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ABSTRACT

Large language models (LLMs) excel at reasoning when scaled to hundreds of
billions of parameters, but small- and mid-scale models remain brittle reasoners
even with knowledge distillation (KD). We present Ladders-of-Thought (LoT),
a framework that improves reasoning by combining progressive question rewrites
with a self-evolving curriculum. LoT automatically generates semantically
faithful but easier variants of reasoning problems, organizes them into difficulty
buckets using step-based measures, and employs a self-evolving bandit scheduler
to allocate training adaptively. Evaluated on two reasoning domains, math
and multi-hop reasoning, across OPT-1.3B/2.7B and Pythia-1.4B/2.8B, LoT
consistently improves over KD. It delivers large gains on arithmetic tasks (e.g.,
+32 percentage points on AddSub, +25pp on SVAMP), +2–8pp improvements on
in-domain test splits, and strong though dataset-dependent benefits on multi-hop
reasoning (e.g., +16pp on QASC, +25pp on StrategyQA). LoT also converges
faster than staged curricula, highlighting the value of adaptive progression. These
results show that progressive rewrites coupled with adaptive curricula provide a
simple yet effective recipe for strengthening reasoning in smaller LLMs.

Figure 1: Overview of our framework. (a) Progressive simplification: original reasoning questions
are rewritten into semantically faithful but progressively easier variants, forming a difficulty ladder.
(b) Step-based difficulty measure bucketing: each question is assigned a difficulty score based on
the number of required reasoning steps. This score is then used to place each example in a bucket.
(c) Self-evolving curriculum: a multi-armed bandit scheduler adaptively selects examples from
different buckets to maximize student learning progress.
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1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable progress on complex reasoning
benchmarks, especially when augmented with test-time prompting strategies such as chain-of-
thought (CoT) reasoning (Wei et al., 2022; Zhang et al., 2022b), self-consistency (Wang et al., 2022),
and structured search methods including tree-of-thoughts (Yao et al., 2023), cumulative reasoning
(Zhang et al., 2023), and DUP (Zhong et al., 2024). These approaches highlight the power of explicit
reasoning traces in guiding LLMs toward more accurate and robust answers.

Our focus is on small- and mid-scale LLMs, where limited capacity, brittle chain
evaluation, and large student–teacher gaps make reasoning training especially
challenging.

Despite recent advances, most improvements are concentrated in very large models. Smaller models,
while cheaper and more efficient, often fail to benefit from CoT-style prompting and remain brittle
reasoners. A key limitation is their poor ability to generalize learned reasoning beyond a specific
dataset. This challenge has motivated extensive work on reasoning distillation from large to small
models, spanning standard distillation (Hinton et al., 2015; Ho et al., 2022; Magister et al., 2022;
Mitra et al., 2023; Fu et al., 2023), symbolic distillation (West et al., 2021), verifier-assisted methods
(Li et al., 2023; Zhang et al., 2024; Liu et al., 2023), knowledge-augmented reasoning (Kang et al.,
2023), and self-consistent objectives (Wang et al., 2023a). While encouraging, these approaches
struggle when the gap between student and teacher is large: small models often overfit to surface
heuristics instead of acquiring transferable reasoning skills (Wang et al., 2023b; Li et al., 2025).

Curriculum learning (CL) offers a natural remedy. CL suggests that ordering training examples from
easy to hard improves both sample efficiency and generalization (Bengio et al., 2009; Matiisen et al.,
2019; Soviany et al., 2022; Narvekar et al., 2020). Adaptive curricula, which dynamically select
training examples, often work even better (Jiang et al., 2015; Kong et al., 2021). While CL has been
explored in in-context learning (Liu et al., 2024) and reinforcement learning (Chen et al., 2025;
Parashar et al., 2025), its potential for supervised fine-tuning of reasoning remains underexplored.
A major obstacle is defining difficulty for reasoning problems: length, number of inferential steps,
and information structure all interact in complex ways (Jin et al., 2024; Wang et al., 2025; Shi et al.,
2025).

Our Approach. We introduce Ladders-of-Thought (LoT), a framework for training stronger
reasoning in small- and mid-scale LLMs through a combination of progressive question rewrites
and self-evolving curricula. Our method builds on three insights: (1) Reasoning questions can be
automatically rewritten into progressively easier versions while preserving semantics, forming a
natural “ladder” of difficulty. (2) The minimal number of reasoning steps provides a principled
difficulty measure for organizing training buckets. (3) A self-evolving curriculum scheduler, framed
as a multi-armed bandit, can adaptively allocate training to difficulty levels where the student learns
fastest, avoiding rigid or suboptimal schedules.

Contributions. This paper makes three contributions:

• We introduce a progressive rewrite framework that generates semantically faithful but
easier variants of reasoning problems, creating a principled difficulty ladder.

• We propose an adaptive, self-evolving curriculum scheduler that dynamically allocates
training across difficulty buckets using bandit-based updates.

• We demonstrate through extensive experiments that LoT improves pass@5 accuracy,
accelerates convergence, and strengthens out-of-distribution generalization for small- and
mid-scale LLMs.

2 BACKGROUND

We briefly review the foundations of our approach: chain-of-thought (CoT) distillation, curriculum
learning, and multi-armed bandit scheduling.
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Chain-of-Thought Distillation. CoT distillation transfers reasoning ability from a large teacher
to a smaller student by supervising on teacher-generated rationales (Ho et al., 2022; Chae et al.,
2023). Given D = {(x(i), y(i))}, we prompt the teacher with zero-shot CoT instructions (Wei et al.,
2022; Zhang et al., 2022b) to obtain rationales r(i). Training instances are formatted as

Question: x(i) Answer: r(i), y(i).
The student autoregressively generates r(i) and y(i), optimized via negative log-likelihood:

LCoT(θ) = −
∑
i

(∑
j

logPθ(r
(i)
j | r

(i)
<j , x

(i)) +
∑
j

logPθ(y
(i)
j | y

(i)
<j , r

(i), x(i))
)
.

