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Abstract

Precisely annotating objects with multiple labels is costly and has become a crit-
ical bottleneck in real-world multi-label classification tasks. Instead, deciding
the relative order of label pairs is obviously less laborious than collecting exact
labels. However, the supervised information of pairwise relevance ordering is less
informative than exact labels. It is thus an important challenge to effectively learn
with such weak supervision. In this paper, we formalize this problem as a novel
learning framework, called multi-label learning with pairwise relevance ordering
(PRO). We show that the unbiased estimator of classification risk can be derived
with a cost-sensitive loss only from PRO examples. Theoretically, we provide
the estimation error bound for the proposed estimator and further prove that it is
consistent with respect to the commonly used ranking loss. Empirical studies on
multiple datasets and metrics validate the effectiveness of the proposed method.

1 Introduction

Multi-label learning (MLL) solves problems where each object is assigned with multiple class labels
simultaneously [Zhang and Zhou, 2013]. For example, an image may be annotated with labels
building, street and person. The goal of multi-label learning is to train a classification model that can
predict all the relevant labels for unseen instances. A large number of recent works have witnessed
the great successes that MLL has achieved in many real-world applications, e.g., image annotation
[Chen et al., 2019], human attribute recognition [Li et al., 2016], user profiling [Liu et al., 2021], and
protein function prediction [Elisseeff and Weston, 2002].

Traditional multi-label learning studies assume that each instance has been precisely annotated with
all of its relevant labels. However, in many real-world scenarios, it is difficult and costly to collect
the precise annotations. Instead, each instance may be provided with the relative order of label pairs,
where each label pair y � y′ (or y ≺ y′) indicates that label y is more relevant (or irrelevant) than
label y′ to instance x, i.e., p(y = 1|x) > p(y′ = 1|x) (or p(y = 1|x) < p(y′ = 1|x)). Generally,
deciding the relative order of label pairs would be much easier than collecting the precise annotations
and thus less costly. For example, in medical image analysis, only experts with rich experiences
can accurately identify the disease for a patient based on the medical image. In contrast, if the
question is to decide which of two given diseases is more likely suffered by the patient, then even
medical students with basic knowledge may easily provide the answer. While the annotation cost is
significantly reduced with pairwise relevance ordering, the learning task becomes more challenging,
since the supervised information of pairwise relevance ordering is much less than exact labels.

We formalize this learning problem as a new framework called multi-label learning with pairwise
relevance ordering (PRO). Specifically, PRO attempts to learn a classification model from multi-label
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examples with the relative order of label pairs, where each label pair y � y′ indicates three possible
cases: 1) both y and y′ are relevant to x, i.e., y = 1, y′ = 1; 2) y is relevant to x while y′ is not, i.e.,
y = 1, y′ = 0; 3) both y and y′ are irrelevant to x, i.e., y = 0, y′ = 0.

PRO is a novel learning framework with significant difference from exiting settings. For example,
semi-supervised multi-label learning (SSMLL) learns a classifier by exploiting a few of labeled
examples as well as a large number of unlabeled examples [Liu et al., 2006]; multi-label learning with
missing labels (MLML) assumes that only a subset of labels are available for each instance [Sun et al.,
2010, Yu et al., 2014]; partial multi-label learning (PML) assigns each instance with a candidate label
set [Xie and Huang, 2018, Zhang and Fang, 2020]; multi-label learning with noisy labels assumes
that multiple class labels may be flipped simultaneously with their respective probabilities [Xie and
Huang, 2021a]. However, these frameworks do not consider multi-label examples with pairwise
relevance ordering, and cannot be employed to solve PRO problems.

To deal with multi-label data with pairwise relevance ordering, we propose a cost-sensitive loss
function for learning a multi-label classifier with empirical risk minimization. Theoretically, we
show that the unbiased estimator of classification risk can be derived from only PRO examples if the
surrogate loss function satisfies a mild condition, i.e., the symmetric condition. The estimation error
bound is established for the unbiased estimator, showing that learning with PRO examples can be
multi-label consistent to the commonly used ranking loss. Extensive experimental results on multiple
datasets and evaluation metrics demonstrate the practical usefulness of the proposed method.

