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ABSTRACT

Fine-tuning large pre-trained models on a target distribution often improves in-
distribution (ID) accuracy, but at the cost of out-of-distribution (OOD) robustness
as representations specialize to the fine-tuning data. Weight-space ensembling
methods, such as Model Soups, mitigate this effect by averaging multiple
checkpoints, but they are computationally prohibitive, requiring the training and
storage of dozens of fine-tuned models. In this paper, we introduce MonoSoup,
a simple and data-free approach that achieves a strong ID–OOD balance using
only a single checkpoint. Our method applies Singular Value Decomposition
(SVD) to each layer’s update, splitting it into high-energy directions that capture
task-specific adaptation and low-energy directions that introduce noise but may
still encode residual signals useful for robustness. MonoSoup then re-weights
these components with adaptive, layer-wise coefficients that account for the
spectral and geometric structure of the model. Experiments on CLIP models
fine-tuned on ImageNet and evaluated under natural distribution shifts, as well as
on Qwen language models tested on mathematical reasoning and multiple-choice
benchmarks, show that this plug-and-play approach is a practical and effective
alternative to multi-checkpoint methods, retaining much of their benefits without
their computational overhead.

1 INTRODUCTION

The pre-train-then-finetune paradigm (Kumar et al., 2022) has become the de-facto approach for
leveraging the capabilities of foundation models (Bommasani et al., 2022) and has accelerated
progress across a wide range of applications (Radford et al., 2021; Rombach et al., 2022).
However, specialization often comes at a cost: the fine-tuning process that adapts a model to
a target distribution frequently degrades its general-purpose knowledge, leading to a significant
drop in out-of-distribution (OOD) performance, a phenomenon known as representation collapse
(Aghajanyan et al., 2020). This leads to a trade-off between in-distribution (ID) performance and
OOD robustness, which remains a central challenge for the reliable deployment of these powerful
models (Kumar et al., 2022; Goyal et al., 2023).

To address this trade-off, post-hoc methods that directly manipulate model weights have gained
traction. A prominent example is Model Soups (Wortsman et al., 2022a), which improves both ID
and OOD performance by averaging the weights of multiple fine-tuned models. While effective,
this approach is often impractical due to the computational and storage overhead of training and
retaining dozens of checkpoints. To reduce this burden, ModelStock (Jang et al., 2024) was proposed
as a more efficient alternative, requiring only two models and weighting their updates according to
geometric alignment. However, this assumption of having access to two suitable checkpoints is often
unrealistic in practice, as model repositories typically store only a single, best-performing version.
Furthermore, Wise-FT (Wortsman et al., 2022b) explored single-model robustness by interpolating
between the pre-trained and fine-tuned weights, leveraging the low-loss path between them. While
effective in tracing the trade-off between specialization and robustness, Wise-FT applies a uniform
interpolation across all layers and directions, leaving finer-grained anisotropic effects unaddressed.
These observations naturally raise the following question:

“Can we retain the benefits of model soups when only a single fine-tuned model is available?”

In this paper, we answer this question affirmatively. We begin by analyzing when common
multi-model merging techniques succeed. Our analysis reveals that improvements in both ID
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and OOD accuracy are consistently obtained when the fine-tuning updates of two models are
well-aligned (high cosine similarity), highlighting a strong link between geometric similarity and
generalization. To validate this insight, we introduce a Similarity-Filtered Greedy Soup that selects
only those models that would improve the overall alignment of the soup. This simple variant both
confirms our hypothesis and provides a data-free, computationally efficient alternative to standard
soups. These findings align with a unifying principle from recent work (Wortsman et al., 2022a;
Jang et al., 2024; Rame et al., 2023; Gargiulo et al., 2025; Stoica et al., 2024) that successful
weight-space ensembling methods reinforce dominant directions that encode task-relevant signals,
while suppressing noisy or misaligned directions that degrade both ID and OOD performance.

Building on these insights, we shift from analyzing pairs of models to studying the properties of a
single fine-tuned checkpoint. Since such models often over-specialize at the cost of OOD robust-
ness, our goal is to test whether the structural signals that enable successful merging across multiple
models can also be exploited within a single model. To this end, we propose MonoSoup, which
applies Singular Value Decomposition (SVD) to each layer’s update and decomposes it into two
complementary components: a principal subspace capturing high-energy directions associated with
task-specific knowledge, and an orthogonal complement capturing low-energy directions that intro-
duce noise but may still encode residual signals useful for robustness. MonoSoup re-weights these
two components with principled, layer-wise coefficients that adapt to the structure of the model,
yielding a single checkpoint that better balances specialization and generalization. Extensive ex-
periments show that MonoSoup matches or exceeds the performance of multi-model methods while
using just one fine-tuned checkpoint. On CLIP (Radford et al., 2021) models fine-tuned on Ima-
geNet (Deng et al., 2009), it improves the average OOD accuracy of the strongest baseline by ∼1%
and recovers up to 8% on weaker, representation-collapsed checkpoints, while maintaining strong
ID accuracy. Similar gains are also observed on language-based mathematical reasoning and QA
tasks using Qwen (Yang et al., 2025). Moreover, MonoSoup complements single-model techniques
such as Wise-FT (Wortsman et al., 2022b), providing a stronger checkpoint that further improves
the ID–OOD trade-off when the two are combined.

Our contributions are the following:

1. We establish a geometric perspective on when model merging succeeds or fails, showing
that performance is closely tied to the alignment of fine-tuning updates. This analysis
clarifies principles underlying multi-model methods and motivates their extension to the
single-checkpoint setting.

2. Based on this analysis, we introduce Similarity-Filtered Greedy Soup, a data-free variant
of the original method that uses geometric alignment as a selection criterion, showing that
alignment is a good proxy for merging effectiveness.

3. We introduce MonoSoup, a data-free, post-hoc editing approach that improves the ID-
OOD trade-off using only a single fine-tuned model, which typically suffers from degraded
OOD performance on its own due to representation collapse. Our method decomposes
each layer’s update into high- and low-energy components and adaptively reweights them,
eliminating the need for multiple checkpoints.

4. We empirically validate our approach on vision (CLIP) and language (Qwen) bench-
marks, demonstrating that MonoSoup consistently improves OOD generalization while
maintaining or enhancing in-distribution accuracy.

2 PRELIMINARIES

Model Soups The common practice in machine learning is to select the single best model from a
hyperparameter search for final deployment, based on a validation metric, and discard the remaining
m − 1 checkpoints. However, models originating from the same pre-trained initialization often
occupy a connected, low-loss basin in the optimization landscape (Garipov et al., 2018; Frankle
et al., 2020; Izmailov et al., 2018), making them amenable to ensembling. Formally, consider m
weights {θt}t∈[m], obtained by fine-tuning the pre-trained weights θ0 on a target dataset Dtrain with
m different hyperparameter configurations. Model Soups (Wortsman et al., 2022a) leverages this
insight by averaging the weights of multiple fine-tuned models, resulting in the final parameters
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θ = 1
T

∑T
t=1 θt. While effective, soups are computationally expensive: their benefits are most

pronounced when averaging many diverse checkpoints, which is impractical for large-scale models.

