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ABSTRACT

We introduce a distortion measure for images, Wasserstein distortion, that simul-
taneously generalizes pixel-level fidelity on the one hand and realism or perceptual
quality on the other. We show how Wasserstein distortion reduces mathematically
to a pure fidelity constraint or a pure realism constraint under different parame-
ter choices. Pairs of images that are close under Wasserstein distortion illustrate
its utility. In particular, we generate random textures that have high fidelity to a
reference texture in one location of the image and smoothly transition to an inde-
pendent realization of the texture as one moves away from this point. Connections
between Wasserstein distortion and models of the human visual system are noted.

1 INTRODUCTION

Classical image compression algorithms are optimized to achieve high pixel-level fidelity between
the source and the reconstruction. That is, one views images as vectors in Euclidean space and
seeks to minimize the distance between the original and reproduction using metrics such as PSNR,
SSIM (Wang et al., 2004), etc. (Avcıbaş et al., 2002; Dosselmann & Yang, 2005; Hore & Ziou,
2010). While effective to a large extent (Berger, 1971; Pearlman & Said, 2011; Sayood, 2017), these
objectives have long been known to introduce artifacts, such as blurriness, into the reconstructed
image (Wang & Bovik, 2009). Similar artifacts arise in image denoising (Buades et al., 2005),
deblurring (Nah et al., 2021), and super-resolution (Kwon et al., 2015).

Recently, it has been observed that such artifacts can be reduced if one simultaneously maximizes
the realism1 of the reconstructed images. Specifically, one seeks to minimize the distance between
some distribution induced by the reconstructed images and the corresponding distribution for natu-
ral images (Blau & Michaeli (2018); see also Delp & Mitchell (1991); Li et al. (2011); Saldi et al.
(2014)). A reconstruction algorithm that ensures that these distributions are close will naturally be
free of obvious artifacts; the two distributions cannot be close if one is supported on the space of
crisp images and the other is supported on the space of blurry images. Image reconstruction under
realism constraints has been a subject of intensive research of late, both of an experimental (Rippel
& Bourdev, 2017; Tschannen et al., 2018; Agustsson et al., 2019; Mentzer et al., 2020) and theoret-
ical (Klejsa et al., 2013; Blau & Michaeli, 2018; 2019; Matsumoto, 2018; 2019; Theis & Wagner,
2021; Chen et al., 2021; 2022; Wagner, 2022; Hamdi & Gündüz, 2023) nature.

Up to now, the dual objectives of fidelity and realism have been treated as distinct and even in
tension (Blau & Michaeli, 2018; Zhang et al., 2021; Chen et al., 2022; Niu et al., 2023; Salehkalaibar
et al., 2023). Yet they represent two attempts to capture the same notion, namely the differences
perceived by a human observer. It is natural then to seek a simultaneous generalization of the two.
Such a generalization could be more aligned with human perception than either objective alone, or
even a linear combination of the two. The main contribution of this paper is one such generalization,
Wasserstein distortion, which is grounded in models of the Human Visual System (HVS).

Realism objectives take several forms depending on how one induces a probability distribution from
images. First, one can consider the distribution induced by the ensemble of full resolution im-
ages (Theis & Wagner, 2021; Theis et al., 2022; Wagner, 2022; Chen et al., 2022; Hamdi & Gündüz,
2023). Second, one can form a distribution over patches by selecting a patch at random from within
a randomly selected image (Agustsson et al., 2019). Finally, for a given image, one can consider

1Realism is also referred to as perceptual quality by some authors.
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the distribution over patches induced by selecting a location at random and extracting the resulting
patch (Wang et al., 2018; Gao et al., 2021). Theoretical studies have tended to focus on the first
approach while experimental studies have focused more on patches. We shall focus on the third
approach because it lends itself more naturally to unification with fidelity: both depend only on the
image under examination without reference to other images in the ensemble. That said, the proposed
Wasserstein distortion can be extended naturally to videos and other sequences of images and in this
way it generalizes the other notions of realism. Under an ergodicity assumption, as occurs with
textures, ensemble and per-image notions of realism coincide; see Corollary C.4 to follow and the
discussion in Portilla & Simoncelli (2000, p. 51).

Our simultaneous generalization of fidelity and realism is based in theories of the HVS, as noted
above; namely it resorts to computing summary statistics in parts of the visual field where ca-
pacity is limited (Balas et al., 2009; Rosenholtz, 2011; Rosenholtz et al., 2012). In particular,
Freeman & Simoncelli (2011) propose a model of the HVS focus-
ing on the first two areas of the ventral stream, V1 and V2. The V1
responses are modeled as the outputs of oriented filters spanning the
visual field with different orientations and spatial frequencies. The
second area computes higher order statistics from the V1 outputs
over various receptive fields. The receptive fields grow with eccen-
tricity, as depicted in Fig. 1. In the visual periphery, the receptive
fields are large and only the response statistics pooled over a large
area are acquired. In the fovea, i.e., the center of gaze, the receptive
field is assumed small enough that the statistics uniquely determine
the image itself. See Freeman & Simoncelli (2011) for a complete
description of the model. One virtue of this model is that it does not
require separate theories of foveal and peripheral vision: the distinc-
tion between the two is simply the result of different receptive field
sizes.

Figure 1: Receptive fields in
the ventral stream grow with
eccentricity.

This unification of foveal and peripheral vision likewise suggests a way of unifying fidelity and
realism objectives. For each location in an image, we compute the distribution of features locally
around that point using a weight function that decreases with increasing distance. The Wasserstein
distance between the distributions computed for a particular location in two images measures the
discrepancy between the images at that point. The overall distortion between the two images is then
the sum of these Wasserstein distances across all locations. We call this Wasserstein distortion. If
when constructing the distribution of features around a point, we use a strict notion of locality, i.e., a
weight function that falls off quickly with increasing distance, then this reduces to a fidelity measure,
akin to small receptive fields in Freeman and Simoncelli’s model. If we use a loose notion of locality,
i.e., a weight function that falls of slowly with distance, then this reduces a realism measure, akin to
large receptive fields. Between the two is an intermediate regime with elements of both.