2 Related Works

There are plenty of literature on multi-label learning. As one of the earliest representative methods,
Binary Relevance simply decomposes the multi-label learning task into a set of binary classification
problems [Zhang and Zhou, 2013]. Nevertheless, such method neglects the label correlations, which
are regarded as an essential information for multi-label classification. Therefore, there are many
studies trying to learn a multi-label classifier by exploiting the label correlations [Read et al., 2011].
Some of these works focus on the pairwise correlation [Elisseeff and Weston, 2002, Li et al., 2017],
while some others consider the high order correlation among all labels [Chen et al., 2019].

To solve SSMLL problems, some works attempt to learn a multi-label classifier based on the graph
models [Kong et al., 2011] while some others utilize the low-rank assumption [Jing et al., 2015]. In
addition to these methods, the co-training strategy [Zhan and Zhang, 2017] and matrix factorization
[Liu et al., 2006] are also employed to solve SSMLL problems.

The pioneering MLML study [Sun et al., 2010] tries to construct a similarity graph for each label and
the manifold regularization term is added to recover the missing labels. A linear classifier with the
low-rank constraint is proposed to deal with large scale data with missing labels [Yu et al., 2014]. In
[Kanehira and Harada, 2016], authors solve the MLML problem by viewing it as a positive-unlabeled
learning task. Some other techniques also employ the robust loss [Xu et al., 2019] or the group lasso
regularizer [Bucak et al., 2011] to solve MLML problems.

In order to deal with partial-labeled data, the most commonly used strategy is disambiguation [Cour
et al., 2011], which recovers ground-truth labeling information for candidate labels. Some methods
perform the disambiguation strategy by estimating a confidence for each candidate label [Xie and
Huang, 2018, Yu et al., 2018, 2020]. Other methods utilize the decomposition scheme [Sun et al.,
2019] or adversarial training [Yan and Guo, 2021]. In [Xie and Huang, 2021b], authors first solve
PML problems by considering the generation process of noisy labels. A recent work utilizes the meta
disambiguation strategy to deal with partial-labeled data [Xie et al., 2021]. Although it allows noisy
labels hidden in the candidate set (e.g., PML) or some labels are missed (e.g., SSMLL and MLML),
the aforementioned frameworks consider the supervised information of the label-level, i.e., each of
labels is relevant or not, which can be still costly. Instead our proposed PRO framework considers
pairwise relevance ordering, which can be much easier for annotators and thus less costly. In [Huang
et al., 2015], authors propose a multi-label active learning framework called AURO which queries the
relevance ordering between two labels in every iteration. However, different from the proposed PRO
framework, AURO directly asks annotators to provide each label pair with one of three possible cases
that have been discussed in Section 1, which can be regarded as a stronger supervised information
with higher cost. AURO cannot be used to solve the PRO problem. Furthermore, authors consider the
pairwise supervision of instances and performing binary classification based on similar paired data
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and unlabeled examples [Bao et al., 2018, Shimada et al., 2021, Bao et al., 2020]. Another recent
work trains the binary classifier under the supervision of pairwise confidence comparisons [Feng
et al., 2021]. These methods focus on binary classification and cannot be directly applied to solve the
PRO problem.

3 Preliminaries

In this section, before deriving our main results for solving the PRO problem, we introduce some
notations and provide the necessary preliminaries.

In traditional multi-label learning task, let x ∈ X be a feature vector and y ⊆ Y its corresponding
labels, where X = Rd is the feature space and Y = {0, 1}q is the target space with q possible class
labels. Here, yj = 1 indicates the j-th label is relevant to the instance; yj = 0, otherwise. Let
D = {xi,yi}ni=1 be the given training examples, where each example is drawn i.i.d. according to the
joint distribution p(x,y).

In multi-label learning, many loss functions have been proposed to measure the performance of
learning algorithms, such as ranking loss, hamming loss, coverage and average precision [Zhang and
Zhou, 2013]. Among them, the ranking loss concerns about label pairs that are ordered reversely for
an instance, which naturally considers the pairwise label correlation. Given the decision function
f : X → Rd, the ranking loss can be defined as follows :

L(f(x),y) =
∑

1≤j<k≤q

I(yj = 1, yk = 0)`(fk, fj) + I(yj = 0, yk = 1)`(fj , fk), (1)

where
`(fj , fk) = I(fj > fk) +

1

2
I(fj = fk). (2)

Here, fj is the j-th component of f(x) and I(·) is the indicator function, which outputs 1 if the
condition holds while outputs 0 otherwise. The goal of multi-label learning tasks is to learn the
optimal classifier f by minimizing the following expected classification risk:

R(f) = Ep(x,y)[L(f(x),y))] =
∑
y∈Y

p(y)Ep(x|y)[L(f(x),y))], (3)

=
∑
y∈Y

p(y)
∑

1≤j<k≤q

Ep(x|yj=1,yk=0)[`(fk, fj)] + Ep(x|yj=0,yk=1)[`(fj , fk)],

=
∑

1≤j<k≤q

π10
jkEp10jk(x)[`(fk, fj)] + π01

jkEp01jk(x)[`(fj , fk)],

where π10
jk = p(yj = 1, yk = 0) (or π01

jk = p(yj = 0, yk = 1)) denotes the positive-negative (or
negative-positive) label pair prior probability, and p10jk(x) = p(x|yj = 1, yk = 0) (or p01jk(x) =

p(x|yj = 0, yk = 1)) denotes the class-conditional probability density of data given the positive-
negative (negative-positive) label pair. Accordingly, we define the minimal risk (also called the Bayes
risk) as R∗ = inff R(f).

However, the loss function L is highly discontinuous and computationally NP-hard, which often
makes the corresponding optimization problem hard to solve [Gao and Zhou, 2013]. In practice, a
feasible solution is to consider alternatively a surrogate loss function L which can be solved efficiently.
Accordingly, the L-risk with respect to p(x,y) can be defined as:

RL(f) = Ep(x,y)[L(f(x),y))] =
∑

1≤j<k≤q

π10
jkEp10jk(x)[φ(fj−fk)]+π01

jkEp01jk(x)[φ(fk−fj)], (4)

where φ is a surrogate loss function. A common choice is hinge loss φ(t) = max(0, 1 − t) in
[Elisseeff and Weston, 2002]. Accordingly, we define the minimal L-risk (also called the Bayes
L-risk) as R∗L = inff RL(f).

4 Learning with PRO

In this section, we first formulate the problem of multi-label learning with pairwise relevance ordering
(PRO). Then, the unbiased estimator is proposed for solving the PRO problem. Due to the page limit,
most proofs for theorems in Section 4 and Section 5 are provided in the supplementary material.
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4.1 The PRO Framework

In the PRO framework, each example x is associated with the relevance ordering of K label pairs
ỹ = {yj � y′j}Kj=1, where yj � y′j represents the label yj is more relevant than label y′j , i.e.,
p(yj = 1|x) > p(y′j = 1|x). Note that here y′j represents one out of q − 1 labels (except for label
yj) and we can further use yk to denote y′j for notational simplicity. As discussed in Section 1,
yj � yk indicates three possible cases:1) both yj and yk are relevant to x, i.e., yj = 1, yk = 1;
2) yj is relevant to x while yk is not, i.e., yj = 1, yk = 0; 3) both yj and yk are irrelevant to x,
i.e., yj = 0, yk = 0. The observation tells us that yj = 1, yk = 0 (or yj = 0, yk = 1) occurs if
and only if yj � yk (or yj ≺ yk), i.e., the prior probability p(yj = 1, yk = 0|yj ≺ yk) = 0 (or
p(yj = 0, yk = 1|yj � yk) = 0). We can further utilize the prior to calibrate the ordinary risk Eq(3).
Therefore, by taking the prior into consideration, the classification risk Eq(3) can be calibrated as:

R(f) =
∑

1≤j<k≤q

Π10
jkEτ10

jk (x)
[`(fk, fj)] + Π01

jkEτ01
jk (x)

[`(fj , fk)], (5)

where Π10
jk = p(yj = 1, yk = 0|yj � yk) (or Π01

jk = p(yj = 0, yk = 1|yj ≺ yk)) denotes the
calibrated positive-negative (or negative-positive) label pair prior probability, and τ10jk = p(x|yj =

1, yk = 0, yj � yk) (or τ01jk = p(x|yj = 0, yk = 1, yj ≺ yk)) denotes the calibrated class-conditional
probability density of data given the positive-negative (negative-positive) label pair. Accordingly, the
L-risk Eq(4) can be calibrated as:

RL(f) =
∑

1≤j<k≤q

Π10
jkEτ10

jk (x)
[φ(fj − fk)] + Π01

jkEτ01
jk (x)

[φ(fk − fj)]. (6)