Model Stock In an effort to reduce the significant computational and storage overhead of Model
Soups, Model Stock (Jang et al., 2024) requires only two models and operates layer-wise, based on
the idea that cosine similarity can quantify the signal-to-noise ratio of the fine-tuning updates. Let
W

(ℓ)
0 denote the pre-trained weights at layer ℓ, and W

(ℓ)
1 ,W

(ℓ)
2 the corresponding updates from

the two checkpoints. Model Stock first computes the cosine similarity cosα(ℓ) between these task
vectors to measure their agreement. The merged weights are:

W
(ℓ)
stock = W

(ℓ)
0 + λ(ℓ) ·

(
W

(ℓ)
1 +W

(ℓ)
2

2

)
, where λ(ℓ) =

2 cosα(ℓ)

1 + cosα(ℓ)
. (1)

This rule preserves directions where the updates are well-aligned (cosα(ℓ) → 1), while reverting
toward the pre-trained weights when they disagree. Compared to soups, it is more efficient since it
reduces the number of required models from a large ensemble to just two, but still assumes access
to at least two fine-tuned checkpoints.

Wise-FT and LiNeS Beyond multi-checkpoint methods, there also exist approaches that operate
with a single fine-tuned model. Wise-FT (Wortsman et al., 2022b) improves generalization by
linearly interpolating between the pre-trained and fine-tuned weights. Given a coefficient λ ∈ [0, 1],
the merged parameters are θwise = (1− λ)θ0 + λθt, which traces a continuum between robustness
(closer to θ0) and specialization (closer to θt). Therefore, Wise-FT delivers a family of models
along this path rather than a single edited checkpoint, and it applies the same interpolation uniformly
across all layers and directions, limiting its ability to capture anisotropic updates. LiNeS (Wang
et al., 2025) also operates on a single checkpoint, introducing post-training layer scaling to prevent
catastrophic forgetting (McCloskey & Cohen, 1989) and enhance model merging. However, it re-
quires labeled data to tune its hyperparameters and employs a single coefficient for all layers within
a transformer block, potentially overlooking the distinct dynamics of linear and attention layers.

3 THE ROLE OF ALIGNMENT IN MODEL MERGING
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Figure 1: Performance of Similarity-Filtered
Greedy Soup (SFGS) on CLIP ViT-B/32 check-
points. SFGS achieves competitive ID and
OOD performance relative to validation-based
greedy soup and the strongest single checkpoint,
supporting the observation that alignment is a key
indicator of merging effectiveness.

In this section, we investigate the conditions
under which multi-model merging succeeds,
finding that success often depends on the align-
ment of the fine-tuning updates. To investigate
this, we use Model Stock (Jang et al., 2024)
as a probe: since its layer-wise weighting rule
explicitly depends on cosine similarity as in
Equation 1, it provides a natural lens to study
how alignment relates to merging performance.

We evaluate all pairwise combinations
among 70 CLIP ViT-B/32 models (Worts-
man et al., 2022a) fine-tuned on ImageNet,
each model corressponds to a different
hyper-parameter configuration. We com-
pare each merged model against the better
of its two constituents across five natural
distribution shifts: ImageNet-V2 (Recht
et al., 2019), ImageNet-R (Hendrycks et al.,
2021a), ImageNet-Sketch (Wang et al., 2019),
ImageNet-A (Hendrycks et al., 2021c), and
ObjectNet (Barbu et al., 2019). Specifically, we
define the performance differences of model
stock w.r.t. the involved models:

∆accID = accID
MS −max

{
accID

1 , accID
2

}
∆accOOD = accOOD

MS −max
{

accOOD
1 , accOOD

2

}
3
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(b) Low-performing pair similarity.
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Figure 2: Performance and alignment analysis of Model Stock on 2,409 pairwise combinations
of CLIP ViT-B/32 models fine-tuned on ImageNet. (a) Scatter plot of ID vs. OOD performance
relative to the better constituent model. (b) and (c): Layer-wise cosine similarity for low-performing
and high-performing, respectively. Stronger alignment coincides with consistent gains, highlighting
that alignment can serve as a key predictor of merging success.

As illustrated in Figure 2a, Model Stock performance highly relies on the pair selection. We
randomly select a pair from each mode, showing a histogram of per-layer cosine similarities for a
low- and high-performing pair in Figure 2b and Figure 2c, respectively. We observe performance
improvements when task vectors are well aligned, but its benefits diminish when they are weakly
correlated. This sensitivity highlights a key principle: merging is effective when the fine-tuning
updates are well-aligned, but fails when conflicting updates interfere.

To validate this observation, we tested a simple variant of Greedy Soup, which replaces validation-
based selection with a geometric filter. Starting with the best ID-performing model, we include
a candidate checkpoint if its average layer-wise cosine similarity to the current soup exceeds
a threshold δ: 1

|S|
∑

j∈S cos(τi, τj) ≥ δ. As shown in Figure 1, this lightweight procedure,
termed Similarity-Filtered Greedy Soup, achieves performance comparable to validation-based
greedy soup (Wortsman et al., 2022a), showing that geometric alignment might serve as a reliable
proxy for effective merging. Nevertheless, like all soup-based methods, it still requires multiple
fine-tuned checkpoints. Taken together, these analyses suggest that successful merging of models
originating from the same pre-trained initialization hinges on reinforcing well-aligned directions
while suppressing noisy or conflicting ones. In the next section, we explore if these principles apply
within a single model: its fine-tuning update may contain both dominant, task-relevant directions as
well as weaker components that can harm generalization.

4 MONOSOUP

Our analysis of multi-model merging suggests that performance gains arise when fine-tuning updates
reinforce shared directions while suppressing noisy or conflicting ones. This motivates searching for
analogous signals within a single checkpoint. Specifically, we hypothesize that the update of a fine-
tuned model contains both dominant directions that capture task-specific adaptation and weaker
components that, while less prominent, are important for maintaining generalization.