We propose the use of a one-parameter family of weight functions, where the parameter (σ) governs
how strictly locality is defined. We find that to obtain good results requires careful selection of the
family, especially its spectral properties. We prove that under a properly chosen weight function,
Wasserstein distortion is a proper metric. In contrast, for the weighting function that is uniform over
a neighborhood of variable size, which is popular in the texture generation literature, we exhibit
adversarial examples of distinct pairs of images for which the distortion is zero.

The balance of the paper is organized as follows. Section 2 consists of a mathematical descrip-
tion of Wasserstein distortion. Section 3 discusses properties of the distortion measure, focusing
in particular on the role of spectral properties of the weighting function. Section 4 contains our
experimental results, specifically randomly generated images that are close to references under our
distortion measure. All appendices represent supplementary materials.

2 DEFINITION OF WASSERSTEIN DISTORTION

We turn to defining Wasserstein distortion between a reference image, represented by a sequence
x = {xn}∞n=−∞, and a reconstructed image, denoted by x̂ = {x̂n}∞n=−∞. For notational simplicity,
we shall consider 1-D sequences of infinite length, the 2-D case being a straightforward extension.

2



Under review as a conference paper at ICLR 2024

Let T denote the unit advance operation, i.e., if x′ = Tx then

x′n = xn+1. (1)

We denote the k-fold composition T ◦ T ◦ · · · ◦ T by T k. Let φ(x) : RZ 7→ Rd denote a vector of
local features of {xn}∞n=−∞ about n = 0. The simplest example is the coordinate map, φ(x) = x0.
More generally, φ(·) can take the form of a convolution with a kernel α(·)

φ(x) =

m∑
k=−m

α(k) · xk, (2)

or, since φ may be vector-valued, it can take the form of a convolution with several kernels of the
form in (2). Following Portilla & Simoncelli (2000) and Freeman & Simoncelli (2011), one could
choose φ(·) to be a steerable pyramid (Simoncelli & Freeman, 1995; see also Balas et al., 2009;
Rosenholtz, 2011; Rosenholtz et al., 2012). Following Ustyuzhaninov et al. (2017), the components
of φ could take the form of convolution with a kernel as in (2), with random weights, followed
by a nonlinear activation function. More generally, φ(·) can take the form of a trained multi-layer
convolutional neural network, as in Gatys et al. (2015).

Define the sequence z by
zn = φ(Tnx) (3)

and note that zn ∈ Rd for each n. We view z as a represention of the image x in feature space.

Let qσ(k), k ∈ Z, denote a family of probability mass functions (PMFs) over the integers, parame-
terized by 0 ≤ σ <∞, satisfying:

P.1 For any σ and k, qσ(k) = qσ(−k);
P.2 For any σ and k, k′ ∈ Z such that |k| ≤ |k′|, qσ(k) ≥ qσ(k′);

P.3 If σ = 0, qσ is the Kronecker delta function, i.e., q0(k) =
{
1 k = 0

0 k 6= 0
;

P.4 For all k, qσ(k) is continuous in σ at σ = 0;
P.5 There exists ε > 0 and K so that for all k such that |k| ≥ K, qσ(k) is nondecreasing in σ

over the range [0, ε]; and
P.6 For any k, limσ→∞ qσ(k) = 0.

We call qσ(·) the pooling PMF and σ the pooling width or pooling parameter. One PMF satisfying
P.1-P.6 is the two-sided geometric distribution,

qσ(k) =


e1/σ−1
e1/σ+1

· e−|k|/σ if σ > 0

1 if σ = 0 and k = 0

0 otherwise.
(4)

From the sequence x, we define a sequence of probability measures yσ = {yn,σ}∞n=−∞ via

yn,σ =

∞∑
k=−∞

qσ(k)δzn+k
, (5)

where z is related to x through (3) and δ· denotes the Dirac delta measure. Each measure yn,σ
in the sequence represents the statistics of the features pooled across a region centered at n with
effective width σ. Note that all measures in y share the same countable support set in Rd; they differ
only in the probability that they assign to the points in this set. See Fig. 2. Similarly, we define
x̂ = {x̂n}∞n=−∞, ẑ = {ẑn}∞n=−∞, and ŷσ = {ŷn,σ}∞n=−∞ for the reconstructed image.

Let d : Rd×Rd 7→ [0,∞) denote an arbitrary distortion measure over the feature space. One natural
choice is Euclidean distance

d(z, ẑ) = ||z − ẑ||2, (6)
although in general we do not even assume that d is a metric. We define the distortion between the
reference and reconstructed images at location n to be

Dn,σ =W p
p (yn,σ, ŷn,σ) , (7)

3



Under review as a conference paper at ICLR 2024

where Wp denotes the Wasserstein distance of order p (Villani, 2009, Def. 6.1)2:

Wp(ρ, ρ̂) = inf
Z∼ρ,Ẑ∼ρ̂

E
[
dp(Z, Ẑ)

]1/p
, (8)

where ρ and ρ̂ are probability measures on Rd. The distortion over a block {−N, . . . , N} (such as
a full image) is defined as the spatial average

D = D(x,x′) =
1

2N + 1

N∑
n=−N

Dn,σ. (9)

This assumes that the pooling parameter, σ, is the same for all n. In practice, it is desirable to vary
the size of the pooling regions across the image. One can easily extend the above definition to allow
σ to depend on n:

D = D(x,x′) =
1

2N + 1

N∑
n=−N

Dn,σ(n) =
1

2N + 1

N∑
n=−N

W p
p

(
yn,σ(n), ŷn,σ(n)

)
. (10)

We call the function σ(·) the σ-map.

