
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LADDERS OF THOUGHT: A SELF-EVOLVING
CURRICULUM OF PROGRESSIVELY SIMPLIFIED
REASONING TRACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at reasoning when scaled to hundreds of
billions of parameters, but small- and mid-scale models remain brittle reasoners
even with knowledge distillation (KD). We present Ladders-of-Thought (LoT),
a framework that improves reasoning by combining progressive question rewrites
with a self-evolving curriculum. LoT automatically generates semantically
faithful but easier variants of reasoning problems, organizes them into difficulty
buckets using step-based measures, and employs a self-evolving bandit scheduler
to allocate training adaptively. Evaluated on two reasoning domains, math
and multi-hop reasoning, across OPT-1.3B/2.7B and Pythia-1.4B/2.8B, LoT
consistently improves over KD. It delivers large gains on arithmetic tasks (e.g.,
+32 percentage points on AddSub, +25pp on SVAMP), +2–8pp improvements on
in-domain test splits, and strong though dataset-dependent benefits on multi-hop
reasoning (e.g., +16pp on QASC, +25pp on StrategyQA). LoT also converges
faster than staged curricula, highlighting the value of adaptive progression. These
results show that progressive rewrites coupled with adaptive curricula provide a
simple yet effective recipe for strengthening reasoning in smaller LLMs.

Figure 1: Overview of our framework. (a) Progressive simplification: original reasoning questions
are rewritten into semantically faithful but progressively easier variants, forming a difficulty ladder.
(b) Step-based difficulty measure bucketing: each question is assigned a difficulty score based on
the number of required reasoning steps. This score is then used to place each example in a bucket.
(c) Self-evolving curriculum: a multi-armed bandit scheduler adaptively selects examples from
different buckets to maximize student learning progress.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable progress on complex reasoning
benchmarks, especially when augmented with test-time prompting strategies such as chain-of-
thought (CoT) reasoning (Wei et al., 2022; Zhang et al., 2022b), self-consistency (Wang et al., 2022),
and structured search methods including tree-of-thoughts (Yao et al., 2023), cumulative reasoning
(Zhang et al., 2023), and DUP (Zhong et al., 2024). These approaches highlight the power of explicit
reasoning traces in guiding LLMs toward more accurate and robust answers.

Our focus is on small- and mid-scale LLMs, where limited capacity, brittle chain
evaluation, and large student–teacher gaps make reasoning training especially
challenging.

Despite recent advances, most improvements are concentrated in very large models. Smaller models,
while cheaper and more efficient, often fail to benefit from CoT-style prompting and remain brittle
reasoners. A key limitation is their poor ability to generalize learned reasoning beyond a specific
dataset. This challenge has motivated extensive work on reasoning distillation from large to small
models, spanning standard distillation (Hinton et al., 2015; Ho et al., 2022; Magister et al., 2022;
Mitra et al., 2023; Fu et al., 2023), symbolic distillation (West et al., 2021), verifier-assisted methods
(Li et al., 2023; Zhang et al., 2024; Liu et al., 2023), knowledge-augmented reasoning (Kang et al.,
2023), and self-consistent objectives (Wang et al., 2023a). While encouraging, these approaches
struggle when the gap between student and teacher is large: small models often overfit to surface
heuristics instead of acquiring transferable reasoning skills (Wang et al., 2023b; Li et al., 2025).

Curriculum learning (CL) offers a natural remedy. CL suggests that ordering training examples from
easy to hard improves both sample efficiency and generalization (Bengio et al., 2009; Matiisen et al.,
2019; Soviany et al., 2022; Narvekar et al., 2020). Adaptive curricula, which dynamically select
training examples, often work even better (Jiang et al., 2015; Kong et al., 2021). While CL has been
explored in in-context learning (Liu et al., 2024) and reinforcement learning (Chen et al., 2025;
Parashar et al., 2025), its potential for supervised fine-tuning of reasoning remains underexplored.
A major obstacle is defining difficulty for reasoning problems: length, number of inferential steps,
and information structure all interact in complex ways (Jin et al., 2024; Wang et al., 2025; Shi et al.,
2025).

Our Approach. We introduce Ladders-of-Thought (LoT), a framework for training stronger
reasoning in small- and mid-scale LLMs through a combination of progressive question rewrites
and self-evolving curricula. Our method builds on three insights: (1) Reasoning questions can be
automatically rewritten into progressively easier versions while preserving semantics, forming a
natural “ladder” of difficulty. (2) The minimal number of reasoning steps provides a principled
difficulty measure for organizing training buckets. (3) A self-evolving curriculum scheduler, framed
as a multi-armed bandit, can adaptively allocate training to difficulty levels where the student learns
fastest, avoiding rigid or suboptimal schedules.

Contributions. This paper makes three contributions:

• We introduce a progressive rewrite framework that generates semantically faithful but
easier variants of reasoning problems, creating a principled difficulty ladder.

• We propose an adaptive, self-evolving curriculum scheduler that dynamically allocates
training across difficulty buckets using bandit-based updates.

• We demonstrate through extensive experiments that LoT improves pass@5 accuracy,
accelerates convergence, and strengthens out-of-distribution generalization for small- and
mid-scale LLMs.

2 BACKGROUND

We briefly review the foundations of our approach: chain-of-thought (CoT) distillation, curriculum
learning, and multi-armed bandit scheduling.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Chain-of-Thought Distillation. CoT distillation transfers reasoning ability from a large teacher
to a smaller student by supervising on teacher-generated rationales (Ho et al., 2022; Chae et al.,
2023). Given D = {(x(i), y(i))}, we prompt the teacher with zero-shot CoT instructions (Wei et al.,
2022; Zhang et al., 2022b) to obtain rationales r(i). Training instances are formatted as

Question: x(i) Answer: r(i), y(i).
The student autoregressively generates r(i) and y(i), optimized via negative log-likelihood:

LCoT(θ) = −
∑
i

(∑
j

logPθ(r
(i)
j | r

(i)
<j , x

(i)) +
∑
j

logPθ(y
(i)
j | y

(i)
<j , r

(i), x(i))
)
.

This encourages the student to reproduce step-by-step reasoning and final answers.

Curriculum Learning. Curriculum learning (Bengio et al., 2009) presents data in a structured
order. A difficulty function d(x) partitions D into buckets {B1, . . . ,BK}, ordered by difficulty. A
curriculum defines a sequence of sampling distributions {pt}Tt=1, where pt(b) is the probability of
drawing from bucket Bb at step t. Fixed curricula move gradually from easy to hard, while self-
evolving ones adjust pt based on model progress.