This encourages the student to reproduce step-by-step reasoning and final answers.

Curriculum Learning. Curriculum learning (Bengio et al., 2009) presents data in a structured
order. A difficulty function d(x) partitions D into buckets {B1, . . . ,BK}, ordered by difficulty. A
curriculum defines a sequence of sampling distributions {pt}Tt=1, where pt(b) is the probability of
drawing from bucket Bb at step t. Fixed curricula move gradually from easy to hard, while self-
evolving ones adjust pt based on model progress.

Multi-Armed Bandits. Self-evolving curricula can be framed as a multi-armed bandit (MAB)
problem, where each bucket Bk corresponds to an arm. At step t, the scheduler selects arm
at ∈ {1, . . . ,K} according to pt, samples from Bat

, and receives reward rt (e.g., validation
improvement). The objective is to minimize regret

RT = max
k

T∑
t=1

r
(k)
t −

T∑
t=1

rt,

where r
(k)
t is the reward had arm k been played. Strategies such as ϵ-greedy and Boltzmann

exploration balance exploration with exploitation. We employ such a scheduler to adapt pt online.

3 METHOD: LADDERS-OF-THOUGHT (LOT)

LoT constructs curricula for reasoning tasks through two key components: (i) progressive rewrites,
which generates graded versions of each question by injecting intermediate reasoning steps
(Figure 2), and (ii) step-based difficulty labeling, which assigns a consistent measure of problem
difficulty. These components together yield difficulty-labeled question sets that can be organized
into either staged or adaptive self-evolving curricula (Figure 1).

3.1 PROGRESSIVE REWRITES

We start with a question–solution pair (q, s) where the question q contains an explicit set of premises
P = {p1, p2, . . . , pm} and the solution is expressed as a chain-of-thought (CoT) sequence s =
(c1, c2, . . . , cn). Each reasoning step derives a new conclusion ci from a small set of antecedents
Ai ⊆ P ∪ {c1, . . . , ci−1}; for example, p1 + p2 ⇒ c1 and then c1 + p3 ⇒ c2.

Rewrite operation. Rather than merely appending conclusions to the context, we replace the
antecedents of each step by the derived conclusion. Concretely, let q(0) = q. For i = 1, . . . , n, form

q(i) =
(
q(i−1) \Ai

)
∪ { ci }.

Intuitively, if p1 and p2 entail c1, we remove p1, p2 from the question and insert c1 instead,
yielding an easier instance. Applying this transformation step-by-step produces a sequence
q(0), q(1), . . . , q(n) of strictly decreasing difficulty, terminating when the answer is trivial (or
explicitly recoverable) in the context (Figure 2).

Practical generation. We prompt a capable instruction-tuned LLM to (i) identify Ai for each CoT
step and (ii) produce the simplified question q(i) while preserving semantics and well-posedness.
The rewriting model need not coincide with the teacher used for CoT supervision; in practice,
we may use a strong CoT generator as the teacher and a separate model for controlled rewriting.
This procedure pairs every complex question with progressively easier counterparts, forming the
backbone of our curriculum.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Progressive rewrites. Each task can be converted into a series of standalone premises (P1,
P2, . . . ). Each reasoning step combines two pieces of information to make a conclusion (C), or new
piece of information. After each step of reasoning, the total amount of information is smaller, giving
an easier sub-question to solve. Thus, progressively easier questions arise naturally from step-by-
step problem solving, while preserving semantics and solvability (no answer leakage), since each
rewrite replaces a subset of premises with their logically entailed conclusion.

Comparison to decomposition. This simplification differs from problem decomposition methods
such as Simonds & Yoshiyama (2025), which generate related but distinct subproblems. Our
rewrites retain the original problem identity while replacing subsets of premises with intermediate
conclusions, i.e., they are the same task presented with precomputed inferences in the premise.

3.2 DIFFICULTY LABELING VIA STEP DEFINITION

We define the difficulty of a reasoning example by the minimal number of steps required to reach
a solution, denoted ϕ(x). For instance, a math problem that requires three arithmetic operations
has ϕ(x) = 3. Rather than relying on raw chain-of-thought (CoT) length, which can be inflated by
verbosity or stylistic padding, our progressive rewriting procedure enforces a one-step decrement at
each stage (e.g., 3→ 2→ 1→ 0). Thus ϕ(x) aligns directly with the number of rewrites available
for each example, providing a consistent and interpretable difficulty measure. The rewriting model
is given explicit instructions on what constitutes a reasoning step to maintain consistent granularity,
and we manually spot-check examples to verify the monotonic decrease. This process yields well-
calibrated step counts that serve as interpretable difficulty labels. Training data are then bucketed
by these labels, Bk = {x : ϕ(x) ∈ Ik}, providing a structured progression from easier to harder
questions. Complete prompts for step counting and rewriting are provided in Appendix A.5.

3.3 CURRICULUM CONSTRUCTION

The difficulty-labeled questions naturally form a curriculum. Because the distribution of step counts
is often imbalanced, we group adjacent levels into buckets (e.g., 1–3, 4–5, and 5+ steps as “easy,”
“medium,” and “hard”). These buckets support both staged and self-evolving curriculum strategies.

A simple baseline is the staged curriculum, where buckets are ordered by difficulty and the model
trains on one bucket at a time for a fixed number of steps. This provides a straightforward schedule
against which self-evolving methods can be compared.

For adaptivity, we follow the multi-armed bandit (MAB) framework of Matiisen et al. (2019), which
treats each bucket Bk ∈ {B1, . . . ,BK} as an arm. At step t, the learner selects an arm at, trains on
samples from bucket Bat

, and receives a reward derived from validation performance.

The Q-value update is
Qt+1(a) = α rt(a) + (1− α)Qt(a),

4
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with learning rate α and Q0(a) = 0.

Every m steps, we compute rewards as

rt(a) = Acct(a)−Acct(a),

where Acct(a) is an exponential moving average with smoothing coefficient β. This measures the
accuracy gain relative to baseline.

