
Under review as submission to TMLR

Scaling Laws of Distributed Random Forests

Anonymous authors
Paper under double-blind review

Abstract

Random forests are a widely used machine learning technique valued for their robust predic-
tive performance and conceptual simplicity. They are applied in many critical applications
and often combined with federated learning to collaboratively build machine learning mod-
els across multiple distributed sites. The independent decision trees make random forests
inherently parallelizable and well-suited for distributed and federated settings. Despite this
perfect fit, there is a lack of comprehensive scalability studies, and many existing meth-
ods show limited parallel efficiency or are tested only at smaller scales. To address this
gap, we present a comprehensive analysis of the scaling capabilities of distributed random
forests on up to 64 compute nodes. Using a tree-parallel approach, we demonstrate a strong
scaling speedup of up to 31.98 and a weak scaling efficiency of over 0.96 without affecting
predictive performance of the global model. Comparing the performance trade-offs of dis-
tributed and local inference strategies enables us to simulate various real-life scenarios in
terms of distributed computing resources, data availability, and privacy considerations. We
further explore how increasing model and data size improves prediction accuracy, scaling up
to 51 200 trees and 7.5 million training samples. We find that while distributing the data
across nodes leads to super-scalar speedup, it negates the predictive benefit of increased
data. Finally, we study the impact of distributed and non-IID data and find that while
global imbalance reduces performance, local distribution differences can help mitigate this
effect.

1 Introduction

Interpretability and transparency are crucial for machine-learning applications in fields like healthcare and
critical infrastructure, where decisions must be both data-driven and explainable. In such high-stakes do-
mains, black-box models like deep neural networks often face skepticism due to their lack of transparency.
As a result, practitioners often prefer to rely on more interpretable alternatives like decision trees. Random
forests (Breiman, 2001) are ensembles of independent decision trees. By aggregating the predictions of indi-
vidual trees, they improve generalization, enhance robustness to noise, and mitigate overfitting. Combining
conceptual simplicity with competitive performance, especially on high-dimensional tabular data, they have
been employed in various fields like healthcare (Khalilia et al., 2011; Nguyen et al., 2013; Abdoh et al., 2018;
Kaur et al., 2019; Alam et al., 2019; Wang et al., 2020), environmental sciences (Zhang & Yuan, 2015; Benali
et al., 2019; Tyralis et al., 2019; Asgari et al., 2022; He et al., 2022), remote sensing (Belgiu & Drăguţ, 2016),
material sciences (Li et al., 2022), intrusion detection (Masarat et al., 2016; Resende & Drummond, 2018;
Liu et al., 2021), and finance (Madaan et al., 2021; Uddin et al., 2022).

In light of the rising awareness around data security and privacy, federated learning (McMahan et al., 2017;
Yang et al., 2019) has emerged as a promising approach for applications involving personal data distributed
across multiple sites. In federated learning, multiple independent clients collaboratively train a machine
learning model with limited data sharing between participants. Critical applications, such as hospitals and
financial institutions, often combine federated learning with random forests (Liu et al., 2020; Hauschild et al.,
2022). As ensembles of independent trees, random forests are inherently well-suited for parallelization and
distribution. This enables the training of larger forests on more extensive datasets. However, many existing
implementations suffer from suboptimal parallel efficiency and often lack a thorough investigation of scaling

1

Under review as submission to TMLR

capabilities. Furthermore, the data used in federated learning is typically assumed to be independent and
identically distributed (IID) over all participating clients. In practice, this assumption rarely holds, as the
local data distributions can vary significantly across the clients. Understanding how non-IID data affects
the performance of distributed machine learning models is crucial for enhancing their practical application
in federated scenarios.

