Under review as a conference paper at ICLR 2026

LADDERS OF THOUGHT: A SELF-EVOLVING
CURRICULUM OF PROGRESSIVELY SIMPLIFIED
REASONING TRACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at reasoning when scaled to hundreds of
billions of parameters, but small- and mid-scale models remain brittle reasoners
even with knowledge distillation (KD). We present Ladders-of-Thought (LoT),
a framework that improves reasoning by combining progressive question rewrites
with a self-evolving curriculum. LoT automatically generates semantically
faithful but easier variants of reasoning problems, organizes them into difficulty
buckets using step-based measures, and employs a self-evolving bandit scheduler
to allocate training adaptively. Evaluated on two reasoning domains, math
and multi-hop reasoning, across OPT-1.3B/2.7B and Pythia-1.4B/2.8B, LoT
consistently improves over KD. It delivers large gains on arithmetic tasks (e.g.,
+32 percentage points on AddSub, +25pp on SVAMP), +2—-8pp improvements on
in-domain test splits, and strong though dataset-dependent benefits on multi-hop
reasoning (e.g., +16pp on QASC, +25pp on StrategyQA). LoT also converges
faster than staged curricula, highlighting the value of adaptive progression. These
results show that progressive rewrites coupled with adaptive curricula provide a
simple yet effective recipe for strengthening reasoning in smaller LLMs.

B

=
@

alsele) !

Nolelelole)®

Progressive Simplification Bucketing M.A.B. Sampling
(a)] (c)

Figure 1: Overview of our framework. (a) Progressive simplification: original reasoning questions
are rewritten into semantically faithful but progressively easier variants, forming a difficulty ladder.
(b) Step-based difficulty measure bucketing: each question is assigned a difficulty score based on
the number of required reasoning steps. This score is then used to place each example in a bucket.
(c) Self-evolving curriculum: a multi-armed bandit scheduler adaptively selects examples from
different buckets to maximize student learning progress.

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable progress on complex reasoning
benchmarks, especially when augmented with test-time prompting strategies such as chain-of-
thought (CoT) reasoning (Wei et al.|[2022} Zhang et al.,[2022b), self-consistency (Wang et al.,|2022)),
and structured search methods including tree-of-thoughts (Yao et al., |2023), cumulative reasoning
(Zhang et al.|[2023)), and DUP (Zhong et al., 2024])). These approaches highlight the power of explicit
reasoning traces in guiding LLMs toward more accurate and robust answers.

Our focus is on small- and mid-scale LLMs, where limited capacity, brittle chain
evaluation, and large student—teacher gaps make reasoning training especially
challenging.

Despite recent advances, most improvements are concentrated in very large models. Smaller models,
while cheaper and more efficient, often fail to benefit from CoT-style prompting and remain brittle
reasoners. A key limitation is their poor ability to generalize learned reasoning beyond a specific
dataset. This challenge has motivated extensive work on reasoning distillation from large to small
models, spanning standard distillation (Hinton et al., [2015; [Ho et al., 2022} Magister et al., 2022}
Mitra et al.||2023}; [Fu et al.,[2023)), symbolic distillation (West et al.,|2021)), verifier-assisted methods
(L1 et al., 2023} Zhang et al., [2024; |L1iu et al., 2023), knowledge-augmented reasoning (Kang et al.,
2023)), and self-consistent objectives (Wang et al., [2023a). While encouraging, these approaches
struggle when the gap between student and teacher is large: small models often overfit to surface
heuristics instead of acquiring transferable reasoning skills (Wang et al., 2023b; |Li et al., 2025).

Curriculum learning (CL) offers a natural remedy. CL suggests that ordering training examples from
easy to hard improves both sample efficiency and generalization (Bengio et al.,|2009; Matiisen et al.}
2019; |Soviany et al., 2022} Narvekar et al., [2020). Adaptive curricula, which dynamically select
training examples, often work even better (Jiang et al., 2015} Kong et al.l|2021). While CL has been
explored in in-context learning (Liu et al., 2024) and reinforcement learning (Chen et al., 2025;
Parashar et al.| 2025)), its potential for supervised fine-tuning of reasoning remains underexplored.
A major obstacle is defining difficulty for reasoning problems: length, number of inferential steps,
and information structure all interact in complex ways (Jin et al.,|2024; |Wang et al., [2025}; [Shi et al.,
2025).

Our Approach. We introduce Ladders-of-Thought (LoT), a framework for training stronger
reasoning in small- and mid-scale LLMs through a combination of progressive question rewrites
and self-evolving curricula. Our method builds on three insights: (1) Reasoning questions can be
automatically rewritten into progressively easier versions while preserving semantics, forming a
natural “ladder” of difficulty. (2) The minimal number of reasoning steps provides a principled
difficulty measure for organizing training buckets. (3) A self-evolving curriculum scheduler, framed
as a multi-armed bandit, can adaptively allocate training to difficulty levels where the student learns
fastest, avoiding rigid or suboptimal schedules.

Contributions. This paper makes three contributions:
* We introduce a progressive rewrite framework that generates semantically faithful but
easier variants of reasoning problems, creating a principled difficulty ladder.

* We propose an adaptive, self-evolving curriculum scheduler that dynamically allocates
training across difficulty buckets using bandit-based updates.

* We demonstrate through extensive experiments that LoT improves pass@5 accuracy,
accelerates convergence, and strengthens out-of-distribution generalization for small- and
mid-scale LLMs.

2 BACKGROUND

We briefly review the foundations of our approach: chain-of-thought (CoT) distillation, curriculum
learning, and multi-armed bandit scheduling.

Under review as a conference paper at ICLR 2026

Chain-of-Thought Distillation. CoT distillation transfers reasoning ability from a large teacher
to a smaller student by supervising on teacher-generated rationales (Ho et al.| 2022; |Chae et al.,
2023). Given D = {(l‘(i), y(i))}, we prompt the teacher with zero-shot CoT instructions (Wei et al.,
2022;|Zhang et al.,[2022b)) to obtain rationales r(, Training instances are formatted as

Question: (¥ Answer: r¥, y(®),
The student autoregressively generates r(*) and y(?, optimized via negative log-likelihood:
Lest(0) == (ZIOg PO(Ty) | 7“(<i;793(i)) +) log Pe(yg(‘i) | Z/g,r(i),x(i)))_
P .

This encourages the student to reproduce step-by-step reasoning and final answers.

Curriculum Learning. Curriculum learning (Bengio et al., 2009) presents data in a structured
order. A difficulty function d(x) partitions D into buckets {8, ..., Bk}, ordered by difficulty. A
curriculum defines a sequence of sampling distributions {p;}7_;, where p;(b) is the probability of
drawing from bucket 5 at step t. Fixed curricula move gradually from easy to hard, while self-
evolving ones adjust p; based on model progress.

