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ABSTRACT

Deep learning has dramatically changed the way data scientists and engineers craft
features – the once tedious process of measuring and constructing can now be
achieved by training learnable representations. Recent work shows pretraining
can endow representations with relevant signals, and in practice they are often
used as feature vectors in downstream models. In real-world production, however,
we have encountered key problems that cannot be justified by existing knowl-
edge. They raise concerns that the naive use of pretrained representation as feature
vector could lead to unwarranted and suboptimal solution. Our investigation re-
veals critical insights into the gap of uniform convergence for analyzing pretrained
representations, their stochastic nature under gradient descent optimization, what
does model convergence means to them, and how they might interact with down-
stream tasks. Inspired by our analysis, we explore a simple yet powerful approach
that can refine pretrained representation in multiple ways, which we call Featur-
izing Pretrained Representations. Our work balances practicality and rigor, and
contributes to both applied and theoretical research of representation learning.

1 INTRODUCTION

The ability of neural networks to learn predictive feature representation from data has always fas-
cinated practitioners and researchers (Bengio et al., 2013). The learnt representations, if proved
reliable, can potentially renovate the entire life cycle and workflow of industrial machine learn-
ing. Behind reliability are the three core principles for extracting information from data, namely
stability, predictability, and computability (Yu, 2020). These three principles can not only justify
the practical value of learnt representation, but also lead to the efficiency, interpretability, and repro-
ducibility that are cherished in real-world production. Since pretrained representations are optimized
to align with the given task, intuitively, they should satisfy all three principles in a reasonable set-
ting. However, when productionizing an automated pipeline for pretrained representations in an

Figure 1: Illustrating the stability issue of pretrained representation with MovieLens-1m. The details of the
experiments are deferred to Appendix F. The empirical variances are computed from ten independent runs.

industrial system, we encountered key problems that cannot be justified by existing knowledge. In
particular, while the daily refresh follows the same modelling and training configurations and uses
essentially the same data1, downstream model owners reported unexpectedly high fluctuations in

1Since the pretraining uses years of history data, the proportion of new daily data is quite small.
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performance when retraining their models. For illustration purpose, here we reproduce the issue
using benchmark data, and take one further step where the pretraining is repeated on exactly the
same data, under the same model configuration, training setup, and stopping criteria. We imple-
ment ten independent runs to essentially generate the i.i.d versions of the pretrained representation.

We first visualize the dimension-wise empirical variances of the pre-
trained representations, provided in Figure 1a. It is surprising to find
out that while the pretraining losses almost converge to the same value
in each run (Figure 1b), there is such a high degree of uncertainty about
the exact values of each dimension. Further, in Figure 1c, we observe
that the uncertainty (empirical variance) of pretrained representation will
increase as the pretraining progresses. In the downstream task where pre-
trained representations are used as feature vectors (see the right figure),
we observe that the performance does fluctuate wildly from run to run.
Since we use logistic regression as the downstream model, the fluctua-
tion can only be caused by the instability of pretrained representations because we can effectively
optimize the downstream model to global optimum. To demonstrate that the above phenomenon is
not caused by using a specific model or data, we also experiment with a completely different pre-
training model and benchmark data from from another domain. We perform the same analysis, and
unfortunately the same issues persist (Figure A.1 in the Appendix).

Existing deep learning theory, both the convergence and generalization results (we will discuss them
more in Section 2), can fail to explain why shall we expect pretrained representation to work well
in a downstream task when their exact values are so unstable. This is especially concerning for
industrial systems as the issue can lead to unwarranted and suboptimal downstream solutions. We
experienced this issue firsthand in production, so we are motivated to crack the mysteries behind pre-
trained representations, and understand if and how their stability can be improved without sacrificing
predictability and computability. We summarize our contributions as below.

• We provide a novel uniform convergence result for pretrained representations, which point out
gaps that relate to the stability and predictability issues.

• We break down and clarify the stability issue by revealing the stochastic nature of pretrained
representation, the convergence of model output, and the stable and unstable components involved.

• We investigate the interaction between pretrained representation and downstream tasks in both
parametric and non-parametric settings, each revealing how predictability can benefit or suffer
from stability (or instability) for particular usages of pretrained representations.

• We discuss the idea of featurizing pretrained representation, and propose a highly practical so-
lution that has nice guarantees and balances stability, predictability, and computability. We also
examine its effectiveness in real-world experiments and online testings.

2 RELATED WORK

It is not until recent years that deep learning theory sees major progress. Zhang et al. (2016) observed
that parameters of neural networks will stay close to initialization during training. At initialization,
wide neural networks with random weights and biases are Gaussian processes, a phenomena first
discussed by Neal (1995) and recently refined by Lee et al. (2017); Yang (2019). However, they
do not consider effect of optimization. The Neural Tangent Kernel provides a powerful tool to
study the limiting convergence and generalization behavior of gradient descent optimization (Jacot
et al., 2018; Allen-Zhu et al., 2019), but it sometimes fails to capture meaningful characteristics of
practical neural networks (Woodworth et al., 2020; Fort et al., 2020). However, those works require
parameters being close to initialization, in which useful representation learning would not take place.

Indeed, it has also caught to people’s attention that representation learning can go beyond the neural
tangent kernel regime (Yehudai & Shamir, 2019; Wei et al., 2019; Allen-Zhu & Li, 2019; Malach
et al., 2021), among which a line of work connects the continuous-time training dynamics with mean
field approximation (Mei et al., 2018; Sirignano & Spiliopoulos, 2020), and another direction is to
study the lazy training regime (Chizat et al., 2019; Ghorbani et al., 2019) where only the last layer of
a neural network is trained. Unfortunately, their assumed training schemas all deviate from practical
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representation learning. Still, part of our analysis in Section 4.2 can be viewed as a practical discrete-
time extension of the mean-field method. Perhaps the most practical setting for studying pretrained
representation is Arora et al. (2019), which analyzes the contrastive representation learning under
a particular data generating mechanism. However, their results do not generalize to broader setting,
and they cannot justify the stability issue of pretrained representation.

3 PRELIMINARIES

Notations. We use x ∈ X ⊆ Rd0 and y ∈ R to denote the raw feature and outcome, upper-
case letters to denote random variables and measures, and bold-font letters to denote matrices. Let
h : X → Rd be the representation hypothesis, and f : Rd → R be the prediction hypothesis. The
hypothesis classes are given by H and F respectively. Denote by ◦ the operator for function compo-
sition, and ℓ : R×R → [0, 1] the loss function. We assume ℓ is 1-Lipschitz without loss of generality.
Then the risk for a pair of (h ∈ H, f ∈ F) is given by: R(h, f) := E(X,Y )∼P

[
ℓ
(
f ◦ h(X), Y

)]
,

where P is a measure on (X ,R). We also use Pn to denote the corresponding product measure for
(X1, Y1), . . . , (Xn, Yn).

The one-layer multi-layer perceptron (MLP) is perhaps the most fundamental representation learning
model, given by: f ◦ h(x) = Θσ(Wx). Here, σ is the activation function, and W ∈ Rd0×d,
Θ ∈ Rd×k. We mention that adding the bias terms will not affect our analysis, so we drop them here
for brevity. In practice, Θ and W are often initialized as scaled i.i.d Gaussian random variables
that follow N(0, 1/d). We will use such as [W ]i to denote the ith row of a matrix. The popular
contrastive representation learning can also be considered as a special case of this configuration2.

Define the shorthand g(x) := Θσ(Wx). A typical pretraining process involves optimizing the risk
function defined for pretraining and extracting the hidden representation. The optimization is done
via stochastic gradient descent (SGD), e.g. W(t+1) = W(t)−α∇Wℓ(g(x(t)), y(t)), where α is the
learning rate. For convenience, we consider each mini-batch having one random sample, denoted
by (x(t), y(t)) that corresponds to the tth step.

Given a representation hypothesis h, we define: fh,n := argminf∈F 1/n
∑n

i=1 ℓ
(
f(h(xi), yi

)
. In

the sequel, how well fh,n ◦ h can generalize to a new i.i.d sample of the downstream task is:
R(h) := E(X,Y )∼PEPn

[
ℓ
(
fh,n ◦ h(X), Y

)]
,

where the second expectation EPn is taken with respect to the downstream data {Xi, Yi}ni=1 under-
lying fh,n. Its empirical version is given by Rn(h) := 1/n

∑
i

[
ℓ
(
fh,n ◦ h(Xi), Yi

)]
.

4 MAIN ANALYSIS

4.1 THE GAP OF UNIFORM CONVERGENCE FOR PRETRAINED REPRESENTATION

Suppose h and f are optimized jointly (end-to-end) via empirical risk minimization (ERM), which
amounts to solving: argminh∈H,f∈F 1/n

∑
i ℓ(f ◦ h(xi), yi). In this setting, the generalization

behavior of the solution well-studied. In particular, using the notion of Gaussian (or Rademacher)
complexity3, the generalization error can be bounded by O

(
Gn(F ◦ H)/n +

√
(log 1/δ)/n

)
with

probability at least 1− δ (Bartlett & Mendelson, 2002). This result, known as uniform convergence,
is especially appealing because it both includes problem-specific aspects and applies to all functions
in the composite hypothesis class F ◦ H := {f ◦ h : f ∈ F , h ∈ H}.

Is it possible to achieve a comparable result for pretrained representation? Perhaps the most ideal
setting for uniform convergence to hold under pretrained representation is:

C1: the pretraining and downstream training will use the same data {(Xi, Yi)}ni=1, i.e. ĥ, f̂ :=

argminh∈H,f∈F
1
n

∑n
i=1 ℓ

(
f ◦ h(Xi), Yi

)
, fĥ,n = argminf∈F

1
n

∑n
i=1 ℓ

(
f(ĥ(Xi), Yi

)
.

2We can simply set xi ∈ Rn as one-hot encodings, and W,Θ ∈ Rd0,d where they are allowed to coincide.
Then we let h(xi) = [W]i or [Θ]i depending on the context. The activation becomes the identity function,
and ℓ(f(xi), xj) = log(1−σ(h(xi)

Th(xj))) (or log σ(h(xi)
Th(xj)), with σ(·) being the Sigmoid function.