To make this structure explicit, we analyze the weight difference matrix at each layer W (ℓ) =

W
(ℓ)
1 −W

(ℓ)
0 ∈ Rm×n, where W

(ℓ)
0 and W

(ℓ)
1 are the pre-trained and fine-tuned weights for layer

ℓ, respectively. Applying singular value decomposition (SVD), W (ℓ) = U (ℓ)Σ(ℓ)V (ℓ)⊤, where
the spectrum of singular values σ1 ≥ σ2 ≥ . . . quantifies how the adaptation is distributed across
directions. We partition this spectrum into two components:

W
(ℓ)
High =

∑
i≤k

σ
(ℓ)
i u

(ℓ)
i v

(ℓ)⊤
i , W

(ℓ)
Low = W (ℓ) −W

(ℓ)
High, (2)

where k is the smallest index that preserves at least a fraction R of the spectral energy:

k = argmin
j

{
j

∣∣∣∣∣
∑j

i=1 σ
2
i∑min(m,n)

i=1 σ2
i

≥ R

}
. (3)
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(a) 20-task benchmark (Wang et al., 2024a)
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Figure 3: Effect of truncating low-energy components on different benchmarks. (a) On the 20-task
vision benchmark, performance saturates after retaining only a small number of singular values,
consistent with prior reports that low-rank updates suffice. (b) On ImageNet with natural OOD
shifts, truncation substantially reduces both ID and OOD accuracy, even when preserving 95% of
spectral energy. This highlights that, in large-scale fine-tuning, low-energy directions carry critical
information for generalization and cannot simply be removed. See Appendix D for further details.

Intuitively, the high-energy spectral component W (ℓ)
High encodes concentrated task-specific adapta-

tion, while the low-energy W
(ℓ)
Low contains residual updates that, despite potentially capturing noise,

may preserve information critical for OOD robustness. A natural question is whether the low-energy
component can be removed altogether. Several recent studies (Gargiulo et al., 2025; Tang et al.,
2025; Stoica et al., 2024) have argued that W

(ℓ)
Low largely encodes noise and that discarding it

can improve merging. These results, however, are mostly based on the standard task arithmetic
benchmark (Ilharco et al., 2023), where the CLIP vision encoder is fine-tuned on a collection of
relatively small-scale classification tasks. In Figure 3a, we progressively remove a larger amount
of singular values and track the average performance on the suite of 20 tasks proposed by Wang
et al. (2024a). In this regime, adaptation tends to be concentrated in a few dominant directions, so
truncation appears effective.

In contrast, our setting involves fine-tuning on ImageNet and evaluation across natural distribution
shifts (ImageNetV2, ImageNet-R, ImageNet-Sketch, ObjectNet, ImageNet-A). As shown in Fig-
ure 3b, removing low-energy components in this regime leads to degradation of both ID and OOD
accuracy, even when retaining 95% of spectral energy. This suggests that low-energy directions
encode complementary information that is essential for OOD robustness.

To balance specialization and generalization, we reweigh the high- and low-energy components
rather than discarding one of them. For each layer, the edited update is

W
(ℓ)
MonoSoup = λ

(ℓ)
High W

(ℓ)
High + λ

(ℓ)
Low W

(ℓ)
Low, (4)

where coefficients λ
(ℓ)
High and λ

(ℓ)
Low are determined adaptively. We now turn to how low-energy

directions should be weighted relative to the dominant ones. We rely on two complementary signals
derived directly from the model. The first comes from the singular value spectrum itself: when the
decay is steep, most adaptation is captured by the leading singular values, suggesting that residual
directions are less informative. When the singular value spectrum is flat, however, the contribution
of weaker directions is more substantial. To capture this behavior, we define a spectral decay ratio,

ρ(ℓ) =

(
σk+1(W

(ℓ))

σ1(W (ℓ))

)2

, (5)

which is small when the spectrum decays steeply and large when it is flat.

The second signal quantifies how much of the fine-tuning update lies in low-energy directions. Let
W = ∆W (ℓ) and decompose it as W = W

(ℓ)
High +W

(ℓ)
Low as in Equation 2. We define

cos2 α(ℓ) =

∥∥∥W (ℓ)
Low

∥∥∥2
F∥∥W (ℓ)
∥∥2
F

∈ [0, 1]
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so that cosα(ℓ) measures the fraction of update energy carried by low-energy directions (see Ap-
pendix C). Larger cosα(ℓ) indicates that the fine-tuning update is spread over many weak directions
rather than being concentrated in a small number of dominant singular vectors. As we show in Ap-
pendix Appendix H using a CKA analysis of hidden representations, these low-energy directions
are precisely the ones that preserve pretrained features on OOD inputs while providing only mild
specialization on ID.

The final coefficients are given by

λ
(ℓ)
Low = ρ(ℓ) +

(
1− ρ(ℓ)

)
cosα(ℓ), λ

(ℓ)
High = 1− λ

(ℓ)
Low. (6)

Table 1: Comparison of merging methods on
CLIP ViT-B/32 fine-tuned on ImageNet. We
report top-1 accuracy on ImageNet (ID) and
average across five OOD shifts. + refers to the
best-performing model on each metric (ID or
OOD), while − refers to the worst-performing
model. Cost refers to the number of used check-
points. Uniform and Greedy Soups require up to
70 checkpoints, and ModelStock requires two. In
contrast, MonoSoup matches or surpasses them
with a single checkpoint, improving Avg. OOD
from 50.67% to 51.60% on the best-OOD model
and adding almost +8% on weaker ones.

Method ID Avg. OOD Cost
Initialization 75.4% 46.2%
FT model (OOD+) 78.11% 50.67%
FT model (OOD−) 76.53% 36.71%
FT model (ID+) 80.38% 47.96%
FT model (ID−) 74.99% 38.64%
Prior Soups-Merging Methods
Uniform Model Soup 79.9% 51.4% 70
Greedy Model Soup 81.0% 50.7% 70
ModelStock (Pairwise Models)
ID+, OOD+ 79.39% 50.53% 2
ID+, OOD− 78.43% 49.39% 2
ID+, ID− 78.32% 50.63% 2
OOD+, OOD− 76.76% 48.41% 2
OOD+, ID− 77.49% 51.02% 2
ID−, OOD− 78.09% 47.81% 2
MonoSoup (Single Models)
OOD+ 78.29% 51.60% 1
OOD− 78.55% 44.21% 1
ID+ 80.03% 49.95% 1
ID− 77.76% 46.54% 1
MonoSoup (Pairwise Models)
ID+, OOD+ 80.10% 51.37% 2
ID+, OOD− 78.87% 48.37% 2
ID+, ID− 79.02% 50.12% 2
OOD+, OOD− 78.44% 49.26% 2
OOD+, ID− 78.05% 50.48% 2
ID−, OOD− 78.94% 47.79% 2

Thus λ
(ℓ)
Low = ρ(ℓ) +

(
1 − ρ(ℓ)

)
cosα(ℓ) in-

creases when both (i) the spectrum is relatively
flat and (ii) a substantial fraction of update
energy lies in low-energy directions, and these
are exactly the cases where re-emphasizing
Wlow improves OOD robustness while keep-
ing ID strong. This form ensures consistent
behavior in the natural limits: when ρ(ℓ) → 0

and cosα(ℓ) → 0, we obtain λ
(ℓ)
Low → 0 and

suppress residual directions; when ρ(ℓ) → 1

or cosα(ℓ) → 1, then λ
(ℓ)
Low → 1 and all

low-energy directions are retained. Intuitively,
ρ(ℓ) provides a baseline estimate of how much
residual mass to keep, while cosα(ℓ) restores
low-energy directions when they align with the
pre-trained model. The only hyperparameter
is the energy threshold R in Equation 3, which
is directly interpretable as the fraction of
spectral energy used to define the high-energy
component.