Multi-Armed Bandits. Self-evolving curricula can be framed as a multi-armed bandit (MAB)
problem, where each bucket Bj corresponds to an arm. At step ¢, the scheduler selects arm
a; € {1,...,K} according to p;, samples from B,,, and receives reward r; (e.g., validation
improvement). The objective is to minimize regret

T T
_ (k) _
Rr _ml?XZrt Zrt,
t=1 t=1
(k)

where 7, is the reward had arm k been played. Strategies such as e-greedy and Boltzmann
exploration balance exploration with exploitation. We employ such a scheduler to adapt p; online.

3 METHOD: LADDERS-OF-THOUGHT (LOT)

LoT constructs curricula for reasoning tasks through two key components: (i) progressive rewrites,
which generates graded versions of each question by injecting intermediate reasoning steps
(Figure [2), and (ii) step-based difficulty labeling, which assigns a consistent measure of problem
difficulty. These components together yield difficulty-labeled question sets that can be organized
into either staged or adaptive self-evolving curricula (Figure|[T).

3.1 PROGRESSIVE REWRITES

We start with a question—solution pair (g, s) where the question ¢ contains an explicit set of premises

P = {p1,p2,-..,pm} and the solution is expressed as a chain-of-thought (CoT) sequence s =
(c1,¢2,...,cy). Each reasoning step derives a new conclusion ¢; from a small set of antecedents
A; CPU{er,...,¢i—1}; for example, p; + pa = ¢; and then ¢ + p3 = ca.

Rewrite operation. Rather than merely appending conclusions to the context, we replace the
antecedents of each step by the derived conclusion. Concretely, let ¢(9) = ¢. Fori =1, ..., n, form

¢V = (¢""V\A) U {e}
Intuitively, if p; and po entail ¢;, we remove p;,po from the question and insert ¢; instead,
yielding an easier instance. Applying this transformation step-by-step produces a sequence
¢, qM, ... ¢ of strictly decreasing difficulty, terminating when the answer is trivial (or
explicitly recoverable) in the context (Figure [2)).

Practical generation. We prompt a capable instruction-tuned LLM to (i) identify A; for each CoT
step and (ii) produce the simplified question ¢(*) while preserving semantics and well-posedness.
The rewriting model need not coincide with the teacher used for CoT supervision; in practice,
we may use a strong CoT generator as the teacher and a separate model for controlled rewriting.
This procedure pairs every complex question with progressively easier counterparts, forming the
backbone of our curriculum.

Under review as a conference paper at ICLR 2026

P1: Each notebook \ \

costs §4 | Fleasoning Steps
P2: Maya buys 7 1 [C1 Maya spends $28]>
notebooks on hotebooks]
¥
P3: Maya starts with] [Pa Maya starts with]» C2: Maya has $12 N
540 540 after buying notebooks *l
[P4: Each pen costs $2] [Pil Each pen costs §2 [Pil: Each pen costs $2]» C:risl\-'laya can buy @

notebooks, how many
ens can Maya buy?

LCI: After she buys the

ens can Ma',ra bu;ﬂ ens can Ma',ra buy7 ens can Maya buy?

Q: After she buys the Q: After she buys the Q: After she buys the
notebooks, how many notebooks, how many notebooks, how many

Initial Simplified Simplified Trivial
Task Task 1 Task 2 Task
e -
Task Difficulty Easy

Figure 2: Progressive rewrites. Each task can be converted into a series of standalone premises (P1,
P2, ...). Each reasoning step combines two pieces of information to make a conclusion (C), or new
piece of information. After each step of reasoning, the total amount of information is smaller, giving
an easier sub-question to solve. Thus, progressively easier questions arise naturally from step-by-
step problem solving, while preserving semantics and solvability (no answer leakage), since each
rewrite replaces a subset of premises with their logically entailed conclusion.

Comparison to decomposition. This simplification differs from problem decomposition methods
such as [Simonds & Yoshiyamal (2025), which generate related but distinct subproblems. Our
rewrites retain the original problem identity while replacing subsets of premises with intermediate
conclusions, i.e., they are the same task presented with precomputed inferences in the premise.

3.2 DIFFICULTY LABELING VIA STEP DEFINITION

We define the difficulty of a reasoning example by the minimal number of steps required to reach
a solution, denoted ¢(x). For instance, a math problem that requires three arithmetic operations
has ¢(z) = 3. Rather than relying on raw chain-of-thought (CoT) length, which can be inflated by
verbosity or stylistic padding, our progressive rewriting procedure enforces a one-step decrement at
each stage (e.g., 3— 2 — 1 —0). Thus ¢(x) aligns directly with the number of rewrites available
for each example, providing a consistent and interpretable difficulty measure. The rewriting model
is given explicit instructions on what constitutes a reasoning step to maintain consistent granularity,
and we manually spot-check examples to verify the monotonic decrease. This process yields well-
calibrated step counts that serve as interpretable difficulty labels. Training data are then bucketed
by these labels, B, = {z : ¢(z) € I}, providing a structured progression from easier to harder
questions. Complete prompts for step counting and rewriting are provided in Appendix [A.3]

3.3 CURRICULUM CONSTRUCTION

The difficulty-labeled questions naturally form a curriculum. Because the distribution of step counts
is often imbalanced, we group adjacent levels into buckets (e.g., 1-3, 4-5, and 5+ steps as “easy,”
“medium,” and “hard”). These buckets support both staged and self-evolving curriculum strategies.

A simple baseline is the staged curriculum, where buckets are ordered by difficulty and the model
trains on one bucket at a time for a fixed number of steps. This provides a straightforward schedule
against which self-evolving methods can be compared.

For adaptivity, we follow the multi-armed bandit (MAB) framework of Matiisen et al.|(2019)), which
treats each bucket By, € {B1, ..., Bk} as an arm. At step ¢, the learner selects an arm ay, trains on
samples from bucket B,,, and receives a reward derived from validation performance.

The Q-value update is
Qi+1(a) = ary(a) + (1 — a)Q:(a),

Under review as a conference paper at ICLR 2026

with learning rate o and Qg (a) = 0.
Every m steps, we compute rewards as
ri(a) = Accy(a) — Accy(a),
where Acc,(a) is an exponential moving average with smoothing coefficient 8. This measures the
accuracy gain relative to baseline.

Buckets are then sampled either from a Boltzmann distribution

mi(a) o< exp(Qi(a)/7),

with temperature 7, or via an e-greedy policy that chooses the best bucket with probability 1 — € and
explores otherwise.

This bandit-based scheduler dynamically focuses training on the levels that yield the greatest
marginal improvement, producing a self-evolving curriculum. The full training procedure, including
progressive rewrites, bucketization, and adaptive scheduling, is summarized in Algorithm [2] (see

Appendix for details).

Algorithm 1: Ladders-of-Thought (LoT): Training with Progressive Rewrites and Self-evolving

Curriculum

Input: Original data Dy, teacher T', rewriting model R, student S, budget S steps, buckets

{By}.