3We will use Gaussian complexity G(·) here for some of its technical convenience. Then we let Gn be the
empirical Gaussian complexity. See Appendix A for detail.
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C2: they rely on the same prediction function class F .

These two conditions essentially eliminate the confounding effects of model and data mismatch.
Thus, if uniform convergence cannot hold in this setting, it is unlikely to serve more general use
cases. We first summarize the common intuition behind why pretrained representation might work:

• the pretraining objective, when well-designed, reasonably predicts the empirical downstream risk
for fh,n (intuition 1);

• fh,n’s empirical downstream risk can be generalized to the true downstream risk (intuition 2).

These two intuitions have also been exemplified for contrastive representation learning in Arora et al.
(2019) and its following work. Our main contribution here is to make the above intuitions rigorous,
and reveal whether they are indeed sufficient for uniform convergence in general settings.

Recall that, given the complete information on a downstream task, the best we can do is:
minh∈H,f∈F R(h, f). We denote the representation hypothesis that achieves this minimum by h∗.
Let ĥ be given in C1. Then the generalization error is simply given by: R(ĥ)−minh∈H,f∈F R(h, f).
Following the standard derivation which decomposes the generalization error and takes the supre-
mum to upper bound each term, we run into terms that exactly characterize the above two intuitions.
As we show in Appendix B, it holds that:

R(ĥ)− min
h∈H,f∈F

R(h, f)

≤ sup
h

{
EPnRn(h)−Rn(h)

}
+ sup

h
EPn

[
E(X,Y )∼P

[
ℓ
(
fh,n ◦ h(X), Y

)
−Rn(h)

]]
+ remainder,

where the first term suph
{
EPnRn(h) − Rn(h)

}
exactly seeks to match intuition 1, and the

second term can be further upper bounded using: E(X,Y )∼P

[
ℓ
(
fh,n ◦ h(X), Y

)
− Rn(h)

]
≤

supf
{
E(X,Y )∼P

[
ℓ
(
f ◦ h(X), Y

)
− Rn(h)

]}
, which underlies intuition 2. The remainder terms

can be bounded using standard concentration results.

However, we also spot a critical issue with the first term, and we first expand it for clarity:

sup
h

{
EPn

[ 1
n

∑
i

ℓ
(
fh,n ◦ h(Xi), Yi

)]
− 1

n

∑
i

ℓ
(
fh,n ◦ h(Xi), Yi

)}
.

Notice that this is not the typical empirical process encountered in a standard generalization setting,
and we show that its upper bound is actually given by O

(
Gn(H)/

√
n +

√
log 1/δ

)
following the

same procedure as Bartlett & Mendelson (2002). Compared with the standard generalization bound,
here the slack term

√
log 1/δ does not vanish as we increase n. Therefore, there exist gaps between

common intuitions and achieving uniform convergence. Before we discuss the cause of the gaps and
its implications, we first present the complete result as below.
Proposition 1. Let G′

n(·) be a slightly modified Gaussian complexity term. Under the conditions
and definitions in C1 and C2, it holds with probability at least 1− δ that:

R(ĥ)− min
h∈H,f∈F

R(h, f) ≲
Gn(H)√

n
+

G′
n(F) suph

√
E∥h(X)∥22√

n
+

√
log 1/δ.

The proof is deferred to Appendix B. Proposition 1 can be viewed as a ”no free lunch” result for
using pretrained representation: even in the most ideal setting we study here, uniform convergence
cannot be expected for all representation hypothesis. The gap is that not for every h ∈ H can the
pretraining objective be predictive of fh,n’s empirical downstream risk. Imagine a entirely random
h̃. Then both its pretraining objective and the empirical downstream risk of fh̃,n may have high
variances that do not scale with n. Thus the prediction will not concentrate whatsoever.

Takeaway. The implications of this gap are two folds. Firstly, it does not suffice to only study H and
the data distribution – the statistical and algorithmic convergence properties of ĥ(X) could be more
relevant as they suggest its stability. Secondly, we cannot take the performance of fĥ,n for granted,

at least not without understanding how ĥ(X) interacts with the downstream learning and generates
fĥ,n – which ultimately relates to its predictability. Unfortunately, we find a lack of discussion on
these two issues in existing literature, so we will investigate them in the next two sections.
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4.2 STOCHASTIC NATURE OF PRETRAINED REPRESENTATION, AND THE CONVERGENCE OF
PRETRAINING MODEL

In this section, we reveal two important statistical and algorithmic properties of pretrained repre-
sentation. We show that while they persist as random vectors during SGD optimization (as shown
in Figure 1), the output of the pretraining model can be deterministic and converge to some optimal
solution. Two contributing factors are scaled i.i.d initialization and the inductive bias of gradient
descent. Our findings provide critical insight to the stability of pretrained representations.

We motivate our statistical analysis by deriving the optimization path of the one-layer MLP intro-
duced in Section 3. For notation convenience, we introduce Θ̃ and W̃ as the rescaled version of Θ
and W such that Θ̃(0),W̃(0) i.i.d∼ N(0, 1). We let ℓ′(g(x), y) be the derivative of the loss function
and similarly for other functions. In contrast to the existing theoretical work that studies optimiza-
tion path under gradient flow or infinitesimal learning rate, we fix the learning rate as α = 1 to
reflect real-world practice. The output dimension is also set to k = 1 without loss of generality.

In the first forward pass, since σ(W(0)x(0)) has i.i.d coordinates, as d → ∞ it holds that:

g(0)(x(0)) :=
1

d

d∑
i=1

[
Θ̃(0)

]
i

[
σ
(
W̃(0)x(0)

)]
i

a.s.−→ EΘ(0)σ
(
W (0)x(0)

)
(denote by g

(0)
∗ (x(0))),

where we use Θ(t),W (t) to denote an i.i.d element (or row) of Θ̃(t) and W̃(t). As a result,
ℓ′
(
g(0)(x(0)), y(0)

)
also converges to the deterministic value L(0) := ℓ′

(
g
(0)
∗ (x(0)), y(0)

)
. Then

in the first backward pass, the updated parameters will follow:

Θ̃(1) = Θ̃(0) − L(0)σ
(
W̃(0)x(0)

)
, W̃(1) = W̃(0) − L(0)x(0)Θ̃(0)σ′(W̃(0)x(0)

)
.

An important observation is that the updated parameters remain to be element-wise i.i.d. Conse-
quently, the model output of the second forward pass will also converge to a deterministic value:

g(1)(x(1))
a.s.−→ E

(
Θ(0) − L(0)σ

(
W (0)x(1)

))(
W (0)x(1) − L(0)x(0)Θ(0)σ′(W (0)x(0)

)
x(1)

)
.

As we show in the following Proposition, the (statistical) convergence result will hold for any t,
and there exists a general iterative update rule for g(t)(x). For some intuition, suppose σ(·) is the
identity function, then Θ(t), W(t) will simply be linear combinations of Θ(0), W(0).
Proposition 2. For the one-layer MLP we consider, with the learning rate α = 1, for any step t > 1,
as d → ∞, the model output g(t)(x) will converge almost surely to g

(t)
∗ (x) defined as follows:

g
(t)
∗ (x) =

(
C

(t)
1 C

(t)
2 + C

(t)
3 C

(t)
4

)
x,

with
(
C

(t+1)
1 , C

(t+1)
2 , C

(t+1)
3 , C

(t+1)
4

)
=

(
C

(t)
1 , C

(t)
2 , C

(t)
3 , C

(t)
4

)
+L(t)x(t)

(
C

(t)
3 , C

(t)
4 , C

(t)
1 , C

(t)
2

)
.

As a corollary, while the hidden representations will remain random vectors throughout the SGD
process (which can be seem from the update rule):

h(t)(x) := σ(W(t)x) = σ
(
W̃(t−1)x− L(t−1)x(t−1)Θ̃(t−1)σ′(W̃(t−1)x(t−1)

)
x
)
,

⟨h(t)(x), h(t)(x′)⟩ will nevertheless also converge to some deterministic value as d → ∞. The proof
and detail are deferred to Appendix C. In Figure 1d, we see that the statistical convergence of model
output is indeed evident even with moderately small d, and its variance is by magnitudes smaller
than the variance of the hidden representation σ(W(t)x) (see the x-axis of Figure 1c and 1d).

On the other hand, the algorithmic convergence of model prediction has received considerable atten-
tion. It has been shown that over-parameterized models will converge to minimum-norm interpolants
due to the inductive bias of gradient descent (Bartlett et al., 2021; Soudry et al., 2018). For the sake
of space, here we focus on their implications and leave the details to Appendix C. Roughly speaking,
among the many locally optimum solutions that interpolate the training data, gradient descent will
converge to the one with the smallest norm, which usually has nice properties such as smoothness.
We let g0 be that particular solution such that limt→∞ g(t)(x) = g0(x). Since ⟨h(t), h(t)⟩ converge
statistically to a deterministic value at every optimization step, we can immediately conclude that:
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• if g(t) takes the form of ⟨h(t), h(t)⟩ such as in contrastive representation learning, the inner product
between hidden representations also converge algorithmically to g0’s prediction;

• if g(t) = θh(t), i.e. the last hidden layer is used as the representation, note that a necessary but
not sufficient condition for ∥g(t)(x) − g(t)(x′)∥ to be small is that ∥h(t)(x) − h(t)(x′)∥ is small
as well. Suppose h(t) are normalized, then upon the algorithmic convergence, ⟨h(t)(x), h(t)(x′)⟩
are likely to be larger if x, x′ are close to each other under g0’s prediction.

Takeaway. The stochastic nature of ĥ := limt→∞ h(t) and the (approximate) convergence of
⟨ĥ(x), ĥ(x′)⟩ under gradient descent reveal two important properties of pretrained representations:

1. Instability of ĥ(x): the exact position of ĥ(x) in Rd is stochastic, depending on the initialization
and the order of the pretraining data that is fed to SGD;

2. Stability of ⟨ĥ(x), ĥ(x′)⟩: the pairwise inner product of ⟨ĥ(x), ĥ(x′)⟩ converges (approximately)
to a value that is consistent with the minimum-norm interpolant of the pretraining task.