Wasserstein distance is widely employed due to its favorable theoretical properties, and indeed our
theoretical results use the Wasserstein distance in (8) for some p and d. In practice one might adopt a
proxy for (8) that is easier to compute. Following the approach used with Fréchet Inception Distance
(FID) (Heusel et al., 2017; Lucic et al., 2018; Liu et al., 2020; Fan et al., 2022), one could replace
(8) with

||µ− µ̂||22 +Tr(C + Ĉ − 2(Ĉ1/2CĈ1/2)1/2). (11)

This is equivalent to W p
p if we take p = 2, d to be Euclidean distance, and assume that ρ (resp. ρ̂) is

Gaussian with mean µ (resp. µ̂) and covariance matrix C (resp. Ĉ) (Olkin & Pukelsheim, 1982). In
our experiments, we simplify this even further by assuming that the features are uncorrelated,

d∑
i=1

(µi − µ̂i)2 +
(√

Vi −
√
V̂i

)2

, (12)

where µi and Vi are the mean and variance of the ith component under ρ and similarly for ρ̂. This
is justified when the feature set is overcomplete because the correlation between two features is
likely to be captured by some third feature, as noted previously by Vacher et al. (2020). Other
possible proxies include sliced Wasserstein distance (Pitié et al., 2005; Bonneel et al., 2015; Tartavel
et al., 2016; Heitz et al., 2021), Sinkhorn distance (Cuturi, 2013), Maximum Mean Discrepancy
(MMD) (Smola et al., 2006; Li et al., 2017; 2019), or the distance between Gram matrices (Gatys
et al., 2015; Ustyuzhaninov et al., 2017).

The idea of measuring the discrepancy between images via the Wasserstein distance, or some proxy
thereof, between distributions in feature space is not new (Rubner et al., 2000; Pitié et al., 2005;
Tartavel et al., 2016; Vacher et al., 2020; Heitz et al., 2021; Elnekave & Weiss, 2022; Houdard
et al., 2023). As they are concerned with ergodic textures or image stylization, these applications
effectively assume a form of spatial homogeneity, which corresponds to the regime of large pooling
regions (σ →∞) in our formulation, and empirical distributions with equal weights over the pixels.
That is, the pooling PMF in (5) is taken to be uniform over a large interval centered at zero (e.g.,
Eq. (1) of Heitz et al. (2021)). Our goal here is to lift fidelity and realism into a common framework
by considering the full range of σ values, and we shall see next that for small or moderate values of
σ, the uniform PMF is problematic.

3 PROPERTIES OF WASSERSTEIN DISTORTION

One can verify that as long as the pooling PMF satisfies P.1-P.6, as σ → 0, Wasserstein distortion
reduces to the d-distortion between x and x̂, raised to the power p (Theorem C.1 in Appendix C).

2We refer to Wp as the Wasserstein distance even though it is not necessarily a metric if d is not a metric.
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Figure 2: A pictorial illustration of (5). In the right plot, the size of the disk indicates the probability
mass and the vertical coordinate of the center of the disk indicates the value.

Likewise, for ergodic processes X and X̂, as σ →∞, Wasserstein distortion reduces to the Wasser-
stein distance between the marginal distributions of X and X̂ (Theorem C.2 in Appendix C), again
raised to the power p. Thus Wasserstein distortion subsumes fidelity and realism constraints and
interpolates between them as desired.

In the σ →∞ regime, Wasserstein distortion will not be a true metric in that certain pairs of distinct
x and x′ will have zero distortion. Indeed, by Theorem C.2, this is true a.s. for a pair of realizations
drawn independently from the same ergodic process. Practically speaking, when σ is large, the
Wasserstein distortion between two independent realizations of the same texture will be essentially
zero (cf. Fig. 8 in Appendix B). When σ is small, however, we want Wasserstein distortion to behave
as a conventional distortion measure and as such it is desirable that it be a metric or a power thereof.
In particular, we desire that it satisfy positivity, i.e., that D(x,x′) ≥ 0 with equality if and only if
x = x′.

Whether Wasserstein distortion satisfies positivity at finite σ depends crucially on the choice of the
pooling PMF. Consider, for example, the popular uniform PMF:

qm(k) =

{
1

2m+1 if |k| ≤ m
0 otherwise.

(13)

In this case Wasserstein distortion does not satisfy positivity, even over the feature space, for any
m. Let D(z, z′) denote Wasserstein distortion defined over the feature space, that is, without the
composition with φ(·). Observe that D(z, z′) = 0 if z and z′ are shifted versions of a sequence that
is periodic with period 2m+ 1. If m = 1, for example, then the sequences

z = . . . , a, b, c, a, b, c, a, b, c, . . . (14)

z′ = . . . , b, c, a, b, c, a, b, c, a, . . . (15)

satisfy D(z, z′) = 0 because both yn,σ and y′n,σ are uniform distributions over {a, b, c} for all n.
See Fig. 3A for an example of distinct images for which the distortion is exactly zero assuming a
uniform PMF and the coordinate feature map. In this case D(x,x′) = 0 even if one uses the full
Wasserstein distance in (8). If one uses a proxy, the situation is more severe. For MMD, for instance,
the images in Fig. 3B have zero distortion at any 0 ≤ σ <∞.

The problem lies with the spectrum of the pooling PMF. This is easiest to see in the case of MMD, for
which the Wasserstein distortion reduces to the squared Euclidean distance between the convolution
of the feature vectors with the pooling PMF. Thus if the pooling PMF has a spectral null, feature
vectors that have all of their energy located at the null are indistinguishable from zero, which is
how the adversarial examples in Fig. 3B were constructed. Conversely, if the pooling PMF has no
spectral nulls, then Wasserstein distortion is the 1/p-th power of a metric, as we show next. For this
result, we assume that x and x′ (resp. z and z′) are finite-length sequences, and the indexing in (5)
is wraparound.

Theorem 3.1. For any 0 ≤ σ <∞, if d is a metric and qσ(·) has no spectral nulls, thenD(z, z′)1/p

is a metric. If, in addition, φ(·) is invertible then D(x,x′)1/p is also a metric.
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Figure 3: Examples showing that Wasserstein distortion does not satisfy positivity under a uniform
PMF, where the red square in each image indicates the size of the pooling regions. The distortion
between the two images on the left (A) is zero even if one uses the full Wasserstein distance in (5).
If one uses MMD (Smola et al., 2006) as a proxy, then Wasserstein distortion with a uniform PMF
is blind to certain blocking artifacts in that the two images on the right (B) have distortion zero.
Compare Theorem 3.1. In both examples, φ(·) is taken to be the coordinate map.