Output: Fine-tuned student Sy.

Progressive Rewriting. For each (x,y) € Dorig: Generate rationale r and answer y from 7
Iteratively rewrite 2 with R into (%) that is one step easier (¢(x(?+1)) = ¢(x(D) — 1),
Collect (z(D 7@ (D ¢ (D)) until trivial.

Bucketization. Group examples by step count ¢(z) into buckets {58y, }.

Training with Bandit Curriculum. Initialize bandit over buckets. for t = 1 to .S do

Sample batch M, according to bandit distribution.

Update Sy with CoT loss on M;: rationale + answer tokens.

Every E steps (evaluation interval): evaluate on held-out validation splits B%al; compute
rewards; update bandit to adjust sampling probabilities.

end
return Sy

4 EXPERIMENTS

We evaluate whether progressive rewrites combined with a self-evolving curriculum improve
reasoning generalization. Our experiments focus on two questions: (i) Does LoT provide consistent
gains over strong baselines across models and domains? (ii) How do rewrite depth and curriculum
scheduling affect performance?

4.1 SETUP

We study two domains: math and multi-hop reasoning. For math, models are trained on
GSMSK [Cobbe et al.| (2021) and evaluated on its test split plus AddSub, ASDiv, MultiArith, and
SVAMP |Hosseini et al| (2014); Miao et al.| (2020); [Roy & Roth| (2015)); [Patel et al.| (2021)). For
multi-hop, models are trained on EntailmentBank [Dalvi et al.| (2021)) and tested on its split plus
StrategyQA, OpenBookQA, QASC, and MuSiQue |Geva et al.| (2021); Mihaylov et al.| (2018)); Yang
et al.| (2018)); Khot et al.| (2020); Trivedi et al. (2022).

We evaluate OPT-1.3B/2.7B [Zhang et al.| (2022a) and Pythia-1.4B/2.8B Biderman et al.| (2023)),
using knowledge distillation (KD) from a strong CoT teacher. Baselines include: (i) the base
model, (ii) CoT KD on original data, and (iii) LoT (ours): KD with rewrites under a self-evolving
curriculum.

Under review as a conference paper at ICLR 2026

Performance is reported as pass@5 accuracy ﬂ We also report mean + standard error in
Appendix Further experimental details including hyperparameters, hardware and evaluation
harness are provided in Appendix

4.2 MAIN RESULTS

Tables [I] and [2] summarize pass@5 accuracy across both domains and model families. LoT
consistently outperforms KD on original data, with especially large gains on math reasoning. For
example, on OPT-2.7B, AddSub accuracy jumps from 8.26 to 40.37 (+32.11 percentage points), and
SVAMP from 19.06 to 44.15 (+25.09 percentage points).

Improvements are also evident on in-domain test splits: GSM8K rises from 31.01 to 33.97 (+2.96),
while EntailmentBank improves by +3-8 percentage points across all model families. Across
architectures, Pythia-1.4B improves on ASDiv from 21.36 to 40.78 (+19.42), while Pythia-2.8B
gains +20.18 on AddSub and +20.74 on SVAMP.

Two trends stand out in math reasoning. First, LoT yields the largest gains on smaller, compositional
arithmetic datasets such as AddSub, ASDiv, and SVAMP. These datasets differ substantially from
the GSMS8K training distribution, highlighting LoT’s strength in improving out-of-distribution
generalization. Second, while improvements on GSMS8K itself are more modest (+2-3 points),
LoT consistently prevents degradation and provides robustness, suggesting that introducing easier
rewrites does not harm in-domain accuracy while improving transferability.

Methods GSMSK AddSub ASDiv Multi-Arith SVAMP
OPT-1.3B

Base 3.79 1.83 4.05 2.22 5.69

CoT KD 27.75 9.17 20.23 63.33 20.74

LoT (Ours) 31.16 +341) 33.03 +2386) 41.75 2152 68.33 (+5.00) 38.46 (+17.72)
OPT-2.7B

Base 3.34 1.83 4.21 3.33 6.69

CoT KD 31.01 8.26 26.38 71.11 19.06

LoT (Ours) 33.97 296) 40.37 3211y 45.95 +1957) 80.56 (+9.45) 44.15 (+25.09)
Pythia-1.4B

Base 2.96 0.00 4.85 1.67 8.03

CoT KD 26.00 3.67 21.36 59.44 19.73

LoT (Ours) 28.35 +235) 2477 21100 40.78 (+19.42) 63.33 (+3.89) 38.46 (+18.73)
Pythia-2.8B

Base 3.71 1.83 6.63 4.44 9.70

CoT KD 33.43 11.93 31.88 74.44 24.08

LoT (Ours) 32.98 045y 32.11 (+20.18) 46.76 (+1488) 72.78 (-1.66) 44.82 (+20.74)

Table 1: Pass@5 accuracy (%) on GSMS8K and out-of-distribution math benchmarks. Each entry
shows absolute accuracy with A relative to CoT KD. LoT consistently improves generalization, with
the largest gains on AddSub, ASDiv, and SVAMP (+15-30 percentage points). (As are rendered in
green/red for increases/decreases.)

For multi-hop reasoning, LoT provides both in-domain and out-of-domain benefits when trained
on EntailmentBank. In-domain accuracy rises on the EntailmentBank test split (+3-8), showing
that rewrites help the model capture inference patterns more reliably. Out-of-domain, LoT delivers
strong improvements on QASC (+4-16) and StrategyQA (+17-25), and also boosts MuSiQue
substantially for OPT-1.3B (+25) and Pythia-2.8B (+2.8). Results are more mixed on OpenBookQA
(-3.8 and —7.8 for smaller models) and on MuSiQue with OPT-2.7B (-19.6), suggesting that the
benefits of LoT are sensitive to dataset properties and model scale. Datasets emphasizing factual
recall (e.g., OpenBookQA) appear less amenable to gains from progressive rewrites than those
requiring compositional reasoning (e.g., QASC, StrategyQA).

'Pass @5 is computed by drawing 5 samples per query with temperature=0.5 and top-p = 0.95, and counting
success if any matches the verified answer.

Under review as a conference paper at ICLR 2026

Overall, LoT delivers improvements across all four model checkpoints and both reasoning domains.
Its benefits are architecture-agnostic and extend beyond in-domain test sets to multiple out-of-
distribution benchmarks, though the magnitude of gains is more uniform in arithmetic reasoning
than in multi-hop tasks.