Multi-Armed Bandits. Self-evolving curricula can be framed as a multi-armed bandit (MAB)
problem, where each bucket Bk corresponds to an arm. At step t, the scheduler selects arm
at ∈ {1, . . . ,K} according to pt, samples from Bat

, and receives reward rt (e.g., validation
improvement). The objective is to minimize regret

RT = max
k

T∑
t=1

r
(k)
t −

T∑
t=1

rt,

where r
(k)
t is the reward had arm k been played. Strategies such as ϵ-greedy and Boltzmann

exploration balance exploration with exploitation. We employ such a scheduler to adapt pt online.

3 METHOD: LADDERS-OF-THOUGHT (LOT)

LoT constructs curricula for reasoning tasks through two key components: (i) progressive rewrites,
which generates graded versions of each question by injecting intermediate reasoning steps
(Figure 2), and (ii) step-based difficulty labeling, which assigns a consistent measure of problem
difficulty. These components together yield difficulty-labeled question sets that can be organized
into either staged or adaptive self-evolving curricula (Figure 1).

3.1 PROGRESSIVE REWRITES

We start with a question–solution pair (q, s) where the question q contains an explicit set of premises
P = {p1, p2, . . . , pm} and the solution is expressed as a chain-of-thought (CoT) sequence s =
(c1, c2, . . . , cn). Each reasoning step derives a new conclusion ci from a small set of antecedents
Ai ⊆ P ∪ {c1, . . . , ci−1}; for example, p1 + p2 ⇒ c1 and then c1 + p3 ⇒ c2.

Rewrite operation. Rather than merely appending conclusions to the context, we replace the
antecedents of each step by the derived conclusion. Concretely, let q(0) = q. For i = 1, . . . , n, form

q(i) =
(
q(i−1) \Ai

)
∪ { ci }.

Intuitively, if p1 and p2 entail c1, we remove p1, p2 from the question and insert c1 instead,
yielding an easier instance. Applying this transformation step-by-step produces a sequence
q(0), q(1), . . . , q(n) of strictly decreasing difficulty, terminating when the answer is trivial (or
explicitly recoverable) in the context (Figure 2).

Practical generation. We prompt a capable instruction-tuned LLM to (i) identify Ai for each CoT
step and (ii) produce the simplified question q(i) while preserving semantics and well-posedness.
The rewriting model need not coincide with the teacher used for CoT supervision; in practice,
we may use a strong CoT generator as the teacher and a separate model for controlled rewriting.
This procedure pairs every complex question with progressively easier counterparts, forming the
backbone of our curriculum.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Progressive rewrites. Each task can be converted into a series of standalone premises (P1,
P2, . . .). Each reasoning step combines two pieces of information to make a conclusion (C), or new
piece of information. After each step of reasoning, the total amount of information is smaller, giving
an easier sub-question to solve. Thus, progressively easier questions arise naturally from step-by-
step problem solving, while preserving semantics and solvability (no answer leakage), since each
rewrite replaces a subset of premises with their logically entailed conclusion.

Comparison to decomposition. This simplification differs from problem decomposition methods
such as Simonds & Yoshiyama (2025), which generate related but distinct subproblems. Our
rewrites retain the original problem identity while replacing subsets of premises with intermediate
conclusions, i.e., they are the same task presented with precomputed inferences in the premise.

3.2 DIFFICULTY LABELING VIA STEP DEFINITION

We define the difficulty of a reasoning example by the minimal number of steps required to reach
a solution, denoted ϕ(x). For instance, a math problem that requires three arithmetic operations
has ϕ(x) = 3. Rather than relying on raw chain-of-thought (CoT) length, which can be inflated by
verbosity or stylistic padding, our progressive rewriting procedure enforces a one-step decrement at
each stage (e.g., 3→ 2→ 1→ 0). Thus ϕ(x) aligns directly with the number of rewrites available
for each example, providing a consistent and interpretable difficulty measure. The rewriting model
is given explicit instructions on what constitutes a reasoning step to maintain consistent granularity,
and we manually spot-check examples to verify the monotonic decrease. This process yields well-
calibrated step counts that serve as interpretable difficulty labels. Training data are then bucketed
by these labels, Bk = {x : ϕ(x) ∈ Ik}, providing a structured progression from easier to harder
questions. Complete prompts for step counting and rewriting are provided in Appendix A.5.

3.3 CURRICULUM CONSTRUCTION

The difficulty-labeled questions naturally form a curriculum. Because the distribution of step counts
is often imbalanced, we group adjacent levels into buckets (e.g., 1–3, 4–5, and 5+ steps as “easy,”
“medium,” and “hard”). These buckets support both staged and self-evolving curriculum strategies.

A simple baseline is the staged curriculum, where buckets are ordered by difficulty and the model
trains on one bucket at a time for a fixed number of steps. This provides a straightforward schedule
against which self-evolving methods can be compared.

For adaptivity, we follow the multi-armed bandit (MAB) framework of Matiisen et al. (2019), which
treats each bucket Bk ∈ {B1, . . . ,BK} as an arm. At step t, the learner selects an arm at, trains on
samples from bucket Bat

, and receives a reward derived from validation performance.

The Q-value update is
Qt+1(a) = α rt(a) + (1− α)Qt(a),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

with learning rate α and Q0(a) = 0.

Every m steps, we compute rewards as

rt(a) = Acct(a)−Acct(a),

where Acct(a) is an exponential moving average with smoothing coefficient β. This measures the
accuracy gain relative to baseline.

Buckets are then sampled either from a Boltzmann distribution

πt(a) ∝ exp(Qt(a)/τ),

with temperature τ , or via an ϵ-greedy policy that chooses the best bucket with probability 1− ϵ and
explores otherwise.

This bandit-based scheduler dynamically focuses training on the levels that yield the greatest
marginal improvement, producing a self-evolving curriculum. The full training procedure, including
progressive rewrites, bucketization, and adaptive scheduling, is summarized in Algorithm 2 (see
Appendix A.1 for details).

Algorithm 1: Ladders-of-Thought (LoT): Training with Progressive Rewrites and Self-evolving
Curriculum
Input: Original data Dorig, teacher T , rewriting model R, student Sθ, budget S steps, buckets

{Bk}.
Output: Fine-tuned student Sθ.
Progressive Rewriting. For each (x, y) ∈ Dorig: Generate rationale r and answer y from T ;
Iteratively rewrite x with R into x(d) that is one step easier (ϕ(x(d+1)) = ϕ(x(d))− 1).
Collect (x(d), r(d), y(d), ϕ(x(d))) until trivial.