Proof. Since d is a metric, we immediately have that D(·, ·) is symmetric, D(z, z′) ≥ 0, D(z, z) =
0 and similarly forD(x,x′). Suppose z 6= z′. Then since qσ(·) has no spectral nulls, qσ ∗z 6= qσ ∗z′
(Oppenheim & Schafer, 1989, Eq. (8.120)), where ∗ denotes circular convolution. But if un (resp.
u′n) denotes the mean of the measure yn (resp. y′n), then u = qσ ∗ z (resp. u′ = qσ ∗ z′). Thus
y 6= y′ since the sequence of means differ. It follows that W p

p (y`, y
′
`) 6= 0 for some ` and hence

D(z, z′) > 0 since Wp is a metric (Villani, 2009, p. 94). If φ(·) is invertible, then x 6= x′ implies
z 6= z′, which implies D(x,x′) > 0. That D(x,x′) and D(z, z′) satisfy the triangle inequality
follows from the fact that Wp is a metric and Minkowski’s inequality.

When σ is large, the PMF will be nearly flat over a wide range, so its spectrum will necessarily decay
quickly. For small σ, the PMF is concentrated in time, so the spectrum can be made nearly flat in
frequency if one chooses. Theoretically speaking, we need only to avoid PMFs with spectral nulls,
such as the uniform distribution, to ensure positivity. Practically speaking, we desire pooling PMFs
with a good condition number, meaning that the ratio of the maximum of the power spectrum to its
minimum is small. In this vein, we note that the two-sided geometric PMF in (4) is well-conditioned,
whereas the raised-cosine-type PMF used in (Freeman & Simoncelli, 2011, Eq. (9) with t = 1/2)
has a condition number that is larger by almost four orders of magnitude for pooling regions around
size 20. Note that papers in the literature that rely on uniform PMFs are focused on realism, i.e., the
large σ regime, for which the presence of spectral nulls is less of a concern.

4 EXPERIMENTS

We validate Wasserstein distortion using the method espoused by Ding et al. (2021), namely by
taking an image of random pixels and iteratively modifying it to reduce its Wasserstein distortion
to given a reference image. Following Gatys et al. (2015), we use as our feature map selected
activations within the VGG-19 network, with some modifications. See Appendix A for a description
of VGG-19 and our modifications; here we note only that we augment the VGG-19 features to
include the raw pixel values. We found that including this “0th” layer of the network provides for
an improved reproduction of the DC level of the image. We use the scalar Gaussianized Wasserstein
distance in (12) as a computational proxy for (8). For the pooling PMF, we take the horizontal
and vertical offsets to be i.i.d. according to the two-sided geometric distribution in (4), conditioned
on landing within the boundaries of the image. We minimize the Wasserstein distortion between
the reference and reconstructed images using the L-BFGS algorithm (Zhu et al., 1997) with 4, 000
iterations and an early stopping criterion.

If the reference image is a texture and we take σ to be large across the entire image, then we recover
the standard texture generation setup (Gatys et al., 2015; Ustyuzhaninov et al., 2017; Heitz et al.,
2021) The results are commensurate with dedicated texture synthesis schemes, which is unsurpris-
ing since with this σ-map, our setup is close to that of Heitz et al. (2021). See Appendix B for
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sample images and further discussion. We focus here on experiments that demonstrate the utility of
Wasserstein distortion’s ability to interpolate between fidelity and realism.

4.1 EXPERIMENT 1: TRANSITING FROM FIDELITY TO REALISM

We consider generating a random image that is close to a challenging texture under Wasserstein
distortion, sweeping σ from zero to infinity. Specifically, σ is constant across the image, but varies
from run to run (Fig. 4). When σ is close to zero, we recover the original image as expected. When
σ is large, we obtain an independent realization of the texture, again as expected. In between, we
obtain images that balance both objectives. In particular, around σ = 40, individual pebbles can
be associated between the original and the reconstruction, although they differ in their size, shape,
orientation and markings.

The uniform PMF is often used in the literature, as noted earlier. One can perform the same ex-
periment but using a uniform PMF over intervals of various widths. We find that the resulting
progression from pure fidelity to pure realism is more abrupt, with a few images exhibiting interme-
diate behavior. This is especially true at lower resolution, for which the intermediate regime is quite
narrow (Fig. 10 and Fig. 11 in Appendix B.2).

Figure 4: The first image is the reference; all others are reproductions under different σ’s. We see
as σ increases, the generated image transits from a pixel-accurate reproduction to an independent
realization of the same texture.

4.2 EXPERIMENT 2: PINNED TEXTURE SYNTHESIS

We turn to an experiment in which σ varies spatially over the image. Specifically, we consider a
variation of the standard texture synthesis setup in which we set σ = 0 for pixels near the center;
other pixels are assigned a σ proportional to their distance to the nearest pixel with σ = 0, with the
proportionality constant chosen so that the outermost pixels have a σ that is comparable to the width
of the image. The choice of having σ grow linearly with distance to region of interest is supported
by studies of the HVS, as described more fully in the next section. Under this σ-map, Wasserstein
distortion behaves like a fidelity measure in the center of the image and a realism measure along the
edges, with an interpolation of the two in between. The results are shown in Fig. 5 (see Fig. 8 in the
supplementary material for additional examples). The σ = 0 points have the effect of pinning the
reconstruction to the original in the center, with a gradual transition to an independent realization at
the edge.

4.3 EXPERIMENT 3: REPRODUCTION OF NATURAL IMAGES WITH SALIENCY MAPS

Lastly, we consider natural images. We use the SALICON dataset (Jiang et al., 2015) which provides
a saliency map for each image that we use to produce a σ-map. Specifically, we set a saliency
threshold above which points are declared to be high salience. For such points we set σ = 0.
For all other points σ is proportional to the distance to the nearest high-salience point, with the
proportionality constant determined by the constraint that the farthest points should have a σ value
on par with the width of the image. The choice of having σ grow linearly with distance from the
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Figure 5: Examples from Experiment 2; auxiliary lines indicate the square of σ = 0 points at the
center. The reconstructions smoothly transition from pixel-level fidelity at the center to realism at
the edges.

high saliency region is supported by studies of the HVS. There is both physiological (Dumoulin &
Wandell, 2008) and operational (Freeman & Simoncelli, 2011) evidence that the size of the receptive
fields in the HVS grows linearly with eccentricity. If one seeks to produce images that are difficult for
a human observer to easily distinguish, it is natural to match the pooling regions to the corresponding
receptive fields when the gaze is focused on the high saliency region.