Our goal is to train a multi-label classifier only based on the observed examples D̃ = {xi, ỹi}ni=1,
drawn i.i.d. from the distribution p̃(x, ỹ). The expected L-risk with respect to p̃(x, ỹ) can be
formulated as follows:

Ep̃(x,ỹ)[L(f(x), ỹ)] =
∑

1≤j<k≤q

π̃10
jkEp̃10jk(x)[φ(fj − fk)] + π̃01

jkEp̃01jk(x)[φ(fk − fj)], (7)

where π̃10
jk = p(yj � yk) (or π̃01

jk = p(yj ≺ yk)) denotes the positive (or negative) ordering label
pair prior probability of PRO examples, and p̃10jk = p(x|yj � yk) (or p̃01jk = p(x|yj ≺ yk)) denotes
the class-conditional probability density of PRO examples given the positive (negative) ordering
label pair. However, directly solving the estimator Eq.(7) to obtain the classifier usually suffers the
over-fitting issue, which makes the classifier fail to obtain a promising generalization performance.

4.2 The Proposed Method

In this section, we derive an unbiased risk estimator for solving the PRO problem.

Based on the aforementioned discussions, each label pair yj � yk indicates three possible cases,
which motivates us to derive the following lemma.

Lemma 1. Each PRO example of D̃ is drawn i.i.d. according a probability distribution with the
following class-conditional density:

p(x|yj � yk) = Π10
jkp(x|yj = 1, yk = 0, yj � yk) + π11

jkp(x|yj = 1, yk = 1) (8)

+ π00
jkp(x|yj = 0, yk = 0).

Based on the lemma, we derive the following theorem, which obtains the unbiased estimator of the
classification risk only from the PRO examples.
Theorem 1. The classification risk Eq.(5) can be equivalently re-written as

R(f) =
∑

1≤j<k≤q

1

π̃10
jk

(
π̃10
jkEp̃10jk(x)[`(fk, fj)]

)
+

1

π̃01
jk

(
π̃01
jkEp̃01jk(x)[`(fj , fk)]

)
.

Proof. According to Eq.(8), we have

Ep̃10jk(x)[`(fk, fj)] = Π10
jkEτ10

jk (x)
[`(fk, fj)] + π11

jkEp11jk(x)[`(fk, fj)] + π00
jkEp00jk(x)[`(fk, fj)].

4



Similarly,

Ep̃01jk(x)[`(fj , fk)] = Π01
jkEτ01

jk (x)
[`(fj , fk)] + π11

jkEp11jk(x)[`(fj , fk)] + π00
jkEp00jk(x)[`(fj , fk)].

Then, the expected classification risk R(f) can be expressed as follows:

R(f) =
∑

1≤j<k≤q

Π10
jkEτ10

jk (x)
[`(fk, fj)] + Π01

jkEτ01
jk (x)

[`(fj , fk)],

=
∑

1≤j<k≤q

Ep̃10jk(x)[`(fk, fj)] + Ep̃01jk(x)[`(fj , fk)]− π11
jkEp11jk(x)[`(fk, fj) + `(fj , fk)]

− π00
jkEp00jk(x)[`(fk, fj) + `(fj , fk)],

=
∑

1≤j<k≤q

1

π̃10
jk

(
π̃10
jkEp̃10jk(x)[`(fk, fj)]

)
+

1

π̃01
jk

(
π̃01
jkEp̃01jk(x)[`(fj , fk)]

)
− π11

jk − π00
jk ,

where the last equality is due to the fact that `(fj , fk) + `(fk, fj) = 1 by the definition of `.

However, as discussed in Section 3, it is difficult to optimize the loss function ` due to its highly
discontinuity. To solve the problem, the following corollary tells us that the unbiased estimator of
L-risk with respect to p̃(x, ỹ) can be established under a mild condition.
Corollary 1. The L-risk Eq.(6) can be equivalently re-written as

RL̃(f) =
∑

1≤j<k≤q

1

π̃10
jk

(
π̃10
jkEp̃10jk(x)[φ(fj − fk)]

)
+

1

π̃01
jk

(
π̃01
jkEp̃01jk(x)[φ(fk − fj)]

)
, (9)

if it holds, for every t, the loss function φ satisfies

φ(t) + φ(−t) = 1, (10)

where, for each label pair yj , yk, π̃10
jkEp̃10jk(x)[φ(fj − fk)] (or π̃01

jkEp̃01jk(x)[φ(fk− fj)]) is the expected
L-risk with respect to p̃(x, ỹ) and can be directly estimated from PRO training examples with suitable
surrogate loss functions. It is noteworthy that the symmetric condition Eq(10) has been widely used
in other weakly supervised learning frameworks [Du Plessis et al., 2014, Ishida et al., 2017].