Bucketization. Group examples by step count ϕ(x) into buckets {Bk}.
Training with Bandit Curriculum. Initialize bandit over buckets. for t = 1 to S do

Sample batchMt according to bandit distribution.
Update Sθ with CoT loss onMt: rationale + answer tokens.
Every E steps (evaluation interval): evaluate on held-out validation splits Bval

k ; compute
rewards; update bandit to adjust sampling probabilities.

end
return Sθ

4 EXPERIMENTS

We evaluate whether progressive rewrites combined with a self-evolving curriculum improve
reasoning generalization. Our experiments focus on two questions: (i) Does LoT provide consistent
gains over strong baselines across models and domains? (ii) How do rewrite depth and curriculum
scheduling affect performance?

4.1 SETUP

We study two domains: math and multi-hop reasoning. For math, models are trained on
GSM8K Cobbe et al. (2021) and evaluated on its test split plus AddSub, ASDiv, MultiArith, and
SVAMP Hosseini et al. (2014); Miao et al. (2020); Roy & Roth (2015); Patel et al. (2021). For
multi-hop, models are trained on EntailmentBank Dalvi et al. (2021) and tested on its split plus
StrategyQA, OpenBookQA, QASC, and MuSiQue Geva et al. (2021); Mihaylov et al. (2018); Yang
et al. (2018); Khot et al. (2020); Trivedi et al. (2022).

We evaluate OPT-1.3B/2.7B Zhang et al. (2022a) and Pythia-1.4B/2.8B Biderman et al. (2023),
using knowledge distillation (KD) from a strong CoT teacher. Baselines include: (i) the base
model, (ii) CoT KD on original data, and (iii) LoT (ours): KD with rewrites under a self-evolving
curriculum.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Performance is reported as pass@5 accuracy 1. We also report mean ± standard error in
Appendix A.4. Further experimental details including hyperparameters, hardware and evaluation
harness are provided in Appendix A.3.

4.2 MAIN RESULTS

Tables 1 and 2 summarize pass@5 accuracy across both domains and model families. LoT
consistently outperforms KD on original data, with especially large gains on math reasoning. For
example, on OPT-2.7B, AddSub accuracy jumps from 8.26 to 40.37 (+32.11 percentage points), and
SVAMP from 19.06 to 44.15 (+25.09 percentage points).

Improvements are also evident on in-domain test splits: GSM8K rises from 31.01 to 33.97 (+2.96),
while EntailmentBank improves by +3–8 percentage points across all model families. Across
architectures, Pythia-1.4B improves on ASDiv from 21.36 to 40.78 (+19.42), while Pythia-2.8B
gains +20.18 on AddSub and +20.74 on SVAMP.

Two trends stand out in math reasoning. First, LoT yields the largest gains on smaller, compositional
arithmetic datasets such as AddSub, ASDiv, and SVAMP. These datasets differ substantially from
the GSM8K training distribution, highlighting LoT’s strength in improving out-of-distribution
generalization. Second, while improvements on GSM8K itself are more modest (+2–3 points),
LoT consistently prevents degradation and provides robustness, suggesting that introducing easier
rewrites does not harm in-domain accuracy while improving transferability.

Methods GSM8K AddSub ASDiv Multi-Arith SVAMP

OPT-1.3B
Base 3.79 1.83 4.05 2.22 5.69
CoT KD 27.75 9.17 20.23 63.33 20.74
LoT (Ours) 31.16 (+3.41) 33.03 (+23.86) 41.75 (+21.52) 68.33 (+5.00) 38.46 (+17.72)

OPT-2.7B
Base 3.34 1.83 4.21 3.33 6.69
CoT KD 31.01 8.26 26.38 71.11 19.06
LoT (Ours) 33.97 (+2.96) 40.37 (+32.11) 45.95 (+19.57) 80.56 (+9.45) 44.15 (+25.09)

Pythia-1.4B
Base 2.96 0.00 4.85 1.67 8.03
CoT KD 26.00 3.67 21.36 59.44 19.73
LoT (Ours) 28.35 (+2.35) 24.77 (+21.10) 40.78 (+19.42) 63.33 (+3.89) 38.46 (+18.73)

Pythia-2.8B
Base 3.71 1.83 6.63 4.44 9.70
CoT KD 33.43 11.93 31.88 74.44 24.08
LoT (Ours) 32.98 (–0.45) 32.11 (+20.18) 46.76 (+14.88) 72.78 (–1.66) 44.82 (+20.74)

Table 1: Pass@5 accuracy (%) on GSM8K and out-of-distribution math benchmarks. Each entry
shows absolute accuracy with ∆ relative to CoT KD. LoT consistently improves generalization, with
the largest gains on AddSub, ASDiv, and SVAMP (+15–30 percentage points). (∆s are rendered in
green/red for increases/decreases.)

For multi-hop reasoning, LoT provides both in-domain and out-of-domain benefits when trained
on EntailmentBank. In-domain accuracy rises on the EntailmentBank test split (+3–8), showing
that rewrites help the model capture inference patterns more reliably. Out-of-domain, LoT delivers
strong improvements on QASC (+4–16) and StrategyQA (+17–25), and also boosts MuSiQue
substantially for OPT-1.3B (+25) and Pythia-2.8B (+2.8). Results are more mixed on OpenBookQA
(–3.8 and –7.8 for smaller models) and on MuSiQue with OPT-2.7B (–19.6), suggesting that the
benefits of LoT are sensitive to dataset properties and model scale. Datasets emphasizing factual
recall (e.g., OpenBookQA) appear less amenable to gains from progressive rewrites than those
requiring compositional reasoning (e.g., QASC, StrategyQA).

1Pass@5 is computed by drawing 5 samples per query with temperature=0.5 and top-p = 0.95, and counting
success if any matches the verified answer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Overall, LoT delivers improvements across all four model checkpoints and both reasoning domains.
Its benefits are architecture-agnostic and extend beyond in-domain test sets to multiple out-of-
distribution benchmarks, though the magnitude of gains is more uniform in arithmetic reasoning
than in multi-hop tasks.