These results will also play a crucial role in understanding how ĥ can interact with the downstream
learning, which we will study in the next section.

4.3 INTERACTION WITH DOWNSTREAM TASK

To be comprehensive, we consider both the parametric and non-parametric set up for downstream
task. Interestingly, they will reveal different aspects on the predictability of ĥ.

Parametric setup. To eliminate the interference of label noise, we consider the noiseless setting
where the output of downstream task is generated by: yi = f∗(E[h(xi)]

)
, i = 1, . . . , n. Because

h(x) might be high-dimensional, we assume there is some sparsity in f∗. The conditions below
provide perhaps the easiest parametric setup for pretrained representations to perform well.

C3: Let f∗(h) := ⟨θ∗, h⟩, ∥θ∗∥0 ≤ q, and let the inputs hi := Eh(xi) be sampled from: N(0, σ2
hI)

where σh is the strength of the signal. We show previously that ĥ is stochastic, so we simply
set ĥi := hi + ϵi, where ϵi ∼ N(0, σ2

ϵ I) captures the variance of the pretrained representation.

Intuitively, since ϵi are i.i.d, it holds that Eϵ

[
⟨ĥ(xi), ĥ(xj)⟩

]
= ⟨h(xi), h(xj)⟩ so recovering θ∗

should be less challenging. However, we show that the variance will again prohibit efficient learning,
and the best fĥ,n can do is controlled by σϵ/σh – a notion of signal-to-noise ratio for pretrained rep-
resentation. The result below takes the form of a minimax lower bound: an information-theoretical
quantity that characterize the inherent difficulty of a problem. Our proof (in Appendix D) is based on
Le Cam’s method that was previously used to prove a lower bound result under label noise (Raskutti
et al., 2011), which is very different from our setting.
Proposition 3. Under C3, it holds with probability at least 1/2 that:

inf
θ̂

sup
∥θ∗∥0≤q

∥θ̂ − θ∗∥2 ≳
(
σ2
ϵ /σ

2
h

)
· qn−1 log(d/q),

where inf θ̂ is taken with respect to any learning procedure that is based on {ĥ(xi), yi}ni=1.

Takeaway. The result in Proposition 3 is alarming because during pretraining, the variance of h(x)
might increase as more and more stochastic terms are being added (suggested by both the derivations
in Section 4.2 and the empirical result in Figure 1c). The above lower bound shows the predictability
of ĥ(x) can be compromised by its variance inherited from pretraining. This also explains the
instability in downstream machine learning that we experienced during real-world production.

Non-parametric setup. Among the non-parametric regression estimators, the Nadaraya-Watson
(NW) estimator has received considerable attention due to its simplicity and effectiveness (Nadaraya,
1964). It can be thought of as a smoothing nearest-neighbor estimator under a weighting schema:

fh,n ◦ h(x) :=
n∑

i=1

yjwh(x, xi), wh(x, xi) := K
(
(h(x)− h(xi)

)
/z,
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where K : Rd → R+ is a kernel, and z is a normalizing constant. Here, we omit the bandwidth pa-
rameter for convenience. The Gaussian kernel K(u) ∝ exp(−∥u∥22) is a common choice, so when
pretrained representations are normalized, it only depends on h via ⟨h(x), h(x′)⟩ – a more stable
quantity according to the previous section. We effectively denote this kernel by K

(
⟨h(x), h(x′)⟩

)
.

It is well-understood that the generalization of a kernel support vector machine is controlled by
the kernel-target alignment (Cristianini et al., 2001), i.e.

〈
y⃗,Ky⃗

〉
, where y⃗ = [yi, . . . , ym]T and

Ki,j = K
(
⟨h(xi), h(xj)⟩

)
. We prove that this is also the case for NW estimator, with a simple

result that does not resort to the concentration arguments. The proof is in Appendix D.
Lemma 1. Under 0-1 loss, with probability at least 1− δ, the risk of NW estimator satisfies:

R(fh,n ◦ h) ≤ 1−
√
δ · E

[
1[Y = Y ′]K

(
⟨h(X), h(X ′)⟩

)]
,

where the expectation is taken with respect to (X,Y ) ∼ P , (X ′, Y ′) ∼ P .

Takeaway. Lemma 1 shows the predictability of h(x), when expressed and measured through the
more stable ⟨h(x), h(x′)⟩, is strictly guaranteed. Therefore, using h(x) in downstream task in the
form of h⃗(x) :=

[
e⟨h(x),h(x1)⟩, . . . , e⟨h(x),h(xn)⟩

]
can be beneficial, and it can be interpreted as a

representation of weights in the NW estimator. Further, h⃗(x) contains all the pairwise relationship
that can be more closely related to the pretraining objective. Note that h(x) can also be viewed as the
compression of h⃗(x) because: [⃗h(xi)]j = exp(⟨h(xi), h(xj)⟩). Nevertheless, h⃗(x) and h(x) cannot
be compared directly because they have different intrinsic dimensionality. In terms of computability,
h⃗(x) ∈ Rn is also no compare to h(x) ∈ Rd – computing h⃗(x) itself can be non-trivial for large-
scale applications. We aim to resolve these issues in the next section.

5 FEATURIZING PRETRAINED REPRESENTATION

Our next goal is to build on top of h(x) features or representations that are comparable to h⃗(x) in
terms of stability and predictability, and have similar computability to h(x).

Suppose {h(xi)}ni=1 are normalized. Then h⃗(xi) is simply the exponential of pairwise cosine
distances between h(xi) and all the pretrained representations. Notice that the angle between
any pair of (h(xi), h(xj)) can be decomposed into their respective angle with a baseline direc-
tion u ∈ Rd, ∥u∥2 = 1. When the set of baseline directions is rich enough, we can recover
all the pairwise cosine distances in h⃗(xi) using their angles with the baseline directions. Given
U := [u1, . . . , um] ∈ Rd×m, the set of angles between h(xi) and U forms a measurement for the
relative location of h(x) ∈ Rd. We refer to such a measurement process as featurizing pretrained
representation, as it is similar to how features are constructed by measuring experimental subjects.

While featurizing h(x) according to its geometrically property is an appealing solution, it is un-
known how many baseline directions are needed to preserve the stability and predictability of h⃗, as
well as the optimal way to choose those directions. Fortunately, the Bochner’s Theorem (Loomis,
2013) from harmonic analysis lays a solid foundation for selecting the directions and providing
approximation and learning guarantees. Also, the resulting measurements will coincide with the
random Fourier feature (Rahimi & Recht, 2007; Liu et al., 2021) that plays a critical role in many
machine learning communities. For the Gaussian kernel we studied, Bochner’s Theorem states that
there exists a measure Q on Rd such that:

K(h(x), h(x′)) =

∫
Rd

eiu(h(x)−h(x′))q(u)du
real part
= Eu∼Q

[
cos

(
u
(
h(x1)− h(x2)

))]
.

Since cos(a− a′) = cos(a) cos(a′) + sin(a) sin(a′), we can approximate the kernel value using the
Monte Carlo method as below:

K(h(x), h(x′)) ≈ 1

m

m∑
i=1

cos
(
uih(x)

)
cos

(
uih(x

′)
)
+ sin

(
uih(x)

)
sin

(
uih(x

′)
)
, ui

i.i.d∼ Q.

Let ϕm

(
h(x), Q

)
:= 1/

√
m
[
cos

(
u1h(x)

)
, sin

(
u1h(x)

)
, . . . , cos

(
umh(x)

)
, sin

(
umh(x)

)]
be

the featurization of h(x) according to Bochner’s Theorem. Note that it amounts to measuring h(x)’s
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distances with respect to random directions drawn from Q(u), and then transforming them through
trigonometric functions. Furthermore,

〈
ϕm

(
h(·), Q

)
, ϕm

(
h(·), Q

)〉
can approximate any entries in

h⃗. To be more precise, Rahimi & Recht (2007) shows that it only requires m = Ω
(
d/ϵ2 log(σQ/ϵ)

)
to achieve

∣∣K(h(x), h(x′))−
〈
ϕm

(
h(x), Q

)
, ϕm

(
h(x′), Q

)〉∣∣ ≤ ϵ, where σ2
Q is the second moment

Q. Therefore, when m is comparable to d, the featurized ϕm

(
h(x), Q

)
achieves the stability and

predictability of h⃗, as well as the computability of h.

Converting h(x) to ϕm

(
h(x), Q

)
is computationally efficient, since u1, . . . , um only need to be

drawn from Q once and apply to all h(xi), i = 1, . . . , n. However, there is still the obstacle of
finding the optimal Q∗. Strictly speaking, Q∗ is obtained from the inverse Fourier transform, but
in practice the standard Gaussian distribution is often used. Indeed, compute the inverse Fourier
transform and sample from it poses another challenging task. To our knowledge, there is no existing
study on whether we can safely sample u from a proxy Q. In the following proposition, we show
that using Q instead of Q∗ will not cost stability as long as their discrepancy is bounded.

In particular, we state our result in the context of Lemma 1, that is, the downstream risk is
controlled by the alignment A := E

[
1[Y = Y ′]K

(
⟨h(X), h(X ′)⟩

)]
. We use Ds(Q,Q∗) :=∫

s(dQ/dQ∗)dQ∗ to denote the f-divergence induced by s(·).
Proposition 4. Let Q(Q∗; δ) := {Q : Ds(Q,Q∗) ≤ δ} be a Ds-ball with radius δ cen-
tered at Q∗. Let {h(xi), yi}ni=1 be the downstream data, and An(Q) := 1

n(n−1)

∑
i ̸=j 1[yi =

yj ]⟨ϕm(h(xi), Q), ϕm(h(xi), Q)⟩. It holds that:

Pr
(

sup
Q∈Q(Q∗;δ)

∣∣∣An(Q)−An(Q
∗)
∣∣∣ ≥ ϵ

)
≲

σ2
Q
ϵ2

exp
(
− mϵ2

16(d+ 2)

)
+ exp

(
− nϵ2

64(1 + δ)

)
,

where σQ := maxQ∈Q σQ.

