
Making Text-Image Connection Formal and Practical

Carlos-Gustavo Salas-Flores, Dongmian Zou, and Luyao Zhang 1

Abstract
Text and image feature extraction is at the core
of several state-of-the-art artificial intelligence al-
gorithms, including DALLE-2, Stable Diffusion,
and Segment Anything. However, models that
connect images and texts are usually trained us-
ing hundreds of GPUs and tens or even hundreds
of millions of data points, making it infeasible for
most agents to perform the training from scratch.
Furthermore, these groundbreaking works neces-
sitate more formally defined algorithms to enable
easier adoption and implementation. To address
these issues, this paper elaborates on a formal
and intuitive algorithm for text-image connec-
tions and proposes an alternative to train CLIP,
a neural network model that learns joint represen-
tations from text and images, on low computing
resources. In our experimentation, two models
were trained on 85% of WKIT, a dataset of text-
image pairs, by making use of mixed precision in
back-propagation and shrinking the input images’
resolution and the query’s maximum length rela-
tive to the original CLIP in a setting constrained to
a single GPU. Our results show that it is not only
feasible to train image-text connection models
from scratch in this constrained setting but also
that reducing the input image resolution image
results in better accuracy for zero-shot classifica-
tion.

1. Introduction
CLIP (Contrastive Language-Image Pretraining), a neural
network that efficiently learns visual concepts from natu-
ral language supervision, has gained significant attention
recently. It is at the core of not only image synthesis algo-
rithms such as DALLE-2 (Ramesh et al., 2022) and Stable

1Data Science Research Center, Duke Kunshan Univer-
sity, Suzhou, Jiangsu, China. Correspondence to: Dongmian
Zou and Luyao Zhang <dongmian.zou@dukekunshan.edu.cn,
luyao.zhang@dukekunshan.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Diffusion (Rombach et al., 2022), but also segmentation
algorithms such as Segment Anything (Kirillov et al., 2023).
Furthermore, its general principle has also been adapted to
enable audio-text connections (Huang et al., 2022) for fea-
ture extraction in music generation (Agostinelli et al., 2023).
Therefore, it works as a multi-purpose deep learning model
that can be used for zero-shot predictions, geo-localization,
object detection, and a feature extractor to feed generative
models (Ramesh et al., 2022; Nichol et al., 2022).

Despite the effectiveness of CLIP, its training requires a
huge amount of computational resources. Most practitioners
need to rely on pre-trained models in their own applications.
This limits potential improvements of these models. To this
end, we propose a lightweight alternative to training CLIP,
with the aim to enable a broader range of researchers and
AI practitioners to implement CLIP for their own purposes.

The remaining sections of the paper are arranged as fol-
lows. Our motivation is elaborated in Section 2. The al-
gorithm and pseudo-code can be found in Section 3. Our
experimental setup is described in Section 4, immediately
followed by an analysis of the results in Section 5. Section 6
presents our conclusion. And our source code is available at
github.com/SciEcon/CLIP_implementation.

2. Motivation
Research Question 1: How does CLIP operate and what
are its underlying mechanisms? After more than 250 artifi-
cial intelligence papers on arXiv with CLIP in the title, as of
today, there is no formal algorithm for implementing CLIP.
Some build upon improvements in training and efficiency
(Li et al., 2023; Sun et al., 2023). However, just a handful
of them describes the model in mathematical language or
using diagrams (Chefer et al., 2022; Crowson et al., 2022;
Li et al., 2022; Singha et al., 2023; Wang et al., 2022; Zhu
et al., 2023) and only one describes a formal algorithm for
the training stage (Song et al., 2022). This work is meant to
fill this gap by providing the formal algorithm to implement
Text-Image connections.

Research Question 2: Can state-of-the-art models be
effectively trained from scratch using limited compu-
tational resources? As with many problems in engineer-
ing, there is a trade-off between memory use and speed.

Making Text-Image Connection Formal and Practical

CLIP’s original implementation focuses on memory saving
by using gradient checkpointing (Chen et al., 2016) and
half-precision statistics (Dhariwal et al., 2020). However,
these approaches slow down the training and reduce the
precision in backpropagation. We tackle this problem by
using a smaller image resolution and token sequence size,
and mixed-precision (Micikevicius et al., 2018).

