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Figure D: More qualitative comparisons under 5-deg setting. Zoom in to see more details.

E.4 ADVERSE WEATHER REMOVAL

We additionally put more visual results on real-world WeatherBench data, please refer to Fig. F for
more detailed information. Our results indicated that our method can handle different difficult and
severe weather degradations.

E.5 REAL-WORLD WEATHERBENCH

We additionally put more visual results on real-world WeatherBench data, please refer to Fig. G
for more detailed information. Our results indicated that our method can easily handle difficult and
severe real-world weather degradation.

E.6 MEDICAL IMAGE RESTORATION

We provide additional visual results for medical image restoration. For better visualization, we display
64x64 crops. Both our method and the state-of-the-art (SOTA) baseline, AMIR, effectively enhance
image quality. However, our approach achieves better detail, producing clearer tissue structures and
sharper boundaries.

F USE OF LARGE LANGUAGE MODELS (LLMS).

Use of Large Language Models (LLMs). We used a large language model (ChatGPT) solely to aid in
polishing the writing and improving the readability of the manuscript, such as refining grammar, style,

6
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Figure E: More qualitative comparisons under composited degradation setting. Zoom in to see more
details.

and clarity. The model was not involved in idea generation, experimental design, implementation,
analysis, or any other research-related aspects of this work. All scientific contributions, including the
problem formulation, methodology, experiments, and conclusions, are entirely the responsibility of
the authors.
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Figure F: More qualitative comparisons under adverse weather. Zoom in to see more details.

8



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026
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Figure G: More qualitative comparisons under real-world weatherbench data. Zoom in to see more
details.

Figure H: More qualitative comparisons under medical restoration MRI super-resolution setting.
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Figure I: More qualitative comparisons under medical restoration CT-Denoising setting.

Figure J: More qualitative comparisons under medical restoration PET-Synthesis setting.
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