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Abstract
SoftMax is a ubiquitous ingredient of modern
machine learning algorithms. It maps an input
vector onto a probability simplex and reweights
the input by concentrating the probability mass
at large entries. Yet, as a smooth approxima-
tion to the Argmax function, a significant amount
of probability mass is distributed to other, resid-
ual entries, leading to poor interpretability and
noise. Although sparsity can be achieved by a
family of SoftMax variants, they often require
an alternative loss function and do not preserve
multi-modality. We show that this trade-off be-
tween multi-modality and sparsity limits the ex-
pressivity of SoftMax as well as its variants.
We provide a solution to this tension between
objectives by proposing a piece-wise differen-
tiable function, termed MultiMax, which adap-
tively modulates the output distribution accord-
ing to input entry range. Through comprehen-
sive analysis and evaluation, we show that Multi-
Max successfully produces a distribution that su-
presses irrelevant entries while preserving multi-
modality, with benefits in image classification,
language modeling and machine translation. The
code is available at https://github.com/
ZhouYuxuanYX/MultiMax.

1. Introduction
The SoftMax has remained in wide use in modern machine
learning methods and finds its application in a variety of
algorithms such as multi-class classification (LeCun et al.,
2015; Goodfellow et al., 2016; Bishop & Nasrabadi, 2006),
attention mechanisms (Vaswani et al., 2017; Veličković
et al., 2017; Bahdanau et al., 2014; Gehring et al., 2016) and
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reinforcement learning (Sutton & Barto, 2018; Rummery
& Niranjan, 1994; Williams, 1992). It can be regarded as a
differentiable approximation of the Argmax operation and
projects the input onto the probability simplex, which allo-
cates most of the probability mass to large entries. From
the perspective of optimization, the SoftMax function al-
lows for a reasonable trade-off between exploitation and
exploration (White & Sofge, 1992), i.e., important positions
are emphasized while every position has a chance of being
explored. This trade-off can be controlled by a scale factor,
which is often referred to as temperature.

However, the expressivity of SoftMax is severely limited by
the following dilemma: a high temperature leads to over-
smoothing and reduces the efficiency of the optimization,
whereas a small temperature collapses multi-modality and
makes training unstable. In attention layers for example, a
small temperature will cause relevant positions except the
peak to be overlooked, whereas a large temperature will
“waste” a non-negligible portion of attention on irrelevant
keys. Therefore, temperature is often set to one by default
in attention layer. As shown later, such a compromise also
results in the recently observed over-smoothing issue in both
vision (Gong et al., 2021a; Wang et al., 2022c) and language
(Shi et al., 2022) transformers. Moreover, transformer-based
Large Language Models are shown to be prone to the inter-
ference of irrelevant context (Shi et al., 2023; Jia & Liang,
2017), which is also highly related to the portion of attention
on irrelevant tokens (Weston & Sukhbaatar, 2023).

To overcome the issue, previous works have proposed sparse
SoftMax alternatives, which allow to completely ignore
small entries below a threshold. These sparse SoftMax vari-
ants have been studied in diverse contexts, e.g., generative
modeling (Chen et al., 2021), output activations of multi-
class classifiers, and/or attention mechanisms (Peters et al.,
2019; Martins & Astudillo, 2016; Gupta et al., 2021).

However, such methods often suffer from poor gradient
signal, which leads to instability during training. Moreover,
the number of non-sparse dimensions is often treated as
empirically selected hyperparameter.

In contrast to sparsity, multi-modality has been less dis-
cussed in the previous studies. Since attention is not sup-
posed to be exclusive in most cases, the vanilla SoftMax,
as an approximation of Argmax, does not easily comply
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(a) SoftMax output depends on the temperature, which we show by the
color coding from dark blue (low temperature) to red (high temperature).
Sparse SoftMax variants collapse multi-modality, while MultiMax suc-
cessfully produces approximately sparse and multi-modal distributions.

(b) SoftMax and its sparse extensions are limited by the
trade-off between sparsity and multi-modality, which
is improved by our MultiMax.

Figure 1. We evaluate SoftMax, SparseMax, EntMax, EvSoftMax and MultiMax (using the parameters of a hidden layer MultiMax
trained on ImageNet directly) functions on a series of example input points v ∈ R3 and project the resulting distribution on a simplex
∆2. Informally, the interior of the simplex stands for trimodal distributions, the edges constitute the set of bimodal distributions, and the
vertices are unimodal distributions. Notably, the above figures highlight the advantage of MultiMax’s multi-modality. EntMax, Sparsemax
and SoftMax with small temperature (blue colored line) yield a (quasi) uni-modal distribution, which ignore the second largest entry. In
contrary, SoftMax with higher temperatures (green and orange colored line) fails to ignore the negative entry.

with multi-modality. The sparse alternatives (Martins &
Astudillo, 2016; Peters et al., 2019; Laha et al., 2018) to
SoftMax have even a larger tendency to not preserve the
multi-modality of distributions (Itkina et al., 2020).

In this paper, we propose MultiMax as an alternative to
SoftMax. MultiMax allows for learning when to emphasize
sparsity and when to emphasize multi-modality, offering a
flexible trade-off between both. At the same time, it remains
piecewise differentiable such as to allow for stable gradient-
based optimization.

Specifically, MultiMax extends the traditional SoftMax by
a preceding parameterized function that enables to learn
distinct temperature values for particular input value ranges
separately. Used within a self-attention mechanism, this fa-
cilitates for example to learn particularly low temperatures
that induce sparsity for low input value ranges, i.e. unrelated
tokens can be ignored, while learning high temperatures
for higher input value ranges, i.e. several related tokens can
share the attention in a multi-modal way. The improved
multi-modality and sparsity brought by MultiMax is demon-
strated in Figure 1. MultiMax is able to serve as a drop-in
replacement of SoftMax in any applications and adapt to an
appropriate form via training.

After a theoretic analysis, we show empirically that Mul-
tiMax can improve the attention mechanism and is an ef-
fective classifier output activation as well. MultiMax con-
sistently improves over SoftMax baselines in a wide range
of tasks, with an increase of 0.6% classification accuracy
on ImageNet, an improve of 0.7 in perplexity for language

modeling on WikiText-103, and a gain of 0.3 in BLEU score
for English to German translation on WISLT-2014.

The contributions of this paper are as follows:

• We generate insights in the trade-off between sparsity
and multi-modality in SoftMax.

• We propose MultiMax – an alternative to SoftMax
with better and learnable tradeoffs between both, multi-
modality and sparsity.