Research Question 3: Can CLIP be trained effectively
with a reduced amount of data, or is a large-scale dataset
necessary for its training? By using a diverse enough
dataset, it might be possible to achieve significant results
with just a fraction of the data. We created WKIT (Salas-
Flores et al., 2023), a new dataset of 24 million text-image
pairs specifically made for tasks similar to Radford et al.
(2019).

3. Methodology
To carry out Text-Image connections, CLIP makes use of
three components: a Vision Transformer (ViT) as an im-
age encoder (Dosovitskiy et al., 2021), a Generative Pre-
Training (GPT) as a text encoder (Vaswani et al., 2017;
Liu et al., 2018; Radford et al., 2018; OpenAI, 2023), and
a multi-modal embedding (Radford et al., 2021). As pro-
posed by Phuong and Hutter (2022), the model is discussed
in formal algorithm form having Multihead Self-Attention
(MSA), and Layer Normalization (LN) as starting building
blocks.

3.1. Tokenization

CLIP receives text and images as inputs. Those texts are
queries describing the images. Similar to GPT2 and GPT3,
CLIP uses Byte-Pair Encoding (BPE), a sub-word tokenizer
that’s more flexible as it’s able to handle previously unseen
words (Sennrich et al., 2015; Radford et al., 2019; Brown
et al., 2020; Radford et al., 2021).

3.2. Transformer Layers

The unit block of both encoders is the Transformer Layer
g(f(·)). It consists of an MSA block f and a Multilayer
Perceptron (MLP) g, Layer Normalization (LN) is applied
before going through MSA and MLP. Specifically, the MSA
and MLP are given by

f(x|Mask) = MSA(LN(x)|Mask) + x, (1)

g(x) = GELU(xWh + bh)Wo + bo + x. (2)

This recursive call is shared across both kinds of layers,
with the only difference on the mask. The image encoder
uses a Transformer Encoder-only architecture (Devlin et al.,
2019), while the text encoder uses a Decoder-only architec-
ture (Radford et al., 2019) that forces each word to ignore

Algorithm 1 Vision Transformer (ViT)

Input: I ∈ RC×H×W , an image.
xp ← fr(I)
x← [xclass;Exp

1; ...;Exp
N] + Epos

for l = 1, ..., L do
x← g(f(x|MaskBID))

end for
y← g(xclass)
Return: y

all words coming after in the sentence. This is currently
the state-of-the-art in text generation (Touvron et al., 2023;
OpenAI, 2023; Anil et al., 2023).

3.3. Image Encoder

The image encoder is a Vision Transformer (ViT) and it fol-
lows the same implementation as the original work (Doso-
vitskiy et al., 2021). An image I ∈ RC×H×W comes as
input, and is transformed into a sequence of N = WH/P 2

non-overlapping flattened patches xp ∈ RN×P 2C of reso-
lution (P, P), we call this transformation fr; in addition,
a [class] token xclass is prepended a the beginning of
this sequence resulting in an effective sentence length size
of ℓimage = N + 1. This sequence passes through L lay-
ers of Transformer Encoders with a bidirectional mask:
MaskBID = 1. Finally, only the output corresponding to
the class token is considered when extracting the features,
not before passing through a bilayer perceptron. We sum-
marize the ViT in Algorithm 1.

3.4. Text Encoder

The text encoder is a Transformer Decoder-only architec-
ture, similar to that used in GPT models (Radford et al.,
2019; Brown et al., 2020). The input is a sequence of token
IDs. Each sequence is enclosed by [SOS] and [EOS] to-
kens; zero padding and truncation are applied accordingly
to guarantee a sequence of size ℓtext. Each token T [t] has
a corresponding embedding Etkn[:, T [t]] as well as a posi-
tion embedding Eposs[:, t], these are added together and fed
to the GPT encoder. It also takes a unidirectional mask:
MaskUND[t

′, t′′] = 1[t′ ≤ t′′]. This allows each word to
ignore all words coming after. The GPT model takes a fixed
sequence of words ℓt and passes them through Lt layers
of Transformer Decoders. The output corresponding to the
[EOS] token is considered as the feature representation of
the text after applying Layer Normalization. We describe
the GPT model in Algorithm 2.