Buckets are then sampled either from a Boltzmann distribution

πt(a) ∝ exp(Qt(a)/τ),

with temperature τ , or via an ϵ-greedy policy that chooses the best bucket with probability 1− ϵ and
explores otherwise.

This bandit-based scheduler dynamically focuses training on the levels that yield the greatest
marginal improvement, producing a self-evolving curriculum. The full training procedure, including
progressive rewrites, bucketization, and adaptive scheduling, is summarized in Algorithm 2 (see
Appendix A.1 for details).

Algorithm 1: Ladders-of-Thought (LoT): Training with Progressive Rewrites and Self-evolving
Curriculum
Input: Original data Dorig, teacher T , rewriting model R, student Sθ, budget S steps, buckets

{Bk}.
Output: Fine-tuned student Sθ.
Progressive Rewriting. For each (x, y) ∈ Dorig: Generate rationale r and answer y from T ;
Iteratively rewrite x with R into x(d) that is one step easier (ϕ(x(d+1)) = ϕ(x(d))− 1).
Collect (x(d), r(d), y(d), ϕ(x(d))) until trivial.

Bucketization. Group examples by step count ϕ(x) into buckets {Bk}.
Training with Bandit Curriculum. Initialize bandit over buckets. for t = 1 to S do

Sample batchMt according to bandit distribution.
Update Sθ with CoT loss onMt: rationale + answer tokens.
Every E steps (evaluation interval): evaluate on held-out validation splits Bval

k ; compute
rewards; update bandit to adjust sampling probabilities.

end
return Sθ

4 EXPERIMENTS

We evaluate whether progressive rewrites combined with a self-evolving curriculum improve
reasoning generalization. Our experiments focus on two questions: (i) Does LoT provide consistent
gains over strong baselines across models and domains? (ii) How do rewrite depth and curriculum
scheduling affect performance?

4.1 SETUP

We study two domains: math and multi-hop reasoning. For math, models are trained on
GSM8K Cobbe et al. (2021) and evaluated on its test split plus AddSub, ASDiv, MultiArith, and
SVAMP Hosseini et al. (2014); Miao et al. (2020); Roy & Roth (2015); Patel et al. (2021). For
multi-hop, models are trained on EntailmentBank Dalvi et al. (2021) and tested on its split plus
StrategyQA, OpenBookQA, QASC, and MuSiQue Geva et al. (2021); Mihaylov et al. (2018); Yang
et al. (2018); Khot et al. (2020); Trivedi et al. (2022).

We evaluate OPT-1.3B/2.7B Zhang et al. (2022a) and Pythia-1.4B/2.8B Biderman et al. (2023),
using knowledge distillation (KD) from a strong CoT teacher. Baselines include: (i) the base
model, (ii) CoT KD on original data, and (iii) LoT (ours): KD with rewrites under a self-evolving
curriculum.
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Performance is reported as pass@5 accuracy 1. We also report mean ± standard error in
Appendix A.4. Further experimental details including hyperparameters, hardware and evaluation
harness are provided in Appendix A.3.

4.2 MAIN RESULTS

Tables 1 and 2 summarize pass@5 accuracy across both domains and model families. LoT
consistently outperforms KD on original data, with especially large gains on math reasoning. For
example, on OPT-2.7B, AddSub accuracy jumps from 8.26 to 40.37 (+32.11 percentage points), and
SVAMP from 19.06 to 44.15 (+25.09 percentage points).

Improvements are also evident on in-domain test splits: GSM8K rises from 31.01 to 33.97 (+2.96),
while EntailmentBank improves by +3–8 percentage points across all model families. Across
architectures, Pythia-1.4B improves on ASDiv from 21.36 to 40.78 (+19.42), while Pythia-2.8B
gains +20.18 on AddSub and +20.74 on SVAMP.

Two trends stand out in math reasoning. First, LoT yields the largest gains on smaller, compositional
arithmetic datasets such as AddSub, ASDiv, and SVAMP. These datasets differ substantially from
the GSM8K training distribution, highlighting LoT’s strength in improving out-of-distribution
generalization. Second, while improvements on GSM8K itself are more modest (+2–3 points),
LoT consistently prevents degradation and provides robustness, suggesting that introducing easier
rewrites does not harm in-domain accuracy while improving transferability.

Methods GSM8K AddSub ASDiv Multi-Arith SVAMP

OPT-1.3B
Base 3.79 1.83 4.05 2.22 5.69
CoT KD 27.75 9.17 20.23 63.33 20.74
LoT (Ours) 31.16 (+3.41) 33.03 (+23.86) 41.75 (+21.52) 68.33 (+5.00) 38.46 (+17.72)

OPT-2.7B
Base 3.34 1.83 4.21 3.33 6.69
CoT KD 31.01 8.26 26.38 71.11 19.06
LoT (Ours) 33.97 (+2.96) 40.37 (+32.11) 45.95 (+19.57) 80.56 (+9.45) 44.15 (+25.09)

Pythia-1.4B
Base 2.96 0.00 4.85 1.67 8.03
CoT KD 26.00 3.67 21.36 59.44 19.73
LoT (Ours) 28.35 (+2.35) 24.77 (+21.10) 40.78 (+19.42) 63.33 (+3.89) 38.46 (+18.73)

Pythia-2.8B
Base 3.71 1.83 6.63 4.44 9.70
CoT KD 33.43 11.93 31.88 74.44 24.08
LoT (Ours) 32.98 (–0.45) 32.11 (+20.18) 46.76 (+14.88) 72.78 (–1.66) 44.82 (+20.74)

Table 1: Pass@5 accuracy (%) on GSM8K and out-of-distribution math benchmarks. Each entry
shows absolute accuracy with ∆ relative to CoT KD. LoT consistently improves generalization, with
the largest gains on AddSub, ASDiv, and SVAMP (+15–30 percentage points). (∆s are rendered in
green/red for increases/decreases.)