This paper aims to address these gaps with a comprehensive study of the scalability and data heterogeneity in
distributed random forests. To this end, we utilize a hybrid parallel implementation of distributed random
forests, combining the message-passing interface MPI with shared-memory parallelism to enable efficient
communication and scalability in distributed-memory environments. In a comprehensive scalability study,
we thoroughly investigate the scaling capabilities of distributed random forests with respect to the number of
samples, trees, and machines, as well as their impact on prediction accuracy. We demonstrate the strong and
weak scalability of this approach, utilizing model parallelism by distributing subforests and optionally data
parallelism by distributing the training data. We explore when distributing trees and samples is beneficial
and how it impacts the final model’s prediction accuracy. By comparing different inference flavors in terms of
efficiency and memory consumption, we simulate various real-life scenarios in terms of distributed compute
power, data availability, and privacy restrictions. Finally, we study the impact of data imbalance on federated
learning scenarios by treating each machine as an individual client with its local data. To explore the impact
of non-IID data on the predictive performance of federated random forests, we evaluate the effect of class
imbalance in both global and local datasets. This provides deeper insights into how random forests behave
in federated learning settings and their robustness to heterogeneous data distributions.

Our key contributions are:

• An experimental study of the scaling laws of random forests with increasing model and data size.
• An HPC-adapted, hybrid parallel implementation of distributed random forests.
• A parallel scalability study on up to 64 compute nodes, achieving up to 31.98 strong scaling speedup

and over 0.96 weak scaling efficiency without affecting predictive performance of the global model.
• An evaluation of the effects of data distribution and non-IID class distributions on distributed

random forests.

2 Related Work

Parallel Random Forests Multiple shared-memory parallel implementations of random forests in R have
been suggested (Genuer et al., 2017; Wright & Ziegler, 2017; Azizah et al., 2019), which parallelize over the
trees on up to 15 cores, but lack a thorough evaluation of parallel scalability. Random forests have also been
parallelized using accelerators such as GPUs and FPGAs. For instance, Van Essen et al. (2012) parallelize
the inference over the sample domain, while Senagi & Jouandeau (2022) parallelize the training over the
trees, achieving average speedups of up to 3.57 with dynamic GPU parallelism.

Distributed Random Forests with MapReduce Many approaches apply MapReduce (Dean & Ghe-
mawat, 2008) to distribute random forests across multiple worker nodes. They differ in the exact frameworks
used, the computational partitioning, and the evaluation scale, often utilizing only a small number of parallel
nodes. Panda et al. (2009) parallelize best-split selection along tree nodes using MapReduce and report strong
scaling results for training a single tree on up to 200 workers. Basilico et al. (2011) propose a MapReduce-
based parallelization over the trees of the forest, assigning each worker node its own data subset. They
evaluate their approach on 65 parallel worker nodes with four cores each, reaching speedups of up to ten, but
do not report detailed parallel scaling results. Han et al. (2013) implement another parallelization along the
tree dimension. They evaluate their approach on up to ten workers in a weak-scaling experiment by scaling
up the number of trees with the workers, but do not report timing or speedup results. Masarat et al. (2016)
and Liu et al. (2021) apply a similar approach to intrusion detection. Zhang & Yuan (2015) use MapReduce
to parallelize along the sample dimension, first computing local splitting criteria before aggregating them.
They evaluate their approach on up to eight cores across four dual-core CPUs but achieve no significant
parallel speedup. This is also confirmed by Asgari et al. (2022), who report speedups of at most 1.1 across
four compute nodes using the same approach. Wakayama et al. (2015) train random forests with large

2

Under review as submission to TMLR

datasets on MapReduce clusters, where each node holds a local training dataset. To address overfitting due
to limited data access per node, they construct “shared forests” on the manager node. These shared forests
are adapted to the local training data on each cluster node using transfer learning, and then returned to
the manager for further processing. Chen et al. (2017) proposed a random forest algorithm that combines
data and task parallelism using a task-directed acyclic graph. The data is partitioned vertically along the
feature axis. During training, trees are constructed in parallel, with multiple feature variables in each tree
calculated concurrently for node splitting. They evaluate their approach on up to 100 parallel workers with
two cores each and report speedups of up to 87.3 at 100 worker nodes.