• We show advantageous properties of MultiMax theo-
retically and demonstrate performance improvements
on diverse tasks ranging from image classification over
language modeling to machine translation.

2. Related Work
We organize the related work by first discussing related
SoftMax alternatives afterwards more broadly approaches
that have aimed to improve attention mechanism as well as
prevent oversmoothing.

SoftMax alternatives. In previous work, huge efforts have
been made to pursue sparsity. Sparsemax (Martins & As-
tudillo, 2016) and its generalization EntMax-α (Peters et al.,
2019) are sparse SoftMax variants through thresholding
the output probability. Although the hyperparameter α is
supposed to control the degree of sparsity, the functions
lack full support for α > 1. Another variant, in princi-
ple similar to EntMax-1.5, with control of the sparsity is
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Sparsehourglass (Laha et al., 2018). As output activation
of a classifier, these approaches require alternative losses to
enable gradient-based optimization. Yet, this can cause slow
convergence and training instability as well as an additional
approximation error. Ev-SoftMax (Chen et al., 2021) ad-
ditionally reveals that these sparse SoftMax variants could
harm multi-modality. It achieves sparsification by zero-
ing out input entries smaller than average and provides a
training-time modification strategy to enable gradient-based
training. This is indeed similar to the broadly adopted top-k
selection of SoftMax output, e.g., in attention layers of vi-
sion (Wang et al., 2022b; Zhao et al., 2019) and language
(Gupta et al., 2021) transformers. In contrast, our MultiMax
achieves sparsity and improved multi-modality at the same
time without extra hyperparameters. It has also full support
and thus is a drop-in replacement of SoftMax in any context.

Anti-oversmoothing approaches. Over-smoothing refers
to the issue that the representations of different tokens tend
to become more similar as layer depth increases. This prob-
lem is observed in both vision (Wang et al., 2022c; Gong
et al., 2021a) and language transformers (Shi et al., 2022).
Patch Diversification (Wang et al., 2022c) combines three
regularization losses to explicitly encourage diversity in
patch representations. AttnScale (Wang et al., 2022c) de-
composes a self-attention block into low-pass and high-pass
components, and rescales the high-pass component of the
self-attention matrix. While these remedies have been pro-
posed, the reason behind lacks in-depth discussion. Notably,
(Shi et al., 2022) has attempted an analysis by relating self-
attention matrix to adjacent matrix of a graph. Their claim
of post-normalization being the root cause has led to fur-
ther discussion, as they stick to post-normalization in the
end and pre-normalization empirically performs no better
than post-normalization (He et al., 2020). We find that the
over-smoothing problem is indeed is comparable to over-
smoothing problem in GCNs (Chen et al., 2020; Oono &
Suzuki, 2019), and strongly related to the inevitable amount
of attention assigned to irrelevant tokens. The identity of
each token degrades rapidly due to the repetitive attention
operations. As shown in the studies of GCNs, sparsification
(Rong et al., 2019; Hasanzadeh et al., 2020; Zheng et al.,
2020) is a direct and effective solution.

Attention mechanism A vast amount of efforts have been
invested in proposing new or improving the existing atten-
tion mechanisms (Vaswani et al., 2017; Veličković et al.,
2017; Bahdanau et al., 2014; Gehring et al., 2016). (Kim
et al., 2017) successfully incorporated richer structural dis-
tributions into attention networks via graph encodings. (Nic-
ulae & Blondel, 2017) introduced a new framework for
sparse and structured attention with a smoothed max oper-
ator, which can be regarded as a generalization of softmax
and sparsemax. (Deng et al., 2018) considered variational
attention networks as alternatives to soft and hard atten-

Table 1. Classification accuracy on ImageNet1K using Deit-small
baseline with Global Avarege Pooling (GAP) and classification
token (CLS) respectively.

Model Head Temperature
1

t
0.1 0.5 1 2 10 trainable

Deit-small CLS 5.1 79.9 79.9 80.0 79.5 79.7
GAP 4.7 80.3 80.4 80.0 79.9 80.2

tion for better learning latent variable alignment models.
(Maruf et al., 2019) suggested to adopt sparse attention to
selectively focus on relevant sentences in the document con-
text for improved neural machine translation. (Zhang et al.,
2020) explored the feasibility of specifying rule-based pat-
terns to sparsify encoder outputs for improved decoding
efficiency. While these approaches mainly focus on improv-
ing sparsity, our MultiMax improves both multi-modality
and sparsity at the same time. Moreover, MultiMax is a
universal alternative to the SoftMax function, which is not
limited to the application in the attention mechanism.

3. Background, Metrics, and Analysis
In this section, we state the challenge of sparsity-multi-
modality trade offs in reweighting functions such as softmax.
Based on metrics to measure these quantities, we provide
a theoretical analysis that shows the tension between those
two goals in previous formulations.

3.1. Background

SoftMax is the most widely adopted reweighting function
in machine learning and is formulated as follows:

Definition 3.1. Let ∆K−1 = {p ∈ RK
≥0|1Tp = 1} be

the K − 1 dimensional simplex. SoftMax maps a vector
x ∈ RK with K ∈ Z+ to a proper distribution in ∆K−1:

ϕSoftMax(x)i =
etxi∑K

k=1 e
txk

, (1)

where 1
t controls the entropy of the generated distribution

and is often referred to as “temperature”. The exponential
term makes the distribution concentrated on the largest en-
tries, which reflects the selective nature of for example the
attention mechanism or multi-class classification.

3.2. Sparsity and Multi-Modality Trade-off

Although sparsity seems to be easily acquired by decreasing
the temperature, we find that the gain of increased sparsity
comes at a cost in practice. We exemplify such an issue by
comparing the classification performance of a transformer
on ImageNet1K with different SoftMax temperatures in Ta-
ble 1. As shown in the table, tuning temperature is tedious

3



MultiMax: Sparse and Multi-Modal Attention Learning

and brings no obvious advantage. Moreover, a small temper-
ature typically provides poor learning signal and can hamper
training stability, as suggested by the low accuracy for tem-
perature 0.1. For a better understanding of the inefficacy
of temperature tuning, we follow-up with a brief theoreti-
cal study to show that the temperature tuning of SoftMax
function is indeed limited by an inherent trade-off between
sparsity and multi-modality.

To enable a precise analysis on the trade-off between multi-
modality and sparsity, we need to define appropriate quanti-
tative metrics for these two properties of reweighting func-
tions.