For multi-hop reasoning, LoT provides both in-domain and out-of-domain benefits when trained
on EntailmentBank. In-domain accuracy rises on the EntailmentBank test split (+3–8), showing
that rewrites help the model capture inference patterns more reliably. Out-of-domain, LoT delivers
strong improvements on QASC (+4–16) and StrategyQA (+17–25), and also boosts MuSiQue
substantially for OPT-1.3B (+25) and Pythia-2.8B (+2.8). Results are more mixed on OpenBookQA
(–3.8 and –7.8 for smaller models) and on MuSiQue with OPT-2.7B (–19.6), suggesting that the
benefits of LoT are sensitive to dataset properties and model scale. Datasets emphasizing factual
recall (e.g., OpenBookQA) appear less amenable to gains from progressive rewrites than those
requiring compositional reasoning (e.g., QASC, StrategyQA).

1Pass@5 is computed by drawing 5 samples per query with temperature=0.5 and top-p = 0.95, and counting
success if any matches the verified answer.
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Overall, LoT delivers improvements across all four model checkpoints and both reasoning domains.
Its benefits are architecture-agnostic and extend beyond in-domain test sets to multiple out-of-
distribution benchmarks, though the magnitude of gains is more uniform in arithmetic reasoning
than in multi-hop tasks.

Methods EntailmentBank QASC OpenBookQA StrategyQA MuSiQue

OPT-1.3B
Base 22.0 17.2 14.8 32.4 2.2
CoT KD 36.0 46.0 47.4 22.6 14.2
LOT (Ours) 41.0 (+5.0) 52.8 (+6.8) 43.6 (–3.8) 47.8 (+25.2) 39.2 (+25.0)

OPT-2.7B
Base 21.0 28.8 12.6 33.6 2.2
CoT KD 40.0 56.2 46.0 54.0 43.6
LOT (Ours) 41.0 (+1.0) 60.4 (+4.2) 47.8 (+1.8) 51.2 (–2.8) 24.0 (–19.6)

Pythia-1.4B
Base 13.0 45.0 34.2 24.4 12.0
CoT KD 36.0 55.2 44.6 36.4 42.0
LOT (Ours) 39.0 (+3.0) 56.6 (+1.4) 36.8 (–7.8) 53.2 (+16.8) 39.2 (–2.8)

Pythia-2.8B
Base 10.0 39.0 32.4 29.2 18.8
CoT KD 32.0 32.2 28.2 55.6 42.2
LOT (Ours) 40.0 (+8.0) 48.8 (+16.6) 37.8 (+9.6) 60.0 (+4.4) 45.0 (+2.8)

Table 2: Pass@5 accuracy (%) on EntailmentBank (in-domain) and four out-of-domain multi-hop
benchmarks. LoT improves EntailmentBank by +3–8 percentage points across model families and
yields strong gains on QASC (+4–16) and StrategyQA (+17–25). Performance is more mixed on
OpenBookQA and MuSiQue (some regressions for smaller models; Pythia-2.8B still improves). ∆
values are relative to CoT KD (green/red = increase/decrease).

4.3 ABLATION: REWRITE DEPTH

Table 3 reveals a clear effect of rewrite depth. Adding shallow rewrites (≤1) produces the largest
single jump in average accuracy (+28.48 percentage points). Adding more depth continues to help
up to ≤3, with consistent gains on MultiArith (+6.11 at ≤3) and SVAMP (+15.05 at ≤2). However,
going beyond three levels introduces diminishing or even negative returns: accuracy on GSM8K and
ASDiv drops when using all rewrites. This suggests that overly simplified examples may no longer
preserve the core reasoning structure, thereby diluting the learning signal.

These results highlight that LoT benefits from a moderate curriculum ladder: shallow-to-
intermediate rewrites align with the model’s capacity to generalize, while excessive simplification
can be counterproductive.

Depth GSM8K AddSub ASDiv Multi-Arith SVAMP Average

0 10.46 6.42 9.22 17.78 7.02 10.18
≤1 30.55 (+20.09) 26.61 (+20.19) 40.61 (+31.39) 67.78 (+50.00) 27.76 (+20.74) 38.66 (+28.48)

≤2 28.81 (–1.74) 32.11 (+5.50) 48.22 (+7.61) 71.11 (+3.33) 42.81 (+15.05) 44.61 (+5.95)

≤3 32.07 (+3.26) 30.28 (–1.83) 47.73 (–0.49) 77.22 (+6.11) 43.14 (+0.33) 46.09 (+1.48)

All 31.16 (–0.91) 33.03 (+2.75) 41.75 (–5.98) 68.33 (–8.89) 38.46 (–4.68) 42.55 (–3.54)

Table 3: Pass@5 accuracy (%) when varying maximum rewrite depth. Performance improves
sharply when adding shallow rewrites (≤1), continues to grow up to depth 3, and declines when all
rewrites are included. Deltas are relative to the row above (green = improvement, red = decrease).
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Figure 3: GSM8K validation accuracy over
training steps under different curriculum
strategies. Self-evolving (Ours) (green) and
Flat (orange) achieve both faster learning and
high final accuracy. Easy→Hard (blue) is
moderately effective, while Hard→Easy (red)
consistently underperforms.

Figure 4: Average test accuracy across
math reasoning benchmarks under different
curriculum strategies. Self-evolving (Ours)
(green) achieves the best performance.
Both Easy→Hard (blue) and Self-evolving
outperform Flat (orange), showing that
introducing easier problems first leads to
stronger learning, while Hard→Easy (red)
harms performance.

4.4 ABLATION: CURRICULUM SCHEDULING

We compare four curriculum strategies: (i) Flat Sampling (random training without curriculum),
(ii) Staged Curriculum (Easy→Hard), (iii) Staged Curriculum (Hard→Easy), and (iv) Self-evolving
Curriculum (ours).