Methods EntailmentBank QASC OpenBookQA StrategyQA MuSiQue
OPT-1.3B

Base 22.0 17.2 14.8 324 2.2

CoT KD 36.0 46.0 474 22.6 14.2

LOT (Ours) 41.0 +s.0) 52.8 +6.8) 43.6 (3.8 47.8 (+252) 39.2 (+25.0)
OPT-2.7B

Base 21.0 28.8 12.6 33.6 2.2

CoT KD 40.0 56.2 46.0 54.0 43.6

LOT (Ours) 41.0 +1.0) 60.4 +42) 47.8 +138) 51.2 23) 24.0 (-19.6)
Pythia-1.4B

Base 13.0 45.0 34.2 24.4 12.0

CoT KD 36.0 55.2 44.6 36.4 42.0

LOT (Ours) 39.0 +3.0) 56.6 +14) 36.8 (7.8 53.2 (+16.8) 39.2 (-28)
Pythia-2.8B

Base 10.0 39.0 324 29.2 18.8

CoT KD 32.0 32.2 28.2 55.6 42.2

LOT (Ours) 40.0 +s.0) 48.8 +166) 37.8 (+9.6) 60.0 (+4.4) 45.0 (+2.8)

Table 2: Pass@5 accuracy (%) on EntailmentBank (in-domain) and four out-of-domain multi-hop
benchmarks. LoT improves EntailmentBank by +3-8 percentage points across model families and
yields strong gains on QASC (+4-16) and StrategyQA (+17-25). Performance is more mixed on
OpenBookQA and MuSiQue (some regressions for smaller models; Pythia-2.8B still improves). A
values are relative to CoT KD (green/red = increase/decrease).

4.3 ABLATION: REWRITE DEPTH

Table 3| reveals a clear effect of rewrite depth. Adding shallow rewrites (<1) produces the largest
single jump in average accuracy (+28.48 percentage points). Adding more depth continues to help
up to <3, with consistent gains on MultiArith (+6.11 at <3) and SVAMP (+15.05 at <2). However,
going beyond three levels introduces diminishing or even negative returns: accuracy on GSM8K and
ASDiv drops when using all rewrites. This suggests that overly simplified examples may no longer
preserve the core reasoning structure, thereby diluting the learning signal.

These results highlight that LoT benefits from a moderate curriculum ladder: shallow-to-
intermediate rewrites align with the model’s capacity to generalize, while excessive simplification
can be counterproductive.

Depth GSMSK AddSub ASDiv Multi-Arith SVAMP Average
0 1046 6.42 9.22 17.78 7.02 10.18
<1 30.55 (+2009 26.61 (+2019) 40.61 +3139) 67.78 (+5000) 27.76 (+2074) 38.66 (+28.48)
<2 28.81 (-1.74) 32.11 (+5.50) 48.22 (+7.61) T1.11 (+3.33) 42.81 (+1505) 44.61 (+5.95)
<3 32.07 +3.206) 30.28 (-1.83) 47.73 (-0.49) T77.22 +6.11) 43.14 (+0.33) 46.09 (+1.48)
All 31.16 091 33.03 +2.75) 41.75 (-5.98) 68.33 (-8.89) 38.46 (-4.68 42.55 (-3.54)

Table 3: Pass@5 accuracy (%) when varying maximum rewrite depth. Performance improves
sharply when adding shallow rewrites (<1), continues to grow up to depth 3, and declines when all
rewrites are included. Deltas are relative to the row above (green = improvement, red = decrease).

Under review as a conference paper at ICLR 2026

IS
[

N

8]
N N w w B
o w o v o

=
w

Validation Accuracy (%)
N
o

=
o

—— Flat
—s— Easy-Hard
—_

Math Average Accuracy (%)

w

Hard—-Easy
—— Self-evolving (Ours) 0
0 Flat Easy-Hard Hard-Easy Sel-evolving (Ours)
0 1000 2000 3000 4000 5000

Training Step

Figure 4: Average test accuracy across
Figure 3: GSMSK validation accuracy over math reasoning benchmarks under different
training steps under different curriculum curriculum strategies. Self-evolving (Ours)
strategies. Self-evolving (Ours) (green) and (green) achieves the best performance.
Flat (orange) achieve both faster learning and Both Easy—Hard (blue) and Self-evolving
high final accuracy. Easy—Hard (blue) is outperform Flat (orange), showing that
moderately effective, while Hard—Easy (red) introducing easier problems first leads to
consistently underperforms. stronger learning, while Hard—Easy (red)

harms performance.

4.4 ABLATION: CURRICULUM SCHEDULING

We compare four curriculum strategies: (i) Flat Sampling (random training without curriculum),
(i) Staged Curriculum (Easy—Hard), (ii1) Staged Curriculum (Hard— Easy), and (iv) Self-evolving
Curriculum (ours).

Figure [3] and Figure [] highlight the importance of curriculum design. LoT’s Self-evolving
Curriculum achieves both the fastest convergence and the highest final accuracy, outperforming
all fixed schedules. Easy—Hard also improves over Flat sampling, confirming that sequencing
problems from simple to complex is more effective than random order. By contrast, Hard—Easy
performs worst across the board, lagging in both early and late training. This supports the intuition
that exposing models to difficult problems before they have acquired simpler reasoning patterns
hinders progress.

Interestingly, Flat sampling often shows reasonable early learning speed, but plateaus at lower
accuracy. LoT combines the best of both worlds: it retains early learning efficiency while ultimately
achieving stronger final performance. This indicates that adaptivity, rather than a fixed progression,
is key for balancing efficiency and generalization.

4.5 DISCUSSION

Taken together, these analyses show that: (1) LoT consistently boosts reasoning performance, with
especially large gains on OOD arithmetic benchmarks. (2) Rewrite depth should be moderate:
shallow to intermediate levels provide strong generalization benefits, while excessive depth can hurt.
(3) Curriculum scheduling strongly affects outcomes: self-evolving strategies clearly dominate static
or reversed schedules, highlighting that curriculum direction and adaptivity are both crucial.

Overall, these findings suggest that LoT provides a principled recipe for enhancing reasoning
models: use faithful but easier rewrites, structure them into a moderate-depth ladder, and adaptively
adjust exposure to maximize sample efficiency and final generalization.

5 RELATED WORKS

LLM Reasoning and Distillation. To transfer reasoning ability to compact LLMs, many works
explore distillation (Xu et al.} 2024} [Yang et al.,[2024). Supervised fine-tuning on teacher-generated

Under review as a conference paper at ICLR 2026

CoT traces improves small models (Mitra et al.|, 2023 [Magister et al.l 2022} Ho et al., 2022} |Gu
et al.,[2023)), with variants such as symbolic distillation (West et al.,2021), verifier-assisted training
(Liu et al., 2023 Zhang et al., 2024), knowledge-augmented objectives (Kang et al.| 2023), and
white-box supervision using hidden states (Deng et al.| [2023)). Despite progress, distillation often
breaks down when the student—teacher gap is large, leading to overfitting to shallow heuristics and
poor generalization (L1 et al.| [2025).