3.5. Multi-modal Embedding

The last module is the core of CLIP, it projects the text and
image features onto the same two-dimensional space. This

Making Text-Image Connection Formal and Practical

Algorithm 2 Generative Pre-Training (GPT)

Input: T , a sequence of token IDs s.t. T [t] ∈ V .
∀t,x← Etkn[:, T [t]] + Epos[:, t]
for l = 1, ..., L do
x← g(f(x|MaskUND))

end for
y← LN(xeos)
Return: y

Algorithm 3 CLIP

Input: I ∈ RN×C×H×W a batch of N images.
Input: T, a batch of N sequences of token IDs.
∀n, Infe ← ViT(In)Ei

∀n, Tn
fe ← GPT(Tn)Et

∀i∀j, Z img
i,j ← SC(I

i
fe, T

j
fe)

Z text ← (Z img)T

Return: Zimg, Ztext

module is dependent on the batch size as it connects N
image and query features and computes their cosine simi-
larities. First, for an arbitrary image I ′, the image encoder
returns the features ViT(I ′) = I ′f as output, similarly, the
text encoder returns the features GPT(T ′) = T ′

f for an ar-
bitrary query text T ′. Since these features have different
corresponding dimensions, they are then projected onto the
same space Rdmme using embeddings Ei and Et for images
and text features accordingly. Lastly, we compute their
cosine similarities as

SC(I
′
fe, T

′
fe) =

I ′fe · T ′
fe

∥I ′fe∥2∥T ′
fe∥2

. (3)

3.6. Optimization

The objective of the loss function is to maximize the scaled
cosine similarities across the main diagonal Z img

1,1 , ..., Z
img
N,N ,

this will be pulling together all similar pairs, while simulta-
neously pushing apart those that are different. We describe
the loss function as follows. First, an image-to-text loss for
a single pair is calculated as

ℓ(I→T)
n (Z img) = − log

exp(Z img
n,n/τ)∑N

k=1 exp(Z
img
n,k/τ)

. (4)

Then, the text-to-image loss for a single pair follows the
same form with Z text = (Z img)T as the input. That is,

ℓ(T→I)
n (Z text) = − log

exp(Z text
n,n/τ)∑N

k=1 exp(Z
text
n,k/τ)

. (5)

We remark that both equations (4) and (5) take a learnable
temperature parameter τ . Finally, the average loss across all

N pairs is calculated as follows (Zhang et al., 2022):

L(Z img, Z text; θ) =
1

2
E
[
ℓ(I→T)
n (Z img) + ℓ(T→I)

n (Z text)
]
.

(6)

3.7. Low-Resource From-Scratch Training

The original setup of CLIP made it seem impossible to run
any model on a single GPU. However, three main steps were
taken to accelerate training and improve accuracy.

Shrinked Inputs. One of the first steps that quickly reduced
the model’s size was to shrink the size of the input image
and the query’s maximum length as previous work showed
its effectiveness (Li et al., 2023).

Eliminate Checkpointing. Radford et al. (2023) use check-
pointing (Chen et al., 2016) to save memory, however, in
our experiments, such savings in memory did not compen-
sate for the longer training time so we decided to proceed
without it to accelerate the training stage.

Mixed-precision. Different from the original paper, instead
of using mixed-precision for the forward and backward
stages, we only implement it in the feed-forward stage to
improve the precision in calculating the weights (Radford
et al., 2021).

4. Experimental Setup
4.1. Data

Prior to CLIP, existing datasets such as COCO (Lin et al.,
2015) and Visual Genome (Krishna et al., 2016) were too
small for the given task and YFCC100M (Thomee et al.,
2016) did not meet OpenAI’s requirements. Later, Shrinav-
itsan et al. (2021) introduced WIT, which closely resembles
WQI and includes multiple languages but it falls short in
terms of image samples with only 11.5 million unique im-
ages.

Therefore, we created a new training dataset specifically
for this task consisting of 24 million images named WKIT
(Salas-Flores et al., 2023). Similar to the original work,
14M Wikipedia English pages were scrapped to collect all
words occurring more than 100 times resulting in ∼ 50,000
labels. From those, at most 10,0000 images per label were
scrapped from unsplash.com. We used approximately
85% of the data (∼ 21 million images) to train the following
two models.

4.2. Model Implementation

Two variants of this model were implemented from scratch
following the formal algorithm described in Algorithm 3.

Both models are essentially the same, but the large one
(ViT-B/32@224) takes a 224×224 image with a patch of

unsplash.com

Making Text-Image Connection Formal and Practical

resolution P = 32, while the small one (ViT-B/16@112)
takes a 128×128 one with a patch of resolution P = 16.
The first is the smallest model used in (Radford et al., 2021)
while the second one, with the reduced input resolution,
results in∼80% the size (in terms of the number of trainable
parameters).