Methods EntailmentBank QASC OpenBookQA StrategyQA MuSiQue

OPT-1.3B
Base 22.0 17.2 14.8 32.4 2.2
CoT KD 36.0 46.0 47.4 22.6 14.2
LOT (Ours) 41.0 (+5.0) 52.8 (+6.8) 43.6 (–3.8) 47.8 (+25.2) 39.2 (+25.0)

OPT-2.7B
Base 21.0 28.8 12.6 33.6 2.2
CoT KD 40.0 56.2 46.0 54.0 43.6
LOT (Ours) 41.0 (+1.0) 60.4 (+4.2) 47.8 (+1.8) 51.2 (–2.8) 24.0 (–19.6)

Pythia-1.4B
Base 13.0 45.0 34.2 24.4 12.0
CoT KD 36.0 55.2 44.6 36.4 42.0
LOT (Ours) 39.0 (+3.0) 56.6 (+1.4) 36.8 (–7.8) 53.2 (+16.8) 39.2 (–2.8)

Pythia-2.8B
Base 10.0 39.0 32.4 29.2 18.8
CoT KD 32.0 32.2 28.2 55.6 42.2
LOT (Ours) 40.0 (+8.0) 48.8 (+16.6) 37.8 (+9.6) 60.0 (+4.4) 45.0 (+2.8)

Table 2: Pass@5 accuracy (%) on EntailmentBank (in-domain) and four out-of-domain multi-hop
benchmarks. LoT improves EntailmentBank by +3–8 percentage points across model families and
yields strong gains on QASC (+4–16) and StrategyQA (+17–25). Performance is more mixed on
OpenBookQA and MuSiQue (some regressions for smaller models; Pythia-2.8B still improves). ∆
values are relative to CoT KD (green/red = increase/decrease).

4.3 ABLATION: REWRITE DEPTH

Table 3 reveals a clear effect of rewrite depth. Adding shallow rewrites (≤1) produces the largest
single jump in average accuracy (+28.48 percentage points). Adding more depth continues to help
up to ≤3, with consistent gains on MultiArith (+6.11 at ≤3) and SVAMP (+15.05 at ≤2). However,
going beyond three levels introduces diminishing or even negative returns: accuracy on GSM8K and
ASDiv drops when using all rewrites. This suggests that overly simplified examples may no longer
preserve the core reasoning structure, thereby diluting the learning signal.

These results highlight that LoT benefits from a moderate curriculum ladder: shallow-to-
intermediate rewrites align with the model’s capacity to generalize, while excessive simplification
can be counterproductive.

Depth GSM8K AddSub ASDiv Multi-Arith SVAMP Average

0 10.46 6.42 9.22 17.78 7.02 10.18
≤1 30.55 (+20.09) 26.61 (+20.19) 40.61 (+31.39) 67.78 (+50.00) 27.76 (+20.74) 38.66 (+28.48)

≤2 28.81 (–1.74) 32.11 (+5.50) 48.22 (+7.61) 71.11 (+3.33) 42.81 (+15.05) 44.61 (+5.95)

≤3 32.07 (+3.26) 30.28 (–1.83) 47.73 (–0.49) 77.22 (+6.11) 43.14 (+0.33) 46.09 (+1.48)

All 31.16 (–0.91) 33.03 (+2.75) 41.75 (–5.98) 68.33 (–8.89) 38.46 (–4.68) 42.55 (–3.54)

Table 3: Pass@5 accuracy (%) when varying maximum rewrite depth. Performance improves
sharply when adding shallow rewrites (≤1), continues to grow up to depth 3, and declines when all
rewrites are included. Deltas are relative to the row above (green = improvement, red = decrease).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: GSM8K validation accuracy over
training steps under different curriculum
strategies. Self-evolving (Ours) (green) and
Flat (orange) achieve both faster learning and
high final accuracy. Easy→Hard (blue) is
moderately effective, while Hard→Easy (red)
consistently underperforms.

Figure 4: Average test accuracy across
math reasoning benchmarks under different
curriculum strategies. Self-evolving (Ours)
(green) achieves the best performance.
Both Easy→Hard (blue) and Self-evolving
outperform Flat (orange), showing that
introducing easier problems first leads to
stronger learning, while Hard→Easy (red)
harms performance.

4.4 ABLATION: CURRICULUM SCHEDULING

We compare four curriculum strategies: (i) Flat Sampling (random training without curriculum),
(ii) Staged Curriculum (Easy→Hard), (iii) Staged Curriculum (Hard→Easy), and (iv) Self-evolving
Curriculum (ours).

Figure 3 and Figure 4 highlight the importance of curriculum design. LoT’s Self-evolving
Curriculum achieves both the fastest convergence and the highest final accuracy, outperforming
all fixed schedules. Easy→Hard also improves over Flat sampling, confirming that sequencing
problems from simple to complex is more effective than random order. By contrast, Hard→Easy
performs worst across the board, lagging in both early and late training. This supports the intuition
that exposing models to difficult problems before they have acquired simpler reasoning patterns
hinders progress.

Interestingly, Flat sampling often shows reasonable early learning speed, but plateaus at lower
accuracy. LoT combines the best of both worlds: it retains early learning efficiency while ultimately
achieving stronger final performance. This indicates that adaptivity, rather than a fixed progression,
is key for balancing efficiency and generalization.

4.5 DISCUSSION

Taken together, these analyses show that: (1) LoT consistently boosts reasoning performance, with
especially large gains on OOD arithmetic benchmarks. (2) Rewrite depth should be moderate:
shallow to intermediate levels provide strong generalization benefits, while excessive depth can hurt.
(3) Curriculum scheduling strongly affects outcomes: self-evolving strategies clearly dominate static
or reversed schedules, highlighting that curriculum direction and adaptivity are both crucial.

Overall, these findings suggest that LoT provides a principled recipe for enhancing reasoning
models: use faithful but easier rewrites, structure them into a moderate-depth ladder, and adaptively
adjust exposure to maximize sample efficiency and final generalization.

5 RELATED WORKS

LLM Reasoning and Distillation. To transfer reasoning ability to compact LLMs, many works
explore distillation (Xu et al., 2024; Yang et al., 2024). Supervised fine-tuning on teacher-generated

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CoT traces improves small models (Mitra et al., 2023; Magister et al., 2022; Ho et al., 2022; Gu
et al., 2023), with variants such as symbolic distillation (West et al., 2021), verifier-assisted training
(Liu et al., 2023; Zhang et al., 2024), knowledge-augmented objectives (Kang et al., 2023), and
white-box supervision using hidden states (Deng et al., 2023). Despite progress, distillation often
breaks down when the student–teacher gap is large, leading to overfitting to shallow heuristics and
poor generalization (Li et al., 2025).