The results are shown in Fig. 6 (see also Fig. 9 in the supplementary materials). For images for which
the non-salient regions are primarily textures, the reproductions are plausible replacements for the
originals. In some other cases, the images appear to be plausible replacements if one focuses on high
saliency regions, but not if one scrutinizes the entire image. This suggests that Wasserstein distortion
can capture the discrepancy observed by a human viewer focused on high-saliency regions.

It should be emphasized that the process of producing the reconstructions in Figs. 6 and 9 requires
no pre-processing or manual labeling. In particular, it is not necessary to segment the image. Given
a binarized saliency map, the σ-map can be constructed automatically using the above procedure, at
which point the Wasserstein distortion is well defined and training can begin.

5 DISCUSSION

Our present work lies on the intersection between models of the early human visual system, models
of visual texture, and measures of both image realism and distortion.

We exploit a particularity of the HVS, which is its unique (among the various senses) ability to
foveate, and hence extract information preferentially from spatial locations selected by gaze. In this
regard, our work most directly leans on that of Freeman & Simoncelli (2011), but also has clear
connections to Balas et al. (2009); Rosenholtz (2011); Rosenholtz et al. (2012), who consider a
summary statistics model of the visual periphery. However, as these studies mainly aim to explain
the HVS, their focus is not to provide a unified, optimizable metric in the mathematical sense,
as provided in the present work. Wasserstein distortion can quantify how far an image is from a
metamer, whereas Freeman & Simoncelli (2011) cannot.

Texture generation as an image processing tool is closely tied to the notion of spatial ergodicity, and
our work finds itself in a long line of probabilistic models built on this assumption (e.g., Chellappa &
Kashyap, 1985; Heeger & Bergen, 1995; Efros & Leung, 1999; Portilla & Simoncelli, 2000; Kwatra
et al., 2005; Gatys et al., 2015). To our knowledge, the notion of capturing spatial correlations
of pixels not directly, but by considering simple, mathematically tractable statistics in potentially
complex feature spaces, traces back to Zhu et al. (1998). Like Freeman & Simoncelli (2011), our
work combines this notion with the spatial adaptivity of the HVS, but is mathematically much more
concise. Our use of a Wasserstein divergence in this particular context is predated by Vacher et al.
(2020) and others, whose work is however limited to ergodic textures.
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Figure 6: For each row, the first image is the reference image and the second is the reproduction;
the third is the difference between the two; and the fourth is the saliency map from SALICON
before binarization. In the high saliency regions, the reconstruction exhibits pixel-level fidelity.
Elsewhere, it exhibits realism or an interpolation of the two. Note that the goal of this experiment
is not to reproduce images that withstand visual scrutiny in all regions, but to demonstrate how
Wasserstein distortion becomes increasingly permissive to error towards the visual periphery, and
that the errors that are permitted can be quite difficult to spot when viewing the salient regions at an
appropriate distance. Compare with Freeman & Simoncelli (2011, Fig. 2); additional examples in
Fig. 9 (supplement).

As a measure of realism, Wasserstein distortion is related to the Fréchet inception distance (Heusel
et al., 2017), which, as our experimental results do, uses a Gaussianized Wasserstein divergence in
a feature space induced by pretrained neural networks. However, the FID is a measure of realism
across the ensemble of images, rather than across space. In our view, the concept of realism as a
divergence across ensembles of full-resolution images is at odds with the everyday observation that
humans can distinguish realistic from unrealistic images by looking at a single example. Wasserstein
distortion offers one possible explanation for how humans might make these one-shot judgements,
namely by measuring realism across spatial regions. The HVS studies mentioned above support this
notion. Spatial realism may play a crucial role in modeling human perception, in particular in the
visual periphery; and hence, for all practical applications, in regions of low saliency.

In terms of future work, the application of Wasserstein distortion to compression is natural and as
yet unexplored. Practical image compressors optimized for Wasserstein distortion could encode
statistics over pooling regions that vary in size depending on the distance from the salient parts
of the image. Note that this approach would be distinct from only encoding high-saliency regions
and using a generative model optimized for ensemble realism to “fill in” the remainder. The latter
approach would rely on knowledge of the conditional distribution given the encoding rather than the
local image statistics. As such, it would be allowed to deviate more significantly from the source
image, so long as low-saliency regions that it creates are contextually plausible.
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REPRODUCIBILITY STATEMENT

For the theoretical results, all assumptions are stated in or immediately before the theorems, and
self-contained proofs are provided in the same section as the theorems.

For the experiments, the source code for Experiment 2 in Section 4.2, along with some reference-
reproduction sample pairs, are provided as supplementary material. The code is self-contained, and
tested on Ubuntu 22.04 LTS with Python 3.8.10 and Python 3.10.12 with TensorFlow 2.11.0 and
CUDA GPUs. To run the code, execute wass dist texture synthesis.py.
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F. Pitié, A.C. Kokaram, and R. Dahyot. n-dimensional probability density function transfer and
its application to color transfer. In Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 2, pp. 1434–1439, 2005. doi: 10.1109/ICCV.2005.166.

Javier Portilla and Eero P. Simoncelli. A parametric texture model based on joint statistics of
complex wavelet coefficients. International Journal of Computer Vision, 40:49–70, 2000. doi:
10.1023/A:1026553619983.

Oren Rippel and Lubomir Bourdev. Real-time adaptive image compression. In International
Conference on Machine Learning, pp. 2922–2930. PMLR, 06–11 Aug 2017. URL https:
//proceedings.mlr.press/v70/rippel17a.html.

Ruth Rosenholtz. What your visual system sees where you are not looking. In Human Vision and
Electronic Imaging XVI, volume 7865, pp. 343–356. SPIE, 2011. doi: 10.1117/12.876659.

Ruth Rosenholtz, Jie Huang, Alvin Raj, Benjamin J Balas, and Livia Ilie. A summary statistic
representation in peripheral vision explains visual search. Journal of Vision, 12(4):14–14, 2012.
doi: 10.1167/12.4.14.