The GPT encoder consists of 12 layers, 8 heads, a 2048
feed-forward size, and a 512 width while the ViT encoder
uses 12 layers, 12 heads, a 3072 feed-forward size, and a
768 width. We recall that in both cases the maximum length
of the query was shrunk from 76 to 32 tokens each time as
well.

4.3. Training

The training was carried out on a virtual machine using a
single RTX TITAN X. Both models were trained on a batch
of 128 pairs over 4 epochs. Optimization was performed
using Adam Optimizer with weight decay β1 = 0.9 and
β2 = 0.99 and warmup iterations for 2,000 steps up to a
learning rate of 5× 10−4. The learnable temperature value
τ was initialized at 0.07 and clipped at a minimum of 0.01
and a maximum of 100.

5. Results and Analysis
Figure 1 shows the loss of training in both approaches. We
have the following two observations. Firstly, both models
show very similar behavior throughout the training process,
this could be because they use the same architecture and
the input dimension is not affecting the learning process.
Secondly, the variance for the training loss shows to be very
high towards the end which might imply a higher bias with
each step towards the last part of the training. For a more
elaborate discussion refer to Appendixes A, B, C, D, and E.

Figure 1. Training Loss Comparison for CLIP Models with ViT-
B/32@224 and ViT-B/16@112 Architectures. This figure show-
cases the training loss comparison between ViT-B/32@224 and
ViT-B/16@112 architectures. The x-axis represents the training
iterations (steps), while the y-axis represents the loss.

Table 1. CLIP Zero-shot Classification Accuracy (%) Assessment
by model.

DATASET B/32@224 B/16@112 RANDOM

CIFAR-10 17.89 19.45 ∼ 10.0
CALTECH101 2.21 2.58 ∼ 1.0
IMAGENET 0.16 0.20 ∼ 0.1

5.1. Zero-shot classification

Now, when it comes to zero-shot classification we find a
few limitations, as noted in Table 1, the largest model is still
far from achieving at least a 50% accuracy in two standard
datasets such as CIFAR-10, ImageNet, and Caltech. Yet, it
does confirm that such results are not just random. Thus,
reasserting that it has learned to extract key features of text
and images.

Nevertheless, to our surprise, the smaller model shows better
results in performing zero-shot classification on all tested
datasets. We made sure to run these tests several times to
ensure the reliability of our results. We can observe about a
1.5 % difference in CIFAR-10, almost 0.4% in Caltech101,
and a 0.04% difference in ImageNet. For more details on
zero-shoot classification see Appendix B.

6. Conclusion and Future Research
This paper shows the feasibility of training a state-of-the-art
text-image connections algorithm from scratch by using very
limited computational resources at the training stage. It also
carefully shows a full description in the formal algorithmic
form of CLIP which we plan to later modify, scale, fine-tune,
and so forth for more specific or general purposes according
to the needs of the situation.

We demonstrate that reducing the input size does not nec-
essarily affect the performance of the model. If we adjust
the patch size accordingly, it can actually improve its per-
formance. We further show that the results obtained have
been able to identify different elements in an image which,
though has its limitations for classification tasks, may be
useful in feature extraction for generative models. Further
research may shed light on this task.

In conclusion, our findings show that while employing mul-
tiple GPUs can provide significant advantages, they are not
indispensable. The primary motivation for utilizing these
extensive computational resources is to handle vast amounts
of data in a very short time. However, we have demonstrated
that by reducing the size of the models, downsampling the
input image, and selecting a sufficiently diverse, yet rela-
tively small dataset, it remains feasible to train CLIP from
scratch on a single RTX TITAN X.