3.2.1. QUANTIFYING MULTI-MODALITY AND SPARSITY
OF REWEIGHTING FUNCTIONS

For multi-modality and sparsity, the probabilities close to
peak and zero are with no doubt the most relevant, respec-
tively. And such relevance equivalently transfers to the
largest and smallest input entries, since the studied reweight-
ing (activation) functions should be monotonically non-
decreasing (Ganea et al., 2019; Gao & Pavel, 2017). For
simplification, we omit the trivial case when two entries are
equal, since they remain equal after any valid function.

To quantitatively compare the multi-modality of the dis-
tributions generated by different reweighting functions ϕ
w.r.t. a given input x, we propose the following metric
M(x):
Definition 3.2. Without loss of generality, let xmax be the
largest entry and xmax > xn > ϵ, where ϵ could be any
reasonable threshold for a entry to be considered relevant
and N is the counts of such entries. The Multi-Modality
Metric is given by:

M(x) = 1− 1

N

N∑
ϵ<xn<xmax

(ϕ(x)max − ϕ(x)n), (2)

Intuitively, this metric captures the average difference be-
tween the reweighted relevant entries ϕ(x)n ∀xn > ϵ and
the maximum ϕ(x)max. The average distance would be
close to 0, if all output entries are about the same (maxi-
mum multi-modality). In order to make it a large=better
metric, we subtract it from 1.

Analogously, we build a Sparsity Metric for the reweight-
ing functions upon the common −L1

ϵ sparsity metric for vec-
tors (Hurley & Rickard, 2009), which calculates the negative
sum of entries smaller than ϵ. Although sparse or non-sparse
is a binary status, a smooth metric is desired to additionally
consider values close to zero (i.e. approximately sparse).
Moreover, we would like to take the non-linear nature of
such sparsity into account, i.e., above a reasonably small
threshold, a large portion of the range from 0 to 1 is sup-
posed to be non-sparse. In this case, a non-linear scaling

(especially an approximation of a step function) helps to
better reflect the actual degree of sparsity. Thus, we define
the sparsity metric as follows:

Definition 3.3.

S(x) = 1

L

L∑
xl<ϵ

exp (
s− ϕ(x)l

s
− 1), (3)

where s ∈ [0, 1] can be any reference value for a non-linear
scaling of the sparsity score and L is the counts of entries
smaller than ϵ. For example, the probability of the smallest
entry xmin after SoftMax (SoftMax

t=1
(x)min) can be chosen as

a reasonable reference value. Together with the exponential
term, S(x) results in a smooth approximation of a step
function, with the output range normalized to [0, 1], where
larger values indicate stronger degrees of sparsity. Having
defined the two metrics, we are able to prove there exists a
trade-off between them.

3.2.2. PROOFING THE TRADE-OFF

Lemma 3.4. S(x) is monotonically increasing w.r.t. ϕ(x)l.
(See Appendix B.1 for the proof.)

This can be easily proved by checking the partial derivative.
Similar proof can be done for the following:

Proposition 3.5. For a given input x, the following state-
ments hold w.r.t. temperature t.

1. Multi-modality of SoftMax is monotonically increasing.

2. Sparsity of SoftMax is monotonically decreasing for
ϵ ≤ ∥x∥1

K .

(See Appendix B.2 for the proof.)

It is clear that we could increase either multi-modality or
sparsity by simply varying temperature, but at the cost of
decreasing the other. As a remedy, we suggest a piece-
wise modulation scheme, which modulates small and large
entries via two corresponding temperatures independently.

4. MultiMax
Based on our insights in the trade-off between sparsity and
multi-modality in SoftMax, we propose MultiMax that rec-
onciles those two objectives in a learnable formulation. We
start by defining MultiMax that introduces two temperature
terms that control for sparsity and multi-modality respec-
tively. We analyze improved properties that are achieved
by this formulation and finally extend the concept to higher
order polynomials and beyond attention mechanisms.

The following sections will provide a theorectic analysis of
MultiMax, starting with its first-order form.
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4.1. First-order MultiMax

Definition 4.1. Let b and d be two control parameters. We
apply two corresponding temperatures tb and td only to the
entries smaller than b and larger than d, respectively. We
construct a piece-wise linear function σ to modulate the
SoftMax input x, which defines the proposed MultiMax:

ϕMultiMax(x)i =
exp (σ(xi))∑K

k=1 exp (σ(xk))
, where

σ(x) = x+ (1− tb)Max(b− x, 0)︸ ︷︷ ︸
term(1)

+(td − 1)Max(x− d, 0)︸ ︷︷ ︸
term(2)

,

(4)

We call the above function the first-order MultiMax function
and we will generalize it to a higher-order version towards
the end of this section. For now, the first-order MultiMax
has an intuitive interpretation:

σ(x) =


tbx+ (1− tb)b x < b

x b ≤ x ≤ d

tdx+ (1− td)d x > d

, (5)

where the bias terms (1− tb)b and (1− td)d guarantees con-
tinuity of the modulator, e.g., lim

x→b−
σ(x) = lim

x→b+
σ(x) = b.

To guarantee differentiability, subgradients can be defined
for the turning points, e.g., dσ(x)/dx = 1 at x = b, please
refer to (Boyd et al., 2003) for more details. For tb > 1
and 0 < td < 1, we could prove that MultiMax achieve
a better balance between multi-modality and sparsity than
SoftMax. Intuitively, a large tb pushes small entries closer to
zero, while a small td reduces the gap between large entries.
Therefore, the output distribution is modulated to exhibit
higher sparsity as well as multi-modality.

To disclose the mechanism behind, we first study the impact
of modulating only the small entries on the output distribu-
tion. Then we show that additionally modulating the large
entries increases multi-modality further.

(a) Input point [-2, x]. (b) Input point [2, x].

Figure 2. Illustration of different reweighting functions in the two-
dimensional case. It can be seen clearly that MultiMax weigh the
entries at small and large value ranges in a different manner, thus it
does not suffer from the trade-off between sparse and multi-modal.

Figure 3. The learned modulator functions σ (Equation (6)) at each
layer, comparing to identity mapping of the SoftMax input x
(dashed black line). All layers except for the first two converge
to a form that is consistent to our analysis, i.e., low temperature
(steep slope) for small entries and high temperature (flat slope) for
large entries.

4.2. Improved Pareto Efficiency

Improving sparsity With the above defined metrics, we
show that adding term (1) alone (denoted by MultiMax-l),
i.e., modulating smaller entries, already leads to a better
Pareto Optimality (Buchanan, 1962) regarding sparsity and
multi-modality than SoftMax.