Curriculum Learning. Curriculum learning (CL) suggests ordering examples from easy to hard
to accelerate training and improve generalization (Bengio et al.,2009;|Narvekar et al., 2020; [Soviany
et al., 2022). Extensions include self-paced (Jiang et al., |2015) and adaptive methods (Matiisen
et al., [2019; [Kong et al.l [2021)). For LLMs, curricula have been studied in in-context learning (Liu
et al., 2024)) and reinforcement learning (Shi et al., 2025; [Chen et al., 2025; |[Parashar et al., [2025)).
Closest to our setting,|(Chen et al.|(2025) also propose self-evolving curricula, but in RL optimization
rather than supervised fine-tuning. Another relevant line is LADDER (Simonds & Yoshiyamal
20235)), which generates easier related tasks for RL training. By contrast, our progressive rewrites
preserve the same task identity by substituting premises with intermediate conclusions, enabling use
in supervised settings.

Difficulty Estimation. Difficulty measures are critical to CL. Prior work has used proxy signals
such as MCTS heuristics (Wang et al., [2025), dataset-provided difficulty labels (Chen et al., [2025)),
or model hit rates (Shi et al.,[2025)). Other analyses show that longer chains help only when they add
true inferential depth (Jin et al.,|2024). We instead introduce a step-based measure grounded in the
minimal number of reasoning steps, which directly aligns with our progressive rewrites and avoids
noisy proxies such as raw CoT length.

Positioning. Ladders-of-Thought (LoT) integrates these threads by combining: (i) progressive
rewrites inspired by distillation, (ii) step-based difficulty estimation, and (iii) adaptive scheduling
from CL. Unlike prior efforts—focused on large models, heuristic difficulty proxies, or alternate
settings such as RL and in-context learning—LoT provides a scalable curriculum for improving
reasoning in small- to mid-scale LLMs through supervised fine-tuning.

6 CONCLUSION

We introduced Ladders-of-Thought (LoT), a framework that combines progressive rewrites with
an adaptive self-evolving curriculum to improve reasoning in small- to mid-scale LLMs. Our
experiments on math and multi-hop reasoning demonstrate that LoT consistently outperforms strong
knowledge distillation and curriculum baselines, delivering substantial gains in out-of-distribution
arithmetic tasks (e.g., +32 percentage points on AddSub, +25pp on SVAMP), modest but robust
improvements on in-domain test sets (GSM8K, EntailmentBank), and dataset-dependent benefits on
multi-hop reasoning (notably +25pp on StrategyQA). LoT also accelerates convergence compared
to flat or staged curricula, highlighting the value of adaptivity in balancing efficiency with final
performance. These findings show that carefully structured training signals—semantically faithful
rewrites organized into adaptive curricula—provide a principled recipe for strengthening reasoning
in smaller LLMs without requiring more scale or data. We believe LoT offers a practical foundation
for future reasoning-focused training pipelines and can complement other emerging curriculum-
based strategies.

LIMITATIONS

Our study focuses on small- to mid-scale LLMs (1-3B parameters); scalability to larger foundation
models remains untested. LoT also depends on a capable generator for progressive rewrites—Ilow-
quality or unfaithful rewrites may add noise, and the balance between fidelity and diversity is
not fully explored. Evaluation is limited to English math and text-only multi-hop benchmarks;
extending to multilingual, multimodal, and interactive domains (e.g., vision—language or embodied
agents) is a natural next step. Finally, LoT’s mixed results on certain multi-hop tasks indicate that
benefits are dataset-dependent, raising open questions about which reasoning settings gain most
from progressive curricula.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All datasets used in this work
are publicly available. We provide details of data preprocessing, rewrite generation, and filtering
rules in Appendix [A.3] Model architectures (OPT and Pythia) are open-source, and all training
hyperparameters, curriculum schedules, and evaluation settings are fully specified in Section 4 and
Appendix We will release our training scripts, curriculum scheduler implementation, and
rewrite datasets to facilitate replication and extension by the community.

REFERENCES

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48, 2009.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Hyungjoo Chae, Yongho Song, Kai Tzu-iunn Ong, Taeyoon Kwon, Minjin Kim, Youngjae Yu,
Dongha Lee, Dongyeop Kang, and Jinyoung Yeo. Dialogue chain-of-thought distillation for
commonsense-aware conversational agents. arXiv preprint arXiv:2310.09343, 2023.

Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
Yoshua Bengio, and Ehsan Kamalloo. Self-evolving curriculum for llm reasoning. arXiv preprint
arXiv:2505.14970, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna
Pipatanangkura, and Peter Clark. Explaining answers with entailment trees. arXiv preprint
arXiv:2104.08661, 2021.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart
Shieber. Implicit chain of thought reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, pp.
10421-10430. PMLR, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies.
Transactions of the Association for Computational Linguistics (TACL), 2021.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large
language models. arXiv preprint arXiv:2306.08543, 2023.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
arXiv preprint arXiv:2212.10071, 2022.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans (eds.), Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 523-533, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1058. URL https://aclanthology.
org/D14-1058/.

10

https://aclanthology.org/D14-1058/
https://aclanthology.org/D14-1058/

Under review as a conference paper at ICLR 2026

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann. Self-paced
curriculum learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29,
2015.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

Minki Kang, Seanie Lee, Jinheon Baek, Kenji Kawaguchi, and Sung Ju Hwang. Knowledge-
augmented reasoning distillation for small language models in knowledge-intensive tasks.
Advances in Neural Information Processing Systems, 36:48573-48602, 2023.

Tushar Khot, Peter Clark, Michal Guerquin, Peter Jansen, and Ashish Sabharwal. Qasc: A dataset
for question answering via sentence composition. arXiv:1910.11473v2, 2020.

Yajing Kong, Liu Liu, Jun Wang, and Dacheng Tao. Adaptive curriculum learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 5067-5076, 2021.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315—
5333, 2023.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang, Luyao Niu, Bill Yuchen Lin, Bhaskar
Ramasubramanian, and Radha Poovendran. Small models struggle to learn from strong reasoners.
arXiv preprint arXiv:2502.12143, 2025.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving; 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Yinpeng Liu, Jiawei Liu, Xiang Shi, Qikai Cheng, Yong Huang, and Wei Lu. Let’s learn step by step:
Enhancing in-context learning ability with curriculum learning. arXiv preprint arXiv:2402.10738,
2024.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. arXiv preprint arXiv:2212.08410, 2022.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher—student curriculum
learning. IEEE transactions on neural networks and learning systems, 31(9):3732-3740, 2019.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
English math word problem solvers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 975-984, Online, July 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.acl-main.92. URL https://aclanthology.org/2020.acl-main.
92/.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj
Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, et al. Orca 2:
Teaching small language models how to reason. arXiv preprint arXiv:2311.11045, 2023.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1-50, 2020.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
Yu Zhang, James Caverlee, Dileep Kalathil, et al. Curriculum reinforcement learning from easy
to hard tasks improves 1lm reasoning. arXiv preprint arXiv:2506.06632, 2025.