Other Approaches to Distribute Random Forests Most closely related to our work are approaches
using general distributed computing in high-performance computing (HPC) environments. Mitchell et al.
(2011) introduce a manager-worker-based Parallel Random Forest Classifier for R, distributing bootstrap
samples and trees among available parallel processes. Communication is facilitated through a custom re-
duction function, akin to MPI. They report parallel efficiency over 0.5 on up to 128 cores for strong scaling
and 512 cores for weak scaling with increasing forest size. Wang et al. (2018) introduce DistForest, a paral-
lel random forest for supercomputers using MPI. Their manager-worker-based approach distributes dataset
features across the parallel workers, utilizing multiple manager nodes to facilitate parallel tree training. Dis-
tForest is evaluated on up to 128 nodes; however, the parallel efficiency remains below 0.5. Cliff et al. (2019)
implement iterative random forests, which add an iterative boosting process to standard random forests,
for HPC applications using C++ and MPI. Their parallelization approach aligns with the shared-global-model
variant in our paper, where subforests are distributed across compute nodes and then aggregated into a
shared model. Similar to Mitchell et al. (2011), they focus on the application to biological datasets where
the features often outnumber the samples. They evaluate an iterative random forest for gene expression on
up to 1600 threads across ten nodes. However, their parallel evaluation is limited to a single strong-scaling
setup with 1000 trees, and parallel efficiency drops below 0.5 after five nodes. Vázquez-Novoa et al. (2023)
use the task-based programming model COMPs to apply task parallelism along both the tree and data
dimensions. They evaluate strong and weak scaling with an increasing number of trees on up to 16 compute
nodes, each with 48 cores, reporting strong scaling speedups of up to six; weak scaling efficiency at 16 nodes
is approximately 0.65.

Federated Learning Distributed random forests are closely related to federated learning (McMahan et al.,
2017; Yang et al., 2019), where multiple participants collaboratively train a model without sharing their data,
often motivated by concerns over data privacy and security. Federated learning can be categorized into three
types: horizontal federated learning, where all participants share the same features but different samples;
vertical federated learning, where the participants hold different features of the same samples; and federated
transfer learning, where there is no overlap between either features or samples. With the independence of
individual trees, random forests lend themselves to federated learning, and multiple approaches have been
introduced for both horizontal and vertical federation. Most random-forest-based approaches for horizontally
partitioned data first train independent subforests on each participant’s local data and then aggregate them
into a global ensemble. Different aggregation approaches have been introduced, such as weighting the trees by
their performance (Tsou et al., 2018; Gencturk et al., 2022) and selecting only a subset of all trees (Markovic
et al., 2022; Hauschild et al., 2022). Most approaches for tree-based vertical federated learning focus on
growing decision trees collectively, node by node, to find the best split across all features. These approaches
can be adapted to random forests by applying the same approach to multiple trees. Liu et al. (2020)
introduce Federated Forest for vertical federated learning. In each node, clients provide potential splits
and corresponding scores, while a central server determines the best split based on these scores. Wu et al.
(2020) have clients collectively determine the best split using multi-party computation and homomorphic
encryption. FedTree (Li et al., 2023) adopts a similar approach to Federated Forest (Liu et al., 2020) for
training gradient-boosted decision trees in both vertical and horizontal federated learning settings. Clients
send local histograms to a central server, which aggregates these histograms using summation (for horizontal
federation) or concatenation (for vertical federation) and decides on the split in the current node.

Non-IID Data Many distributed random forest approaches assume the data to be independent and iden-
tically distributed (IID) across all partitions. However, in practical federated applications, the local data

3

Under review as submission to TMLR

subsets are often non-IID, which can pose an additional challenge (McMahan et al., 2017; Lu et al., 2024).
There are multiple ways in which the local subsets can differ, ranging from differences in sheer size to dif-
ferences in feature and class distributions, both individually and jointly. Multiple categorizations have been
suggested (Criado et al., 2022; Ma et al., 2022; Milasheuski et al., 2024). In this paper, we focus on a common
type of non-IID data: varying class (im)balances, where the share of different classes varies between the sub-
sets. Multiple studies examine the effects of both generally imbalanced and non-IID data on the predictive
quality of random forests. However, most approaches focus on the special case of binary classification and
consider either an imbalance in the global dataset or between the local subsets, but not their interaction. For
example, Hauschild et al. (2022) investigate how the number of data splits, imbalances in local data sizes,
and global class imbalances affect the performance of random forests for binary classification in horizontal
federated learning. Antonio Eng Lim & Hee Park (2024) build a federated random forest by growing each
tree collaboratively across clients. They evaluate the impact of varying class imbalance between the local
subsets for multi-class classification while keeping the global class balance fixed. Shen et al. (2022) study
the effects of class imbalance for image classification with neural networks, suggesting an optimization-based
meta-algorithm to improve performance in the minority classes through iterative communication rounds.
The evaluate their approach combining both global imbalance using up to three minority classes with a local
imbalance following the approach by Hsu et al. (2019).