Proposition 4.2. The following properties hold for tb > 1.

1. MultiMax-l generates sparser distribution than Soft-
Max with temperature 1.

2. MultiMax-l achieves better multi-modality than Soft-
Max with temperature 1.

(See Appendix B.5 for the proof.)

From the above analysis, we could see that MultiMax-l
has higher Pareto Efficiency than SoftMax: MultiMax-l
with tb > 1 has both better sparsity and multi-modality
than Softmax with temperature 1 (Proposition 3.5), and
Softmax can not improve both properties at the same time
by changing temperature (Proposition 4.2).

Enhancing multi-modality further As shown in Proposi-
tion 4.3, including the modulation of larger entries further
enhances multi-modality while retaining better sparsity than
SoftMax.

Proposition 4.3. The following properties hold for td < 1
and tb > 1:

1. MultiMax can achieve better sparsity than SoftMax
with temperature 1.
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2. MultiMax can achieve better multi-modality than
MultiMax-l.

(See Appendix B.6 for the proof.)

4.3. Generalization

4.3.1. GENERALIZATION TO OTHER ACTIVATIONS

Piece-wise linear activation functions are widely adopted in
modern machine learning algorithms, e.g., ReLU (Agarap,
2018), Leaky ReLU (Maas et al., 2013) and PReLU (He
et al., 2015). Although MultiMax focuses on a different
purpose, it can seen from Equation (4) that the modula-
tor/rectifier function σ of MultiMax is a generalization of
these activation functions. For example, if b = d = 0,
td = 1 and tb = 0, then σ is reduced to ReLU. For the rest,
it can be shown easily in a similar way.

4.3.2. GENERALIZATION TO HIGHER-ORDER
POLYNOMIALS

So far, it has been shown that higher Pareto Efficiency can be
realized with a piece-wise linear modulation function, which
belongs to the family of first-order polynomials. To obtain
smoother transitions at turning points and larger capacity,
second-order terms are included in our final formulation of
MultiMax:

σ(x) = x+
N∑

n=1
(1− tbn)Max(bn − x, 0)n︸ ︷︷ ︸

term(1)

+(tdn
− 1)Max(x− dn, 0)

n︸ ︷︷ ︸
term(2)

,

(6)

where n ranges from 1 to 2. We don’t include higher or-
ders beyond the second, because it proves to be sufficient in
practice. We show in the ablation Section 5.3 that the extra
nonlinearities brought by the second-order terms benefit the
learning of the modulation scheme, in analogy to the pre-
vious study on activation functions (Hendrycks & Gimpel,
2016; Clevert et al., 2015; Elfwing et al., 2018).

As shown in Figure 1b, the output of SoftMax with varied
temperatures forms a trajectory and converges to sparsemax
as temperature approaches 0. EntMax-α stays close to the
trajectory with α = 1.5, and is indeed equivalent to soft-
max or SparseMax when α = 1 or 2. MultiMax achieves,
in the example, an otherwise non-reachable trade-off, with
values close to the simplex that vary in two out of three
possible modes. For a less complex illustration, we also
provide the comparison with other reweighting functions
with 2D inputs in Figure 2, in which case SoftMax is equiv-
alent to Sigmoid. While other approaches handle small and
large entries equally, MultiMax provides an input-adaptive
reweigthing scheme.

We show in Figure 3 the learned modulator function of
deit-small on ImageNet and compare it to the original input

x (dashed black line) when used in attention layers. The
learned functions at most layers (except the first two) con-
forms to our analysis: steeper slope for small entries (below
the dashed black line on the left side means temperature
smaller than 1) and flatter slope for large entries (below the
dashed black line on the right side means temperature larger
than 1). This conforms to our theoretical analysis that small
entries should be suppressed with smaller temperature and
large entries should be pushed closer with large tempera-
ture. Moreover, it is noteworthy that the need for sparsity
increases as the layer goes deeper, according to the learned
curves.

4.3.3. GENERALIZATION BEYOND ATTENTION

As shown in the above analysis, the proposed MultiMax
not only generalizes SoftMax, but also achieves a better
Pareto optimality w.r.t. sparsity and multi-modality with
appropriate parameterization. Due to its fully parameterized
formulation, it is learnable and adaptable to any scenario
where a reweighting function is required. Since the need for
the degree of multi-modality and sparsity may vary among
different applications, we do not explicitly constrain any of
the parameters and optimize them jointly with the model.

4.4. Computational Efficiency

The extra computation of MultiMax is negligible for mod-
ern machine learning algorithms: As shown in Equation (4),
the total amount of additional parameters for a 12 layer
Transformer with 2nd-order MultiMax is just 8× 12 = 96,
because each order only contains 4 parameters, including
tb, td, b and d. Moreover, the modulation function σ(x)
merely consists of cheap element-wise operations, i.e., mul-
tiplication with tb and td, subtraction with b and d, two Max
operations, addition of the two terms at each order as well as
a residual addition. Thus a second-order MultiMax requires
7× 2+1 = 15 extra Floating Point Operations (FLOPs) for
a univariant input. For Deit-small model with input length of
256, hidden dimension of 384 and 12 layers, replacing Mul-
tiMax with SoftMax in all attention layers leads to 0.0168G
extra FLOPs, i.e. only 0.37% of the original model’s 4.6G
FLOPs.

In practice, customized layers often run much slower than
the highly optimized built-in Pytorch layers. The perfor-
mance gap between theory and practice is mainly because
the PyTorch framework is eagerly evaluated and thus brings
additional memory access time and kernel launch time,
please refer to this page 1 for more details. Thus a native
Pytorch implementation of MultiMax increases the train-
ing time of Deit-small on ImageNet by about 40% (0.19
s/iteration vs 0.26 s/iteration), while the increase in infer-

1https://residentmario.github.io/
pytorch-training-performance-guide/jit.html
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Table 2. Comparing to Deit (Touvron et al., 2021a) baseline and anti-over-smoothing methods on ImageNet-1k by replacing SoftMax with
MultiMax in the attention and/or output layers. * denotes that results are not strictly comparable: these methods rely on a different training
setup. For example, additional training epochs are adopted by both works, talking-head (Shazeer et al., 2020) and a higher drop-path
(Huang et al., 2016) rate are applied together with Patch Diversification.