5 EXPERIMENTS

We next evaluate MonoSoup across both vision
and language domains. On CLIP models, we
compare against prior merging methods such as
Model Soups and ModelStock, testing whether
MonoSoup can achieve competitive or superior
robustness using only a single fine-tuned check-
point. We then extend the evaluation to large
language models from the Qwen family (Yang
et al., 2025), where we assess its effectiveness
on mathematical reasoning and multiple-choice
benchmarks. Finally, we study its integra-
tion with Wise-FT to examine complementarity
with interpolation-based robustness methods.

5.1 MERGING VISION TRANSFORMERS

We begin with CLIP ViT-B/32 models fine-tuned on ImageNet, the standard testbed for soup-based
approaches. In-distribution (ID) accuracy is measured on ImageNet-1K, while out-of-distribution
(OOD) robustness is assessed on five natural shifts: ImageNet-V2, ImageNet-R, ImageNet-Sketch,
ImageNet-A, and ObjectNet. We use the 70 CLIP ViT-B/32 checkpoints released by Wortsman
et al. (2022a). Since presenting results for all 70 models would be impractical, we focus on four

6
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Table 2: Evaluation of Qwen3-0.6B across mathematical reasoning and multiple-choice bench-
marks. MonoSoup consistently improves performance over the fine-tuned model and LiNeS, with
the largest gains on the most challenging tasks of GSMPlus and GSM8KPlatinum. MonoSoup achieves
comparable or better performance to ModelStock using only a single checkpoint.

Method GSM8K GSMPlus GSM8KPlatinum SciQ MMLU-Pro-Math
QWEN3-0.6B-BASE 52.6 22.5 50.1 92.6 33.7
Linear Learning Rate Variants (M-1)
M-1 55.8 29.5 55.6 94.6 35.6
M-1 + LINES 56.2 30.1 56.3 94.9 36.7
M-1 + MONOSOUP 56.7 30.3 56.7 95.1 37.2
Cosine Learning Rate Variants (M-2)
M-2 56.1 30.8 58.5 94.5 35.9
M-2 + LINES 56.5 31.4 58.9 95.2 36.1
M-2 + MONOSOUP 56.6 31.7 59.3 95.1 36.6
Cosine Learning Rate with Extended Training (M-3)
M-3 55.9 30.6 57.3 93.5 34.8
M-3 + LINES 56.3 30.8 58.1 93.8 35.2
M-3 + MONOSOUP 56.6 31.4 58.8 94.2 35.5
ModelStock Merging Method
(M-1, M-2) 56.6 31.5 59.0 94.9 36.8
(M-1, M-3) 56.4 31.3 58.7 94.8 36.4
(M-2, M-3) 56.5 31.6 58.9 95.2 36.7

representative cases: the checkpoint with the highest ID accuracy (ID+), the lowest ID accuracy
(ID−), the highest OOD accuracy (OOD+), and the lowest OOD accuracy (OOD−). This selection
allows us to illustrate how MonoSoup behaves across both strong and weak checkpoints. Unless
otherwise stated, we set R = 0.8 for MonoSoup. We ablate this hyperparameter in subsection 5.4;
for intuition about the connection between R and cosα, see Appendix C.

Table 1 presents the results for vision transformers. We also report the number of checkpoints
required by each method in the Cost column. MonoSoup consistently matches or surpasses
multi-model approaches while requiring only a single checkpoint. On the strongest OOD model,
Avg. OOD increases from 50.67% to 51.60%, surpassing Greedy Soup without aggregating 70
models. On weaker checkpoints, MonoSoup recovers collapsed representations, improving Avg.
OOD by +7.9% for the worst-ID model and +7.5% for the worst-OOD model. When applied to
pairs of fine-tuned models, MonoSoup achieves a better balance between ID and OOD performance
compared to ModelStock. This is especially pronounced in the poor of (OOD+) where MonoSoup
dominates on both objectives. This shows that the benefits of the proposed method extend beyond
the single-checkpoint setting.

5.2 MERGING LARGE LANGUAGE MODELS

To test the generality of MonoSoup beyond vision, we evaluate it on large language models. Specif-
ically, we fine-tune multiple variants of the Qwen3-0.6B model, each with different hyperparameter
configurations, such as learning rates, training epochs, and schedules. Further details are provided
in Appendix E. All variants are trained on a mixture spanning mathematical reasoning and multiple-
choice question answering: MetaMathQA (Yu et al., 2023), which augments GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021b); DeepMind-AquaRat (Ling et al., 2017); and the
multiple-choice datasets OpenBookQA (Mihaylov et al., 2018) and SciQ (Welbl et al., 2017).

For evaluation, we propose a benchmark that spans a wide spectrum of reasoning difficulty. It
includes GSM8K (Cobbe et al., 2021) and SciQ, which overlap with the training mixture and are
treated as in-distribution tasks, as well as GSMPlus (Li et al., 2024), GSM8KPlatinum (Vendrow et al.,
2025), and MMLU-Pro-Math (Wang et al., 2024b), which probe advanced or adversarial reasoning
skills not explicitly covered during training and thus serve as out-of-distribution evaluations. While
this ID/OOD split is less rigid than in vision benchmarks such as CLIP, the increasing task difficulty
provides an analogous way to assess robustness and generalization in the language domain.
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Figure 4: MonoSoup integrated with Wise-FT on CLIP ViT-B/32. MonoSoup improves ID and
OOD accuracy across individual checkpoints. When combined with Wise-FT, the Pareto fronts
consistently dominate those of Wise-FT and LiNeS, showing that MonoSoup provides a stronger
endpoint for interpolation-based robustness.

The results are presented in Table 2 and demonstrate consistent improvements across all fine-tuned
variants. MonoSoup improves over the baseline Qwen3-0.6B models and surpasses LiNeS across
every benchmark, with the largest gains observed on GSMPlus and GSM8KPlatinum (+9.2 points
each). Compared to ModelStock, which remains competitive when merging pairs of models,
MonoSoup matches or exceeds its performance while requiring only a single checkpoint. These
findings mirror the results on CLIP: MonoSoup enhances robustness and generalization without
reliance on ensembles, scaling naturally when multiple models are available but remaining highly
effective in the single-checkpoint setting.