Scaling Laws Neural scaling laws (Kaplan et al., 2020) study how the performance of machine learning
models improves as a function of compute, data, and model size. Kaplan et al. (2020) demonstrate empirically
that the performance of language models scales as a power law with the number of parameters, dataset
size, and amount of compute. Multiple follow-up studies (Sharma & Kaplan, 2022; Michaud et al., 2023;
Bahri et al., 2024) examining the theory behind it. While initially focused on transformer-based language
models, they have since been extended to other architectures and applications like image generation and
classification (Henighan et al., 2020; Alabdulmohsin et al., 2022), reinforcement learning (Gao et al., 2023),
and time-series forecasting (Shi et al., 2024). For random forests, Biau (2012) gives a theoretical analysis of
how their performance scales with the number of features and shows that the convergence is independent of
the number of noise features, and multiple studies (Oshiro et al., 2012; Probst & Boulesteix, 2018) analyze
how the predictive performance scales with the number of trees. We extend this analysis with an empirical
evaluation of the scaling with both the number of trees and samples.

3 Background

3.1 Random Forests

A random forest (Breiman, 2001) F = {T1, . . . , Tt} is an ensemble of t decision trees Ti. Random forests
can be applied to both classification and regression tasks, yielding robust and accurate predictions for many
applications. The fundamental building blocks of random forests are the decision trees Ti, which recursively
partition the feature space. Multiple algorithms exist for constructing decision trees, which can be combined
with random forests. These include CART (Breiman, 1984), ID3 (Quinlan, 1986), AID20 (Morgan et al.,
1963), and THAID (Morgan & Messenger, 1973). To train a random forest on a dataset D consisting of
n samples with m features, each tree is trained individually by growing from its root node. At each node,
only a random subset of u features is considered for splitting (“feature bagging”), often set to u =

√
m.

This helps reduce correlation among trees and improve generalization. Among the selected features, the
best split is chosen to divide the samples at a node into subsets while maximizing the purity of the subsets.
Multiple optimization metrics exist to measure this impurity, such as the Gini index, used in this paper,
and information gain. This splitting is repeated in the child nodes until a stopping criterion is reached,
for example, a certain purity in the leaf nodes. The leaf node is assigned a prediction based on voting or
averaging over the remaining training samples within its region. Bootstrapping is used to create multiple
training datasets by randomly sampling a bootstrap Di with replacement from the original dataset D for
each tree Ti, typically |Di| = n. This process is known as bagging (bootstrap aggregating) and introduces
diversity among the trees in the forest. Overall, the complexity of growing a single tree up to depth O (log n),
considering n samples and u features at each split, can be summarized as O (u · n log n). The t trees are
trained independently, resulting in O (t · u · n log n) to train the entire forest. During inference, a sample is

4

Under review as submission to TMLR

0 500 1000 1500 2000
Scaling factor λ

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(a) Scaling the number of trees t = λ · t1

n = 0.75×106, t1 = 25
n = 0.75×107, t1 = 7

0 20 40 60
Scaling factor λ

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(b) Scaling trees t and samples n,
n1 = 1.17×104, t1 = 25

t = λ · t1, n = λ ·n1

t = λ · t1, n = n1

0 20 40 60
Scaling factor λ

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(c) Scaling trees t and samples n,
n1 = 1.17×105, t1 = 7

t = λ · t1, n = λ ·n1

t = λ · t1, n = n1

Figure 1: What is the impact of the model size (number of trees t = λ · t1) and training data (samples n) on
the predictive performance of random forests? (a) When increasing the model size t while keeping the data
size n constant, we observe a consistent improvement from adding more trees that slowly saturates for both
baselines t1 = 25 with n = 0.75× 106 and t1 = 7 with n = 0.75× 107. (b, c) The accuracy benefits further
from simultaneously scaling the dataset to n = λ · n1 samples compared to increasing only the model size
and keeping the data static at n = n1. More details on the experimental setup are given in Section 5.

processed by all decision trees. Each tree makes a prediction by passing the sample from the root to the
corresponding leaf node. The random forest aggregates the individual predictions into the ensemble result.