The significance of Proposition 4 is that even if the optimal Q∗ is not used, in the worst case sce-
nario, the instability caused by it (reflected via δ) vanishes quickly as the sample size gets larger.
Similarly, increasing the dimension of featurized representation ϕm also speeds up the convergence
exponentially. They provide the guarantee for predictability even if Q∗ is not used. The proof is
provided in Appendix E.

Takeaway. Featurzing pretrained representation as ϕm(h,Q) offers a simple and practical solution
to balance stability, predictability, and computability. We just showed that Q can simply be stan-
dard Gaussian distribution, and the dimension of ϕm(h) can be obtained by satisfying a specific
approximation threshold ϵ. It can also be treated as a tuning parameter in downstream tasks.

6 BENCHMARK AND REAL-WORLD EXPERIMENTS

We conduct experiments on the benchmark dataset MovieLens-1m (ML-1m) for illustration and
reproducibility purposes. The real-world production experiments took place at a major US e-
commerce platform anonymized as Ecom. The detailed descriptions for ML-1m and the intro-
duction of Ecom’s production environment are provided in Appendix F.

On ML-1m. The dataset supports two types of pretraining-downstream task combination:
(a). leverage the sequences of user viewing data to pretrain movie embeddings, then use the embed-
dings to predict the genre of the movie (ML-1m task 1);
(b). pretrain movie embeddings using the title and other descriptions, then use the embeddings for
downtream sequential recommendation (ML-1m task 2).

The detailed data processing, model and pretraining configurations, downstream training/testing
setup, evaluation metrics, and sensitivity analysis are deferred to Appendix F. On ML-1m task
1, we use contrastive representation learning to pretrain the movie embeddings, and employ lo-
gistic regression to predict the genre using movie embeddings as features. On ML-1m task 2, we
use a bidirectional-RNN-type structure on movies’ NLP data, and extract the final hidden layer as
pretrained representation. The downstream sequential recommendation task employs a two-tower
structure, and a RNN is used to aggregate the history viewing sequence. In Table 1, we first see that
ϕm(h) improves the stability of h by at least ×10 in both tasks. Even under the same dimension,
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ϕm(h) outperforms h, and is highly comparable to avg(h) – the manually stabilized version of h by
averaging it over ten independent runs. Note that avg(h) is almost never a good practical solution
because it requires repeating the same pretraining process multiple times. Here, we use it as an an-
alytical baseline, and show that ϕm(h) is just as good. When the dimension increases for ϕm(h), it
delivers much more superior results. Although changing dimension can also change the downstream
model complexity, but as we discuss below, it offers more flexibility for real-world problems.

ML-1m Task1 ML-1m Task2 Ecom A/B testing
Accuracy F1-Macro Recall@5 NDCG@5 Task1 Task2 Task3 Task4

h32(x) 64.82(2.83) 44.79(2.21) 66.55(3.03) 33.96(1.83) used as control
avg(h32(x)) 68.72(-) 59.04(-) 68.98(-) 35.02(-) (not applicable)
ϕ32(h(x)) 68.64(0.27) 58.91(0.25) 68.90(.33) 34.97(.17) +0.24% +0.13% +0.14% +0.10%
ϕ64(h(x)) 85.77(0.19) 90.46(0.21) 71.30(.27) 37.48(.15) p < 0.01 p < 0.1 p < 0.05 p < 0.05

Table 1: For ML-1m experiments, the results are multiplied by 100, and in the parenthesis are the standard
deviations computed from ten independent runs. The subscripts of h and ϕ refer to the dimension of repre-
sentation, avg(h) refers to using the representation averaged from the ten independent pretrainings. Note that
avg(h) cannot be used for large-scale production since it takes ten times the resources needed. For Ecom A/B
testing, we present the relative lift over the control, and the p-value associated with the lift.

On Ecom. The item representation learning pipeline is being used by several downstream pro-
ductions: item-page recommendation (Task1), search ranking (Task2), email recommendation
(Task3), and home-page marketing (Task4). They all have task-specific features and non-trivial
model architectures different. The refreshing of pretrained item embedding is done on a daily ba-
sis, and downstream model owners may have separate schedules to update and refresh the relevant
parts of their models. In Appendix F.4, we describe our engineering solutions of deploying the
featurization process on the frontend and backend.

During A/B testing, we observe performance lifts (in terms of click-through rate) that are statistically
significant for all four downstream applications. The average revenue-per-visitor lift is also positive
during the testing period. The detailed online results and analysis are provided in Appendix F.

Lessons learnt. In addition to improved stability and performance, an important feedback we re-
ceived from downstream model owners is that the flexibility in choosing ϕm(h)’s dimension is very
helpful for their tasks. Prior to our featurization technique, it is almost impossible to personalize
the dimension of pretrained representation for different applications, let alone tuning it in down-
stream tasks. Now knowing that the predictability will not vary much, experimenting with different
dimensions often allows them to find a better bias-variance tradeoff for downstream tasks.

7 DISCUSSION

The analytical results and the proposed featurization method in our work can apply to a broad range
of applications and research problems. Nevertheless, our results may still be rudimentary and far
from providing the complete picture or optimal practice for using pretrained representation. We
hope the progress we made will lead to more advanced future research and applications.

Scope and limitation. Most of our analysis are performed in basic settings: while they ensure the
results will hold in generality, advanced methods for pretraining representation are not considered.
Also, we do not include additional downstream features and their correlation with pretrained repre-
sentations, or connections between the pretraining objective and downstream task. Those additional
knowledge can be useful for deriving task-specific results (Arora et al., 2019). For application, our
featurization technique may be less helpful if the downstream task simply uses embedding distance
like KNN search. Optimizing the space and time complexity by such as embedding quantization
might be more useful for such tasks (Chen et al., 2020), which is not discussed in our paper.

A future direction. While our work studies h(x) as a whole, it can be inferred from Figure 1c that
the element-wise variance of ĥ(x) is bimodal, which suggests heterogeneity within h(x). Possible
explanations are that a (random) subset of h(x) is responsible for overfitting the pretraining task
(Bartlett et al., 2020), or that some dimensions are forced to become more independent of others so
the representation matrix has nice spectral properties (Hastie et al., 2022). It is thus an important
future direction to identify the internal structure of h(x) to better featurize pretrained representations.
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A TECHNICAL BACKGROUND

In this part of the paper we provide the technical background for both the discussions in the paper
and the following proofs.

A central role for proving uniform convergence results is the Gaussian / Rademarcher complexity.
For a set A ⊂ Rn, it is defined as:

G(A) := Eϵ

[
sup
a∈A

n∑
i=1

ai

]
,

where ϵ are i.i.d Gaussian / Rademarcher random variables. It essentially measures how good a
function class can interpolate a random sign pattern assigned to a set of points. Given a function
class F and n samples (x1, . . . , xn), the empirical Gaussian / Rademarcher complexity is given by:

Gn(F) := Eϵ

[
sup
f∈F

n∑
i=1

f(xi)
]
.

Remark A.1. We mention that in some versions of the definition, there is a 1/n factor in the com-
plexity term. Here, we explicit pull that factor out and place it in the resulting bound.

As we mentioned earlier, an important reason for us using Gaussian complexity is because some of
its technical properties, which is the Slepian’s Lemma (Slepian, 1962) and its corollary, which we
state as below:

Lemma A.1 (From Slepian’s Lemma). Suppose ϕ : A → Rq has Lipschitz constant L. Then it
holds that:

G(ϕ(A)) ≤ LG(A).

This result can be viewed as the contraction lemma for Gaussian complexity (Ledoux & Talagrand,
1991).

A.1 INDUCTIVE BIAS OF GRADIENT DESCENT

Our introduction primarily follows Soudry et al. (2018); Ji & Telgarsky (2019); ?); Gunasekar et al.
(2018) and their follow-up works. The key factor that contributes to the implicit bias of gradient
decent is the divergence of model parameters after separating the data under loss functions that has
exponential-tail behavior.

When the predictor f ∈ F parameterized by θ is over-parameterized, other than certain degener-
ated cases, the data can be separated at certain point if the predictor class satisfies some regularity
assumptions (Lyu & Li, 2019), e.g.

• f ∈ F is homogeneous such that: f(x; c · θ) = cβf(x; θ),∀c > 0;

• f ∈ F is smooth and has bounded Lipschitz constant.

These conditions can be met for many neural network structures and activation functions. The
exponential-tail of loss function can be satisfied by the common exponential loss and logistic loss
(which we use through our discussions and experiments).

To see why the the norm of model parameters will diverge, simply note that under such as expo-
nential loss, both the risk and the gradient will take the form of:

∑
i ci exp(−yif(xi; θ)), where ci

are lower order terms. Since gradient descent will converge to a stationary point due to the nice
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properties of F , we expect
∑

i ci exp(−yif(xi; θ)) = 0 to hold upon convergence. A necessary
condition for that is: exp(−yif(xi; θ)) = 0, i = 1, . . . , n, and this condition is actually sufficient
with high probability (Soudry et al., 2018).

Therefore, for all exp(−yif(xi; θ)) to reach 0, ∥θ∥ must diverge so |f(·; θ)| → ∞. With that said,
since the loss function decays exponentially fast around 0, the data points with the largest margin
will dominate both the gradient and the loss function.

As a direct consequence, the decision boundary will share characteristics with the hard-margin SVM,
given by:

min ∥θ∥2 s.t. yif(xi; θ) ≥ 1, ∀i = 1, . . . , n.

Indeed, recent work shows that the optimization path of over-parameterized models will indeed
converge to some minimum-norm predictor:
Corollary A.1 (Chizat et al. (2019); Woodworth et al. (2020), and others). Under the conditions
specified in the reference work, which are mostly exponential loss, scaled initialization, appropriate
learning rate, and regularity conditions for the predictor class, it holds that:

lim
t→∞

lim
d→∞

F
(
θ(t)/∥θ(t)∥

) stationary points of→
{
argmin ∥f∥K s.t. yif(xi) ≥ 1, ∀i ∈ [n]

}
,

where F is the decision boundary of f , d is the dimension of the hidden layer(s) of f , and ∥ · ∥K is
an appropriate RKHS norm.