5.3 INTEGRATION WITH WISE-FT

We next study how MonoSoup interacts with Wise-FT (Wortsman et al., 2022b), which interpolates
between pre-trained and fine-tuned weights to produce a continuum of models that trace the
trade-off between ID and OOD accuracy. This setting allows us to test whether MonoSoup can
serve as a stronger endpoint for interpolation-based robustness methods. We also compare against
LiNeS (Wang et al., 2025), a post-training technique that linearly scales fine-tuning updates
according to layer depth. However, using a single coefficient per transformer block neglects the
different fine-tuning dynamics among parameter groups, such as attention versus feedforward layers
(Yang et al., 2024). In contrast, MonoSoup is fully data-free and adapts coefficients at the level of
individual subspaces within each layer.

We use the same experimental settings as the vision experiments. We report the average results over
all 70 released checkpoints in Figure 4. We observe that applying MonoSoup improves both ID and
OOD performance, even without interpolation. When combined with Wise-FT, the resulting Pareto
fronts consistently dominate those of Wise-FT alone, while also surpassing LiNeS. This demon-
strates that MonoSoup is complementary to other techniques: it enhances a single checkpoint in a
data-free way, and this stronger base further amplifies the benefits of existing robustness techniques.

5.4 ANALYSIS AND DISCUSSION

We finally analyze two design aspects of MonoSoup: the effect of the spectral energy threshold
R and the role of each component in the mixing rule. Varying R controls how much of the fine-
tuning update is assigned to the high-energy subspace. The results on CLIP ViT-L/14, shown in the
left panel of Figure 5, reveal three clear patterns. When R is too small, too much spectral mass
is discarded, which hurts both ID and OOD performance. Very large values of R keep almost all
directions, saturating improvements and sometimes leading to collapse. Intermediate values around
0.7–0.85 achieve the best balance, confirming that low-energy directions are important but must be
modulated relative to dominant task-specific updates.

We also ablate the two signals in our mixing rule: spectral decay ρℓ and alignment cosαℓ. The
right panel of Figure 5 shows that relying only on ρℓ preserves ID accuracy but brings little
OOD improvement, while relying only on cosαℓ improves OOD on weaker checkpoints but can
reduce ID. Uniform mixing gives inconsistent results, and keeping only the high- or low-energy
components degrades one side of the trade-off. In contrast, combining ρℓ and cosαℓ consistently
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Figure 5: Component Analysis. Effect of varying the variance threshold R and the contributions
of each term in the coefficient λℓ on CLIP ViT-L/14. Results are stable across a wide range of R
values, and both the spectral decay and cosine overlap components contribute meaningfully to the
final balance between ID and OOD performance.

yields the strongest OOD performance without sacrificing ID, and remains stable across a wide
range of R. These results validate the design of MonoSoup: both spectral decay and alignment
provide complementary signals, and together they enable a principled way to retain the benefits of
low-energy directions without undermining task-specific adaptations.

6 RELATED WORK

Representation Collapse and Robust Fine-Tuning. The prevalent pre-train-then-finetune
paradigm often leads to a degradation of a model’s general-purpose knowledge, resulting in a decline
in out-of-distribution (OOD) performance (Kumar et al., 2022). This phenomenon, termed repre-
sentation collapse (Aghajanyan et al., 2020), has motivated a significant body of research focused
on making the fine-tuning process more robust. Such methods typically regularize the fine-tuning
process to preserve the valuable features learned during pre-training, thereby improving OOD gen-
eralization (Gouk et al., 2021; Zhang et al.; Razdaibiedina et al., 2023; Lee et al., 2023; Goyal et al.,
2023; Wortsman et al., 2022b; Mao et al., 2023; Nam et al., 2024; Oh et al., 2024). While effective,
these approaches intervene directly in the computationally expensive fine-tuning stage, motivating
the exploration of more efficient, post-hoc alternatives.

Mode Connectivity and Post-hoc Merging. An alternative line of work focuses on post-hoc ma-
nipulation of model weights, a practice theoretically grounded in the properties of the neural network
loss landscape. Seminal works showed that distinct solutions found by separate training runs can
be connected by a non-linear path of low loss (Garipov et al., 2018; Draxler et al., 2018). More
critically for fine-tuning, Frankle et al. (2020) demonstrated the existence of linear mode connectiv-
ity between models that share the same pre-trained initialization. This property enables simple yet
powerful techniques like weight averaging. By interpolating the parameters of multiple fine-tuned
checkpoints, these methods have been shown to find wider, more robust optima (Izmailov et al.,
2018; Wortsman et al., 2021), leading to improved in-distribution (Wortsman et al., 2022a; Jang
et al., 2024) and out-of-distribution performance (Wortsman et al., 2022b; Ramé et al.; Rame et al.,
2023) without requiring additional inference costs.

Unifying Principles of Successful Merging. Recent analyses of these merging techniques have
revealed a unifying principle: successful weight-space ensembling reinforces dominant directions in
the weight space that encode shared, task-relevant signals, while simultaneously suppressing noisy
or misaligned directions that harm generalization (Wortsman et al., 2022a; Jang et al., 2024; Rame
et al., 2023). This insight has inspired the development of more sophisticated merging strategies
that explicitly identify and manipulate these core components of the fine-tuning update (Gargiulo
et al., 2025; Tang et al., 2025; Wang et al., 2025). Beyond improving single-model robustness,
these principles of weight-space arithmetic have been successfully extended to a broader range of
applications, including multi-task learning (Ilharco et al., 2022; 2023; Dimitriadis et al., 2023; Yadav
et al., 2023) and multi-objective alignment (Ramé et al., 2024; Zhong et al., 2024).
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7 CONCLUSION

In this paper, we introduced MonoSoup, a data-free method that reweights the spectral components
of fine-tuning updates to improve both in-distribution accuracy and out-of-distribution robustness
from a single checkpoint. Unlike prior approaches that depend on ensembles of fine-tuned models
or carefully aligned pairs, MonoSoup compresses their benefits into a lightweight, single-model pro-
cedure that restores OOD performance even for weak checkpoints. Experiments on CLIP and Qwen
benchmarks show its effectiveness across vision and language domains, demonstrating that robust
gains are possible without the computational and storage overhead of multi-model methods. A cur-
rent limitation is the reliance on a variance-retention threshold R, which, although interpretable,
introduces a hyperparameter that may require adaptation across architectures or domains. Looking
forward, extending our approach beyond vision and language to other modalities offers a promis-
ing direction. Overall, our results highlight that the benefits of model soups can be retained—even
strengthened—without the burden of maintaining large ensembles, making MonoSoup a practical
plug-and-play tool for reliable model deployment.
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Table 3: A comprehensive comparison of single-model merging methods on CLIP ViT-B/32. Per-
formance metrics are presented for ImageNet and the average of five OOD datasets across fine-tuned
models utilizing LP initialization released by Wortsman et al. (2022a). For Wise-FT, we sweep the
interpolation coefficient α and report the best-performing setting with respect to Avg. OOD.