Figure 3 and Figure 4 highlight the importance of curriculum design. LoT’s Self-evolving
Curriculum achieves both the fastest convergence and the highest final accuracy, outperforming
all fixed schedules. Easy→Hard also improves over Flat sampling, confirming that sequencing
problems from simple to complex is more effective than random order. By contrast, Hard→Easy
performs worst across the board, lagging in both early and late training. This supports the intuition
that exposing models to difficult problems before they have acquired simpler reasoning patterns
hinders progress.

Interestingly, Flat sampling often shows reasonable early learning speed, but plateaus at lower
accuracy. LoT combines the best of both worlds: it retains early learning efficiency while ultimately
achieving stronger final performance. This indicates that adaptivity, rather than a fixed progression,
is key for balancing efficiency and generalization.

4.5 DISCUSSION

Taken together, these analyses show that: (1) LoT consistently boosts reasoning performance, with
especially large gains on OOD arithmetic benchmarks. (2) Rewrite depth should be moderate:
shallow to intermediate levels provide strong generalization benefits, while excessive depth can hurt.
(3) Curriculum scheduling strongly affects outcomes: self-evolving strategies clearly dominate static
or reversed schedules, highlighting that curriculum direction and adaptivity are both crucial.

Overall, these findings suggest that LoT provides a principled recipe for enhancing reasoning
models: use faithful but easier rewrites, structure them into a moderate-depth ladder, and adaptively
adjust exposure to maximize sample efficiency and final generalization.

5 RELATED WORKS

LLM Reasoning and Distillation. To transfer reasoning ability to compact LLMs, many works
explore distillation (Xu et al., 2024; Yang et al., 2024). Supervised fine-tuning on teacher-generated
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CoT traces improves small models (Mitra et al., 2023; Magister et al., 2022; Ho et al., 2022; Gu
et al., 2023), with variants such as symbolic distillation (West et al., 2021), verifier-assisted training
(Liu et al., 2023; Zhang et al., 2024), knowledge-augmented objectives (Kang et al., 2023), and
white-box supervision using hidden states (Deng et al., 2023). Despite progress, distillation often
breaks down when the student–teacher gap is large, leading to overfitting to shallow heuristics and
poor generalization (Li et al., 2025).

Curriculum Learning. Curriculum learning (CL) suggests ordering examples from easy to hard
to accelerate training and improve generalization (Bengio et al., 2009; Narvekar et al., 2020; Soviany
et al., 2022). Extensions include self-paced (Jiang et al., 2015) and adaptive methods (Matiisen
et al., 2019; Kong et al., 2021). For LLMs, curricula have been studied in in-context learning (Liu
et al., 2024) and reinforcement learning (Shi et al., 2025; Chen et al., 2025; Parashar et al., 2025).
Closest to our setting, Chen et al. (2025) also propose self-evolving curricula, but in RL optimization
rather than supervised fine-tuning. Another relevant line is LADDER (Simonds & Yoshiyama,
2025), which generates easier related tasks for RL training. By contrast, our progressive rewrites
preserve the same task identity by substituting premises with intermediate conclusions, enabling use
in supervised settings.

Difficulty Estimation. Difficulty measures are critical to CL. Prior work has used proxy signals
such as MCTS heuristics (Wang et al., 2025), dataset-provided difficulty labels (Chen et al., 2025),
or model hit rates (Shi et al., 2025). Other analyses show that longer chains help only when they add
true inferential depth (Jin et al., 2024). We instead introduce a step-based measure grounded in the
minimal number of reasoning steps, which directly aligns with our progressive rewrites and avoids
noisy proxies such as raw CoT length.

Positioning. Ladders-of-Thought (LoT) integrates these threads by combining: (i) progressive
rewrites inspired by distillation, (ii) step-based difficulty estimation, and (iii) adaptive scheduling
from CL. Unlike prior efforts—focused on large models, heuristic difficulty proxies, or alternate
settings such as RL and in-context learning—LoT provides a scalable curriculum for improving
reasoning in small- to mid-scale LLMs through supervised fine-tuning.

6 CONCLUSION

We introduced Ladders-of-Thought (LoT), a framework that combines progressive rewrites with
an adaptive self-evolving curriculum to improve reasoning in small- to mid-scale LLMs. Our
experiments on math and multi-hop reasoning demonstrate that LoT consistently outperforms strong
knowledge distillation and curriculum baselines, delivering substantial gains in out-of-distribution
arithmetic tasks (e.g., +32 percentage points on AddSub, +25pp on SVAMP), modest but robust
improvements on in-domain test sets (GSM8K, EntailmentBank), and dataset-dependent benefits on
multi-hop reasoning (notably +25pp on StrategyQA). LoT also accelerates convergence compared
to flat or staged curricula, highlighting the value of adaptivity in balancing efficiency with final
performance. These findings show that carefully structured training signals—semantically faithful
rewrites organized into adaptive curricula—provide a principled recipe for strengthening reasoning
in smaller LLMs without requiring more scale or data. We believe LoT offers a practical foundation
for future reasoning-focused training pipelines and can complement other emerging curriculum-
based strategies.

LIMITATIONS

Our study focuses on small- to mid-scale LLMs (1–3B parameters); scalability to larger foundation
models remains untested. LoT also depends on a capable generator for progressive rewrites—low-
quality or unfaithful rewrites may add noise, and the balance between fidelity and diversity is
not fully explored. Evaluation is limited to English math and text-only multi-hop benchmarks;
extending to multilingual, multimodal, and interactive domains (e.g., vision–language or embodied
agents) is a natural next step. Finally, LoT’s mixed results on certain multi-hop tasks indicate that
benefits are dataset-dependent, raising open questions about which reasoning settings gain most
from progressive curricula.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used in this work
are publicly available. We provide details of data preprocessing, rewrite generation, and filtering
rules in Appendix A.3. Model architectures (OPT and Pythia) are open-source, and all training
hyperparameters, curriculum schedules, and evaluation settings are fully specified in Section 4 and
Appendix A.3. We will release our training scripts, curriculum scheduler implementation, and
rewrite datasets to facilitate replication and extension by the community.