Note that in Section 4.2 we use g0 to denote the converged result, and the above corollary guarantees
its existence and uniqueness. However, one open question is which particular RKHS norm best de-
scribes the solution, because it will particularly affect the convergence of the parameters. Therefore,
in our work, we leave the convergence of parameters out of our discussion.

Remark A.2. It is also worth mentioning that the convergence of E[h(t)(x)] plays no part in our
arguments and results. Indeed, it will not change the stochasticity of h(t)(x), and (in some cases)
can be implied from the convergence of g(t)(x) (Lyu & Li, 2019). Therefore, we do not discuss it in
our work.

B PROOF OF THE RESULTS IN SECTION 4.1

We prove Proposition 1 in this part of the appendix. An important result we will be using is the
Gaussian complexity bound for empirical risk minimization, and we will use the version of Bartlett
& Mendelson (2002).
Lemma A.2. Let F be real-valued function class from X to [0, 1]. Let (X1, . . . , Xn) be i.i.d random
variables, then for all f ∈ F , it holds with probability at least 1− δ that:

E
[
f(X)

]
≤ 1

n

∑
i

f(Xi) +

√
2πGn(F)

n
+

√
9 log 2/δ

2n
.

We now provide the proof, part of which will be using Corollary Lemma A.1, and Lemma A.2. We
also assume F has a Lipschitz constant of at most L.

Proof. Recall that h∗, f∗ := argminh∈H,f∈F R(h, f). We decompose the generalization error via:

R(ĥ)− min
h∈H,f∈F

R(h, f) =
(
R(ĥ)−min

f∈F

1

n

∑
i

ℓ
(
f ◦ ĥ(Xi), Yi

))
+

+
(
min
f∈F

1

n

∑
i

ℓ
(
f ◦ ĥ(Xi), Yi

)
−min

f∈F

1

n

∑
i

ℓ
(
f ◦ h∗(Xi), Yi

))
+
(
min
f∈F

1

n

∑
i

ℓ
(
f ◦ h∗(Xi), Yi

)
− EPn

[
min
f∈F

1

n

∑
i

ℓ
(
f ◦ h∗(Xi), Yi

)])
+
(
EPn

[
min
f∈F

1

n

∑
i

ℓ
(
f ◦ h∗(Xi), Yi

)]
−min

f∈F
E(X,Y )∼P ℓ

(
f ◦ h∗(X), Y

))
.

(A.1)
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We first discuss the first term, which incurs a major discussion in Section 4.1. By a standard practice,
the first term can be bounded via:

R(ĥ)−min
f∈F

1

n

∑
i

ℓ
(
f ◦ ĥ(Xi), Yi

)
≤ sup

h∈H

{
R(ĥ)−min

f∈F

1

n

∑
i

ℓ
(
f ◦ ĥ(Xi), Yi

)}
≤ sup

h∈H
EPn

[
E(X,Y )∼P

[
ℓ
(
fh,n ◦ h(X), Y

)
−Rn(h)

]]
(a)

sup
h∈H

{
EPn

[ 1
n

∑
i

ℓ
(
fh,n ◦ h(Xi), Yi

)]
− 1

n

∑
i

ℓ
(
fh,n ◦ h(Xi), Yi

)}
(b)

Using Lemma A.2, term (b) can be bounded as:

sup
h∈H

{
EPn

[ 1
n

∑
i

ℓ
(
fh,n◦h(Xi), Yi

)]
− 1

n

∑
i

ℓ
(
fh,n◦h(Xi), Yi

)}
≤

√
2πGn(A(H))+

√
9 log 2/δ,

where the set A(H) is given by:{( 1

n
ℓ
(
fh,n ◦ h(X1), Y1

)
, . . . ,

1

n
ℓ
(
fh,n ◦ h(Xn), Yn

))
: h ∈ H

}
.

It is easy to examine that A(H) invokes Slepian’s lemma, so we can use the contraction result from
Lemma A.1 to further bound it:

Gn(A(H)) ≤ L√
n
Gn(H).

Combined together, the term (b) is upper bounded as:
√
2πLGn(H)√

n
+
√
9 log 2/δ.

Now we bound term (a) as below. Define the shorthand ℓ(F(h)) :={
ℓ
(
f(h(X1), Y1), . . . , ℓ

(
f(h(Xn), Yn)

))
: f ∈ F

}
. It holds that:

sup
h∈H

EPn

[
E(X,Y )∼P

[
ℓ
(
fh,n ◦ h(X), Y

)
−Rn(h)

]]
≤ sup

h∈H
EPn sup

f∈F

{
E(X,Y )∼P ℓ

(
f ◦ h(X), Y

)
− 1

n

∑
i

ℓ
(
f ◦ h(Xi), Yi

)}
≤

√
2π sup

h∈H
EPn

Gn(ℓ(F(h)))

n
(using Lemma A.2) and A.1

=
√
2πn−1 sup

h∈H
EPn

Gn(ℓ(F(h)))

∥h(X)∥
∥h(X)∥ (where h(X) := [h(X1), . . . , h(xn)])

≤
√
2πn−1 sup

h∈H

√
E∥h(X)∥2 · sup

A∈Rn×d

1

∥A∥
E sup

f∈F

∑
i

ϵif([A]i) ϵi
i.i.d∼ N(0, 1).

(A.2)

We let G′
n(F) := supA∈Rn×d

1
∥A∥E supf∈F

∑
i ϵif([A]i) be the modified Gaussian complexity, so

the term (b) is finally bounded by:
√
2π
n G′

n(F) suph∈H
√

E∥h(X)∥2.

Next, notice in the last term that:

EPn

[
min
f∈F

1

n

∑
i

ℓ
(
f ◦ h∗(Xi), Yi

)]
≤ EPn

1

n

∑
i

ℓ
(
f∗ ◦ h∗(Xi), Yi

)
= E(X,Y )∼P ℓ

(
f∗ ◦ h∗(X), Y

)
.

Therefore, the last term is always non-positive.

Similar, by definition, the second term is non-positive as well.
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Finally, as for the second term, since there is already non-concentrating terms appearing in the bound
of the first term, it does not hurt to simply bound it using Hoeffding’s bound, i.e. the first term will
not exceed O(

√
log 1/δ) with probability at least 1 − δ. Putting things together, we conclude the

final result.

C TECHNICAL DETAILS FOR SECTION 4.2

We first restate the proposition:

Proposition A.1. For the one-layer MLP we consider, with the learning rate α = 1, for any step
t > 1, as d → ∞, the model output g(t)(x) will converge almost surely to g

(t)
∗ (x) defined as follows:

g
(t)
∗ (x) =

(
C

(t)
1 C

(t)
2 + C

(t)
3 C

(t)
4

)
x,

with
(
C

(t+1)
1 , C

(t+1)
2 , C

(t+1)
3 , C

(t+1)
4

)
=

(
C

(t)
1 , C

(t)
2 , C

(t)
3 , C

(t)
4

)
+L(t)x(t)

(
C

(t)
3 , C

(t)
4 , C

(t)
1 , C

(t)
2

)
.

The above iterative update result can be shown by making explicit of the terms following the forward
and backward pass in tth gradient step.

In particular, it holds that:

g(t)(x)
a.s.→ EΘ(t)σ

(
W (t)x

)
(

def
= g

(t)
∗ (x)),

ℓ′
(
g(t)(x(t)), y(t)

) a.s.→ ℓ′
(
g
(t)
∗ (x(t)), y(t)

)
L(t) (

def
= L(t)),

Θ̃(t+1) = Θ̃(t) − L(t)σ
(
W̃(t)x(t)

)
,

W̃(t+1) = W̃(t) − L(t)x(t)Θ̃(t)σ′(W̃(t)x(t)
)
.

The only extra requirement for the above convergence to hold is that the activation function is well-
behaved (see Yang (2019) for a detailed description).

To see how the above system of equations lead to the result in Proposition A.1, imagine the activation
is the identity function. In this case, Θ̃(t) and W̃(t) are always deterministic linear combinations of
Θ̃(0) and W̃(0). Observe that the update becomes:

Θ̃(t) = C1Θ̃
(0) + C2W̃

(0), W̃(t) = C3Θ̃
(0) + C4W̃

(0).

We mention that as a corollary, W(t+1)(x) is also element-wise i.i.d, so the inner product of the
hidden representations 〈

W(t+1)(x),W(t+1)(x′)
〉 a.s.→ E

[
W (t)x ·W (t)x′],

where W (t) is an i.i.d row of W̃(t+1), which is the rescaled version of W(t+1).

D PROOFS OF THE RESULTS IN SECTION 4.3

Proof for Proposition 3

Proof. The proofs for the lower bound often starts by converting the problem to a hypothesis testing
task. Denote our parameter space by B(k) = {θ ∈ Rd : ∥θ∥0 ≤ k}.

The intuition is that suppose the data is generated by:

1. drawing θ according to an uniform distribution on the parameter space;

2. conditioned on the particular θ, the observed data is drawn.
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Then the problem is converted to determining according to the data if we can recover the underlying
θ as a canonical hypothesis testing problem.

For any δ-packing {θ1, . . . , θM} of B(k), suppose B is sampled uniformly from the δ-packing.
Then following a standard argument of the Fano method Wainwright (2019), it holds that:

P
(
min
θ̂

sup
∥θ∗∥0≤k

∥θ̂ − θ∗∥2 ≥ δ/2
)
≥ min

θ̃
P
(
θ̃ ̸= B

)
, (A.3)

where θ̃ is a testing function that decides according to the data if the some estimated θ equals to an
element sampled from the δ-packing.

The next step is to bound minθ̃ P
(
θ̃ ̸= B

)
, whereas by the information-theoretical lower bound

(Fano’s Lemma), we have:

min
θ̃

P
(
θ̃ ̸= B

)
≥ 1− I(y,B) + log 2

logM
, (A.4)

where I(·, ·) denotes the mutual information.