Method Linear Probe initialization
ID (ImageNet) Avg. OOD

Baseline
CLIP LP Initialization 75.40% 46.20%
Fine-Tuned Models
FT model (Best Avg. OOD) 78.11% 50.67%
FT model (Worst Avg. OOD) 76.53% 36.71%
FT model (Best ID) 80.38% 47.96%
FT model (Worst ID) 74.99% 38.64%
LiNeS
LiNeS+FT model (Best Avg. OOD) 78.25% 51.56%
LiNeS+FT model (Worst Avg. OOD) 78.13% 41.33%
LiNeS+FT model (Best ID) 80.46% 49.10%
LiNeS+FT model (Worst ID) 77.31% 44.96%
Wise-FT
Wise-FT+FT model (Best Avg. OOD) 78.12% 51.54%
Wise-FT+FT model (Worst Avg. OOD) 77.11% 45.2%
Wise-FT+FT model (Best ID) 78.73% 49.12%
Wise-FT+FT model (Worst ID) 78.00% 45.75%
Our Proposed Method
MonoSoup +FT model (Best Avg. OOD) 78.29% 51.60%
MonoSoup +FT model (Worst Avg. OOD) 78.55% 44.21%
MonoSoup +FT model (Best ID) 80.03% 49.95%
MonoSoup +FT model (Worst ID) 77.76% 46.54%

A COMPARISON WITH SINGLE-MODEL MERGING METHODS

Linear Probing initialization (LP init). Table 3 presents a comprehensive analysis of single-model
merging methods for models with Linear Probing initialization (LP init). MonoSoup significantly
improves the M-14 model, which has the worst average OOD performance, increasing OOD
accuracy from 36.71% to 44.21% (a gain of 7.5%) and ID accuracy by 2.02%. Furthermore, it
enhances the M-31 model, which has the worst ID performance, achieving a 2.77% accuracy gain.

B ZERO-SHOT INITIALIZATION (ZS INIT)

Table 4 presents a comprehensive analysis of single-model merging methods for models with zero-
shot initialization (ZS init). We use two publicly available ZS-initialized checkpoints from Jang et al.
(2024). Our proposed MonoSoup demonstrates achieves improvements of 6.4% in average OOD
accuracy and 0.8% and 0.6% in ID accuracy across the respective experimental configurations. For
comparison with soup-model merging methods in the two-checkpoint scenario, we apply our method
to the average of two checkpoints, resulting in performance gains of 2.9% over ModelStock, 3.0%
over GreedySoup, and 1.8% over UniformSoups.

C CONNECTION BETWEEN R AND cosα

Let r = rank(W ) and let σj = σj(W ) denote the j-th singular value of W for j ∈ {1, . . . , r}. The
Frobenius norm of W can be expressed in terms of its singular values as

∥W ∥2F =

r∑
j=1

σ2
j .
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Table 4: Comparison of single-model merging methods on CLIP ViT-B/32 with zero-shot initializa-
tion (ZS init). We use the two publicly available checkpoints from Jang et al. (2024) and use their
reported numbers for the Model Soups baselines with 48 models.

Method Zero-Shot Initialization
ID (ImageNet) Avg. OOD Cost

Baselines
Initialization 63.3% 48.5% 0
Vanilla FT 1 78.1% 46.7% 1
Vanilla FT 2 78.3% 46.9% 1
LiNeS
LiNeS (α=0.1, β=0.9) + FT 1 78.7% 52.2% 1
LiNeS (α=0.5, β=0.5) + FT 1 78.9% 51.1% 1
LiNeS (α=0.1, β=0.9) + FT 2 78.5% 51.9% 1
LiNeS (α=0.5, β=0.5) + FT 2 79.0% 51.1% 1
Wise-FT
Wise-FT+ FT 1 78.8% 52.5% 1
Wise-FT+ FT 2 78.8% 52.6% 1
Prior Soups-Merging Methods
Uniform Model Soup 79.7% 52.0% 48
Greedy Model Soup 80.4% 50.8% 48
ModelStock 79.8% 50.9% 2
Our Proposed Method
MonoSoup w/ Vanilla FT 1 78.9% 53.1% 1
MonoSoup w/ Vanilla FT 2 78.9% 53.2% 1
MonoSoup w/ Avg. of FT 1&2 79.0% 53.8% 2

Given a target variance capture ratio R ∈ [0, 1], we define the truncation index k as

k = argmin
j∈{1,...,r}

{
j

∣∣∣∣∣
∑j

s=1 σ
2
s

∥W ∥2F
≥ R

}
. (7)

Let Pk =
∑k

s=1 σ2
s/∥W ∥2

F denote the actual fraction of variance captured by the truncated matrix
WHigh-Energy. By the definition of k, we have

Pk ≥ R.

Lemma 1. If k > 1, then

Pk − σ2
k

∥W ∥2F
< R ≤ Pk.

Proof. Since k is the minimum index satisfying the variance threshold, we have that k − 1 does not
satisfy it, i.e., ∑k−1

s=1 σ
2
s

∥W ∥2F
< R.

Observing that
∑k−1

s=1 σ
2
s =

∑k
s=1 σ

2
s − σ2

k, we obtain

Pk − σ2
k

∥W ∥2F
< R.

Combined with Pk ≥ R, the result follows.

Now, we establish the relationship with cosα. By the orthogonal decomposition W =
WHigh-Energy +WLow-Energy and the Pythagorean theorem in Frobenius norm, we have

∥W ∥2F = ∥WHigh-Energy∥2F + ∥WLow-Energy∥2F .

Since cosα = ∥WLow-Energy∥F/∥W ∥F , we obtain

cos2 α =
∥WLow-Energy∥2F

∥W ∥2F
=

∥W ∥2F − ∥WHigh-Energy∥2F
∥W ∥2F

= 1− Pk.
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(a) (b) (c) (d)

Figure 6: The task vector rank consistently enhances performance on both ID and OOD benchmarks.
The x-axis represents the rank of the task vector, with blue curves indicating ID accuracy and red
curves depicting average OOD accuracy.
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Figure 7: Mean absolute accuracy of the CLIP ViT-{B/32, B/16, L/14} models across increasing
fractions of retained singular components, averaged over 20 tasks released by (Wang et al., 2024a).
The yellow line represents the average accuracy of the original fine-tuned models with full-rank task
matrices, while the blue line shows the accuracies using low-rank approximations.

Theorem 1. The angle parameter α satisfies the following bounds:

max

(
0, 1−R− σ2

k

∥W ∥2F

)
< cos2 α ≤ 1−R.

Proof. From the relationship cos2 α = 1− Pk and the inequality R ≤ Pk, we immediately obtain

cos2 α ≤ 1−R.

For the lower bound, when k > 1, we have Pk − σ2
k/∥W ∥2

F < R, which yields

1− cos2 α− σ2
k

∥W ∥2F
< R,

and therefore

cos2 α > 1−R− σ2
k

∥W ∥2F
.