REFERENCES
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A APPENDIX

A.1 ALGORITHMS

Algorithm 2 presents the Self-Evolving Curriculum Scheduler, a non-stationary multi-armed bandit
(MAB) strategy that dynamically allocates training batches across curriculum buckets of increasing
difficulty. The scheduler maintains Q-values for each bucket, reflecting recent improvements in
model accuracy, and uses these values to guide bucket selection according to either a Boltzmann
exploration policy or an ϵ-greedy policy. Periodically, the algorithm evaluates the model on a
balanced validation set, computes the reward as the gain over a running accuracy baseline, and
updates both the Q-values (via temporal difference learning) and the baselines (via exponential
moving average). This design allows the scheduler to adaptively focus training on buckets that
yield the greatest learning progress while still preserving exploration.

Algorithm 3 defines the auxiliary procedure VALIDATEBALANCED, which ensures fair assessment
of performance across curriculum buckets. The method constructs a validation set that samples an
equal number of items from each bucket, evaluates the model independently on each subset, and
returns per-bucket accuracies. These balanced evaluations are used by the scheduler (Algorithm 2)
to compute bucket-wise rewards and update the learning signals that drive curriculum adaptation.

Algorithm 2: Self-Evolving Curriculum Scheduler (Non-stationary MAB)
Require: Buckets C = {c1, . . . , cN} (ordered by difficulty); learning rate α ∈ (0, 1]; EMA

coefficient β ∈ (0, 1]; validation period m (steps); policy
policy ∈ {boltzmann, epsilon greedy}; temperature τ > 0 (Boltzmann);
exploration rate ϵ ∈ [0, 1] (ϵ-greedy)

Initialize Q-values Q0(c)← 0 and accuracy baselines Acc0(c)← 0 for all c ∈ C
Initialize step counter t← 0
while training not converged do

t← t+ 1
// --- Select a bucket (action) ---
if policy = boltzmann then

πt(c) ∝ exp
(
Qt−1(c)/τ

)
// normalize over c ∈ C

Sample ct ∼ πt(·)
else if policy = epsilon greedy then

With prob. 1− ϵ: ct ← argmaxc∈C Qt−1(c); else sample ct uniformly from C
end
TrainStep on a mini-batch from bucket ct // one or more gradient updates
// --- Periodic validation and updates ---
if t mod m = 0 then
{Acct(c)}c∈C ← ValidateBalanced(C)
foreach c ∈ C do

rt(c)← Acct(c)−Acct−1(c) // improvement over running
baseline

Qt(c)← α · rt(c) + (1− α) ·Qt−1(c) // TD(0) on non-stationary
reward

Acct(c)← (1− β) ·Acct−1(c) + β ·Acct(c) // EMA baseline
end

else
foreach c ∈ C do

Qt(c)← Qt−1(c); Acct(c)← Acct−1(c)
end

end
end
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Algorithm 3: VALIDATEBALANCED (helper)
Require: Buckets C; validation sampler that draws an equal number of items per bucket
Build validation set V =

⋃
c∈C V(c) with |V(c)| equal across buckets

foreach c ∈ C do
Evaluate current model on V(c) to obtain accuracy Acct(c)

end
return {Acct(c)}c∈C

A.2 DATASET STATISTICS

We report statistics for the datasets used in training, rewriting, validation, and testing.

Dataset Split 0 1 2 3 4 5 6–7 8–15

GSM8K
Train (all) 7320 7352 6920 5063 2989 1601 1100 577
Validation 100 96 87 90 92 90 74 10
Test - - - - - - - -

EntailmentBank
Train (all) 1660 1642 1226 745 421 258 268 134
Validation 100 99 94 96 95 59 46 16
Test 1 30 29 14 12 8 3 3

Table 4: Step count distributions for all splits of GSM8K and EntailmentBank. For GSM8K test
data, step annotations are unavailable (placeholder shown as “-” entries).

A.3 EXPERIMENTAL SETUP DETAILS

A.3.1 ENVIRONMENT DETAILS

All experiments were conducted on cluster nodes equipped with 4 NVIDIA RTX A6000 GPUs
(48GB VRAM each), 4 CPU cores, and 64GB of host memory.

Training. Models were fine-tuned using PyTorch, with the trl and accelerate libraries
handling supervised fine-tuning and multi-GPU execution.

Evaluation. Performance was assessed using the lm-eval-harness, with our multi-stage
answer verification pipeline integrated into the evaluation loop (see Section A.3.4.

A.3.2 HYPERPARAMETERS

We list below the key hyperparameters fed to the HuggingFace TRL trainer. Unless otherwise noted,
all other hyperparameters follow library defaults.

"max_steps": 5000 (Math) / 1000 (Multi-hop),
"per_device_train_batch_size": 8,
"gradient_accumulation_steps": 1,
"max_length": 2048,
"logging_steps": 1,
"learning_rate": 1e-5,
"weight_decay": 0.05,
"warmup_ratio": 0.1,
"lr_scheduler_type": "constant",

Validation is performed 100 times during training. The interval is set to 50 steps for math reasoning
and 10 steps for multi-hop reasoning. In validation the generation arguments are set to:
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A.3.3 BUCKETING BY STEP COUNT

To reduce variance and maintain balanced sampling, we group questions by their reasoning step
count into buckets. Specifically, questions with shorter derivations (0, 1, 2, or 3 steps) are each
assigned their own bucket, while questions requiring four or more steps are merged into a single
”4+” bucket. This grouping scheme has two advantages: (i) it preserves granularity for very short
reasoning chains, which differ substantially in difficulty, and (ii) it avoids fragmentation of the long-
tail distribution of high-step examples, which are sparse and uneven across datasets. All curriculum
schedules and sampling strategies described in the main text are applied over these step-count
buckets.