Yossi Rubner, Carlo Tomasi, and Leonidis J. Guibas. The earth mover’s distance as a metric for
image retrieval. International Journal of Computer Vision, 40(2):99–121, 2000. doi: 10.1023/A:
1026543900054.
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A EXPERIMENTAL SETUP

Our work utilizes the VGG-19 network, although we emphasize that the framework is agnostic to
the choice of features. Details of the VGG-19 network can be found in Simonyan & Zisserman
(2015); we use the activation of selected layers as our features, with the following changes to the
network structure:

1. All pooling layers in the original network in Simonyan & Zisserman (2015) use MaxPool;
as suggested by Gatys et al. (2015), in our experiments we use AvePool;

2. There are 3 fully connected layers and a soft-max layer at the end in the original structure
in Simonyan & Zisserman (2015), which we do not use;

3. We use the weights pre-trained on ImageNet (Deng et al., 2009), that are normalized such
that over the validation set of ImageNet, the average activation of each layer is 1, as sug-
gested in Gatys et al. (2015).

Fig. 7 provides a illustration.

The Wasserstein distortion is defined at every location in the image. This is entirely analogous to the
way that the squared error between images is defined at every location. In our case, computational
limitations prevent us from evaluating the distortion at every location in images of a reasonable size
unless σ is small. In parts of the image in which σ is large, we found that satisfactory results could
be obtained by evaluating the distortion at a subset of points, with the subset randomly selected
between iterations. When σ = 0, Wasserstein distortion reduces to MSE, and in this case, we
skip the computation of the variance in (12), since it must be zero. This affords some reduction in
computation, which allows us to evaluate the distortion at a larger set of points. The locations at
which distortion is computed are called pixels of interest.

For all our experiments, the Wasserstein distortion is calculated as follows: we pass the pre-
processed source image x and reconstruction image x̂ through the VGG-19 network, and denote
the response activation of each layer ` by z` and ẑ`, respectively. We denote the source and recon-
struction image themselves as the 0th layer. In pre-processing, we do not remove the DC component
of the image, in contrast to the training process of VGG-19 network. For each experiment, we
specify

1. a set of layers of interest;

2. for each spatial dimension, a method to compute the σ-map;

3. a method to determine the pixel of interest;

4. a multiplier M` and Mσ for each layer ` and each σ, respectively.

The activation response of all layers of interest (with activation being the identity map for 0-th layer
if it is one layer of interest) can be seen as the feature φ(x) in our construction. For each layer of
interest `, we obtain the sequences of probability measures y` and ŷ` from z` and ẑ`; for each pixel
of interest (i, j)` in layer `, we calculate the Wasserstein distortion D`

i,j,σ(y
`
i,j,σ, ŷ

`
i,j,σ)×Mσ ×M`

with (12), where the σ is determined by the σ-map. The loss is

D =
∑
`

∑
(i,j)`

D`
i,j,σ(y

`
i,j,σ, ŷ

`
i,j,σ)×Mσ ×M`. (16)

For the first experiment, we use all layers up to (but excluding) the 4th pooling layer (pool4 in
Fig. 7), and the weight is the inverse of the normalization factor; effectively raw ImageNet weights
are applied.

For the second experiment, we use all layers up to (but excluding) the 4th pooling layer (pool4
in Fig. 7). For each layer, we evaluate the distortion at all high fidelity (σ = 0) pixels and 25
randomly chosen pixels that are not high fidelity pixels. We randomly choose 20 sets of 25 pixels,
and randomly use one of the sets in each distortion calculation. For the 0th layer, M`=0 = 100;
for the first 1/3 layers, M` = 10; for the middle 1/3 layers, M` = 5; and for the last 1/3 layers,
M` = 1. Mσ=0 = 1 and Mσ 6=0 = 200.
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The setup for the third experiment differs from the second only in the choice of σ map. From the
given saliency map, we obtain a “saliency value” for each pixel, normalized to [0, 1]. All pixels
with saliency value higher than the threshold of 0.1 are declared high saliency. The σ values for the
remaining locations are determined using the procedure described in the main text.

Figure 7: VGG-19 network structure.

B FURTHER EXPERIMENTAL RESULTS

Fig. 8 exhibits more samples from Experiments 1 and 2, with σ set to a very large value for Exper-
iment 1. Fig. 9 exhibits more samples from Experiment 3. We note that runtime for Experiment 3
with a 480×480 reference image is 3 hours on average on an NVidia GTX4090 GPU.

B.1 INDEPENDENT TEXTURE SYNTHESIS

We consider the canonical problem of generating an independent realization of a given texture (Por-
tilla & Simoncelli, 2000; Gatys et al., 2015; Ustyuzhaninov et al., 2017; Heitz et al., 2021). We
evaluate the Wasserstein distortion at a single point in the center of the image with σ = 4, 000.
Since the images are 256x256 or 512x512, the Wasserstein distortion effectively acts as a realism
objective, per Theorem C.2.

The results are shown in the first two columns of Fig. 8. The results are commensurate with dedicated
texture synthesis schemes (Gatys et al., 2015; Ustyuzhaninov et al., 2017; Heitz et al., 2021), which
is unsurprising since with this σ-map, our setup is close to that of Heitz et al. (2021) as noted in
the main text. The primary difference is that we use the 1-D Gaussianized Wasserstein distance in
(12) in place of the sliced Wasserstein distance, which affords some computational savings. If there
are d features within a layer and N pixels, the complexity of the scalar Gaussianized Wasserstein
distance is dN compared with d2N+dN logN for sliced Wasserstein distance (assuming d random
projections, as is done in Heitz et al. (2021)). In practice, we find that this translates to a speedup
of about 2x, with comparable quality on the textures of interest. We conclude that, at least with
VGG-19 and the textures considered here, it is unnecessary to compute the full 1-D Wasserstein
distance along random directions; comparing the first two moments along the coordinate axes is
sufficient. We note again, however, that the framework is agnostic to the choice of metric and sliced
Wasserstein distance can be accommodated equally well.