11

https://aclanthology.org/2020.acl-main.92/
https://aclanthology.org/2020.acl-main.92/

Under review as a conference paper at ICLR 2026

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Lluis Marquez,
Chris Callison-Burch, and Jian Su (eds.), Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 1743—1752, Lisbon, Portugal, September 2015.
Association for Computational Linguistics. doi: 10.18653/v1/D15-1202. URL https://
aclanthology.org/D15-1202/l

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement
finetuning via adaptive curriculum learning. arXiv preprint arXiv:2504.05520, 2025.

Toby Simonds and Akira Yoshiyama. Ladder: Self-improving llms through recursive problem
decomposition. arXiv preprint arXiv:2503.00735, 2025.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey.
International Journal of Computer Vision, 130(6):1526-1565, 2022.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on machine learning research, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, and Xiang Ren. Scott: Self-
consistent chain-of-thought distillation. arXiv preprint arXiv:2305.01879, 2023a.

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai Lin, Yunbo Cao, Tianyu Liu, and
Zhifang Sui. Making large language models better reasoners with alignment. arXiv preprint
arXiv:2309.02144, 2023b.

Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
visual reasoning self-improvement. arXiv preprint arXiv:2504.07934, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language
models to commonsense models. arXiv preprint arXiv:2110.07178, 2021.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng
Tao, and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv
preprint arXiv:2402.13116, 2024.

Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and
Yigiang Chen. Survey on knowledge distillation for large language models: methods, evaluation,
and application. ACM Transactions on Intelligent Systems and Technology, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2018.

12

https://aclanthology.org/D15-1202/
https://aclanthology.org/D15-1202/

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in neural information processing systems, 36:11809-11822, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022a.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jackyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct
reasoning. arXiv preprint arXiv:2404.17140, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022b.

Qihuang Zhong, Kang Wang, Ziyang Xu, Juhua Liu, Liang Ding, and Bo Du. Achieving; 97% on
gsm8k: Deeply understanding the problems makes 1lms better solvers for math word problems.
arXiv preprint arXiv:2404.14963, 2024.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHMS

Algorithm 2] presents the Self-Evolving Curriculum Scheduler, a non-stationary multi-armed bandit
(MAB) strategy that dynamically allocates training batches across curriculum buckets of increasing
difficulty. The scheduler maintains Q-values for each bucket, reflecting recent improvements in
model accuracy, and uses these values to guide bucket selection according to either a Boltzmann
exploration policy or an e-greedy policy. Periodically, the algorithm evaluates the model on a
balanced validation set, computes the reward as the gain over a running accuracy baseline, and
updates both the Q-values (via temporal difference learning) and the baselines (via exponential
moving average). This design allows the scheduler to adaptively focus training on buckets that
yield the greatest learning progress while still preserving exploration.

Algorithm [3| defines the auxiliary procedure VALIDATEBALANCED, which ensures fair assessment
of performance across curriculum buckets. The method constructs a validation set that samples an
equal number of items from each bucket, evaluates the model independently on each subset, and
returns per-bucket accuracies. These balanced evaluations are used by the scheduler (Algorithm [2))
to compute bucket-wise rewards and update the learning signals that drive curriculum adaptation.

Algorithm 2: Self-Evolving Curriculum Scheduler (Non-stationary MAB)

Require: Buckets C = {cy, ..., cy} (ordered by difficulty); learning rate « € (0, 1]; EMA
coefficient 3 € (0, 1]; validation period m (steps); policy
policy € {boltzmann, epsilon_greedy}; temperature 7 > 0 (Boltzmann);
exploration rate € € [0, 1] (e-greedy)
Initialize Q-values Qg (c) < 0 and accuracy baselines Accg(c) < 0 forall c € C
Initialize step counter ¢ < 0
while training not converged do
t+—t+1
// —-—-- Select a bucket (action) ---
if policy = boltzmann then
m(c) o< exp(Qu—1(c)/T) // normalize over c€C
Sample ¢; ~ m(+)
else if policy = epsilon_greedy then
\ With prob. 1 — €: ¢; < arg max.cc Q:—1(c); else sample ¢; uniformly from C

end
TrainStep on a mini-batch from bucketc; // one or more gradient updates
// ——— Periodic validation and updates ———

if £t mod m = 0 then
{Acci(c)}eec < ValidateBalanced(C)
foreach c € C do

r(c) < Accy(c) — Accy_1(c) // improvement over running
baseline
Qi(c) —a-r(c)+ (1 —a) Qi-1(c) // TD(0) on non-stationary
reward
Acci(e) «+ (1= B) - Acci_1(c) + B - Accy(c) // EMA baseline
end

else
foreach c € C do - -

| Qic) + Qi—1(c); Acc(c) + Accr_1(c)
end

end

end

14

Under review as a conference paper at ICLR 2026

Algorithm 3: VALIDATEBALANCED (helper)

Require: Buckets C; validation sampler that draws an equal number of items per bucket
Build validation set V = .. V(c) with [V(c)| equal across buckets
foreach c € C do
| Evaluate current model on V(c) to obtain accuracy Accy(c)
end
return {Acc:(c)}cec

A.2 DATASET STATISTICS

We report statistics for the datasets used in training, rewriting, validation, and testing.

Dataset Split 0 1 2 3 4 5 6-7 8-15
Train (all) 7320 7352 6920 5063 2989 1601 1100 577
GSMSK Validation 100 96 87 90 92 90 74 10
Test - - - - - - - -

Train (all) 1660 1642 1226 745 421 258 268 134
EntailmentBank Validation 100 99 94 96 95 59 46 16
Test 1 30 29 14 12 8 3 3

Table 4: Step count distributions for all splits of GSM8K and EntailmentBank. For GSM8K test
data, step annotations are unavailable (placeholder shown as “-” entries).

A.3 EXPERIMENTAL SETUP DETAILS
A.3.1 ENVIRONMENT DETAILS

All experiments were conducted on cluster nodes equipped with 4 NVIDIA RTX A6000 GPUs
(48GB VRAM each), 4 CPU cores, and 64GB of host memory.

Training. Models were fine-tuned using PyTorch, with the trl and accelerate libraries
handling supervised fine-tuning and multi-GPU execution.

Evaluation. Performance was assessed using the 1lm-eval-harness, with our multi-stage
answer verification pipeline integrated into the evaluation loop (see Section

A.3.2 HYPERPARAMETERS

We list below the key hyperparameters fed to the HuggingFace TRL trainer. Unless otherwise noted,
all other hyperparameters follow library defaults.