A.3.4 ANSWER VERIFICATION PROCEDURE

Evaluating free-form reasoning outputs requires robust answer verification, as model predictions
may vary in surface form while being semantically correct. Our validation loop employs a four-
stage verification process:

1. Exact Match. We first check whether the predicted answer string exactly matches the
ground-truth string after normalization (e.g., case-folding and whitespace trimming).

2. Containment. If exact match fails, we check whether the normalized gold answer appears
as a substring within the model output. This captures predictions where the answer is
embedded in additional text.

3. Token-level F1. We compute token-level precision, recall, and F1 between the predicted
output and the gold answer. Predictions are accepted if the F1 score ≥ 0.90, ensuring high
lexical overlap even under paraphrasing.

4. Semantic Similarity. Finally, we compute cosine similarity between SBERT embeddings
of the predicted answer and the gold answer. Predictions are marked correct if the similarity
score ≥ 0.8.

A prediction is considered correct if it satisfies any of the four criteria. This layered procedure
provides robustness to surface-level variation while enforcing semantic fidelity to the ground-truth
answer.

For arithmetic datasets, we additionally use the math verify library to parse, simplify, and
compare numeric expressions. This ensures that mathematically equivalent forms (e.g., “ 3

2”
vs. “1.5”) are treated as correct, even if their textual forms differ.

Finally, in our evaluation experiments (Section 4), when testing trained models on external
benchmarks via the LM Evaluation Harness (Srivastava et al., 2023), we adapt the same four-stage
verification method (including thresholds and math verify) to ensure consistency across training
validation and benchmark evaluation.

A.3.5 EVALUATION SETUP

All evaluations are conducted using the LM Evaluation Harness (Srivastava et al., 2023). To ensure
consistency with our training validation, we adapt the same four-stage answer verification procedure
(Section A.3.4), including thresholds for token-level F1 and semantic similarity, as well as the use
of math verify for numeric equivalence checking.

Multiple-choice tasks. For benchmarks originally framed as multiple-choice question answering
(e.g., StrategyQA, QASC, AQuA-RAT), we convert them into free-form generation tasks.
Specifically, we discard option letters and use the text of the correct option as the gold answer.
Model outputs are then evaluated against these free-form answers using the verification pipeline.

Contextual tasks. For tasks that provide long passages as context (e.g., MuSiQue, HotpotQA,
OpenBookQA), we extract only the sentences marked as relevant by dataset annotations and provide
these as the model’s context. This reduces context length while preserving all information necessary
to answer the question.
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Metrics. We report pass@5 accuracy, where a prediction is considered correct if any of the top-
5 generated candidates passes verification. All reported results include the standard error (stderr)
across evaluation runs.

A.4 ADDITIONAL EXPERIMENT RESULTS

Table 5 and table 6 show the accuracies and standard error of the math reasoning and multi-hop
reasoning benchmarks.

Methods GSM8K AddSub ASDiv Multi-Arith SVAMP

OPT-1.3B
Base 3.79±0.53 1.83±1.29 4.05±0.79 2.22±1.10 5.69±1.34
CoT KD 27.75±1.23 9.17±2.78 20.23±1.62 63.33±3.60 20.74±2.35
LoT (Ours) 31.16±1.28 33.03±4.53 41.75±1.99 68.33±3.48 38.46±2.82

OPT-2.7B
Base 3.34±0.49 1.83±1.29 4.21±0.81 3.33±1.34 6.69±1.45
CoT KD 31.01±1.27 8.26±2.65 26.38±1.77 71.11±3.39 19.06±2.28
LoT (Ours) 33.97±1.30 40.37±4.72 45.95±2.01 80.56±2.96 44.15±2.88

Pythia-1.4B
Base 2.96±0.47 0.00±0.00 4.85±0.87 1.67±0.96 8.03±1.57
CoT KD 26.00±1.21 3.67±1.81 21.36±1.65 59.44±3.67 19.73±2.31
LoT (Ours) 28.35±1.24 24.77±4.15 40.78±1.98 63.33±3.60 38.46±2.82

Pythia-2.8B
Base 3.71±0.52 1.83±1.29 6.63±1.00 4.44±1.54 9.70±1.71
CoT KD 33.43±1.30 11.93±3.12 31.88±1.88 74.44±3.26 24.08±2.48
LoT (Ours) 32.98±1.29 32.11±4.49 46.76±2.01 72.78±3.33 44.82±2.88

Table 5: Pass@5 mean accuracy (%) and standard error on GSM8K test split and four math
reasoning benchmarks.

Methods EntailmentBank QASC OpenbookQA StrategyQA MuSiQue

OPT-1.3B
Base 22.0±4.16 17.2±1.69 14.8±1.59 32.4±2.10 2.20±0.66
CoT KD 36.0±4.82 46.0±2.23 47.4±2.24 22.6±1.87 14.2±1.56
LOT (Ours) 41.0±4.94 52.8±2.23 43.6±2.22 47.8±2.24 39.2±2.19

OPT-2.7B
Base 21.0±4.09 28.8±2.03 12.6±1.49 33.6±2.11 2.20±0.66
CoT KD 40.0±4.92 56.2±2.22 46.0±2.23 54.0±2.23 43.6±2.22
LOT (Ours) 41.0±4.94 60.4±2.19 47.8±2.24 51.2±2.24 24.0±2.12

Pythia-1.4B
Base 13.0±3.38 45.0±2.23 34.2±2.12 24.4±1.92 12.0±1.45
CoT KD 36.0±4.82 55.2±2.23 44.6±2.23 36.4±2.15 42.0±2.21
LOT (Ours) 39.0±4.90 56.6±2.22 36.8±2.16 53.2±2.23 39.2±2.19

Pythia-2.8B
Base 10.0±3.02 39.0±2.18 32.4±2.10 29.2±2.04 18.8±1.75
CoT KD 32.0±4.69 32.2±2.09 28.2±2.01 55.6±2.22 42.2±2.21
LOT (Ours) 40.0±4.92 48.8±2.24 37.8±2.17 60.0±2.19 45.0±2.23

Table 6: Pass@5 mean accuracy (%) and standard error on EntailmentBank test split and four multi-
hop reasoning benchmarks.