Then we only need to bound the mutual information term. Let Pθ be the distribution of y (which
the vector consisting of the n samples) given B = θ. Since y is distributed according to the mixture
of: 1

M

∑
i Pθi , it holds:

I(y,B) =
1

M

∑
i

DKL

(
Pθi∥

1

M

∑
j

Pθj

)
≤ 1

M2

∑
i,j

DKL

(
Pθi∥Pθj

)
,

where DKL is the Kullback-Leibler divergence. The next step is to determine M : the size of the
δ−packing, and the upper bound on DKL

(
Pθi∥Pθj

)
where Pθi , Pθj are elements of the δ−packing.

For the first part, it has been shown that there exists a 1/2-packing of B(k) in ℓ2-norm with logM ≥
k
2 log

d−k
k/2 (Raskutti et al., 2011).

As for the bound on the KL-divergence term, note that given θ, Pθ is a product distribution of the
condition Gaussian: y|ϵ ∼ N

(
θ⊺ϵ

σ2
h

σ2
ϵ
, θ⊺θ(σ2

z − σ4
z/σ

2
ϵ )
)
, where σ2

ϵ := σ2
h + σ2

ϵ .

Henceforth, for any θ1, θ2 ∈ B(k), it is easy to compute that:

DKL(Pθ1∥Pθ2)

= EPθ1

[n
2
log

(θ⊺1θ1(σ2
z − σ4

z/σ
2
ϵ )

θ⊺2θ2(σ
2
z − σ4

z/σ
2
ϵ )

)
+

∥∥y − θ⊺2ϵ
σ2
h

σ2
ϵ

∥∥2
2

2θ⊺2θ2(σ
2
z − σ4

z/σ
2
ϵ )

−

∥∥y − θ⊺1ϵ
σ2
h

σ2
ϵ

∥∥2
2

2θ⊺1θ1(σ
2
z − σ4

z/σ
2
ϵ )

]
=

σ2
z

2σ2
ϵ

∥ϵ(θ1 − θ2)∥22,

where y and ϵ are the vector and matrix consists of the n samples, i.e. y ∈ Rn and ϵ ∈ Rn×d.

Since each row in the matrix ϵ is drawn from N(0, σ2
ϵ Id×d), standard concentration result shows

that with high probability, ∥ϵ(θ1 − θ2)∥22 can be bounded by C∥θ1 − θ2∥22 for some constant C. It
gives us the final upper bound on the KL divergence term:

DKL(Pθ1∥Pθ2) ≲
nσ2

zδ
2

2σ2
ϵ

.

Substituting this result into (A.4) and (A.3), by choosing δ2 =
Ckσ2

ϵ

σ2
zn

log d−k
k/2 and rearranging terms,

we obtain the desired result that with probability at least 1/2:

inf
θ̂

sup
θ∗:∥θ∗∥0≤k

∥θ̂ − θ∗∥2 ≳
σ2
ϵ

σ2
h

kn−1 log(d/k).

Proof of Lemma 1
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Proof. We first express the NW predictor in its expectation form:

fϕ(X) =
EX′

[
y′K(X,X ′)

]
Z

,

where Z is the normalization constant. Recall that y ∈ {−1,+1}, R(·) is risk associated with the
0− 1 classification loss. We first define for x ∈ X :

γϕ(X) :=

√
EX′

[
K(X,X ′)

]
Z

,

where the expectation is taken w.r.t. the underlying distribution. Using the Markov inequality, we
immediately have: |γ(X)| ≤ 1√

δ
with probability at least 1− δ. It then holds that:

1−R(f) = P
(
Y f(X) ≥ 0

)
≥ E

[Y f(X)

γ(X)
· 1[Y f(X) ≥ 0]

]
≥ E

[Y f(X)

γ(X)

]
≥

E
[
1[Y = Y ′]K(X,X ′)

]
Z

√
δ ,with probability 1− δ,

which concludes the proof.

E PROOF OF THE RESULT IN SECTION 5

The proof of Proposition 4 relies on two important results, which we state below.

Lemma A.3 (Ben-Tal et al. (2013)). Let c be any closed convex function with domain [0,+∞), and
this conjugate is given by c∗(s) = supt≥0{ts−c(t)}. Then for any distribution Q∗ and any function
g : Rd → R, it holds:

sup
Q∈Q(Q∗;δ)

∫
g(u)dQ(u) = inf

λ≥0,η

{
λ

∫
c∗
(g(u)− η

λ

)
dQ∗(u) + δλ+ η

}
. (A.5)

The next lemma is adapted from the concentration of random Fourier
feature in Rahimi & Recht (2007). Recall that ϕm

(
h(x), Q

)
:=

1/
√
m
[
cos

(
u1h(x)

)
, sin

(
u1h(x)

)
, . . . , cos

(
umh(x)

)
, sin

(
umh(x)

)]
comes from the Monte

Carlo approximation of K(h(x), h(x′)).

Lemma A.4. Let A ⊂ Rd has diameter dA such that h(x) ∈ A for all x ∈ X . It holds that:

Pr
(

sup
h(x),h(x′)

∣∣K(h(x), h(x′))− ⟨ϕm

(
h(x), Q

)
, ϕm

(
h(x′), Q

)
⟩
∣∣ ≥ ϵ

)
≤ 28

(σQdA
ϵ

)
exp

(
− mϵ2

4(d+ 2)

)
,

(A.6)

where Q is given by the inverse Fourier transform of K, and σQ is the second moment of Q.

Recall that An(Q) := 1
n(n−1)

∑
i̸=j 1[yi = yj ]⟨ϕm(h(xi), Q), ϕm(h(xi), Q)⟩. For notation conve-

nience, in what follows, we let hi := h(xi), and further define ϕ̃(h, U) := [cos(UTh), sin(UTh)]
as the actual random Fourier feature underlying ϕm(h,Q), where U ∼ Q. Also, we let K(Y, Y ′) :=
1[Y = Y ′] to be the labelling kernel of the downstream task.

Proof. Following Lemma A.3, we work with a scaled version of the f-divergence under c(t) =
1
k (t

k − 1) (because its dual function has a cleaner form). It is easy to check that c∗(s) = 1
k′ [s]

k′

+ + 1
k

with 1
k′ +

1
k = 1.

First note that the sampling error of the alignment E
[
K(Yi, Yj)KQ(Hi, Hj)

]
, i.e. replacing the

expectation by the sample average, can be given by:
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∆n(U) :=
1

n(n− 1)

∑
i ̸=j

K(yi, yj)ϕ̃(hi, U)T ϕ̃(hj , U)− E
[
K(Yi, Yj)KQ(Hi, Hj)

]
=

1

n(n− 1)

∑
i ̸=j

K(yi, yj)ϕ̃(hi, U)T ϕ̃(hj , U)− E
[
K(Yi, Yj)ϕ̃(Hi, U)T ϕ̃(Hi, U)

]
.

We show that ∆n(U) is sub-Gaussian. Let {h′
i, y

′
i}ni=1 be an i.i.d copy off the observation expect

for one element such that (hj , yj) ̸= (h′
j , y

′
j). Without loss of generality, we assume the last element

is different: (hn, yn) ̸= (h′
n, y

′
n). Let ∆′

n(U) be computed by replace {hi, yi}ni=1 with {h′
i, y

′
i}ni=1,

and their difference can be bounded via:
|∆n(U)−∆′

n(U)|

=
1

n(n− 1)

∣∣∑
i ̸=j

K(yi, yj)ϕ̃(hi, U)T ϕ̃(hj , U)−K(y′i, y
′
j)ϕ̃(h

′
i, U)T ϕ̃(h′

j , U)
∣∣

≤ 1

n(n− 1)

(∑
i<n

∣∣K(yi, yn)ϕ̃(hi, U)T ϕ̃(hn, U)−K(yi, y
′
n)ϕ̃(hi, U)T ϕ̃(h′

n, U)
∣∣

+
∑
j<n

∣∣K(yn, yj)ϕ̃(hn, U)T ϕ̃(hj , U)−K(y′n, yj)ϕ̃(h
′
n, U)T ϕ̃(hj , U)

∣∣)
≤ 4

n

where the last inequality comes from the fact that the random Fourier features ϕ̃ and the labelling
kernel K(y, y′) are both bounded by 1. Therefore, the above bounded difference result tells that
∆n(U) is a 4

n -subGaussian random variable.

To bound ∆n(U), we use:

sup
Q∈Q(Q∗;δ)

∣∣∣ ∫ ∆n(U)dQ
∣∣∣ ≤ sup

Q∈Q(Q∗;δ)

∫
|∆n(U)|dQ

≤ inf
λ≥0

{λ1−k′

k′
EQ∗

[
|∆n(U)|k

′]
+

λ(δ + 1)

k

}
(using Lemma A.3)

= (δ + 1)1/kEQ∗
[
|∆n(U)|k

′]1/k′

(solving for λ∗ from above)

=
√
δ + 1EQ∗

[
|∆n(U)|2

]1/2
(let k = k′ = 1/2).

(A.7)

It means that in order to bound supQ∈Q(Q∗;δ)

∣∣∣ ∫ ∆n(U)dQ
∣∣∣, we only need to bound |∆n(U)|2.

Using classical results for sub-Gaussian random variables (Boucheron et al., 2013), it holds for
λ ≤ n/8 that:

E
[
exp

(
λ∆n(U)

)2] ≤ exp
(
− 1

2
log(1− 8λ/n)

)
.

We can take its integral and further upper bound the result with:

p
(∫

∆n(U)2dQ ≥ ϵ2

δ + 1

)
≤ E

[
exp

(
λ

∫
∆n(U)2dQ

)]
exp

(
− λϵ2

δ + 1

)
(Chernoff bound)

≤ exp
(
− 1

2
log

(
1− 8λ

n

)
− λϵ2

δ + 1

)
(apply Jensen’s inequality).

Hence, it holds that:

Pr
(

sup
Q∈Q(Q∗;δ)

∆n(U) ≥ ϵ
)
≤ exp

(
− nϵ2

16(1 + δ)

)
.

