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Abstract

Medical imaging research profits from data unification and homogenization methods to
merge global datasets in order to reduce annotation effort and improve generalization of
trained models to unseen datasets. In this paper, we explicitly address dataset variability
using two public datasets and propose an architecture that aims at erasing the differences
in CT scans from different sources while simultaneously introducing only minimal changes
through leveraging the idea of deep auto-encoders. The proposed trainable prepossessing
architecture (PrepNet) (i) is jointly trained on the SARS-COVID-2 and UCSD COVID-CT
datasets and (ii) maintains discriminant features for downstream diagnosis.
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1. Introduction

A major challenge in rolling out machine-learned models to a broad user base is the vari-
ability of data encountered in the real world. Models can only be expected to work well
on data of similar distribution as has been used for training, but ubiquitously, differences
e.g. in the image acquisition setup hinder the applicability of a once developed model in
novel settings. This paper uses the example of the negative effects of such failure to adapt
between different datasets in the context of COVID-19 diagnosis.

We address domain adaptation of medical image analysis methods by proposing a CNN
for preprocessing 2D CT scans: the model is trained to fool a classifier that discriminates
between various CT scanning datasets, thus aiming to remove the cross-dataset variability.
We evaluate the performance of the suggested method on the exemplary use case of predict-
ing COVID-19 positive cases, due to the global variability in respective datasets and the
availability of plenty of opportunities to compare. The methodology is inspired by genera-
tive adversarial learning (Schmidhuber, 2020).Our contribution is twofold: (i) we propose
a novel trainable preprocessing CNN architecture with a dual training objective that is ca-
pable of equalizing the variability of different CT-scanner technologies in the image domain
(PrepNet), see Figure 1 (right); (ii) we validate this model by showing the transferability
of its diagnostic capabilities between different CT technologies based on common public
datasets.
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Figure 1: Left: The architecture of our proposed PrepNet model consists of three main
modules: (i) an auto-encoder that acts as a CT cross-dataset homogenizer; (ii)
a multi CT-technology classifier; and (iii) a COVID-19 binary classifier. Right:
Images from the used datasets with different prepossessing methods applied.

2. Methodology

In this section, we give details of our PrepNet model in terms of network architecture, core
modules, and loss functions. The architecture of our model is presented in Figure 1 (left).
For a group of N input CT scans {X n}Nn=1, coming from different datasets, our model map
the input to a latent space through an auto-encoder and reconstructs the original CT scans
{X̂ n}Nn=1. The reconstructed CT scans are next fed into a dataset classification branch.
The dataset classifier branch uses pseudo-labels for discriminating among different datasets,
and the auto-encoder is simultaneously trained in an adversarial way to generate CT scans
which fool the dataset classifier and minimizing its accuracy. Once these models are trained
end-to-end, the reconstructed CT scans are fed into a COVID-19 classifier which is trained
directly on the reconstructed (preprocessed) CT-scans. The COVID-19 classification branch
is responsible for the classification of patients into positive and negative cases. The complete
network model with its main modules are described as follows:
Auto-Encoder Module: We feed a CT scan image X n into our auto-encoder (Ea and
Da) and obtain a reconstructed version X̂ n given by X̂ n = Da(Ea(X n)). The encoder Ea

is based on the standard classification network VGG16, chosen for its simplicity, whilst
the decoder Da is the mirrored version of the VGG16. We add skip-connections from Ea

to Da and build a U-net architecture to recover the spatial information loss during the
down-sampling operations.
Dataset Classifier Module: The CT technology classifier Et receives as input the recon-
structed CT scan X̂ n from the auto-encoder and feeds it into an encoder branch Et(X̂ n)
that classifies the CT dataset/vendor. Et relies on the VGG19 architecture.
COVID-19 Classifier Module: The COVID-19 classifier Ec is also based on the VGG19
architecture. Given a reconstructed CT scan X̂ n, it outputs COVID vs. non-COVID
predictions, i.e. Ec(X̂ n).
Loss Functions: The complete loss function of PrepNet is based on the three terms
presented in Figure 1 (left). It comprises a reconstruction loss Lrec and two classification
losses Lpseu and Lcovid to optimize data source prediction and COVID diagnosis:

Ltotal = Lrec + Lpseu + Lcovid (1)

The final goal of the preprocessing network and training process is removing datasets’
variability (minimizing Lpseu) with minimum changes to input CT scans (optimizing Lrec)
while maintaining the necessary information for diagnosis (through Lcovid).
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Test dataset → SARS-COV-2 UCSD COVID-CT Within Test Cross-Dataset
Dataset portion Train Validation Test Average Train Validation Test Average Average Average

Training dataset ↓ Original

SARS-COV-2 0.9533 0.9366 0.8303 - 0.4193 0.3310 0.4813 0.4105 0.7890 0.4503
UCSD COVID-CT 0.5084 0.4848 0.4770 0.4901 0.8101 0.6183 0.7478 - (Baseline) (Baseline)

Auto-Encoder

SARS-COV-2 0.9414 0.8980 0.6574 - 0.5159 0.5006 0.5041 0.5069 0.7026 0.5209
UCSD COVID-CT 0.5456 0.5173 0.5421 0.5350 0.7934 0.7186 0.7337 - (−8.64%) (+7.06%)

PrepNet

SARS-COV-2 0.9786 0.8157 0.8352 - 0.5054 0.5094 0.4835 0.4994 0.7721 0.5002
UCSD COVID-CT 0.5010 0.4173 0.5037 0.4740 0.7279 0.6390 0.7090 - (−1.69%) (+4.99%)

Table 1: Cross-dataset validation results using original and preprocessed CT scans.

3. Experimental Results

The within- and cross-dataset performances of the proposed preprocessing schemes is eval-
uated on SARS-COV-2 (Soares and Angelov, 2020) and UCSD COVID-CT (Zhao et al.,
2020) public datasets and presented in Table 1. In order to monitor possible overfitting,
we report the hold out test set performance when training on the same dataset. The cross-
dataset performance is evaluated by measuring the balanced accuracy of the models trained
on one dataset and tested on all three (train, validation and test) sets of the other dataset.
We report results using the balanced accuracy of COVID-19 diagnosis to minimize the effect
of class imbalance and label distribution in two datasets. For each dataset, we report on the
columns the results on different dataset splits: train, validation, and test. In the rows, we
present the datasets used for training. Furthermore, we group the results by preprocessing
techniques. The first group of results are related to the VGG19 classifier trained and eval-
uated on the original CT scans undergo fixed conventional preprocessing steps (histogram
equalization and normalization). The second group of results is related to the auto-encoder
alone trained on training sets of both datasets in a self-supervised manner to minimize the
reconstruction loss. The third group of results relate to full PrepNet preprocessing before
training the classifiers depicted in Figure 1 (right). The results in Table 1 demonstrate that
the average cross-dataset performance (over all dataset splits) of models trained on original
data increases by 7.06pp after using the pure auto-encoder model, and by 4.99pp through
applying PrepNet. However, the average test accuracy for within-dataset evaluation declines
by 8.64pp and 1.69pp after applying the baseline auto-encoder or PrepNet, respectively.

4. Conclusions and Future Works

This paper presented an architecture to unify several CT scan datasets concerning varying
image acquisition circumstances such as CT scanner vendors through a trainable and adap-
tive preprocessing network that removes such specificities from the images themselves. We
presented preliminary experimental results demonstrating the applicability of the method on
two publicly available datasets. The proposed PrepNet improves the cross-dataset balanced
accuracy at the expanse of a decline in the within-dataset test performance. Further opti-
mizing PrepNet to boost both within- and cross-dataset performances, using more datasets,
and applying the methodology to other diseases are amongst the future works.
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