A.5 PROGRESSIVE REWRITE PROMPTS

To construct progressive difficulty ladders, we prompted a rewrite model with carefully designed
instructions. Below we include the exact prompts used for each dataset to ensure reproducibility.
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Depth GSM8K AddSub ASDiv Multi-Arith SVAMP Average

0 10.46±0.84 6.42±2.36 9.22±1.16 17.78±2.86 7.02±1.48 10.18
≤1 30.55±1.27 26.61±4.25 40.61±1.98 67.78±3.49 27.76±2.59 38.66
≤2 28.81±1.25 32.11±4.49 48.22±2.01 71.11±3.39 42.81±2.87 44.61
≤3 32.07±1.29 30.28±4.42 47.73±2.01 77.22±3.13 43.14±2.87 46.09
All 31.16±1.28 33.03±4.53 41.75±1.99 68.33±3.48 38.46±2.82 42.55

Table 7: Math reasoning benchmark performance across reasoning depths. Numbers are pass@5
mean accuracy (%) with standard error.

Method GSM8K AddSub ASDiv Multi-Arith SVAMP Average

Random 29.34±1.25 27.52±4.30 32.69±1.89 66.67±3.52 31.77±2.70 37.60
Easy→Hard 28.96±1.25 31.19±4.46 42.39±1.99 61.67±3.63 40.47±2.84 40.94
Hard→Easy 21.38±1.13 5.50±2.19 11.33±1.28 56.67±3.70 6.69±1.45 20.31
Self-evolving 31.16±1.28 33.03±4.53 41.75±1.99 68.33±3.48 38.46±2.82 42.55

Table 8: Comparison of curriculum strategies on math reasoning benchmarks. Numbers are pass@5
mean accuracy (%) with standard error.

A.5.1 ENTAILMENTBANK PROMPT

You are an expert at reasoning question simplification.
I will provide you with a reasoning problem in JSON format that
contains:

- "instruction": the solving instruction
- "input": the context and question
- "output": the reasoning chain and final answer

Your task is to automatically generate a progressive difficulty ladder
of simplified versions of this problem.
Each new version should make the reasoning easier by moving more
intermediate conclusions (from the reasoning steps in the output)
directly into the input context.
Stop when the problem has become trivial (e.g., the final hypothesis
is already in the input).
For each version, also output the minimum number of reasoning steps
required to reach the final answer from that version’s input.
Treat a reasoning step as a necessary inferential move that derives a
new statement from previous facts/conclusions (e.g., one arithmetic
operation, one logical implication, one factual lookup from the
provided context).
Count merged paraphrases/restatements as 0 additional steps; do not
double-count trivially equivalent rewrites.
When multiple independent sub-derivations are needed before a final
combination, count each indispensable sub-derivation as one step.
The count must be a non-negative integer; use 0 for a trivial version
where the answer is directly stated in the input.
Ensure monotonic non-increase across versions (later versions should
never require more steps than earlier ones).

Guidelines:

1. Identify all intermediate conclusions (int1, int2, ...) in the
original reasoning chain.
2. Create Version 1 as the original (no added intermediates).
3. Then generate subsequent versions, each time inserting one or more
intermediates into the input.
4. You may decide the number of versions automatically | fewer if the
chain is short, more if it is long.
5. For each version, output in a fenced JSON code block with the
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following keys:
- "instruction"
- "input"
- "answer" (string, the final answer to the problem)
- "reasoning" (string, the reasoning chain leading to the answer)
- "min_steps" (integer, the minimum number of steps to reach the
answer)
- "min_steps_note" (a short explanation explaining the count)

6. Precede each block with a Markdown label like:
## Version N | [difficulty descriptor]
Then immediately follow with:
‘‘‘json
{ ... }
‘‘‘

Goal: produce a set of progressively easier problems, where the solver
needs fewer reasoning steps at each level, and report the minimum
required steps for each version.

A.5.2 GSM8K PROMPT

You are an expert at math word problem simplification.
I will provide you with a math problem in JSON format that contains:

- "question": the text of the problem
- "answer": the worked-out reasoning and final numeric answer

Your task is to automatically generate a *progressive difficulty ladder*
of simplified versions of this problem.
Each new version should make the reasoning easier by moving more
intermediate results (from the solution steps in the answer) directly
into the problem statement.
Stop when the problem has become trivial (e.g., the final numeric answer
is already stated in the problem).

For each version, also output the **minimum number of reasoning steps**
required to reach the final answer from that version’s problem statement.
- Treat a *reasoning step* as a necessary mathematical operation or
logical inference (e.g., one arithmetic operation, one fraction
simplification, one comparison).
- Do not double-count trivial rewrites or restatements.
- When multiple sub-calculations are required before combining, count
each indispensable sub-calculation as one step.
- The count must be a non-negative integer; use **0** when the answer
is already stated in the problem.
- Ensure the counts are **monotonic non-increasing** across versions
(later versions should never require more steps than earlier ones).

Guidelines:

1. Identify all intermediate results (e.g., partial sums,
multiplications, divisions) in the original worked-out solution.
2. Create **Version 1** as the original (no added intermediates).
3. Then generate subsequent versions, each time inserting one or more
intermediate results directly into the problem statement.
4. You may decide the number of versions automatically | fewer if the
chain is short, more if it is long.
5. For each version, output in a fenced JSON code block with the
following keys:

- "question" (string, the modified problem statement)
- "answer" (string, the final numeric answer only)
- "reasoning" (string, the reasoning steps leading to the answer)
- "min_steps" (integer, the minimum number of steps required)
- "min_steps_note" (short explanation for the count)

6. Precede each block with a Markdown label like:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

## Version N | [difficulty descriptor]
Then immediately follow with:
‘‘‘json
{ ... }
‘‘‘

Goal: produce a set of progressively easier GSM8K problems, where the
solver needs fewer reasoning steps at each level, and report the minimum
required steps for each version.
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