Since cos2 α ≥ 0, the lower bound becomes

cos2 α > max

(
0, 1−R− σ2

k

∥W ∥2F

)
.

D LOW-ENERGY DIRECTIONS

In this section, we present additional observations that build upon and extend the analyses discussed
in Figure 3.

In Figure 6, we demonstrate that increasing task vector rank consistently enhances performance on
both ID and OOD benchmarks. Our analysis reveals a clear positive correlation between retaining
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small singular values, i.e., Low-Energy, and improved generalization performance across diverse
model configurations, spanning from high-performing ID models to those with poor average OOD
performance. Notably, even when preserving 95% of singular values, performance degradation
occurs on both ID and OOD tasks, demonstrating that truncation-based approaches fail to enhance
generalization and, counterintuitively, that low-energy components contain critical information for
robust performance.

This finding contrasts sharply with our observations on smaller-scale downstream tasks. When
replicating truncation experiments across downstream task arithmetic operations involving the 20
tasks proposed by (Wang et al., 2024a), the task matrices exhibit pronounced low-rank properties,
corroborating previous findings that a limited subset of task vectors can accurately represent each
layer’s functionality (see Figure 7). Remarkably, retaining only 5% of singular components for
each task yields mean accuracy comparable to the original fine-tuned models. This suggests that
95% of singular components in each layer matrix can be removed without significant performance
degradation on these smaller-scale benchmarks.

E QWEN FINE-TUNING

In this section, we detail the fine-tuning procedure for Qwen. We perform full-parameter fine-tuning
and train with AdamW (Loshchilov & Hutter, 2019), a batch size of 32, a linear-warmup–cosine-
decay learning-rate schedule, and run for 2–5 epochs depending on the experiment. We fine-tune
and at a fixed context length of 2,048 tokens to avoid train–test context mismatch.

F NOTE ON THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely to aid with writing and polishing the manuscript.
Specifically, LLMs were used for refining grammar, improving clarity, and rephrasing sentences for
readability. All research ideas, experiments, and analyses were conducted independently of LLM
assistance.
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(a) M-14 (worst-OOD) (b) M-61 (best OOD)

Figure 8: Feature-space alignment maps (CKA). (a) CKA of the model M-14 (worst-OOD) on the
ImageNet-A (OOD) dataset (b) CKA of the model M-61 (best-OOD) on the ImageNet-A (OOD)
dataset

G INTERPRETABILITY OF COEFFICIENTS

This section motivates the formulation chosen in Equation 6. We do not claim that λlow is globally
optimal under all distributions; rather, we present it as a simple, principled, and empirically stable
rule derived from clear constraints:

First, we focus on the formula derivation. The coefficient λlow = ρ+ (1− ρ) cosα follows directly
from four natural boundary conditions:

1. suppress low-energy components when the spectrum is sharp and misaligned (ρ ≈ 0,
cosα ≈ 0)

2. keep them when the spectrum is flat or strongly aligned (ρ ≈ 1 or cosα ≈ 1)

3. fall back to the spectral baseline when alignment is poor (f(ρ, 0) = ρ)

4. rely purely on alignment when low-energy mass is negligible (f(0, cosα) = cosα).

If we furher assume that the interaction between ρ and cosα should be bilinear (the simplest smooth
form), these four constraints uniquely determine

f(ρ, cosα) = ρ+ (1− ρ) cosα.

Thus the formula is not heuristic: it is the minimal function satisfying all desired behaviors.

Convergence and sensitivity. MonoSoup is a one-shot update, so convergence is not applicable.
In terms of sensitivity, the rule is monotone and 1-Lipschitz in both arguments:

∂f

∂ρ
= 1− cosα ∈ [0, 1],

∂f

∂c
= 1− ρ ∈ [0, 1].

Hence small perturbations in ρ or cosα lead to proportionally small changes in λlow.

H CENTERED KERNEL ALIGNMENT ANALYSIS

For each transformer block ℓ, we compare the hidden features of: (a) Pre-trained, (b) fine-tuned,
(c) MonoSoup, (d) High-only (WHigh ), (e) Low-only (WLow). We compute linear CKA (Kornblith
et al., 2019) to the pre-trained features on an unlabeled set from ImageNet-1K and OOD set.

In this ablation analysis, we aim to know if MonoSoup “keeps pre-trained knowledge while retaining
specialization.” Its features should stay closer to the pre-trained than the fully fine-tuned model on
OOD, yet not collapse to pre-trained on ID. Subsequently, we plot the layer-by-layer heatmap of
CKA (pretrained, model features) for (a)-(e) on the ID vs. OOD dataset. We show this analysis
in Figure 8, for the worst-OOD model and the best-OOD model.
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Due to the computational cost of calculating the CKA for each transformer block, we conduct this
experiment using 25 batches of size 256 on ImageNet (ID) data and the most challenging OOD
dataset among ImageNet distribution shifts, which is ImageNet-A (OOD). This setup ensures that
all samples from ImageNet-A are included within the specified number of batches and samples per
batch.

We first plot the pretrained row in the figures above as a sanity check, confirming it remains at 1.00.
In the M-14 plot for the “Fine-tuned” row, early blocks (0–3) exhibit CKA values around 0.97, mid-
dle blocks (4–6) decline from approximately 0.96 to 0.93, and deeper blocks (7–11) progressively
decrease from about 0.87 to 0.67. Comparing this to the strong model (best-OOD) shown in the right
panel of the figure, the deepest layers diverge significantly more from the pretrained ImageNet-A
representation. Notably, Block 11 shifts from 0.67 CKA in the fine-tuned model to 0.92 in the strong
model. Conversely, the MonoSoup row shows early blocks nearly identical to the fine-tuned model
( 0.97), while deeper blocks consistently exhibit higher CKA values than the fine-tuned model; for
instance, Block 9: 0.82 vs. 0.78, Block 10: 0.76 vs. 0.72, and Block 11: 0.71 vs. 0.67.

MonoSoup preserves the shallow and mid layers while noticeably shifting the deepest layers closer
to the pretrained ImageNetA representation. This visually demonstrates how MonoSoup partially
de-specializes the model, enhancing OOD robustness while retaining most of the fine-tuned signal.
The “High-only” row closely mirrors the “Fine-tuned” model, with early blocks showing identical
values around 0.97 and later blocks following the same declining pattern, ending near 0.67. This
clearly illustrates the decomposition’s insight: the high-energy task directions (∆Whigh) essentially
represent the fine-tuning, such that W0 +∆Whigh ≈ W1. These directions capture the majority of
the representational drift from pretraining, which empirically corresponds to the drift that degrades
OOD performance in this weak model (M-14: worst-OOD). This encapsulates the “truncate hurts
OOD” phenomenon in feature space, where retaining only ∆Whigh reproduces the OOD-vulnerable
representation.