Curriculum Learning. Curriculum learning (CL) suggests ordering examples from easy to hard
to accelerate training and improve generalization (Bengio et al., 2009; Narvekar et al., 2020; Soviany
et al., 2022). Extensions include self-paced (Jiang et al., 2015) and adaptive methods (Matiisen
et al., 2019; Kong et al., 2021). For LLMs, curricula have been studied in in-context learning (Liu
et al., 2024) and reinforcement learning (Shi et al., 2025; Chen et al., 2025; Parashar et al., 2025).
Closest to our setting, Chen et al. (2025) also propose self-evolving curricula, but in RL optimization
rather than supervised fine-tuning. Another relevant line is LADDER (Simonds & Yoshiyama,
2025), which generates easier related tasks for RL training. By contrast, our progressive rewrites
preserve the same task identity by substituting premises with intermediate conclusions, enabling use
in supervised settings.

Difficulty Estimation. Difficulty measures are critical to CL. Prior work has used proxy signals
such as MCTS heuristics (Wang et al., 2025), dataset-provided difficulty labels (Chen et al., 2025),
or model hit rates (Shi et al., 2025). Other analyses show that longer chains help only when they add
true inferential depth (Jin et al., 2024). We instead introduce a step-based measure grounded in the
minimal number of reasoning steps, which directly aligns with our progressive rewrites and avoids
noisy proxies such as raw CoT length.

Positioning. Ladders-of-Thought (LoT) integrates these threads by combining: (i) progressive
rewrites inspired by distillation, (ii) step-based difficulty estimation, and (iii) adaptive scheduling
from CL. Unlike prior efforts—focused on large models, heuristic difficulty proxies, or alternate
settings such as RL and in-context learning—LoT provides a scalable curriculum for improving
reasoning in small- to mid-scale LLMs through supervised fine-tuning.

6 CONCLUSION

We introduced Ladders-of-Thought (LoT), a framework that combines progressive rewrites with
an adaptive self-evolving curriculum to improve reasoning in small- to mid-scale LLMs. Our
experiments on math and multi-hop reasoning demonstrate that LoT consistently outperforms strong
knowledge distillation and curriculum baselines, delivering substantial gains in out-of-distribution
arithmetic tasks (e.g., +32 percentage points on AddSub, +25pp on SVAMP), modest but robust
improvements on in-domain test sets (GSM8K, EntailmentBank), and dataset-dependent benefits on
multi-hop reasoning (notably +25pp on StrategyQA). LoT also accelerates convergence compared
to flat or staged curricula, highlighting the value of adaptivity in balancing efficiency with final
performance. These findings show that carefully structured training signals—semantically faithful
rewrites organized into adaptive curricula—provide a principled recipe for strengthening reasoning
in smaller LLMs without requiring more scale or data. We believe LoT offers a practical foundation
for future reasoning-focused training pipelines and can complement other emerging curriculum-
based strategies.

LIMITATIONS

Our study focuses on small- to mid-scale LLMs (1–3B parameters); scalability to larger foundation
models remains untested. LoT also depends on a capable generator for progressive rewrites—low-
quality or unfaithful rewrites may add noise, and the balance between fidelity and diversity is
not fully explored. Evaluation is limited to English math and text-only multi-hop benchmarks;
extending to multilingual, multimodal, and interactive domains (e.g., vision–language or embodied
agents) is a natural next step. Finally, LoT’s mixed results on certain multi-hop tasks indicate that
benefits are dataset-dependent, raising open questions about which reasoning settings gain most
from progressive curricula.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used in this work
are publicly available. We provide details of data preprocessing, rewrite generation, and filtering
rules in Appendix A.3. Model architectures (OPT and Pythia) are open-source, and all training
hyperparameters, curriculum schedules, and evaluation settings are fully specified in Section 4 and
Appendix A.3. We will release our training scripts, curriculum scheduler implementation, and
rewrite datasets to facilitate replication and extension by the community.

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Hyungjoo Chae, Yongho Song, Kai Tzu-iunn Ong, Taeyoon Kwon, Minjin Kim, Youngjae Yu,
Dongha Lee, Dongyeop Kang, and Jinyoung Yeo. Dialogue chain-of-thought distillation for
commonsense-aware conversational agents. arXiv preprint arXiv:2310.09343, 2023.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning. arXiv preprint
arXiv:2505.14970, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna
Pipatanangkura, and Peter Clark. Explaining answers with entailment trees. arXiv preprint
arXiv:2104.08661, 2021.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart
Shieber. Implicit chain of thought reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, pp.
10421–10430. PMLR, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies.
Transactions of the Association for Computational Linguistics (TACL), 2021.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large
language models. arXiv preprint arXiv:2306.08543, 2023.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
arXiv preprint arXiv:2212.10071, 2022.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans (eds.), Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 523–533, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1058. URL https://aclanthology.
org/D14-1058/.

10

https://aclanthology.org/D14-1058/
https://aclanthology.org/D14-1058/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann. Self-paced
curriculum learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, and Sung Ju Hwang. Knowledge-
augmented reasoning distillation for small language models in knowledge-intensive tasks.
Advances in Neural Information Processing Systems, 36:48573–48602, 2023.

Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A dataset
for question answering via sentence composition. arXiv:1910.11473v2, 2020.

Yajing Kong, Liu Liu, Jun Wang, and Dacheng Tao. Adaptive curriculum learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5067–5076, 2021.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–
5333, 2023.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen Lin, Bhaskar
Ramasubramanian, and Radha Poovendran. Small models struggle to learn from strong reasoners.
arXiv preprint arXiv:2502.12143, 2025.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving¿ 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, Yong Huang, and Wei Lu. Let’s learn step by step:
Enhancing in-context learning ability with curriculum learning. arXiv preprint arXiv:2402.10738,
2024.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. arXiv preprint arXiv:2212.08410, 2022.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum
learning. IEEE transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
English math word problem solvers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 975–984, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.92. URL https://aclanthology.org/2020.acl-main.
92/.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj
Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, et al. Orca 2:
Teaching small language models how to reason. arXiv preprint arXiv:2311.11045, 2023.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1–50, 2020.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
Yu Zhang, James Caverlee, Dileep Kalathil, et al. Curriculum reinforcement learning from easy
to hard tasks improves llm reasoning. arXiv preprint arXiv:2506.06632, 2025.

11

https://aclanthology.org/2020.acl-main.92/
https://aclanthology.org/2020.acl-main.92/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluı́s Màrquez,
Chris Callison-Burch, and Jian Su (eds.), Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1743–1752, Lisbon, Portugal, September 2015.
Association for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL https://
aclanthology.org/D15-1202/.

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement
finetuning via adaptive curriculum learning. arXiv preprint arXiv:2504.05520, 2025.

Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem
decomposition. arXiv preprint arXiv:2503.00735, 2025.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526–1565, 2022.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on machine learning research, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, and Xiang Ren. Scott: Self-
consistent chain-of-thought distillation. arXiv preprint arXiv:2305.01879, 2023a.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai Lin, Yunbo Cao, Tianyu Liu, and
Zhifang Sui. Making large language models better reasoners with alignment. arXiv preprint
arXiv:2309.02144, 2023b.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. arXiv preprint arXiv:2504.07934, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
models to commonsense models. arXiv preprint arXiv:2110.07178, 2021.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024.

Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and
Yiqiang Chen. Survey on knowledge distillation for large language models: methods, evaluation,
and application. ACM Transactions on Intelligent Systems and Technology, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

12

https://aclanthology.org/D15-1202/
https://aclanthology.org/D15-1202/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in neural information processing systems, 36:11809–11822, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022a.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct
reasoning. arXiv preprint arXiv:2404.17140, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022b.

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, and Bo Du. Achieving¿ 97% on
gsm8k: Deeply understanding the problems makes llms better solvers for math word problems.
arXiv preprint arXiv:2404.14963, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHMS

Algorithm 2 presents the Self-Evolving Curriculum Scheduler, a non-stationary multi-armed bandit
(MAB) strategy that dynamically allocates training batches across curriculum buckets of increasing
difficulty. The scheduler maintains Q-values for each bucket, reflecting recent improvements in
model accuracy, and uses these values to guide bucket selection according to either a Boltzmann
exploration policy or an ϵ-greedy policy. Periodically, the algorithm evaluates the model on a
balanced validation set, computes the reward as the gain over a running accuracy baseline, and
updates both the Q-values (via temporal difference learning) and the baselines (via exponential
moving average). This design allows the scheduler to adaptively focus training on buckets that
yield the greatest learning progress while still preserving exploration.

Algorithm 3 defines the auxiliary procedure VALIDATEBALANCED, which ensures fair assessment
of performance across curriculum buckets. The method constructs a validation set that samples an
equal number of items from each bucket, evaluates the model independently on each subset, and
returns per-bucket accuracies. These balanced evaluations are used by the scheduler (Algorithm 2)
to compute bucket-wise rewards and update the learning signals that drive curriculum adaptation.

Algorithm 2: Self-Evolving Curriculum Scheduler (Non-stationary MAB)
Require: Buckets C = {c1, . . . , cN} (ordered by difficulty); learning rate α ∈ (0, 1]; EMA

coefficient β ∈ (0, 1]; validation period m (steps); policy
policy ∈ {boltzmann, epsilon greedy}; temperature τ > 0 (Boltzmann);
exploration rate ϵ ∈ [0, 1] (ϵ-greedy)

Initialize Q-values Q0(c)← 0 and accuracy baselines Acc0(c)← 0 for all c ∈ C
Initialize step counter t← 0
while training not converged do

t← t+ 1
// --- Select a bucket (action) ---
if policy = boltzmann then

πt(c) ∝ exp
(
Qt−1(c)/τ

)
// normalize over c ∈ C

Sample ct ∼ πt(·)
else if policy = epsilon greedy then

With prob. 1− ϵ: ct ← argmaxc∈C Qt−1(c); else sample ct uniformly from C
end
TrainStep on a mini-batch from bucket ct // one or more gradient updates
// --- Periodic validation and updates ---
if t mod m = 0 then
{Acct(c)}c∈C ← ValidateBalanced(C)
foreach c ∈ C do

rt(c)← Acct(c)−Acct−1(c) // improvement over running
baseline

Qt(c)← α · rt(c) + (1− α) ·Qt−1(c) // TD(0) on non-stationary
reward

Acct(c)← (1− β) ·Acct−1(c) + β ·Acct(c) // EMA baseline
end

else
foreach c ∈ C do

Qt(c)← Qt−1(c); Acct(c)← Acct−1(c)
end

end
end

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3: VALIDATEBALANCED (helper)
Require: Buckets C; validation sampler that draws an equal number of items per bucket
Build validation set V =

⋃
c∈C V(c) with |V(c)| equal across buckets

foreach c ∈ C do
Evaluate current model on V(c) to obtain accuracy Acct(c)

end
return {Acct(c)}c∈C

A.2 DATASET STATISTICS

We report statistics for the datasets used in training, rewriting, validation, and testing.

Dataset Split 0 1 2 3 4 5 6–7 8–15

GSM8K
Train (all) 7320 7352 6920 5063 2989 1601 1100 577
Validation 100 96 87 90 92 90 74 10
Test - - - - - - - -

EntailmentBank
Train (all) 1660 1642 1226 745 421 258 268 134
Validation 100 99 94 96 95 59 46 16
Test 1 30 29 14 12 8 3 3

Table 4: Step count distributions for all splits of GSM8K and EntailmentBank. For GSM8K test
data, step annotations are unavailable (placeholder shown as “-” entries).

A.3 EXPERIMENTAL SETUP DETAILS

A.3.1 ENVIRONMENT DETAILS

All experiments were conducted on cluster nodes equipped with 4 NVIDIA RTX A6000 GPUs
(48GB VRAM each), 4 CPU cores, and 64GB of host memory.

Training. Models were fine-tuned using PyTorch, with the trl and accelerate libraries
handling supervised fine-tuning and multi-GPU execution.

Evaluation. Performance was assessed using the lm-eval-harness, with our multi-stage
answer verification pipeline integrated into the evaluation loop (see Section A.3.4.

A.3.2 HYPERPARAMETERS

We list below the key hyperparameters fed to the HuggingFace TRL trainer. Unless otherwise noted,
all other hyperparameters follow library defaults.

"max_steps": 5000 (Math) / 1000 (Multi-hop),
"per_device_train_batch_size": 8,
"gradient_accumulation_steps": 1,
"max_length": 2048,
"logging_steps": 1,
"learning_rate": 1e-5,
"weight_decay": 0.05,
"warmup_ratio": 0.1,
"lr_scheduler_type": "constant",

Validation is performed 100 times during training. The interval is set to 50 steps for math reasoning
and 10 steps for multi-hop reasoning. In validation the generation arguments are set to:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3.3 BUCKETING BY STEP COUNT

To reduce variance and maintain balanced sampling, we group questions by their reasoning step
count into buckets. Specifically, questions with shorter derivations (0, 1, 2, or 3 steps) are each
assigned their own bucket, while questions requiring four or more steps are merged into a single
”4+” bucket. This grouping scheme has two advantages: (i) it preserves granularity for very short
reasoning chains, which differ substantially in difficulty, and (ii) it avoids fragmentation of the long-
tail distribution of high-step examples, which are sparse and uneven across datasets. All curriculum
schedules and sampling strategies described in the main text are applied over these step-count
buckets.