Model Method Parameters Epochs Modulation Acc. (%)Output Attention

Deit-tiny SoftMax 5M 300 N/A N/A 72.8
MultiMax 300 ✓ ✓ 73.4

Deit-small

Softmax

22M

300 N/A N/A 80.4
Top-k (Wang et al., 2022b) 300 ✓ N/A 80.6

Ev-SoftMax (Chen et al., 2021) 300 - ✓ 80.0

MultiMax
300 ✓ - 80.7
300 - ✓ 80.7
300 ✓ ✓ 81.0

Deit-base SoftMax 86M 300 N/A N/A 82.1
MultiMax 300 ✓ ✓ 82.6

Deit-small

Patch Diversification (Gong et al., 2021b) 400 N/A N/A 81.2*
AttnScale (Wang et al., 2022c) 500 ✓ N/A 80.9*

MultiMax 400 ✓ ✓ 81.2
500 ✓ ✓ 81.3

ence time is negligible (less than 2%). However, we are
able to achieve a reduction from 40% (native Pytorch im-
plementation) to only about 10% increase of training time
(0.21 s/iteration) by implementing the Max operator with 0
as built-in ReLU function and applying torch.jit.script deco-
rator to fuse the remaining elementwise operations of our
MultiMax, following the documentation 2. Notably, a fully
optimized implementation of MultiMax in C++ or CUDA
as done with Pytorch built-in layers might further reduce
the gap.

5. Experiments
In this section, we replace SoftMax with MultiMax in dif-
ferent baselines and apply them to the corresponding tasks,
including image classification on ImageNet1K, langauge
modeling on Wiki-Text-103 corpus and machine translation
on IWSLT-2014 corpus. Experimental results demonstrate
consistent improvement with MultiMax, without any extra
changes, e.g. hyperparameters or architecture. Moreover,
we provide additional insights and demonstrate that advan-
tagesous properties, including reduced over-smoothing (Sec-
tion 5.2.1) and improved sparsity & multi-modality (Sec-
tion 5.2.2), are achieved.

5.1. Benchmarking

5.1.1. IMAGENET1K CLASSIFICATION

For classification, we train the widely adopted Deit (Tou-
vron et al., 2021a) from scratch on ImageNet1K as baseline.
Following the same training setup, we train Deit by only
replacing the SoftMax function with our MultiMax, in the
attention layers and/or output layer for a fair comparison.

2https://pytorch.org/tutorials/recipes/
recipes/tuning_guide.html

For training, we closely follow the training settings provided
in (Touvron et al., 2021a) and train all the models for 300
epochs. Following the more recent works (Chu et al., 2021;
Liu et al., 2021), we also adopt Global Average Pooling
(GAP) instead of using Class Token (CLT) as classification
head. While class token causes discrepancy in attention
(Touvron et al., 2021b) and breaks translation invariance
(Chu et al., 2021), GAP avoids this problem and improves
the accuracy.

The results in Table 2 show a consistent improvement by
using MultiMax for both attention and output activation lay-
ers. Although those sparse SoftMax variants work well for
Machine Translation tasks, most of them have issues with
Deit models. Ev-SoftMax decreases the performance when
used in attention layers and the training does not converge
(accuracy below 10%) when used in the output layer. For
the inferior performance of Ev-SoftMax, we hypothesize
that less sparsity is required for the attention among image
patches than for language tokens, and zeroing out the en-
tries smaller than average might be too aggressive. For the
unstable training, their simple training-time modification
might not be sufficient. The alternative losses provided by
Sparse SoftMax and EntMax-1.5 require integer labels, thus
are not compatible with the widely adopted label smoothing
technique in vision transformers. Training instability issues
are also encountered when using SparseMax in attention
layers only. Therefore, we excluded them for the image
classification task.

5.1.2. LANGUAGE MODELING

We test the effectiveness of our MultiMax further on the Lan-
guage Modeling task on WikiText-103 (Merity et al., 2016)
using a 6-layer Transformer Decoder with 156M parameters.
The implementation is based on the official fairseq repos-
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itory3 and the training setup is kept as default, i.e., 5e−4
learning rate with a maximum of 2048 tokens per GPU
for 50k iterations on 4 GPUs. The results of the baseline
transformer using SoftMax attention and our MultiMax are
shown in Table 3. We again observe a consistent improve-
ment by applying MultiMax in the output activation for this
task.

Table 3. Evaluation of the performance on WikiText-103 language
modeling task by test perplexity.

Method Attention Output Perplexity ↓

SoftMax - - 29.4
Top-k (Gupta et al., 2021) ✓ N/A 29.1

MultiMax ✓ - 29.0
✓ ✓ 28.7

Table 4. Comparing to other SoftMax variants using two different
baseline settings (see Section 5.1.3 for more details) on IWSLT
2014 English to German Translation task.

SoftMax SparseMax EntMax-1.5 EvSoftMax MultiMax

34.4 ± 0.07 28.7 ± 0.16 34.6±0.09 34.7 ± 0.06 34.7 ± 0.07

5.1.3. MACHINE TRANSLATION

Following previous approaches, we also evaluate our
method on the task of machine translation. We train a 38M
12-layer Transformer baseline with encoder-decoder (6 lay-
ers each) architecture (Vaswani et al., 2017) from scratch on
the IWSLT2014 German to English dataset (Cettolo et al.,
2017), following the training setup provided in the fairseq
repository (Footnote 3). Under the same setting, we also
train the transformer with our MultiMax in replacement
of SoftMax in the attention layers, following the common
setup in previous work. The single best checkpoint and a
beam size of 5 is adopted. The detokenized SacreBLEU
(Post, 2018) scores (mean and standard deviation) of 3 runs
are compared in Table 4. MultiMax performs on par with
EvSoftMax and is slightly better than EntMax-1.5 for this
task.

5.2. Empirical Studies and Insights

In this section, we empirically verify the positive impact
of MultiMax on the over-smoothing issue, as well as the
improvement on multi-modality and sparsity in the attention
scores of Deit-small trained on ImageNet1K.

5.2.1. ANALYSIS ON OVER-SMOOTHING

To validate the efficacy of our MultiMax on preventing
over-smoothing, we adopt the Patch Similarity (Gong et al.,
2021b) or Mean Average Distance (MAD) (Chen et al.,
2020) metric to compare transformers using SoftMax and

3https://github.com/facebookresearch/fairseq

(a) Softmax Deit-small (b) MultiMax Deit-small

Figure 4. Patch similarities for each layer and at different epochs.
Darker color denotes the patch similarities at a larger training
epoch.