4 Distributed Random Forests

The predictive performance of random forests improves with both the size of the random forest and the
amount of data it is trained on, as demonstrated in Figure 1. However, with growing datasets and models,
the computational and memory demands can surpass the capacity of a single machine. This highlights the
need for distributing random forests across multiple machines. Yet, there is a distinct lack of comprehensive
studies on the scalability of distributed random forests. Since the individual decision trees of the random
forest are independent, they are an ideal target for parallelization. We therefore partition the t trees and
distribute them equally among the processing units. During training, each node holds a local subforest Flocal
of t/p trees and trains them using either shared global data or node-local data D. Training the subforests
does not require any communication between compute nodes. Figure 2(a) illustrates this parallel training
process. As most modern compute nodes follow a multi-core architecture, it is often beneficial to further
parallelize over the t/p local trees within each node’s subforests. We thus employ a hybrid parallelization
scheme, using distributed computing between the p compute nodes and shared-memory parallelization within
each node.

For global inference, a sample needs to be processed by all trees; however, during training, the global ensem-
ble is distributed across compute nodes. We consider two different approaches for inference on a distributed
random forest. First, one can aggregate a global model by collecting the local subforests Flocal and con-
structing the global forest Fglobal =

⋃i=1
p Flocal(i). Afterwards, the global model can be used independently

of other nodes to conduct inference for arbitrary, potentially local samples (see Figure 2(b)). This can be ad-
vantageous when local test data cannot be shared among nodes, such as in federated applications. However,
aggregating a global model requires a significant one-time communication overhead for gathering all local
subforests and does not benefit further from distribution in the inference phase. Alternatively, the compute
nodes can continue collaboration during the inference phase via global voting, as illustrated in Figure 2(c).
Each compute node continues to hold only its local subforest Flocal. Test samples are processed in parallel on
all local subforests. To aggregate the results to the global prediction, each subforest computes a histogram
of its votes. These histograms are summed using collective reduction, after which the global prediction can
be determined from its maximum. With this approach, the predictions are identical to those obtained by an
aggregated global model. At the same time, it continues to benefit from distributed computing in the infer-
ence phase, which both speeds up the inference and reduces the memory requirement on each node. This,
however, requires the test data to be shared among all nodes, which may violate data privacy requirements
in some applications. The pseudocodes for distributed training and inference are given in Appendix A.1.

5

Under review as submission to TMLR

Compute
Nodes

(a) Parallel Training (b) Inference with Global Model (c) Inference with Global Voting
All-Gather Independent Local Inference

All-Reduce

Figure 2: Example of a parallel random forest using compute nodes 1, 2, . . . p each node i training three
trees in their local subforests Flocal(i), for a global forest Fglobal of nine trees. (a) Parallel Training: Node-
local subforests are trained independently of other nodes, either on shared global data or local slices D.
(b) Inference with Global Model: Aggregate local subforests to global model after training, allowing local
inference independent of other nodes. (c) Inference with Global Voting: Share evaluation data Deval, perform
distributed inference on local subforests, and aggregate local results to global prediction.