A.3.4 ANSWER VERIFICATION PROCEDURE

Evaluating free-form reasoning outputs requires robust answer verification, as model predictions
may vary in surface form while being semantically correct. Our validation loop employs a four-
stage verification process:

1. Exact Match. We first check whether the predicted answer string exactly matches the
ground-truth string after normalization (e.g., case-folding and whitespace trimming).

2. Containment. If exact match fails, we check whether the normalized gold answer appears
as a substring within the model output. This captures predictions where the answer is
embedded in additional text.

3. Token-level F1. We compute token-level precision, recall, and F1 between the predicted
output and the gold answer. Predictions are accepted if the F1 score ≥ 0.90, ensuring high
lexical overlap even under paraphrasing.

4. Semantic Similarity. Finally, we compute cosine similarity between SBERT embeddings
of the predicted answer and the gold answer. Predictions are marked correct if the similarity
score ≥ 0.8.

A prediction is considered correct if it satisfies any of the four criteria. This layered procedure
provides robustness to surface-level variation while enforcing semantic fidelity to the ground-truth
answer.

For arithmetic datasets, we additionally use the math verify library to parse, simplify, and
compare numeric expressions. This ensures that mathematically equivalent forms (e.g., “ 3

2”
vs. “1.5”) are treated as correct, even if their textual forms differ.

Finally, in our evaluation experiments (Section 4), when testing trained models on external
benchmarks via the LM Evaluation Harness (Srivastava et al., 2023), we adapt the same four-stage
verification method (including thresholds and math verify) to ensure consistency across training
validation and benchmark evaluation.

A.3.5 EVALUATION SETUP

All evaluations are conducted using the LM Evaluation Harness (Srivastava et al., 2023). To ensure
consistency with our training validation, we adapt the same four-stage answer verification procedure
(Section A.3.4), including thresholds for token-level F1 and semantic similarity, as well as the use
of math verify for numeric equivalence checking.

Multiple-choice tasks. For benchmarks originally framed as multiple-choice question answering
(e.g., StrategyQA, QASC, AQuA-RAT), we convert them into free-form generation tasks.
Specifically, we discard option letters and use the text of the correct option as the gold answer.
Model outputs are then evaluated against these free-form answers using the verification pipeline.

Contextual tasks. For tasks that provide long passages as context (e.g., MuSiQue, HotpotQA,
OpenBookQA), we extract only the sentences marked as relevant by dataset annotations and provide
these as the model’s context. This reduces context length while preserving all information necessary
to answer the question.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Metrics. We report pass@5 accuracy, where a prediction is considered correct if any of the top-
5 generated candidates passes verification. All reported results include the standard error (stderr)
across evaluation runs.

A.4 ADDITIONAL EXPERIMENT RESULTS

Table 5 and table 6 show the accuracies and standard error of the math reasoning and multi-hop
reasoning benchmarks.

Methods GSM8K AddSub ASDiv Multi-Arith SVAMP

OPT-1.3B
Base 3.79±0.53 1.83±1.29 4.05±0.79 2.22±1.10 5.69±1.34
CoT KD 27.75±1.23 9.17±2.78 20.23±1.62 63.33±3.60 20.74±2.35
LoT (Ours) 31.16±1.28 33.03±4.53 41.75±1.99 68.33±3.48 38.46±2.82

OPT-2.7B
Base 3.34±0.49 1.83±1.29 4.21±0.81 3.33±1.34 6.69±1.45
CoT KD 31.01±1.27 8.26±2.65 26.38±1.77 71.11±3.39 19.06±2.28
LoT (Ours) 33.97±1.30 40.37±4.72 45.95±2.01 80.56±2.96 44.15±2.88

Pythia-1.4B
Base 2.96±0.47 0.00±0.00 4.85±0.87 1.67±0.96 8.03±1.57
CoT KD 26.00±1.21 3.67±1.81 21.36±1.65 59.44±3.67 19.73±2.31
LoT (Ours) 28.35±1.24 24.77±4.15 40.78±1.98 63.33±3.60 38.46±2.82

Pythia-2.8B
Base 3.71±0.52 1.83±1.29 6.63±1.00 4.44±1.54 9.70±1.71
CoT KD 33.43±1.30 11.93±3.12 31.88±1.88 74.44±3.26 24.08±2.48
LoT (Ours) 32.98±1.29 32.11±4.49 46.76±2.01 72.78±3.33 44.82±2.88

Table 5: Pass@5 mean accuracy (%) and standard error on GSM8K test split and four math
reasoning benchmarks.

Methods EntailmentBank QASC OpenbookQA StrategyQA MuSiQue

OPT-1.3B
Base 22.0±4.16 17.2±1.69 14.8±1.59 32.4±2.10 2.20±0.66
CoT KD 36.0±4.82 46.0±2.23 47.4±2.24 22.6±1.87 14.2±1.56
LOT (Ours) 41.0±4.94 52.8±2.23 43.6±2.22 47.8±2.24 39.2±2.19

OPT-2.7B
Base 21.0±4.09 28.8±2.03 12.6±1.49 33.6±2.11 2.20±0.66
CoT KD 40.0±4.92 56.2±2.22 46.0±2.23 54.0±2.23 43.6±2.22
LOT (Ours) 41.0±4.94 60.4±2.19 47.8±2.24 51.2±2.24 24.0±2.12

Pythia-1.4B
Base 13.0±3.38 45.0±2.23 34.2±2.12 24.4±1.92 12.0±1.45
CoT KD 36.0±4.82 55.2±2.23 44.6±2.23 36.4±2.15 42.0±2.21
LOT (Ours) 39.0±4.90 56.6±2.22 36.8±2.16 53.2±2.23 39.2±2.19

Pythia-2.8B
Base 10.0±3.02 39.0±2.18 32.4±2.10 29.2±2.04 18.8±1.75
CoT KD 32.0±4.69 32.2±2.09 28.2±2.01 55.6±2.22 42.2±2.21
LOT (Ours) 40.0±4.92 48.8±2.24 37.8±2.17 60.0±2.19 45.0±2.23

Table 6: Pass@5 mean accuracy (%) and standard error on EntailmentBank test split and four multi-
hop reasoning benchmarks.