B.2 σ-PROGRESSION

We consider a variation of the experiment in Section 4.1: we downsample the pebble texture image,
and generate random images under Wasserstein distortion with various σ’s. As a comparison, we
repeat the experiment with the pooling PMF replaced by uniform weighting over patches of varying
widths. The sequence of reproductions using a two-sided geometric PMF is in Fig. 10, and the
sequence of reproductions under uniform weighting is in Fig. 11. We find that reproductions under
the nonuniform PMF achieves a smooth transit from the reference to an independent realization, but
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Figure 8: An extension of Fig. 5. For each row, the first two images are the reference-reproduction
pair under Experiment 1; the results are commensurate with dedicated texture generators. The third
and fourth images are the reference-reproduction pair under Experiment 2, with auxiliary lines
drawn indicates the σ = 0 points; the fifth image is the difference of reference and reproduction
textures under Experiment 2.

the reproductions under uniform weighting abruptly changes from the former to the latter when the
width changes from 130 to 132 pixels.

B.3 WASSERSTEIN DISTORTION VALUES FOR TEXTURES

Unless σ is small, we do not expect the Wasserstein distortion between images to be low if and
only if the images are identical. Rather, it should be small if and only if the perceptual differences
between the two are minor. To validate this hypothesis, we calculate the Wasserstein distortion
between a variety of textures. Results are shown in Fig. 12. All pixels are assigned σ = 4, 000,
with 9 pixels of interest that forms an even grid. Using (12) as the distortion measure, so long as
the σ maps and sets of pixels of interest are compatible, we can compute the Wasserstein distortion
between two images even they have different resolutions. We see that the distortion is small for
images of the same texture and large for images that represent different textures.

B.4 SEPARATE FIDELITY AND REALISM CONSTRAINTS ARE INSUFFICIENT

We illustrate that a linear combination of MSE distortion and Gram matrix distortion as defined
in Gatys et al. (2015); Ustyuzhaninov et al. (2017), cannot achieve the reconstruction obtained
through Wasserstein distortion. We calculate the MSE distortion over the high saliency area de-
fined in Section 4.3, the Gram matrix distortion over the whole image as defined in Gatys et al.
(2015); Ustyuzhaninov et al. (2017), and linearly combine the two with a multiplier on the Gram
matrix distortion. Fig. 13 exhibits the results.
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Figure 9: An extension of Fig. 6, consisting of more examples from Experiment 3. The misplaced
foul lines in the third example are likely a manifestation of VGG-19’s recognized difficulty with
reproducing long linear features in textures (Liu et al., 2016; Snelgrove, 2017; Sendik & Cohen-
Or, 2017; Zhou et al., 2018; Gonthier et al., 2022). This is evidenced through the fourth example,
where the reference image has been downsampled so that VGG-19 better captures the long-range
dependence.

B.5 COMPARISON TO OTHER METRICS

We compare Wasserstein distortion to sliced Wasserstein loss proposed in Heitz et al. (2021). We
applied both metrics to the independent texture synthesis task depicted in Appendix B.1. The results
are shown in Fig. 14.
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Figure 10: σ-progression for downsampled pebble image. The first image is the reference. The
reproduction begins to shift away from the reference at σ = 32, and gradually converges to an
independent realization an σ grows.

Figure 11: Similar to the previous figure but with a uniform pooling PMF with various widths.
The reproduction moves from a high-fidelity recovery of the reference to an independent realization
rather abruptly as the width of the pooling region moves from 130 to 132 pixels.

C FIDELITY AND REALISM AS EXTREME CASES

Let x and x̂ be two sequences and let z and ẑ denote the associated feature sequences, i.e., zn =
φ(Tnx) and ẑn = φ(Tnx̂). If one is only concerned with fidelity to the original image, one might
use an objective such as

1

2N + 1

N∑
n=−N

dp(zn, ẑn), (17)

perhaps with φ being the identity map; conventional mean squared error can be expressed in this way.
This objective can be trivially recovered from Wasserstein distortion by taking σ = 0, invoking P.3,
and applying the formula for the Wasserstein distance between point masses:

Wp(δz, δẑ) = d(z, ẑ). (18)

Given that we are interested in smoothly interpolating between fidelity and realism, we would like
Wasserstein distortion to reduce to (17) in the limit as σ → 0. We next identify conditions under
which this continuity result holds. Note that this result does not require d to be a metric.
Theorem C.1. Suppose q satisfies P.3 – P.5 and z, ẑ, and q together satisfy

∞∑
k=−∞

qσ(k)d
p(zk, ẑk) <∞ (19)

for all σ > 0. Then we have
lim
σ→0

D0,σ = dp(z0, ẑ0). (20)

Proof. FixK and ε as in P.5. Consider the coupling between y0,σ and ŷ0,σ suggested by the ordering
of the sequences:

D0,σ = inf
Z∼yn,σ,Ẑ∼ŷn,σ

E[dp(Z, Ẑ)] ≤
∞∑

k=−∞

qσ(k)d
p(zk, ẑk). (21)
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Figure 12: Wasserstein distortion between pairs of textures, normalized by the number of features
and the number of pixels of interest. Each number refers to one reference texture; numberR refers
to the corresponding pinned reproduction texture (see Fig. 5 and Fig. 8), and numberI refers to the
corresponding independent reproduction texture (see Fig. 8). We see that the Wasserstein distortion
between realizations of the same texture are small compared with the Wasserstein distortion between
different textures.

Figure 13: The first two images are the reference image and its saliency map; the rest are reproduc-
tions, with different multipliers applied to the Gram matrix distortion in the linear combination.

We have
lim sup
σ→0

D0,σ ≤ lim
σ→0

qσ(0)d
p(z0, ẑ0) + lim

σ→0

∑
k:0<|k|≤K

qσ(k)d
p(zk, ẑk) (22)

+ lim
σ→0

∑
k:|k|>K

qσ(k)d
p(zk, ẑk)

= dp(z0, ẑ0), (23)
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Figure 14: Texture synthesis task as described in Appendix B.1, under Wasserstein distortion and
sliced Wasserstein distance. We are overall 2x faster (see discussion on computation complexity
in Appendix B.1), with comparable reproduction images; also, using sliced Wasserstein distance
would require initiating from the average color of the reference, while there is no restriction for
Wasserstein distortion. We conclude that using Wasserstein distortion would be more efficient, with
comparable synthesis quality and significantly reduced computation time.

where (23) follows from P.3 and P.4 (for the first two limits) and from P.3-P.5 and dominated con-
vergence (for the third limit). For the reverse direction, fix σ > 0 and let qσ(·, ·) denote any PMF
over Z2, both of whose marginals are qσ(·). Then we have

∞∑
k1=−∞

∞∑
k2=−∞

qσ(k1, k2)d
p(zk1 , ẑk2) ≥ qσ(0, 0)dp(z0, ẑ0) (24)

≥ (2qσ(0)− 1)dp(z0, ẑ0), (25)

from which the result follows by P.3 and P.4.