Combine this result with the approximation error of random Feature feature in Lemma A.4, we
obtain the desired result.
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Figure A.1: Replicating the results shown in Figure 1a, 1b, and 1c on IMDB dataset. (a). The
dimension-wise variance of the pretrained embedding values of three randomly sampled reviews;
(b). The convergence of the pretraining loss and accuracy. (c). The distribution of the empirical
variances of the pretrained embedding values, as pretraining progresses.

F SUPPLEMENTARY MATERIAL FOR THE EXPERIMENTS

We provide the descriptions, details, and additional results of our experiments in this part of the
appendix.

F.1 REPLICATING THE INSTABILITY ISSUE WITH IMDB DATASET

The IMDB dataset is a binary sentiment analysis dataset consisting of 50,000 reviews from the
Internet Movie Database (IMDb) labeled as positive or negative4. We particularly consider using
this dataset for an addition proof of concept because it appears on the official tutorial of Tensorflow5.

We directly adopt the implementation from the tutorial, including the text prepossessing pipeline
and model architecture. In particular, the raw input texts are pass to a text vectorization layer, an
embedding layer, a bidirectional RNN layer, and finally two dense layers to produce the final score
for binary classification. We extract the hidden representation from the last hidden layer as the
hidden representation. In our experiments, we set the number of hidden dimension as 32.

The results are provided in Figure A.1, where we observe patterns highly similar to the ML-1m
data. In particular, the pretrained embeddings both have high variances in their exact values even if
their pretraining objectives converge to similar loss and accuracy, and the variances gets larger as the
pretraining progress. Two minor differences from the ML-1m result are that the pretraining process
is less stable for IMDB (Figure A.1b), and the variance distribution here is unimodal instead of the
bimodal distribution we observed in Figure 1c.

F.2 DETAILS OF THE BENCHMARK EXPERIMENTS

The main benchmark experiments in our paper are conducted on the Movielens-1m6 dataset, which
is a well-established public dataset for movie & user contextual analysis and examining recommen-
dation.

The ML-1m dataset consists of 1 million movie ratings from 6,000 users on 4,000 movies, with
a one-to-five rating scale. According to Harper & Konstan (2015), the data is collected from the
initial and follow-up stages, where the initial stage mainly involves popularity-based exposure (a
very small proportion involves random exposure), while in the follow-up stage, rating feedback is
collected under some deterministic recommender systems. By convention, we convert the dataset to
implicit feedback, which amounts to treating all rating events as clicks. For contextual information,
each movie is provided with its title and genre, in the form of English words or sentences. There are
18 genres in total.

Pretraining movie embeddings from user behavior data

4https://www.imdb.com/interfaces/
5https://www.tensorflow.org/text/tutorials/text_classification_rnn
6https://grouplens.org/datasets/movielens/1m/
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We use Item2vec (Barkan & Koenigstein, 2016) to train movie embedding from users’ consecutive
viewing data. Item2vec uses the same objective function as Word2vec (Mikolov et al., 2013)j,
where the words become movies and the corpus become each user’s viewing sequence. Movies
belong to a consecutive viewing window of #ws are treated as positive pairs, and for each positive
pair, we randomly sample #ns negative movies. Together with the embedding dimension d and ℓ2-
regularization parameter (weight decay) λ, the training schema is described by the quadruplet of
(#ws, #ns, d, λ). Since our goal is not to find the best pretraining schema, we fix #ws=3 and #ns=3,
and focus on studying how the our results may change under different d.

Figure A.2: The two-tower architecture.

Pretraining movie embeddings from movie contextual
data

Since the movie titles and other contextual information
can be relatively short, large NLP models may not be ap-
propriate. Therefore, we use the Doc2vec model Dai et al.
(2015) to pretrain the movie embeddings. Since Doc2vec
is built on top of Word2vec, the training schema can also
be described by the quadruplet of (#ws, #ns, d, λ). There-
fore, we also #ws=3 and #ns=3.

Using pretrained movie embedding for downstream
genre prediction

Given pretrained movie embeddings ĥ(x), we employ lo-
gistic regression to predict the score for the movie to be-
long to a particular genre, i.e. p(Yi = k) ∝ exp(θkĥ(x)).
Due to its simplicity, we use the logistic regression subroutine from the scikit-learn package.

Using pretrained movie embedding for downstream sequential recommendation

We employ a two-tower model structure (Figure A.2) for the downstream sequential recommen-
dation, which is very common in the recommendation community. In particular, we use RNN to
aggregate the past interaction sequence, so the whole model is very similar to GRU4Rec (Jannach
& Ludewig, 2017). We use the sigmoid function as the activation function for the dense layers. The
model training can be done in a seq-to-seq fashion, where for each positive target, we randomly
sample 3 negative targets. We fix the hidden dimension of both the RNN and the dense layers as 16.

Model Training

Besides Doc2vec and the logistic regression, all of our models are optimized using the Adam opti-
mizer with early stopping, which stops the training if the improvement in the loss is less than 1e− 4
for three consecutive epochs. For all the experiments, we set the initial learning rate to 0.001, and set
the weight decay to 1e− 4. Our main implementation is with Tensorflow, and all the computations
are conducted on a 16-core Linux cluster with 128 Gb memory, and two Nvidia Tesla V100 GPU
each with 16 Gb memory. We use the Doc2vec subroutine from the Gensim package7 to pretrain the
movie embeddings for ML-1m task2.

Train/test split and metrics

Since the goal of our experiments is not to find the best modelling and training configuration, we
do not use a validation set to tune the hyperparameters. Instead, we provide sensitivity analysis on
certain parameters of interest in Appendix F.3.

For ML-1m task1, we randomly split the movies by 80%-20% to construct the training and testing
set for genre classification. For evaluation, we use the accuracy and Macro F1 score as metrics.

For ML-1m task2, we follow the convention of using the last user-movie interaction for testing, and
use all the previous interactions for training. For evaluation, we use Recall@5, i.e. if the movie that
the user truly viewed is among the top-5 recommendation, and NDCG@5 that further discounts the
position of the viewed movie in the top-5 recommendation.

7https://radimrehurek.com/gensim/models/doc2vec.html
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F.3 SUPPLEMENTARY RESULTS

We provide the sensitivity analysis for the featurization method. We focus on two variables, the
dimension d and the variance of Q (denoted by σ2

Q). Recall that we consider Q as Gaussian distri-
butions. We vary d in {16, 32, 64}, and vary σ2

Q in {0.2, 0.4, 0.6, 0.8}.

Figure A.3: Sensitivity analysis on the representation’s dimension.

In particular, we first compare side-to-side hd, ϕd(h), and ϕ2d(h), while fixing Q as the standard
Gaussian distribution. We see from Figure A.3 that ϕd(h) consistently outperforms hd on both ML-
1m task1 and ML-1m task2. ϕ2d(h) also significantly improves upon the performance of ϕd(h),
which suggests the benefits of allowing extra model complexity in the particular tasks we consider.
Further, the performance of both ϕd(h) and ϕ2d(h) have considerable smaller variances than h(x).

Figure A.4: Sensitivity analysis on the variance of Q (σQ) from which U is drawn.

We then examine the sensitivity of the downstream performance w.r.t. Q – the sampling distribution
for constructing ϕd(h). As stated before, we let Q be zero-mean Gaussian distribution, and vary
its variance. From Figure A.4, we observe that for all the dimensions we consider, the downstream
task under ϕd(h) is very stable under different σQ. This echos Corollary 4 that our approach enjoys
robustness to the selection of Q. In real-world productions, we have been using standard Gaussian
distribution and observed no issues.

F.4 ONLINE DEPLOYMENT

To avoid potential conflict of interest, we provide an overview of our production experiments. We
aim to provide enough detail for interested practitioners to draw inspiration for both developing their
own solutions and replicating ours.

Some background introduction.
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In e-commerce application, the representation of items serves as a central component for almost all
machine learning algorithms Wang et al. (2018); Xu et al. (2021). In the past few years, we have built
a dedicated item representation learning pipeline that uses multiple sources of data to optimize item
embeddings. Since there are over billions of items on our platform Ecom, it took us considerable
effort to optimize the data pipeline and training routines such that the model refresh can be done on
a daily basis.

We point out that the daily refresh is necessary for item representation learning because the catalog
of items, which is a major source of pretraining data, also gets minor updates on a daily basis.
For example, new items can be added, and the features of items (e.g. title, price, description) can
be modified by the vendors. The other major source of pretraining data is the historical customer
behavior data. They are critical for revealing the relationship (e.g. similarity, complementariness,
compatibility, substitutability) among items. These relationships are relatively stable in the customer
population, so the more data we use, the more likely for us to discovery useful signals.

Our model for pretraining item embeddings has both feed-forward component, recurrent-unit com-
ponent, as well as contrastive learning component. The reason for using these different components
is to effective handle data that has different structures. It is expected that the pretrained item em-
beddings are stable. As we mentioned above, the relationship among items are quite stable, and the
catalog data has very minor differences in a limited span of time. Therefore, downstream machine
learning models may follow a weekly or bi-weekly refresh schedule and are expecting very stable
performances.

The four major applications that depend on our pretrained item embeddings, which we first intro-
duced in Section 6, are item-page recommendation, search ranking, email recommendation, and
home-page marketing. Each of the four tasks use both item embeddings and task-specific features
to optimize their objectives. Most of them use model structures similar to the Wide and Deep net-
work (Covington et al., 2016) to effectively combine information from different sources. Item-page
recommendation aims to provide items that are related to the anchor item on that particular page that
the customer is viewing. Item embeddings are in both the recall and reranking stage. Search ranking
is a huge system that combines multiple components. In particular, the item embeddings are used
in a particular recall stage. Email recommendation is a simpler task that aims to recommendation
items related to what the customers recently interacted with, or are supposed to interact again. Item
embeddings is used along with other features to build a model that optimizes CTR. Marketing is
also a huge system in Ecom, and the particular component that uses item embedding is to build the
predicted click-through rate model to support bidding and placement ranking.