MultiMax on ImageNet1K. The numbers are shown in Fig-
ure 4. It can be observed that patch similarity increases
as the depth grows for SoftMax attention during the entire
training, whereas the patch similarity converges to a much
lower level for MultiMax attention in deeper layers. We
attribute this to the undesirable amount of attention assigned
to irrelevant tokens which contributes the over-smoothing
issue in Transformers. Moreover, it also showcases the
flexibility of MultiMax’s parameterized formulation, which
can encourage exploration in the early stage and shift the
distribution gradually towards higher sparsity as the train-
ing progresses. We have also examined the increased dis-
crepancy between single layer attention and accumulated
roll-out attention (Abnar & Zuidema, 2020), which further
indicates the strong connection between non-sparse Soft-
Max attention and the over-smoothing issue. Please refer to
Appendix C.3 for more details.

5.2.2. ANALYSIS ON SPARSITY AND MULTI-MODALITY

Figure 5. Histograms of the attention scores at each layer. Multi-
Max attention is distributed towards both ends: small scores are
pushed closer to zero and more scores lie above 0.1.
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In this section, we empirically evaluate the impact of using
our MultiMax on the sparsity of attention scores. To achieve
this, we evaluate the trained model on 1000 images and
collect the attention scores at each layer.

As shown in Figure 5 in a log-log histogram, the attention
scores of MultiMax are distributed more towards both ends
of the score range, i.e., extremely small values near zero and
large values between 0.1 and 1. In comparison, the attention
scores of SoftMax are concentrated in the region in between,
which corresponds to the bumps in the figure. Note that
the number of counts are drawn at logarithmic scale, thus
a small bump indeed indicates a large amount of counts.
Notably, MultiMax attention behaves differently in the first
two layers, which actually shows the flexibility of learning:
the need for multi-modality or sparsity varies with varying
context. Thus it can be a disadvantage to manually define
the trade-off in advance. We also visualize the cumulative
distribution of these attention scores in Appendix C.2, which
also indicates a stronger sparsity achieved by MultiMax.

5.3. Ablation

To study the effect of each design component of our Mul-
tiMax independently, we conduct experiments using Deit-
small as the baseline on ImageNet1K for ablation, as shown
in Table 5. Since the language modeling and image clas-
sification tasks are computationally heavy, we report the
result of a single run with the seed unchanged for all these
experiments, as commonly done for ImageNet models.

Table 5. Impact of each MultiMax component.
Config term (1) term (2) second order Acc

1 - - - 80.4
2 ✓ - - 80.6
3 ✓ ✓ 80.7
4 ✓ ✓ ✓ 81.0

To further validate the statistical significance of these results,
we additionally conduct experiments using Deit-small with
GAP on ImageNet1K and the results are recorded in Table 6.
Comparing to the relatively small standard deviation, the
improvement of using MultiMax is reliable.

Table 6. Multiple runs with random seeds using Deit-small on Ima-
geNet1k. MultiMax shows consistent improvement over SoftMax.

Method Runs Mean Std1 2 3

SoftMax 80.4 80.3 80.3 80.3 0.05
MultiMax 81.0 80.8 80.7 80.8 0.12

5.4. Attention Visualization

As Transformer models (Vaswani et al., 2017; Liu et al.,
2021; Zhou et al., 2022a;b; Wang et al., 2022a) stack a

number of attention layers and aggregates the information
repetitively, the attention scores at a single layer do not re-
flect the true information flow. To evaluate the impact on the
classification more directly, we employ the well-established
Grad-CAM (Selvaraju et al., 2017) to qualitatively evaluate
the impact on the model’s decision making. We additionally
provide single layer attention scores in Appendix C.1 for
reference.

Figure 6. Grad-CAM of Deit-small using SoftMax (top row) and
MultiMax (bottom row). The MultiMax attention maps are better
localized on the objects and are close to zero in most background
regions, indicating sparsity at the attention level.

6. Conclusion
In this paper, we formalize, analyze, and evaluate the spar-
sity and multi-modality trade-off of SoftMax and proposed
MultiMax as a remedy for tension between these two desir-
able objectives. Through both experimental evaluation and
analysis, we validated that MultiMax successfully learns to
achieve higher multi-modality and sparsity at the same time.
Although we have already demonstrated the benefits of Mul-
tiMax in attention layers and output activation of a classifier
and a generative model across a wide range of tasks, we
believe it has an even broader range of applications, such
as in value networks and policy gradient for reinforcement
learning as well as the learning of categorical distributions
with Gumbel Softmax (Jang et al., 2016).

Impact Statement
This paper contributes to the understanding of core ML/AI
methodology and improves the performances on a range of
tasks that are broadly used as benchmark datasets in the field.
Therefore, no negative impact that would be specific to our
method is foreseeable at this point and we rather expect
an overall positive impact by contributing the knowledge
and understanding of these method that makes them more
reliable.
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Forschungszentrum Jülich for the kind support.

References
Abnar, S. and Zuidema, W. Quantifying attention flow in

transformers. arXiv preprint arXiv:2005.00928, 2020.

Agarap, A. F. Deep learning using rectified linear units
(relu). arXiv preprint arXiv:1803.08375, 2018.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning. Springer, 2006.

Boyd, S., Xiao, L., and Mutapcic, A. Subgradient methods.
lecture notes of EE392o, Stanford University, Autumn
Quarter, 2003.

Buchanan, J. M. The relevance of pareto optimality. Journal
of conflict resolution, 1962.

Cettolo, M., Federico, M., Bentivogli, L., Niehues, J.,
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A. Lemmas
Lemma A.1. The following inequalities hold:

xi > txi + (1− t)b, ∀xi < b and ∀t > 1

xi < txi + (1− t)b, ∀xi > b and ∀t > 1

xi < txi + (1− t)b, ∀xi < b and ∀t < 1

xi > txi + (1− t)b, ∀xi > b and ∀t < 1

(See Appendix B.3 for the proof.)

Lemma A.2. The following inequality holds ∀ϵ ≤
1
L (

L∑
xl<b

Xl − lnL) and ∀t > 1:

L∑
xl<b

et(xl−xi) ≥
L∑

xl<b

exl−xi

(See Appendix B.4 for the proof.)

B. Proofs
B.1. Proof of Lemma 3.4
∂S(x)
∂ϕ(x)l

=
1

1− s
exp (

s− ϕ(x)l
s

− 1). ∀s < 1 ⇒
1

1− s
> 0. Since the exponential term is always positive,

we have
∂S(x)
∂ϕ(x)l

> 0, ∀ϕ(x)l.