"max_steps": 5000 (Math) / 1000 (Multi-hop),
"per_device_train_batch_size": 8,
"gradient_accumulation_steps": 1,
"max_length": 2048,

"logging_steps": 1,

"learning_rate": le-5,
"weight_decay": 0.05,
"warmup_ratio": 0.1,

"lr scheduler_type": "constant",

Validation is performed 100 times during training. The interval is set to 50 steps for math reasoning
and 10 steps for multi-hop reasoning. In validation the generation arguments are set to:

15

Under review as a conference paper at ICLR 2026

A.3.3 BUCKETING BY STEP COUNT

To reduce variance and maintain balanced sampling, we group questions by their reasoning step
count into buckets. Specifically, questions with shorter derivations (0, 1, 2, or 3 steps) are each
assigned their own bucket, while questions requiring four or more steps are merged into a single
”4+” bucket. This grouping scheme has two advantages: (i) it preserves granularity for very short
reasoning chains, which differ substantially in difficulty, and (ii) it avoids fragmentation of the long-
tail distribution of high-step examples, which are sparse and uneven across datasets. All curriculum
schedules and sampling strategies described in the main text are applied over these step-count
buckets.

A.3.4 ANSWER VERIFICATION PROCEDURE

Evaluating free-form reasoning outputs requires robust answer verification, as model predictions
may vary in surface form while being semantically correct. Our validation loop employs a four-
stage verification process:

1. Exact Match. We first check whether the predicted answer string exactly matches the
ground-truth string after normalization (e.g., case-folding and whitespace trimming).

2. Containment. If exact match fails, we check whether the normalized gold answer appears
as a substring within the model output. This captures predictions where the answer is
embedded in additional text.

3. Token-level F1. We compute token-level precision, recall, and F1 between the predicted
output and the gold answer. Predictions are accepted if the F1 score > 0.90, ensuring high
lexical overlap even under paraphrasing.

4. Semantic Similarity. Finally, we compute cosine similarity between SBERT embeddings
of the predicted answer and the gold answer. Predictions are marked correct if the similarity
score > 0.8.

A prediction is considered correct if it satisfies any of the four criteria. This layered procedure
provides robustness to surface-level variation while enforcing semantic fidelity to the ground-truth
answer.

For arithmetic datasets, we additionally use the math_verify library to parse, simplify, and
compare numeric expressions. This ensures that mathematically equivalent forms (e.g., “%”
vs. “1.5”) are treated as correct, even if their textual forms differ.

Finally, in our evaluation experiments (Section [4), when testing trained models on external
benchmarks via the LM Evaluation Harness (Srivastava et al., 2023)), we adapt the same four-stage
verification method (including thresholds and math_verify) to ensure consistency across training
validation and benchmark evaluation.

A.3.5 EVALUATION SETUP

All evaluations are conducted using the LM Evaluation Harness (Srivastava et al., 2023)). To ensure
consistency with our training validation, we adapt the same four-stage answer verification procedure
(Section @ including thresholds for token-level F1 and semantic similarity, as well as the use
of math_verify for numeric equivalence checking.

Multiple-choice tasks. For benchmarks originally framed as multiple-choice question answering
(e.g., StrategyQA, QASC, AQuA-RAT), we convert them into free-form generation tasks.
Specifically, we discard option letters and use the text of the correct option as the gold answer.
Model outputs are then evaluated against these free-form answers using the verification pipeline.

Contextual tasks. For tasks that provide long passages as context (e.g., MuSiQue, HotpotQA,
OpenBookQA), we extract only the sentences marked as relevant by dataset annotations and provide
these as the model’s context. This reduces context length while preserving all information necessary
to answer the question.

16

Under review as a conference paper at ICLR 2026

Metrics. We report pass@5 accuracy, where a prediction is considered correct if any of the top-
5 generated candidates passes verification. All reported results include the standard error (stderr)
across evaluation runs.

A.4 ADDITIONAL EXPERIMENT RESULTS

Table [5] and table [6] show the accuracies and standard error of the math reasoning and multi-hop
reasoning benchmarks.

Methods GSMSK AddSub ASDiv Multi-Arith SVAMP
OPT-1.3B

Base 3.7940.53 1.83£1.29 4.0540.79 2224110 5.69+1.34

CoTKD 27754123 9.1742.78 2023+1.62 63.3343.60 20.74+2.35

LoT (Ours) 31.16£1.28 33.03£4.53 41.75£1.99 68.334+3.48 38.461+2.82
OPT-2.7B

Base 3344049 1.83+1.29 4214081 3.33+134 6.69+1.45

CoTKD 31014127 8264265 2638+1.77 71.1143.39 19.06+2.28

LoT (Ours) 33.97+1.30 4037+4.72 45954201 80.56+2.96 44.1542.88
Pythia-1.4B

Base 2964047 0.00+0.00 4.85+0.87 1.67+096 8.03+1.57

CoTKD 26.00£121 3.67+1.81 21.36£1.65 59.44+3.67 19.73£2.31

LoT (Ours) 28.35+124 24.77+4.15 40.78+1.98 63.334+3.60 38.464+2.82
Pythia-2.8B

Base 3714052 1.83+1.29 6.63+1.00 4444154 9.70+1.71

CoTKD 3343+130 11.93+3.12 31.88£1.88 74444326 24.0842.48

LoT (Ours) 32.98+129 32.11+4.49 46.76+2.01 72.78+3.33 44.8242.88

Table 5: Pass@5 mean accuracy (%) and standard error on GSMS8K test split and four math
reasoning benchmarks.

Methods EntailmentBank QASC OpenbookQA StrategyQA MuSiQue
OPT-1.3B

Base 22.0+4.16 17.2£1.69 14.8+1.59 32.4+2.10 2.20£0.66

CoT KD 36.04+4.82 46.0+2.23 47.4+2.24 22.6+1.87 14.24+1.56

LOT (Ours) 41.04+4.94 52.8£2.23 43.6+£2.22 47.84+2.24 39.2+2.19
OPT-2.7B

Base 21.0£4.09 28.8+2.03 12.6£1.49 33.6+2.11 2.20£0.66

CoT KD 40.0+£4.92 56.242.22 46.0+2.23 54.04+2.23 43.64+2.22

LOT (Ours) 41.04+4.94 60.4£2.19 47.84£2.24 51.242.24 24.0+2.12
Pythia-1.4B

Base 13.043.38 45.042.23 342+2.12 24.4+1.92 12.0+£1.45

CoT KD 36.0+4.82 55.242.23 44.6+£2.23 36.4+2.15 42.04+2.21

LOT (Ours) 39.0+4.90 56.6+£2.22 36.8+2.16 53.2+2.23 39.2+2.19
Pythia-2.8B

Base 10.0+3.02 39.0+2.18 32.44+2.10 29.242.04 18.8+1.75

CoT KD 32.0+4.69 32.2+2.09 28.2+2.01 55.6+£2.22 42.242.21

LOT (Ours) 40.04+4.92 48.84+2.24 37.8+2.17 60.0+2.19 45.042.23

Table 6: Pass@5 mean accuracy (%) and standard error on EntailmentBank test split and four multi-

hop reasoning benchmarks.