Likewise, we show that Wasserstein distortion continuously reduces to pure realism in the large-σ
limit. We use w→ to denote weak convergence.

Theorem C.2. Suppose q satisfies P.1, P.2, and P.6 and d is a metric. Let FN (resp. F̂N ) denote the
empirical CDF of {z−N , . . . , zN} (resp. {ẑ−N , . . . , ẑN}) and suppose we have

FN
w→ F and F̂N

w→ F̂ (26)∫
dp(z, 0)dFN →

∫
dp(z, 0)dF <∞ and

∫
dp(z, 0)dF̂N →

∫
dp(z, 0)dF̂ <∞ (27)

and, for all σ,

∞∑
k=−∞

qσ(k)d
p(zk, 0) <∞ and

∞∑
k=−∞

qσ(k)d
p(ẑk, 0) <∞. (28)

Then we have
lim
σ→∞

D0,σ =W p
p (F, F̂ ). (29)

To prove Theorem C.2, we need a lemma first.

Lemma C.3 (Equivalence of Cesàro Sums). Suppose q satisfies P.1, P.2, and P.6. For any two-sided
R-valued sequence a, if

lim
m→∞

1

2m+ 1

m∑
k=−m

ak = α ∈ R, (30)
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and for all σ > 0,
∞∑

k=−∞

qσ(k)|ak| <∞, (31)

then we likewise have

lim
σ→∞

∞∑
k=−∞

qσ(k)ak = α. (32)

Proof. We can write
∞∑

`=−∞

qσ(`)a` = lim
k→∞

k−1∑
`=−(k−1)

(qσ(`)− qσ(k)) a` (33)

= lim
k→∞

k−1∑
`=−(k−1)

k−1∑
m=|`|

(qσ(m)− qσ(m+ 1)) a` (34)

= lim
k→∞

k−1∑
m=0

m∑
`=−m

(qσ(m)− qσ(m+ 1)) a` (35)

=

∞∑
m=0

m∑
`=−m

(qσ(m)− qσ(m+ 1)) a`, (36)

where (33) holds by (31), (P.1), (P.2), and dominated convergence. For m ≥ 0, define the sequences

bm =
1

2m+ 1

m∑
`=−m

a` (37)

and

rσ(m) = (qσ(m)− qσ(m+ 1)) (2m+ 1). (38)

By (P.2), rσ(m) ≥ 0. By (36),
∞∑

`=−∞

qσ(`)a` =

∞∑
m=0

rσ(m)bm. (39)

Now the choice a` = 1 satisfies (31) and in this case the previous equation reads
∑∞
m=0 rσ(m) = 1.

Fix ε > 0 and M such that for all m > M , |bm − α| < ε. We can write∣∣∣∣∣
∞∑

`=−∞

qσ(`)a` − α

∣∣∣∣∣ ≤
∣∣∣∣∣
M∑
m=0

rσ(m)(bm − α)

∣∣∣∣∣+
∣∣∣∣∣
∞∑

m=M+1

rσ(m)(bm − α)

∣∣∣∣∣ (40)

≤

(
M∑
m=0

rσ(m)

)(
max

m=0,1,...,M
bm + |α|

)
+ ε. (41)

Taking σ →∞ on both sides, the conclusion follows by P.6.

We now prove Theorem C.2.

Proof of Theorem C.2. With a slight abuse of notation we let Fσ denote the CDF of the distribution
∞∑

k=−∞

qσ(k)δzk (42)

and define F̂σ analogously. Then D0,σ = W p
p (Fσ, F̂σ). By the triangle inequality for Wasserstein

distance (Villani, 2009, p. 94) (which requires d to be a metric),

Wp(Fσ, F̂σ) ≤Wp(Fσ, F ) +Wp(F, F̂ ) +Wp(F̂ , F̂σ). (43)
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By Lemma C.3 and (26), Fσ
w→ F . By Lemma C.3, (27), and (28), we have

lim
σ→∞

∫
dp(z, 0)dFσ(z) =

∫
dp(z, 0)dF (z). (44)

These two conditions imply that Wp(Fσ, F ) → 0 as σ → ∞ (Villani, 2009, Thm. 6.9). Similarly
we have Wp(F̂ , F̂σ)→ 0, yielding

lim sup
σ→∞

D0,σ ≤W p
p (F, F̂ ). (45)

Applying the triangle inequality in the reverse direction gives

Wp(F, F̂ ) ≤Wp(F, Fσ) +Wp(Fσ, F̂σ) +Wp(F̂σ, F̂ ). (46)

Taking limits yields
lim inf
σ→∞

D0,σ ≥W p
p (F, F̂ ) (47)

and the theorem.

It follows from the previous result that when the source ensemble is ergodic, as occurs with textures,
then in the large-σ limit Wasserstein distortion reduces to the ensemble form of realism. That is, it
equals the Wasserstein distance (to the pth power) between the true distributions of the images and
reconstructions, denoted by F and F̂ in the following corollary.

Corollary C.4. Suppose q satisfies P.1, P.2, and P.6 and d is a metric. Suppose X and X̂ are
stationary ergodic processes and let F (resp. F̂ ) denote the CDF of Z0 (resp. Ẑ0). If

E [dp(Z0, 0)] <∞ and E
[
dp(Ẑ0, 0)

]
<∞, (48)

then we have
lim
σ→∞

D0,σ =W p
p (F, F̂ ) a.s. (49)

Proof. Among the hypotheses of Theorem C.2, (26) and (27) hold a.s. by the ergodic theorem
(e.g., Durrett (1996, Thm 6.2.1)) and (48), and (28) holds a.s. because

E

[ ∞∑
k=−∞

qσ(k)d
p(Zk, 0)

]
=

∞∑
k=−∞

qσ(k)E [dp(Zk, 0)] = E [dp(Z0, 0)] <∞, (50)

by monotone convergence and (48), and similarly for Ẑ.
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