Brief summary of the production environment and implementation.

Our production environment is relative standard in the e-commerce industry, with Hive/Spark sup-
porting the offline data streaming and Tensorflow Server supporting the online inference of deep
learning models.

Featuring h(·) via ϕ(h(·), Q) can be easily implemented in production. Some practical advantages
are:

• the algorithm is very simple and requires no training;

• it fits seamlessly into the current big-data infrastructure and frontend service;

• it require no change to the downstream model;

• the overhand for both the training and inference time are small;

• the communication can be easily done by simply recording the dimension and random seed
under which a particular U is generated.

On the backend, featurizing pretrained representation is engineered into a subroutine (on top of the
original automated representation learning pipeline) callable by downstream applications. For in-
stance, it can be a simple PySpark function if the end point of the automated representation learning
pipeline is a feature store in HDFS.

The dimension m and the random seed for generated the random directions U = [u1, . . . , ud] are the
two main inputs. Configuring and logging the random seed used by each experiment is important
because U might be reused for deploying the model on frontend. If the dimension and random seed
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are logged in the configuration, then there is no need to pass the particular U around across different
infrastructures. We mentioned in Section 5 that the dimension can be chosen by either specifying a
threshold on the approximation error ϵ (Proposition 4), for which we provide an implementation that
takes ϵ as input. We find that in most cases, downstream model owners are more willing to treated
as a tuning parameter.

For frontend service, notice that featurizing h into ϕm(h,Q) amounts to simply adding an initial
fully-connected layer whose parameters are given by the U ∈ Rd×m used in offline training. The
activation function of that initial layer is given by the sin(·) and cos(·) functions. Therefore, it fits
seamlessly with the serialization or signature building processes of the downstream model at no
extra complication. In term of the inference time, it costs little overhead for large models. For
smaller models and applications, on the other hand, we find out that it might be more efficient to
directly cache the featurized ϕm(h,Q) at the expense of space complexity.

A/B testing and result analysis

Deploying a unified A/B testing across the different downstream applications is extremely challeng-
ing. Therefore, the A/B testing is conducted with each downstream application, but we coordinated
with the different teams such that they approximately start at the same time.

Figure A.5: Online A/B testing results, and the monitoring the per-vistor gross-merchandise value
(GMV) during the testing period. App1, App2, App3, App4 correspond to item-page recommen-
dation, search ranking, email recommendation, and home-page marketing.

The control baseline is simply the existing implementation of each downstream applications. They
use the raw item embeddings h to refresh their models as usual. The treatment is switching to
use ϕ(h) in their implementations and obtain another version of their models. The outputs of the
control model and treatment model are exposed to users pre-allocated into different buckets. The
exact testing logic is quite involved and beyond the scope of our paper. The key takeaway is that the
testing begins almost at the same time for all four applications, and the only treatment variable is
which item embedding to use. The detailed testing results are provided in Figure A.5. For brevity,
we only show the performance in terms of CTR since it is indicative for all four applications.

As we shown in Table 1, all four A/B testings achieves statistically significant result under the level
of 0.1. In particular, the lift of item-page recommendation CTR has p-value less than 0.01. Further-
more, we observe a very positive change to the per-visitor gross-merchandise value (GMV) during
the testing period. Although this metric can be confounded by many other factors, we nevertheless
believe featurizing pretrained representations benefits both the individual machine learning task and
the overall business metric.

Summary

We examine the performance of featurizing pretrain item embedding via the method proposed in
this paper. We discuss how the approach fits seamlessly with our production scenarios, the overview
of our implementation, as well as the final testing results. Based on our experience, featurizing
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representation could be an important step toward more stable and productive system for industrial
machine learning.

G ADDITIONAL DISCUSSIONS

In this part of the appendix, we will provide additional discussions that provide readers with better
understandings of our contributions.

Connections between our theoretical and empirical results

Proposition 1 and its subsequent discussion outline a potential problem with using pretrained rep-
resentations in practice: the variance of h(x) may cause the empirical downstream solution not
concentrating to the optimal downstream solution. In Proposition 2, we provide a comprehensive
result that characterize the variance of h(x), which corroborates our empirical findings in Figure
1. In particular, it shows that although the pretraining algorithm may converge, the entires of h(x)
can remain stochastic, which negatively affects the downstream performance. Together, Proposition
1 and 2 suggests that directly using h(x) in downstream tasks may result in poorer performances,
which is corroborated by the empirical results in Table 1.

Proposition 3 and Lemma 1 analyze the potential interactions scenarios between pretrained rep-
resentation and downstream tasks. They highlight the role of the embedding kernel and motivate
the featurization approach we later developed. Proposition 4 provides stability guarantee for the
proposed featurization approach, which indeed delivers superior performances as shown in Table 1.

Additional relevant literature

Besides the recent develop in machine learning theory summarized in Section 2, our work is related
to a number of active domains in machine learning.

In terms of applications, pretrained representations are being used by a broad range of industrial
machine learning tasks including information retrieval, recommeder systems, advertisement, knowl-
edge completion, social network, user understanding, and many others (Cheng et al., 2016; Fan et al.,
2022; Xu et al., 2020a; Zhang et al., 2018). Unfortunately, no existing work investigates their effec-
tiveness from the industry’s standpoint, that is, whether they strike a good balance between stability,
predictability, and computability. Parallel to the above industrial tasks are the large natural language
and computer vision models (Devlin et al., 2018; He et al., 2019), whose complexity exceeds the
typical settings studied in this paper.

The proposed featurization approach relies on random Fourier feature – a well-established and im-
portant tool of modern machine learning (Rahimi & Recht, 2007). Its properties are known and
are being actively applied to obtain kernel representations for many applications, such as signal
processing, time series, and graphs (Liu et al., 2021; Gogineni et al., 2020; Xu et al., 2020b).

Finally, compared with the recent line of research on interpretability of deep learning models
(Chakraborty et al., 2017), we focus particularly on the properties of learnt representations and
how to improve them.

Experiments with NLP dataset

We further conduct experiments with the IMDB dataset described in Appendix F, where we use
Word2vec for pretraining word embeddings, and apply them to a downstream bi-directional RNN
model for sentiment analysis. We mention that large language models are not suitable for our pur-
pose because the existing model checkpoints provided by the developers are from one-off imple-
mentation. They cannot be used to recover the variance information of the pretrained embeddings.
Also, our analysis requires retraining those large models from scratch multiple times, which are very
time-consuming and resource-intensive.

The experiments are straightforward, they closely reveal the instability issues of pretraining em-
bedding and the benefits of the proposed featurization approach. In particular, we consider the
window size (#ws) and number of negative samples (#ns) as the configuration parameters of the
Word2vec model. We vary their values and present the array of downstream performances. For
each pretraining configuration, we conduct 10 independent runs to compute the empirical vari-
ance as a measure of h(x)’s instability in the downstream task. Our Word2vec pretraining follows
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the original implementation of (Mikolov et al., 2013), which uses the standard stochastic gradi-
ent descent with a decaying learning-rate schedule for 30 epochs. All the remaining settings are
kept as default, and we observe they are sufficient for achieving very small training loss (< 1e-6).

Figure A.6: The model architecture of
downstream sentiment analysis8. In
the original experiments, the embedding
layer is trained jointly with the rest of
the model. Here we replace it by pre-
trained word embeddings.

The architecture of the downstream sentiment classifi-
cation model is shown in Figure A.6, which is a bi-
directional RNN standard in the NLP literature. To align
with the original Tensorflow implementation8, we adopt
the same model configuration and treat the weight decay
λ as the only tuning parameter of the downstream task.
For each set of pretrained word embeddings, we select λ
from {1e-6, 1e-5, 1e-4,1e-3, 1e-2} according to the vali-
dation accuracy.

The train-validation-test split follows the standard 80%-
10%-10%. We use the binary cross entropy loss and use
accuracy as the metric. We also use the Adam optimizer
with initial learning rate as 1e-4 and early stopping (when
the validation accuracy stops improving for five epochs).
The remaining settings are kept as default.

For reference, when the embedding layer is trained
jointly, the downstream accuracy following the above im-
plementation is: 86.25 (0.12). The downstream accuracy
of using the different sets pretrained embeddings are pro-
vided in Table A.1. The featurized representations ϕd(h)
is obtained in the same way as described in Appendix F.
In Table A.1, we observe almost identical patterns to our
previous results in Table 1. In particular, it shows that di-
rectly using h(x) in the downstream task results in a high
degree of instability under all pretraining configurations.
The proposed featurization approach not only achieves
better testing accuracy, but it improves the downstream
stability by almost eight times on average.

Results on the NLP task provides additional evidence for both the instability issue of pretrained
representations, and the benefits of the proposed featurization approach.

d=16 #ws=3, #ns=3 #ws=3, #ns=4 #ws=4, #ns=3 #ws=4, #ns=4
h(x) 74.87 (1.98) 75.52 (1.96) 76.02 (1.96) 75.79 (1.97)

ϕd(h(x)) 76.65 (.24) 77.34 (.22) 77.95 (.22) 77.50 (.23)
d=32 #ws=3, #ns=3 #ws=3, #ns=4 #ws=4, #ns=3 #ws=4, #ns=4
h(x) 76.64 (2.01) 78.23 (1.98) 79.33 (1.75) 78.87 (1.82)

ϕd(h(x)) 78.26 (.23) 80.07 (.21) 81.05 (.20) 80.79 (.21)
d=64 #ws=3, #ns=3 #ws=3, #ns=4 #ws=4, #ns=3 #ws=4, #ns=4
h(x) 76.35 (2.14) 78.31 (2.16) 78.48 (2.14) 78.22 (2.09)

ϕd(h(x)) 78.49 (.24) 80.56 (.24) 80.86 (.21) 80.32 (.22)

Table A.1: Testing accuracy of using pretrained word embeddings for downstream sentiment classi-
fication. All results are multipled by 100, and in the paranthesis is the standard deviation computed
from 10 independent pretraining runs.

8https://www.tensorflow.org/text/tutorials/text_classification_rnn
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