A.5 PROGRESSIVE REWRITE PROMPTS

To construct progressive difficulty ladders, we prompted a rewrite model with carefully designed
instructions. Below we include the exact prompts used for each dataset to ensure reproducibility.

17

Under review as a conference paper at ICLR 2026

Depth GSMS8K AddSub ASDiv Multi-Arith SVAMP Average

0 10.46+0.84 6.42+2.36 9.22+1.16 17.78+£2.86 7.02+1.48 10.18
<1 30.55+1.27 26.61+£4.25 40.61+1.98 67.78+£3.49 27.76+2.59 38.66
<2 28.81£1.25 32.11+4.49 4822+2.01 71.11£3.39 42.81+2.87 44.61
<3 32.07£1.29 30.28+4.42 47.73£2.01 77.22£3.13 43.1442.87 46.09
All 31.16£1.28 33.03+£4.53 41.75£1.99 68.33£3.48 38.46+2.82 42.55

Table 7: Math reasoning benchmark performance across reasoning depths. Numbers are pass@5
mean accuracy (%) with standard error.

Method GSMSK AddSub ASDiv Multi-Arith SVAMP Average

Random 29.34+£1.25 27.52+430 32.69£1.89 66.67£3.52 31.774+2.70 37.60
Easy—Hard 28.96+1.25 31.194+446 42.39+1.99 61.67+3.63 40.47+2.84 40.94
Hard—Easy 21.38+1.13 5.50+2.19 11.33+1.28 56.67+3.70 6.69+1.45 20.31
Self-evolving 31.16£1.28 33.03£4.53 41.75£1.99 68.33£3.48 38.46+2.82 42.55

Table 8: Comparison of curriculum strategies on math reasoning benchmarks. Numbers are pass@5
mean accuracy (%) with standard error.

A.5.1 ENTAILMENTBANK PROMPT

You are an expert at reasoning question simplification.
I will provide you with a reasoning problem in JSON format that
contains:

- "instruction": the solving instruction
- "input": the context and question
- "output": the reasoning chain and final answer

Your task is to automatically generate a progressive difficulty ladder
of simplified versions of this problem.

Each new version should make the reasoning easier by moving more
intermediate conclusions (from the reasoning steps in the output)
directly into the input context.

Stop when the problem has become trivial (e.g., the final hypothesis
is already in the input).

For each version, also output the minimum number of reasoning steps
required to reach the final answer from that version’s input.

Treat a reasoning step as a necessary inferential move that derives a
new statement from previous facts/conclusions (e.g., one arithmetic
operation, one logical implication, one factual lookup from the
provided context).

Count merged paraphrases/restatements as 0 additional steps; do not
double-count trivially equivalent rewrites.

When multiple independent sub-derivations are needed before a final
combination, count each indispensable sub-derivation as one step.

The count must be a non-negative integer; use 0 for a trivial version
where the answer is directly stated in the input.

Ensure monotonic non-increase across versions (later versions should
never require more steps than earlier ones).

Guidelines:

1. Identify all intermediate conclusions (intl, int2, ...) in the
original reasoning chain.

2. Create Version 1 as the original (no added intermediates).

3. Then generate subsequent versions, each time inserting one or more
intermediates into the input.

4. You may decide the number of versions automatically | fewer if the
chain is short, more if it is long.

5. For each version, output in a fenced JSON code block with the

18

Under review as a conference paper at ICLR 2026

following keys:

- "instruction"
- n input "
- "answer" (string, the final answer to the problem)
— "reasoning" (string, the reasoning chain leading to the answer)
- "min_steps" (integer, the minimum number of steps to reach the
answer)
- "min_steps_note" (a short explanation explaining the count)
6. Precede each block with a Markdown label like:
Version N | [difficulty descriptor]
Then immediately follow with:
‘Y'Yjson

{ ...}

AURRRY

Goal: produce a set of progressively easier problems, where the solver
needs fewer reasoning steps at each level, and report the minimum
required steps for each version.

A.5.2 GSMS8K PrOMPT

You are an expert at math word problem simplification.
I will provide you with a math problem in JSON format that contains:

- "question": the text of the problem
- "answer": the worked-out reasoning and final numeric answer

Your task is to automatically generate a *progressive difficulty ladderx
of simplified versions of this problem.

Each new version should make the reasoning easier by moving more
intermediate results (from the solution steps in the answer) directly
into the problem statement.

Stop when the problem has become trivial (e.g., the final numeric answer
is already stated in the problem).

For each version, also output the xxminimum number of reasoning stepsx*x*
required to reach the final answer from that version’s problem statement.
- Treat a *reasoning step* as a necessary mathematical operation or
logical inference (e.g., one arithmetic operation, one fraction
simplification, one comparison).

- Do not double-count trivial rewrites or restatements.

— When multiple sub-calculations are required before combining, count
each indispensable sub-calculation as one step.

— The count must be a non-negative integer; use **x0xx when the answer
is already stated in the problem.

- Ensure the counts are *xxmonotonic non-increasingxx across versions
(later versions should never require more steps than earlier ones).

Guidelines:

1. Identify all intermediate results (e.g., partial sums,
multiplications, divisions) in the original worked-out solution.
2. Create *xVersion 1lx* as the original (no added intermediates).
3. Then generate subsequent versions, each time inserting one or more
intermediate results directly into the problem statement.
4. You may decide the number of versions automatically | fewer if the
chain is short, more if it is long.
5. For each version, output in a fenced JSON code block with the
following keys:
- "question" (string, the modified problem statement)
- "answer" (string, the final numeric answer only)
- "reasoning" (string, the reasoning steps leading to the answer)
- "min_steps" (integer, the minimum number of steps required)
"min_steps_note" (short explanation for the count)
6. Precede each block with a Markdown label like:

19

Under review as a conference paper at ICLR 2026

Version N | [difficulty descriptor]
Then immediately follow with:
\\‘json

{ ...}

ANANRY

Goal: produce a set of progressively easier GSM8K problems, where the
solver needs fewer reasoning steps at each level, and report the minimum
required steps for each version.

20

	Introduction
	Background
	Method: Ladders-of-Thought (LoT)
	Progressive Rewrites
	Difficulty Labeling via Step Definition
	Curriculum Construction

	Experiments
	Setup
	Main Results
	Ablation: Rewrite Depth
	Ablation: Curriculum Scheduling
	Discussion

	Related Works
	Conclusion
	Appendix
	Algorithms
	Dataset Statistics
	Experimental Setup Details
	Environment Details
	Hyperparameters
	Bucketing by Step Count
	Answer Verification Procedure
	Evaluation Setup

	Additional Experiment Results
	Progressive Rewrite Prompts
	EntailmentBank Prompt
	GSM8K Prompt