A.5 PROGRESSIVE REWRITE PROMPTS

To construct progressive difficulty ladders, we prompted a rewrite model with carefully designed
instructions. Below we include the exact prompts used for each dataset to ensure reproducibility.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Depth GSM8K AddSub ASDiv Multi-Arith SVAMP Average

0 10.46±0.84 6.42±2.36 9.22±1.16 17.78±2.86 7.02±1.48 10.18
≤1 30.55±1.27 26.61±4.25 40.61±1.98 67.78±3.49 27.76±2.59 38.66
≤2 28.81±1.25 32.11±4.49 48.22±2.01 71.11±3.39 42.81±2.87 44.61
≤3 32.07±1.29 30.28±4.42 47.73±2.01 77.22±3.13 43.14±2.87 46.09
All 31.16±1.28 33.03±4.53 41.75±1.99 68.33±3.48 38.46±2.82 42.55

Table 7: Math reasoning benchmark performance across reasoning depths. Numbers are pass@5
mean accuracy (%) with standard error.

Method GSM8K AddSub ASDiv Multi-Arith SVAMP Average

Random 29.34±1.25 27.52±4.30 32.69±1.89 66.67±3.52 31.77±2.70 37.60
Easy→Hard 28.96±1.25 31.19±4.46 42.39±1.99 61.67±3.63 40.47±2.84 40.94
Hard→Easy 21.38±1.13 5.50±2.19 11.33±1.28 56.67±3.70 6.69±1.45 20.31
Self-evolving 31.16±1.28 33.03±4.53 41.75±1.99 68.33±3.48 38.46±2.82 42.55

Table 8: Comparison of curriculum strategies on math reasoning benchmarks. Numbers are pass@5
mean accuracy (%) with standard error.

A.5.1 ENTAILMENTBANK PROMPT

You are an expert at reasoning question simplification.
I will provide you with a reasoning problem in JSON format that
contains:

- "instruction": the solving instruction
- "input": the context and question
- "output": the reasoning chain and final answer

Your task is to automatically generate a progressive difficulty ladder
of simplified versions of this problem.
Each new version should make the reasoning easier by moving more
intermediate conclusions (from the reasoning steps in the output)
directly into the input context.
Stop when the problem has become trivial (e.g., the final hypothesis
is already in the input).
For each version, also output the minimum number of reasoning steps
required to reach the final answer from that version’s input.
Treat a reasoning step as a necessary inferential move that derives a
new statement from previous facts/conclusions (e.g., one arithmetic
operation, one logical implication, one factual lookup from the
provided context).
Count merged paraphrases/restatements as 0 additional steps; do not
double-count trivially equivalent rewrites.
When multiple independent sub-derivations are needed before a final
combination, count each indispensable sub-derivation as one step.
The count must be a non-negative integer; use 0 for a trivial version
where the answer is directly stated in the input.
Ensure monotonic non-increase across versions (later versions should
never require more steps than earlier ones).

Guidelines:

1. Identify all intermediate conclusions (int1, int2, ...) in the
original reasoning chain.
2. Create Version 1 as the original (no added intermediates).
3. Then generate subsequent versions, each time inserting one or more
intermediates into the input.
4. You may decide the number of versions automatically | fewer if the
chain is short, more if it is long.
5. For each version, output in a fenced JSON code block with the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

following keys:
- "instruction"
- "input"
- "answer" (string, the final answer to the problem)
- "reasoning" (string, the reasoning chain leading to the answer)
- "min_steps" (integer, the minimum number of steps to reach the
answer)
- "min_steps_note" (a short explanation explaining the count)

6. Precede each block with a Markdown label like:
Version N | [difficulty descriptor]
Then immediately follow with:
‘‘‘json
{ ... }
‘‘‘

Goal: produce a set of progressively easier problems, where the solver
needs fewer reasoning steps at each level, and report the minimum
required steps for each version.

A.5.2 GSM8K PROMPT

You are an expert at math word problem simplification.
I will provide you with a math problem in JSON format that contains:

- "question": the text of the problem
- "answer": the worked-out reasoning and final numeric answer

Your task is to automatically generate a *progressive difficulty ladder*
of simplified versions of this problem.
Each new version should make the reasoning easier by moving more
intermediate results (from the solution steps in the answer) directly
into the problem statement.
Stop when the problem has become trivial (e.g., the final numeric answer
is already stated in the problem).

For each version, also output the **minimum number of reasoning steps**
required to reach the final answer from that version’s problem statement.
- Treat a *reasoning step* as a necessary mathematical operation or
logical inference (e.g., one arithmetic operation, one fraction
simplification, one comparison).
- Do not double-count trivial rewrites or restatements.
- When multiple sub-calculations are required before combining, count
each indispensable sub-calculation as one step.
- The count must be a non-negative integer; use **0** when the answer
is already stated in the problem.
- Ensure the counts are **monotonic non-increasing** across versions
(later versions should never require more steps than earlier ones).

Guidelines:

1. Identify all intermediate results (e.g., partial sums,
multiplications, divisions) in the original worked-out solution.
2. Create **Version 1** as the original (no added intermediates).
3. Then generate subsequent versions, each time inserting one or more
intermediate results directly into the problem statement.
4. You may decide the number of versions automatically | fewer if the
chain is short, more if it is long.
5. For each version, output in a fenced JSON code block with the
following keys:

- "question" (string, the modified problem statement)
- "answer" (string, the final numeric answer only)
- "reasoning" (string, the reasoning steps leading to the answer)
- "min_steps" (integer, the minimum number of steps required)
- "min_steps_note" (short explanation for the count)

6. Precede each block with a Markdown label like:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Version N | [difficulty descriptor]
Then immediately follow with:
‘‘‘json
{ ... }
‘‘‘

Goal: produce a set of progressively easier GSM8K problems, where the
solver needs fewer reasoning steps at each level, and report the minimum
required steps for each version.

20

	Introduction
	Background
	Method: Ladders-of-Thought (LoT)
	Progressive Rewrites
	Difficulty Labeling via Step Definition
	Curriculum Construction

	Experiments
	Setup
	Main Results
	Ablation: Rewrite Depth
	Ablation: Curriculum Scheduling
	Discussion

	Related Works
	Conclusion
	Appendix
	Algorithms
	Dataset Statistics
	Experimental Setup Details
	Environment Details
	Hyperparameters
	Bucketing by Step Count
	Answer Verification Procedure
	Evaluation Setup

	Additional Experiment Results
	Progressive Rewrite Prompts
	EntailmentBank Prompt
	GSM8K Prompt