With the theorem, we can train a multi-label classifier by minimizing the empirical approximation of
RL̃(f) from PRO examples as follows:

R̂L̃(f) =
1

n

n∑
i=1

L̃(f(x), ỹ), (11)

where,

L̃(f(x), ỹ) =
∑

1≤j<k≤q

1

π̃10
jk

I(yij � yik)φ(fj(xi)−fk(xi))+
1

π̃01
jk

I(yij ≺ yik)φ(fk(xi)−fj(xi)).

(12)
Here, it is worthy noting that in contrast to previous cost-sensitive methods [Du Plessis et al., 2014],
which often requires extra assumptions or sophisticated techniques to obtain the cost coefficients, the
π̃10
jk (or π̃01

jk) can be directly estimated from the observed PRO training data.

5 Theoretical Analysis

In this section, we provide the estimation error bound for the proposed unbiased estimator and further
prove that it is consistent with respect to ranking loss.

Let σ = {σ1, ..., σn} be n Rademacher variables with σi independently uniform variable taking
value in {−1,+1}. Then, the Rademacher complexity with respect to function class F and loss
function L can be formulated as follows:

Rn(L ◦ F) = Ex,y,σ

[
sup
f∈F

1

n

n∑
i=1

σiL(f(xi),yi)

]
. (13)

Based on the definition, we can establish the following lemma.
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Lemma 2. LetRn(L̃ ◦ F) be the Rademacher complexity of the loss function L̃ and function class
F over D̃ of n training examples drawn from p̃(x, ỹ), which can be defined as

Rn(L̃ ◦ F) = ED̃Eσ

[
sup
f∈F

1

n

n∑
i=1

σiL̃(f(xi), ỹi)

]
.

Then,
Rn(L̃ ◦ F) ≤ 2KπCφRn(F),

where π = maxj,k
1
π10
jk
,∀j, k ∈ [q] and Cφ is the Lipschitz constant of φ.

Based on Lemma 2, we can establish the uniform deviation bounds of R̂L̃(f) as follows:
Lemma 3. For the loss function φ bounded by Θ and any δ > 0, with the probability at least 1− δ,
we have

max
f∈F
|R̂L̃(f)−RL̃(f)| ≤ 4KπCφRn(F) +KπΘ

√
ln 1

δ

2n
.

Based on Lemma 3, we can derive the estimation error bound as follows, which further shows that
learning from PRO examples can be multi-label consistent with respect to ranking loss.
Theorem 2. For any δ > 0, with probability at least 1− δ, we have

RL(f̂)−min
f∈F

RL(f) ≤ 8KπCφRn(F) + 2KπΘ

√
ln 1

δ

2n
.

where f̂ is trained by minimizing R̂L̃(f).
Furthermore, if φ is a differential and non-increasing function with φ′(0) < 0 and φ(t) + φ(−t) =

2φ(0), then learning from PRO data with the modified loss function L̃ Eq.(12) is consistent w.r.t
ranking loss, i.e., there exists a non-negative concave function ξ with ξ(0) = 0, such that

R(f̂)−R∗ ≤ ξ(RL(f̂)−R∗L).

Theorem 2 tells us that learning from PRO examples is consistent with respect to ranking loss. As
n→∞, if RL(f̂) = R∗L, then we have the consistency: R(f̂) = R(f∗), sinceRn(F)→ 0 for all
parametric models with a bounded norm such as deep networks trained with weight decay [Lu et al.,
2018]. Based on the above discussion, Sigmoid loss φ(t) = 1

1+et is a suitable surrogate loss function
in our case, since it satisfies the symmetric condition Eq.(10) and meanwhile has been proven to be
consistent with respect to ranking loss [Gao and Zhou, 2013].

6 Experiment

In this section, to validate the effectiveness of the proposed method, we perform the experiments on
varied datasets with multiple evaluation metrics.