The Low-only model remains closest to the pretrained representation, showing better OOD per-
formance but poorer in-distribution (ID) results. In contrast, the High-only model aligns with the
Fine-tuned model and inherits its OOD vulnerabilities. MonoSoup smoothly interpolates between
these extremes, balancing the trade-off. This aligns with our hypothesis: Low-only retains old
knowledge at the cost of ID specialization, exhibiting the highest CKA to pretrained but worst ID
performance; High-only represents pure task directions, diverging most from pretrained in deep lay-
ers and suffering worst OOD; MonoSoup combines these, achieving closer alignment to pretrained
than Fine-tuned or High-only on OOD without reverting fully to pretrained features.

On the worst-OOD model like M-14, fine-tuning significantly distorts deep features away from the
pretrained representation on OOD data (ImageNetA), with high-energy task directions embodying
this distortion. MonoSoup mitigates this by reweighting high- and low-energy updates, notably
pulling the deepest layers closer to the pretrained representation (CKA increase of 0.04–0.05), which
corresponds to the observed OOD performance gains. Conversely, on stronger backbones where
fine-tuning already maintains a high similarity to pretrained features (CKA ≥ 0.9), MonoSoup’s
adjustments and accuracy improvements are naturally smaller. This exemplifies the principle that
MonoSoup is most effective when fine-tuning begins to disrupt the pretrained representation, as
demonstrated by two models and their corresponding CKA heatmaps.

Recall that W
(ℓ)
Low is the component whose magnitude is modulated by cosα(ℓ) through λ

(ℓ)
low

in Equation 6. The fact that the Low-only model remains closest to the pre-trained representa-
tion (highest CKA) and improves OOD at the cost of ID, while High-only mirrors the fine-tuned rep-
resentation and inherits its OOD vulnerabilities, empirically validates our interpretation of cosα(ℓ)

as a pre-training preservation signal: increasing λ
(ℓ)
low (hence cosα(ℓ) ) shifts the representation

toward the pre-trained solution on OOD inputs in exactly the way predicted by our CKA analysis.

I VARIANCE THRESHOLD (R) ABLATION

In this section, our aim is to analyze the role of the hyperparameter R as our variance threshold.

Zero-Shot initialization. To assess the generalizability of our method, we evaluate its perfor-
mance on two CLIP ViT-B/32 models that were fine-tuned from zero-shot initialization (models
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(a) M-14 (worst-OOD) (b) M-61 (best OOD)

Figure 9: Feature-space alignment maps (CKA). (a) CKA of the model M-14 (worst-OOD) on the
ImageNet (ID) dataset (b) CKA of the model M-61 (best-OOD) on the ImageNet (ID) dataset
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(b) Zero-shot initialization M-2

Figure 10: Ablation on variance threshold R.

utilized in Appendix B), rather than from linear probing initialization. Figure 10 presents this anal-
ysis.

ConvNeXt model. In this part, we assess the generalizability of our method on ConvNeXt1 (Liu
et al., 2022) model pretrained on ImageNet-22k and fine-tuned on ImageNet-1k (See Figure 11).

CLIP (FT-1, zero-shot init) Figure 10. Varying the variance threshold R reveals a clear trade-off
between ID and OOD performance. OOD accuracy rises from ≈ 53.1% at small R to a plateau/peak
around 53.3−53.4% for R ∈ [0.4, 0.6], then drifts down as R → 0.9. ID accuracy is essentially flat
near 78.4% for R ≤ 0.7 and only ticks up at high thresholds (to ≈ 78.9% at R = 0.9 ). Interpreting
R as “how many high-energy directions we keep,” this says moderate truncation preserves low-
energy residuals that help OOD, while very large R steers the model closer to the fine-tuned solution
and benefits ID at the expense of OOD. A pragmatic operating point is R ≈ 0.5 − 0.7 if OOD is
prioritized, and R ≥ 0.85 if ID is.

CLIP (FT-2, zero-shot init) Figure 10. The second CLIP model shows the same shape, confirm-
ing the effect is not idiosyncratic. OOD accuracy improves slightly as R increases from 0.1 and
peaks near R ≈ 0.5 (low-53% range), then declines toward ≈ 52.5% at R = 0.9. ID accuracy
exhibits a shallow U-shape: small changes for R ≤ 0.7, then a marked increase at R ∈ [0.8, 0.9] (to
∼ 79.1% ). Again, mid-range R balances the objectives, while pushing R high recovers ID at clear
OOD cost. The near-identical trends across the two fine-tuned CLIP checkpoints strengthen the in-
terpretation that R primarily trades low-energy residual cues (good for OOD) against a higher-rank
approximation of the fine-tuned update (good for ID).

ConvNeXt Figure 11. Sensitivity is gentler and largely monotonic: as R increases from 0.1 to
0.9 , ImageNet accuracy climbs from ≈ 84.9% to ≈ 85.6% and average OOD accuracy rises from

1checkpoint’s link
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Figure 11: Ablation study on the variance threshold R according to the ConvNeXt model.

≈ 56.2% to ≈ 56.9%. Unlike CLIP, ConvNeXt shows little ID-OOD tension; both benefit as more
high-energy directions are retained, with a modest knee around R ≈ 0.7 − 0.8. This suggests
the ConvNeXt fine-tuning delta is spectrally more “benign”: expanding the kept subspace steadily
recovers useful signal without discarding low-energy components that disproportionately help OOD.
As a default, R ∈ [0.7, 0.85] delivers the best joint ID-OOD trade-off across all three studies.

J CONVNEXT

In this section, we assess the generalizability of our method on other architectures rather than CLIP
models with ConvNeXt2 (Liu et al., 2022) represents performance of the MonoSoup on these mod-
els.

Method Performance Metrics

In-distribution (ImageNet) Avg OOD

ConvNeXt

Pretrained (IN12k) 82.17 % 52.88 %
Fine-tuned (IN1k) 85.17 % 55.85 %
MonoSoup (freevariance) 85.19 % 56.07 %
MonoSoup (variance) R = 0.8 85.57 % 56.70 %

Table 5: Performance of ConvNeXt model.

2checkpoint’s link

22

https://huggingface.co/timm/convnext_small.in12k_ft_in1k


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

75 76 77 78 79 80
ImageNet Accuracy (%)

38

40

42

44

46

48

50

Av
g.

 O
OD

 A
cc

ur
ac

y 
(%

) mean 

Fine-tuned (tail) Fine-tuned + MonoSoup (head)

Figure 12: Quiver Plot. To demonstrate robustness across a variety of models, we further assess our
method using all 70 CLIP checkpoints provided by (Wortsman et al., 2022a). We present a vector
plot in which the x- and y-axes represent ID and OOD performance, respectively. Each vector begins
at the performance level of a fine-tuned checkpoint and extends to the performance achieved after
the application of MonoSoup.
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