B.2. Proof of Proposition 3.5

Proof. Statement 1

from Equation (1) and Definition 3.2

∂M(x)

∂t
=

(xmax − xn)e
xn−xmax

t

t2
∑K

k=1 e
xk−xmax

t

+
(1− e

xn−xmax
t )

∑K
k=1

xmax−xk

t2 e
xk−xmax

t

(
∑K

k=1 e
xk−xmax

t )2

since xn − xmax < 0, we have 0 < e
xn−xmax

t < 1

⇒ ∂M(x)

∂t
> 0 holds ∀t

Proof. Statement 2

from Equation (1)

∂ϕ(x)l

∂t
=

∑K
k=1(xk − xl)e

xk−xl
t

t2(
∑K

k=1 e
xk−xl

t )2

from Chebyshev’s sum inequality
K∑

k=1

(xk − xl)e
xk−xl

t >
1

K

K∑
k=1

(xk − xl)

K∑
k=1

e
xk−xl

t

since xl < ϵ ≤ ∥x∥1

K , we have
∑K

k=1(xk − xl) ≥ 0

⇒
∂ϕ(x)l

∂t
> 0

from Lemma 3.4

⇒ ∂S(x)
∂t

=
∂S(x)
∂ϕ(x)l

∂ϕ(x)l

∂t
> 0

B.3. Proof of Lemma A.1

From basic laws of algebra, x−tx−(1−t)b = (1−t)(x−b).
For t > 1 and x < b, we have (1− t)(x− b) > 0 ⇒ x >
tx+ (1− t)b, and vice versa.

B.4. Proof of Lemma A.2

since exl > 0, from Hoelder’s inequality, we have
L∑

xl<b

exl−xi =

L∑
xl<b

∣∣exl−xi
∣∣1 · 1

≤
L∑

xl<b

(
(
∣∣exl−xi)

∣∣)t) 1
t ·

(
L∑

l=1

1
t

t−1

)1− 1
t

raise both sides to the power of t and multiply by L1−t

⇒ L1−t(

L∑
xl<b

e(xl−xi))t ≤
L∑

xl<b

et(xl−xi)

the above inequality holds if
L∑

xl<b

exl−xi ≤ L1−t(

L∑
xl<b

e(xl−xi))t

take the natural log on both sides

ln

L∑
xl<b

exl−xi ≤ (1− t)lnL+ tln

L∑
xl<b

exl−xi

⇒ lnL ≤ ln

L∑
xl<b

e(xl−xi)

since ex is convex and xi < ϵ

L∑
xl<b

e(xl−xi) ≥ e

L∑
xl<b

(xl−xi)

≥ e

L∑
xl<b

(xl−ϵ)

the condition is satisfied for ϵ ≤ 1
L (

L∑
xl<b

xl − lnL)
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B.5. Proof of Proposition 4.2

When only term (1) is considered, Equation (5) is reduced
to:

σ(x) =

{
tbx+ (1− tb)b x < b

x x ≥ b
, (7)

and we obtain:
ϕMultiMax-l(x)i =

etbxl+(1−tb)b∑L
xl<b e

tbxl+(1−tb)b +
∑N

xn≥b e
xn

xl < b

exn∑L
xl<b e

tbxl+(1−tb)b +
∑N

xn≥b e
xn

xl ≥ b

,
(8)

where L and N denote the number of entries smaller than
or greater than b and L+N = K.

Proof. Statement 1

from Equation (8), ∀xi < ϵ ≤ b, eliminate the numerator

ϕMultiMax-l(x)i =
1

L∑
xl<b

etb(xl−xi) +
N∑

xn≥b

exn−(tbxi+(1−tb)b)

substitute tbxi + (1 − tb)b with xi at lower right

and
L∑

xl<b

etb(xl−xi) at lower left, from Lemma A.1 and

Lemma A.2

≤ 1
L∑

xl<b

exl−xi) +
N∑

xn≥b

exn−xi

⇒ ϕMultiMax-l(x)i < ϕSoftMax(x)i

Proof. Statement 2

Eliminate exi , from Equation (8), ∀xi > xj > b

mMultiMax-l = 1− 1− e(xj−xi)

L∑
xl<b

etbxl+(1−tb)b−xi +
N∑

xn≥b

e(xn−xi)

substitute (1− tb)b− xi with −tbxi, from Lemma A.1

> 1− 1− e(xj−xi)

L∑
xl<b

etb(xl−xi) +
N∑

xn≥b

e(xn−xi)

substitute
L∑

xl<b

etb(xl−xi) with
L∑

xl<b

exl−xi , from

Lemma A.2 ∀ϵ ≤ 1
L (

L∑
xl<b

xl − lnL)

> 1− 1− e(xj−xi)

L∑
xl<b

exl−xi +
N∑

xn≥b

e(xn−xi)

= MSoftMax

B.6. Proof of Proposition 4.3

Combined Equation (5) with SoftMax, we obtain:

ϕMultiMax(x)i =

etbxi+(1−tb)b

L∑
xl<b

eσ(xl) +
M∑

b≤xm≤d

exm +
N∑

xn>d

eσ(xn)

xi < b

exi

L∑
xl<b

eσ(xl) +
M∑

b≤xm≤d

exm +
N∑

xn>d

eσ(xn)

b ≤ xi ≤ d

etdxi+(1−td)d

L∑
xl<b

eσ(xl) +
M∑

b≤xm≤d

exm +
N∑

xn>d

eσ(xn)

xi > d

,

(9)

where L, M and N denote the number of entries belonging
to different ranges and L+M +N = K.

Proof. Statement 1

from Equation (9), ∀xi < ϵ, eliminate the numerator, then
substitute xi + (1− tb)b with tbxi, from Lemma A.1

< 1/(

L∑
xl<b

etb(xl−xi) +

M∑
b≤xm≤d

exm−xi

+

N∑
xn>d

etdxn+(1−td)d−tbxi−(1−tb)b)

from Lemma A.2, if ϵ ≤ 1
M (

M∑
xm<b

Xm − lnM)

< 1/(

L∑
xl<b

exl−xi +

M∑
b≤xm≤d

exm−xi

+

N∑
xn>d

etdxn+(1−td)d−tbxi−(1−tb)b)

if
N∑

xn>d

etdxn+(1−td)d−tbxi−(1−tb)b >
N∑

xn>d

exn−xi

⇒ϕMultiMax(x)i < ϕSoftMax(x)i

This is satisfied when tdxn+(1− td)d− tbxi− (1− tb)b >
xn − xi holds ∀xn, which can be reduced to

xi < b− 1− td
tb − 1

(xn − d)

where xn ≥ d, td < 1 and tb > 1, and this is satisfied for

⇒ ϵ ≤ b− 1− td
tb − 1

(xn − d)

14
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Figure 7. Attention scores of SoftMax (left) and MultiMax(right) at the input and hidden layers (1st, 5th and 10th) w.r.t query 34. The
query lies on the shark fin and is marked with red square. We see, from left to right, are attention scores of 6 heads for each method,
where blue refers to low attention score and red indicates a high attention score. MultiMax attention is better localized while allowing for
multiple modes.