6.1 Experimental Settings

Datasets We evaluate our method on five multi-label datasets: Multi-MNIST2 [Finn et al., 2017],
Multi-Kuzushiji-MNIST (Multi-KMNIST for short), Multi-Fashion-MNIST 3 (Multi-FMNIST for
short), VOC2007 4 [Everingham et al., 2010] and MSCOCO 5 [Lin et al., 2014]. For three Multi-
MNIST-style datasets, we randomly sample 6,000 images for training and 4,000 images for testing.
VOC2007 contains 9,963 images for 20 object categories, which are divided into train, val and test
sets. Following [Chen et al., 2019, 2018], we use the trainval set to train the models, and evaluate the

2See https://github.com/shaohua0116/MultiDigitMNIST for Multi-MNIST.
3Similar to Multi-MNIST, we construct Multi-Kuzushiji-MNIST and Multi-Fashion-MNIST for two com-

monly used datasets Kuzushiji-MNIST and Fashion-MNIST, repsectively.
4See http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ for VOC2007.
5See https://cocodataset.org for MSCOCO.
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Figure 1: Comparison results with varying number of label pairs on Multi-MNIST, Multi-KMNIST
and Multi-FMNIST.

performance on the test set. MSCOCO contains 82,081 images as the training set and 40,504 images
as the validation set. We randomly sample 20,000 images from the training set for training and 10,000
images from the validation set for testing. For each dataset, we randomly sample K pairs of labels
and assign their relevance ordering, where K varies among {3, 4, 5, 6, 7, 8} for Multi-MNIST-style
datasets, {6, 8, 10, 12, 14, 16} for VOC2007 and {5, 10, 15, 20, 25, 30} for MSCOCO. In particular,
in the case that two labels are both positive (or negative), we decide their pairwise relevance ordering
randomly, i.e., one out of two labels is randomly sampled to be more relevant to the other one. For
each dataset, we repeat experiments five times and report their averaging performances.

Metrics We evaluate the performance of the proposed method based on multiple standard multi-
label criterion: ranking loss, hamming loss, coverage and average precision. For ranking loss,
hamming loss and coverage, the smaller value, the better performance; for average precision, the
larger value, the better performance. The detail of these criterion can be found in [Zhang and Zhou,
2013].

Methods Under the PRO framework, the proposed method that minimizes R̂L̃(f) in Eq.(11)
with Sigmoid loss function is denoted by Unbiased-PRO (u-PRO for short). We compare with the
baseline: Biased-PRO (b-PRO for short), which attempts to minimize the empirical approximation
of the biased classification risk in Eq(7) with hinge loss function. Note that PRO is new learning
framework, and there is no method can be directly applied to PRO problems. We employ a recently
proposed framework called CCMN [Xie and Huang, 2021a] to transform the PRO problem into
a MLL problem with class-conditional multi-label noise (CCMN) by regarding y as the positive
label while y′ as the negative label for each label pair y � y′. And we compare with the following
methods: Biased-CCMN (b-CCMN for short), which directly learns a multi-label classifier with
noisy labels; Unbiased-CCMN (u-CCMN), which employs the unbiased estimator proposed in [Xie
and Huang, 2021a] to solve the transformed CCMN problem. Note that for u-CCMN, the true noise
rates (the probability of the positive (negative) label flipped into the negative (positive) one) are given
in experiments.

Implementation For experiments on Multi-MNIST-style datasets, we train a linear model by using
Adam [Kingma and Ba, 2015] optimizer with learning rate of 0.001. We added an `2-regularization
term, with the regularization parameter of 0.0001. For experiments on VOC2007 and MSCOCO,
we use an Alexnet [Krizhevsky et al., 2012] and a Resnet-18 [He et al., 2016] pre-trained with the
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Figure 2: Comparison results with varying number of label pairs for each instance on VOC2007.
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Figure 3: Comparison results with varying number of label pairs for each instance on MSCOCO.