Making Text-Image Connection Formal and Practical

References
Agostinelli, A., Denk, T. I., Borsos, Z., Engel, J., Verzetti,

M., Caillon, A., Huang, Q., Jansen, A., Roberts, A.,
Tagliasacchi, M., Sharifi, M., Zeghidour, N., and Frank,
C. Musiclm: Generating music from text, 2023.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D.,
Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z.,
Chu, E., Clark, J. H., Shafey, L. E., Huang, Y., Meier-
Hellstern, K., Mishra, G., Moreira, E., Omernick, M.,
Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang,
Y., Abrego, G. H., Ahn, J., Austin, J., Barham, P., Botha,
J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M.,
Cheng, Y., Cherry, C., Choquette-Choo, C. A., Chowd-
hery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S.,
Devlin, J., Dı́az, M., Du, N., Dyer, E., Feinberg, V., Feng,
F., Fienber, V., Freitag, M., Garcia, X., Gehrmann, S.,
Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H., Hou,
L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard, M., It-
tycheriah, A., Jagielski, M., Jia, W., Kenealy, K., Krikun,
M., Kudugunta, S., Lan, C., Lee, K., Lee, B., Li, E., Li,
M., Li, W., Li, Y., Li, J., Lim, H., Lin, H., Liu, Z., Liu,
F., Maggioni, M., Mahendru, A., Maynez, J., Misra, V.,
Moussalem, M., Nado, Z., Nham, J., Ni, E., Nystrom, A.,
Parrish, A., Pellat, M., Polacek, M., Polozov, A., Pope,
R., Qiao, S., Reif, E., Richter, B., Riley, P., Ros, A. C.,
Roy, A., Saeta, B., Samuel, R., Shelby, R., Slone, A.,
Smilkov, D., So, D. R., Sohn, D., Tokumine, S., Valter,
D., Vasudevan, V., Vodrahalli, K., Wang, X., Wang, P.,
Wang, Z., Wang, T., Wieting, J., Wu, Y., Xu, K., Xu, Y.,
Xue, L., Yin, P., Yu, J., Zhang, Q., Zheng, S., Zheng,
C., Zhou, W., Zhou, D., Petrov, S., and Wu, Y. Palm 2
technical report, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chefer, H., Benaim, S., Paiss, R., and Wolf, L. Image-based
clip-guided essence transfer, 2022.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost, 2016.

Crowson, K., Biderman, S., Kornis, D., Stander, D., Halla-
han, E., Castricato, L., and Raff, E. Vqgan-clip: Open
domain image generation and editing with natural lan-
guage guidance, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, I. Jukebox: A generative model for music,
2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M.,
Schubert, L., Radford, A., and Olah, C. Multimodal
neurons in artificial neural networks. Distill, 6(3):e30,
2021.

Huang, Q., Jansen, A., Lee, J., Ganti, R., Li, J. Y., and Ellis,
D. P. W. Mulan: A joint embedding of music audio and
natural language, 2022.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma,
D. A., Bernstein, M. S., and Li, F.-F. Visual genome: Con-
necting language and vision using crowdsourced dense
image annotations, 2016.

Li, J., Shakhnarovich, G., and Yeh, R. A. Adapting clip for
phrase localization without further training, 2022.

Li, R., Kim, D., Bhanu, B., and Kuo, W. Reclip: Resource-
efficient clip by training with small images, 2023.

Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and
Dollár, P. Microsoft coco: Common objects in context,
2015.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R.,
Kaiser, L., and Shazeer, N. Generating wikipedia by
summarizing long sequences, 2018.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training,
2018.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide: To-
wards photorealistic image generation and editing with
text-guided diffusion models, 2022.

OpenAI. Gpt-4 technical report, 2023.

Phuong, M. and Hutter, M. Formal algorithms for trans-
formers, 2022.

Making Text-Image Connection Formal and Practical

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision, 2021.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models, 2022.

Salas-Flores, C.-G., Zou, D., and Zhang, L. Replica-
tion Data for: Making Text-Image Connection Formal
and Practical, 2023. URL https://doi.org/10.
7910/DVN/PKEGOX.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. arXiv
preprint arXiv:1508.07909, 2015.

Singha, M., Jha, A., Solanki, B., Bose, S., and Banerjee, B.
Applenet: Visual attention parameterized prompt learning
for few-shot remote sensing image generalization using
clip, 2023.

Song, H., Dong, L., Zhang, W.-N., Liu, T., and Wei, F. Clip
models are few-shot learners: Empirical studies on vqa
and visual entailment, 2022.

Srinivasan, K., Raman, K., Chen, J., Bendersky, M., and
Najork, M. WIT: Wikipedia-based image text dataset
for multimodal multilingual machine learning. In Pro-
ceedings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval. ACM, jul 2021. doi: 10.1145/3404835.3463257.
URL https://doi.org/10.1145%2F3404835.
3463257.

Sun, Q., Fang, Y., Wu, L., Wang, X., and Cao, Y. Eva-clip:
Improved training techniques for clip at scale, 2023.

Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni,
K., Poland, D., Borth, D., and Li, L.-J. YFCC100m.
Communications of the ACM, 59(2):64–73, jan 2016.
doi: 10.1145/2812802. URL https://doi.org/10.
1145%2F2812802.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017.