Proof. Statement 2

from Equation (9), ∀xi < ϵ, eliminate the numerator

mMultiMax = 1− (1− etd(xj−xi))/
( L∑

xl<b

eσ(xl)−tdxi−(1−td)d)

+

M∑
b≤xm≤d

exm−tdxi−(1−td)d +

N∑
xn>d

etd(xn−xi)
)

since xj−xi < 1 and td < 1, we have etd(xj−xi) > exj−xi ,
also substitute tdxi + (1− td)d with tx, from Lemma A.1

>
1− exj−xi

L∑
xl<b

etbxl+(1−tb)b−xi +
M∑

b≤xm≤d

exm−xi +
N∑

xn>d

etd(xn−xi)

⇒ MMultiMax(x) > MMultiMax-l(x)

C. More visualizations
C.1. Single layer attention scores

As mentioned in Section 5.2, single layer attention scores
are not informative for human beings, due to the complex
interaction of information in deep transformer models.

C.2. Cumulative distribution of attention scores

We could calculate the cumulative distribution for each layer,
i.e., the portion of attention scores smaller than a threshold
as the thresholds increases. The result is shown in Figure 8.
It can be seen that for most of the layers, MultiMax results
in a sparser attention distribution, i.e., a large portion of
attention scores are closer to zero comparing to SoftMax at-
tention. Notably, the first two layers’ attention distributions
have a smaller degree of sparsity comparing to SoftMax.
This shows that a smoother distribution is desired in these

two layers, as an optimized result of the training. This
conforms to the observation in the previous studies that
common low-level features in the shallow layers are shared
across image patches (Schirrmeister et al., 2020). A sparse
attention has a high risk of information lost.

Figure 8. Cumulative distribution of the attention scores at each
layer.

C.3. Connection between sparsification and
over-smoothing

As shown by (Abnar & Zuidema, 2020), information origi-
nating from different input tokens gets increasingly mixed
in deeper layers, and the information flow can be estimated
by taking the attention weights out and multiplying them
sequentially. Such a matrix multiplication makes the iden-
tity of each token fades exponentially, which relates to the
over-smoothing problem in GCNs (Oono & Suzuki, 2019).
Considering the information exchange across different at-
tention heads, we take the the mean attention score over all
heads out for multiplication, following the rollout technique
(Abnar & Zuidema, 2020). In Figure 9, the discrepancy
between the single layer and average accumulated SoftMax
attention scores keeps increasing in the deeper layers. And
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Layers tb1 td1 tb2 td2 b1 d1 b2 d2

1 1.8347933 2.815388 0.9864913 0.68440557 1.185235 -1.208543 -2.1076407 1.9158255
2 1.9773115 1.9971638 0.985555 0.74650276 -0.8580209 0.02481092 -0.49835142 1.9772723
3 -1.1411996 1.4711196 1.9901285 0.8758977 0.18852632 2.8039892 2.9608543 1.0462786
4 0.6694808 1.206692 1.8682657 0.93786246 3.4023566 -1.5490056 2.500237 0.986331
5 0.8902384 1.5881691 1.8920481 0.72857785 2.5070796 -1.1942928 1.8854694 1.2248528
6 0.6015882 0.87738 2.818536 0.96271396 2.6490533 0.8454426 1.6205754 0.89434063
7 0.8023207 1.2427123 3.040797 0.84531546 2.6984618 1.2127148 1.2652112 1.2134424
8 0.64486825 0.79173684 2.5263662 0.968745 3.0230901 0.62191963 1.6307493 1.6259384
9 0.5796288 0.6852025 3.500835 0.99119073 2.675157 0.68776745 1.3239485 1.5808712
10 0.54873073 0.8240905 3.5563424 0.9692498 2.176066 0.39797062 0.9276044 1.5223614
11 0.38645744 0.6951747 4.0935583 0.9958999 1.6583583 0.29572898 0.77263904 2.9975116
12 0.16383016 0.25565386 3.2074118 0.99102634 1.6852132 -0.04795134 0.9796309 2.1836245

Table 7. MultiMax parameters of Deit-small trained on ImageNet.

Layers tb1 td1 tb2 td2 b1 d1 b2 d2

1 0.6467285 0.7980957 0.98324585 0.9649048 0.7475586 -0.87939453 0.3395996 -0.14501953
2 0.69018555 0.8063965 0.98350525 0.9720764 0.25073242 0.15991211 0.2956543 -0.17687988
3 0.8557129 0.79797363 0.98939514 0.9855194 -0.12609863 0.06817627 0.14794922 -0.14428711
4 0.9662781 0.83569336 1.0231781 1.0240021 -0.07574463 0.8510742 -0.13220215 0.27368164
5 0.9260864 0.9187622 0.98670197 1.039093 -0.5239258 0.51416016 0.23999023 0.09521484
6 1.1514893 1.152832 0.98441315 1.0156403 0.1751709 0.05374146 -0.13269043 -0.08825684

Table 8. MultiMax parameters of the 6-layer Language Transformer trained on WikiText-103.

Figure 9. Comparing the discrepancy between rollout attention
score and single layer attention score for SoftMax and MultiMax.

the comparison shows a much less accumulated error for
our MultiMax attention.

D. The learned parameters of MultiMax
In this section, we provide the learned parameters of Mul-
tiMax for reference. There are differences and similarities
between the learned modulation functions of vision and lan-
guage transformers, which could be observed after plotting
the curves as shown in Figure 10.:

• Similarly, the need for sparsity increases as the layer
goes deeper, but much less sparsity are needed in gen-
eral for the language transformer compring to vision
transformer, according to the learned parameters.

• As opposed to vision transformer, stronger multi-
modality is needed at shallower layers of the language
transformer.

Figure 10. The learned modulator functions σ (Equation (6)) at
each layer of the 6-layer language transformer trained on WikiText-
103, comparing to identity mapping of the SoftMax input x
(dashed black line).
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