ILSVRC2012 dataset on Pytorch platform [Paszke et al., 2019]. The Alexnet and Resnet-18 are
trained by using stochastic gradient descent (SGD) with learning rate of 0.0001. An `2-regularization
term is added with the regularization parameter of 0.0001. The batch size for all datasets is set as 200.
All the experiments are conducted on GeForce RTX 2080 GPUs

6.2 Performance Comparison

Figure 1 illustrates the performance curve of each comparing method as the number of label pairs for
each instance increases in terms of four evaluation metrics on three Multi-MNIST-style datasets. As
shown in the figures, we can obtain the following observations: 1) b-PRO and b-CCMN achieve the
worst performances, which indicates neither directly minimizing the empirical biased classification
risk nor simply conducting binary classification transformation can solve PRO problems, since these
two methods may suffer from over-fitting issues due to the biasedness of the risk estimation. 2)
Compared to b-CCMN method, u-CCMN achieves a promising performance in most cases. This
observation demonstrates that CCMN framework is effective for tackling PRO problems in some
extent. 3) Our proposed unbiased-PRO method achieves the best performance in almost all cases and
significantly outperforms u-CCMN. It is worthy noting that u-CCMN utilizes the true noise rates
which are usually unavailable in practice, and thus the superiority of the proposed method would be
more significant in real-world setting.

Figure 2 and Figure 3 illustrate the performance curve of each comparing method as the number of
label pairs for each instance increases in terms of four evaluation metrics on VOC2007 and MSCOCO,
respectively. From the figures, it can be observed that our proposed u-PRO method achieves the best
performance in all cases. It seem that u-CCMN performs unstable on VOC2007. It even obtains
worse results than the baseline b-PRO in terms of hamming loss and average precision. One possible
reason is that u-CCMN suffers from the over-fitting issue when the complex model is used (in the
experiments, Alexnet is used for VOC2007). These results convincingly validate that the proposed
unbiased estimator can effectively solve PRO problems.

6.3 Ablation Study

In this section, we conduct some ablation experiments to provide empirical validations for the
theoretical analysis proposed in the paper.
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(a) Multi-MNIST
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(b) Multi-KMNIST
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(c) Multi-FMNIST

Figure 4: Comparison results with varying number of label pairs for each instance on Multi-MNIST,
Multi-KMNIST and Multi-FMNIST in terms of ranking loss and hamming loss.

We first examine the unbiasedness for the proposed estimator. Based on the discussion in Section
4.2, we disclose that the unbiased estimator is composed of two components, i.e., the cost-sensitive
estimator Eq.(9) and the symmetric surrogate loss function which satisfies Eq.(10). Here, u-PRO-
Sigmoid and u-PRO-Ramp represent the empirical cost-sensitive estimator Eq.(11) with Sigmoid
and Ramp losses, respectively, which both satisfy the symmetric condition. U-PRO-Hinge and
b-PRO-Hinge represent the cost-sensitive estimator Eq.(11) and biased estimator Eq.(7) with hinge
loss, which does not satisfy the symmetric condition.

Due to the page limit, Figure 4 only report the performance curves of these four estimators in terms of
ranking loss and hamming loss on Multi-MNIST, Multi-KMNIST and Multi-FMNIST datasets. From
the figures, we can obtain following observations: 1) u-PRO-Sigmoid and u-PRO-Ramp achieve
the better performances than u-PRO-Hinge and b-PRO-Hinge in almost all cases, which indicates
both two components, i.e., the cost-sensitive estimator and the symmetric surrogate loss function,
certainly contribute to obtain the unbiased estimator for solving the PRO problem; 2) U-PRO-
Hinge outperforms b-PRO-Hinge with significant superiority, which indicates that the cost-sensitive
estimator plays an important role in achieving unbiased risk estimation. The observation tells that
even without the symmetric surrogate loss function, we can obtain a promising result by utilizing the
cost-sensitive estimator in practice. Finally, from the Figure 4, it can be observe that u-PRO-Sigmoid
generally achieve better performance than u-PRO-Ramp in terms of ranking loss, which provides an
empirical validation of Theorem 2, since Sigmoid loss has been proven to be consistent with respect
to ranking loss while Ramp loss is not [Gao and Zhou, 2013].

7 Conclusion

In this paper, we study the problem of multi-label classification with pairwise relevance ordering,
where each instance is assigned with the relative order of label pairs. To solve PRO problems, we
propose an empirical estimator of classification risk based on a cost-sensitive loss. Theoretically,
we shows that the proposed estimator can be in an unbiased fashion if the surrogate loss function
satisfies the symmetric condition. We derive the estimation error bound for the proposed method, and
further prove that learning from PRO examples with the proposed unbiased estimator is consistent
with respect to ranking loss. Finally, we experimentally examine the effectiveness of the proposed
method on multiple datasets and evaluation metrics. In the future, we will study PRO problems by
considering the data generation process.
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