Wang, Z., Liu, W., He, Q., Wu, X., and Yi, Z. Clip-gen:
Language-free training of a text-to-image generator with
clip, 2022.

Zhang, Y., Jiang, H., Miura, Y., Manning, C. D., and Lan-
glotz, C. P. Contrastive learning of medical visual rep-
resentations from paired images and text. In Machine
Learning for Healthcare Conference, pp. 2–25. PMLR,
2022.

Zhu, X., Zhang, R., He, B., Zhou, A., Wang, D., Zhao, B.,
and Gao, P. Not all features matter: Enhancing few-shot
clip with adaptive prior refinement, 2023.

https://doi.org/10.7910/DVN/PKEGOX
https://doi.org/10.7910/DVN/PKEGOX
https://doi.org/10.1145%2F3404835.3463257
https://doi.org/10.1145%2F3404835.3463257
https://doi.org/10.1145%2F2812802
https://doi.org/10.1145%2F2812802

Making Text-Image Connection Formal and Practical

A. Sample Text-Image Connections Analysis
Figure 2 reports the cosine similarities from 7 (out of sam-
ple) text-image pairs. While not perfect, it shows very
reasonable results and a capability of generalizing certain
concepts. From this sample, we can appreciate that con-
trasting concepts are being pulled apart, for instance, the
largest model is able to predict that the concept of ”a red
toy truck” is very different from that of ”a gray sky” or ”a
glass of water”. Similarly, it also learned that an image of
”a blue motorcycle” is very different in concept from that of
”a plant”.

However, the model still makes some misconceptions, for
instance, it wrongly connects the concept of ”a glass of
water” as more similar to an image of ”a remote and a
brush” than the actual image. Nonetheless, it is notable to
outstanding that the results of this demonstration are similar
to those of the original work.

Figure 2. Sample text-Image cosine similarities. Test carried out
on ViT-B/16 @ 224px.

B. Zero-shot Classification Accuracy Across
Training Stages

Figures 3, 4 and 5 show that the smallest model is con-
sistently better at performing zero-shot classifications on
these three different datasets. Additionally, it shows that
the smallest model decreases in performance in at least two
datasets, namely, CIFAR-10 and Caltech101. This possibil-
ity is further elaborated in Appendix C.

Figure 3. Zero-shot Classification Accuracy on CIFAR-10. The
red line represents ViTB/32@224 while the blue one represents
ViTB/32@112.

Figure 4. Zero-shot Classification Accuracy on Caltech101. The
red line represents ViTB/32@224 while the blue one represents
ViTB/32@112.

Figure 5. Zero-shot Classification Accuracy on ImageNet. The
red line represents ViTB/32@224 while the blue one represents
ViTB/32@112.

Making Text-Image Connection Formal and Practical

C. Cosine similarities analysis across stages of
training

Results in Figures 6 and 7 show that while the models be-
come maybe less accurate across time, they increase their
confidence in contrasting different concepts. We observe,
for instance, that the range of values for cosine similarities
is smaller in figure 6 than in figure 7.

Figure 6. Sample cosine similarities for ViTB@224 after one
epoch.

Figure 7. Sample cosine similarities for ViTB@224 after 3 epochs.

D. Typographic Attacks
In their paper, Goh et al. (2021) show that CLIP’s zero-shot
classification capabilities are prone to attacks that trick the
algorithm to think photos with written text are things that
are not. We also use this opportunity to analyze the cosine
similarities between related and unrelated concepts.

Figure 8 show that all typographically attacked images result
in non-sense results, what is worth noticing is that there is no
caption that turns off these images, it seems to have heavily
flawed the images just as previous works show (Goh et al.,
2021).

Figure 8. Images analysed by ViTB/32@224px under typographic
attack.

Making Text-Image Connection Formal and Practical

E. Assesement on Cosine Similarities for
Classification tasks

We recognize some bias on very popular objects which are
recognized more easily or not easily fooled. When different
images share similar components such as a display as in
the case of a computer, an iPhone, and a TV, the model
classifies them as more similar to each other. However, it’s
still worth noticing that it can make some misjudgments e.g.
in figure 9 in Appendix D it concludes that ”a papaya fruit”
and ”an apple fruit” are closer in concept to the image of an
iPhone than ”a TV”.

Figure 9. Sample of images analyzed by ViTB/32@224px.