5 Empirical Results

5.1 Datasets

We evaluate the parallel scalability of distributed random forests in terms of both strong and weak scaling
and their application to federated learning. Details on the implementation and computational environment
are given in Appendix A.2. We use synthetic data generated with scikit-learn’s make_classification
as this allows us to scale both the number of samples n and features m freely and adjust the class balance.
We keep the fraction of informative and redundant features at 10 % each, with 0 % repeated features, and all
remaining features filled with noise. The number of classes is set to ten, with one cluster per class. Except for
the experiments with imbalanced data in Section 5.5, we use balanced classes. For most experiments, we use
the largest dataset we could fit together with the local model onto a standard compute node, resulting in a
total of 1×1010 values. We use two datasets with different feature-to-sample ratios, resulting in two distinct
difficulties. The 1M dataset consists of ntotal = 1× 106 samples and m = 1× 104 features, while the 10M
dataset consists of ntotal = 1×107 samples and m = 1×103 features. The 1M dataset is more challenging to
solve, as it has an order of magnitude more features to learn from fewer samples. When comparing the two
inference variants, we need to fit both the data and the global model into the memory of individual compute
nodes. We thus use two additional, smaller datasets with only 1 × 108 overall values, as the 1× 1010 value
datasets exceed our memory capacity. The 100K dataset has ntotal = 1 × 105 samples and m = 1 × 103

features, while the 1M-b dataset has ntotal = 1 × 106 samples and m = 1 × 102 features. Additionally, we
extend the strong and weak scaling experiments to the HIGGS dataset (Baldi et al., 2014; Whiteson, 2014),
a binary classification task to distinguish between signal and background events in particle collision data.
The dataset is nearly balanced, containing about 53 % positive (signal) samples. With ntotal = 1.1 × 107

samples and m = 28 features, it is similar in size to the 10M synthetic dataset. For all datasets, 75 % of
the samples n = 0.75 · ntotal are used as training set, while the remaining 25 % are used as test set. During
bootstrapping, each tree draws a random set of n samples with replacement.

5.2 Scalability of Distributed Training

To evaluate the parallel scalability of distributed random forests, we use two common types of scaling
experiments: strong and weak scaling. In strong scaling, the goal is to solve a fixed problem faster by
increasing the computing resources. In our case, we train a random forest using a fixed number of trees
t on the same dataset while increasing the number of compute nodes. We run two series of experiments:

6

Under review as submission to TMLR

1 2 4 8 16 32 64
Number of Nodes

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(a) Test Accuracy 1M-Dataset

Global Model
Local Models

1 2 4 8 16 32 64
Number of Nodes

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(b) Test Accuracy 10M-Dataset

Global Model
Local Models

1 2 4 8 16 32 64
Number of Nodes

1

2

4

8

16

32

64

Sp
ee

du
p

:
H

ig
he

ri
s

be
tte

r

(c) Speedup

Linear
1M
10M

Figure 3: Strong scaling experiments: two fixed size problems training t = 1600 trees on the 1M dataset
and t = 448 trees on the 10M dataset while increasing the number of compute nodes p. Each node trains
a subforest of size t/p. The global accuracy is not affected by parallelization and remains constant. The
speedup initially increases linearly but saturates as the work assigned to each node becomes too small for
effective parallelization.

training t = 1600 trees on the 1M dataset and t = 448 trees on the 10M dataset on p ∈ {1, 2, 4, 8, 16, 32, 64}
compute nodes. Each node trains a local forest of t/p trees. The number of trees was chosen as the
maximum multiple of 64 we could train within 100 min on a single node. For the serial baseline with p = 1,
we train a scikit-learn RandomForestClassifier on all t trees without MPI but with the shared-memory
parallelization. Note that since the full-sized global forest does not fit onto a standard compute node, the
serial runs were conducted on high-memory nodes with twice the main memory but otherwise identical
hardware. Figure 3 illustrates the results in terms of test accuracy and speedup; detailed results of training
time and speedup are given in Table 1. All accuracies are given as the mean over three independent runs
with separate random seeds passed to the model. As expected, the accuracy of the global model remains
unchanged when increasing p, as this does not affect the global number of trees t. This confirms that our
parallelization does not impact the random forest’s predictive performance. Comparing the two datasets, we
observe that the model performs significantly better on the 10M dataset than on the 1M dataset, even with
considerably fewer trees in the forest. This is expected, as the ratio of samples to features is 100 times higher
for 10M than for 1M, making it harder to learn. In contrast to the global model, the mean accuracy of the
local models decreases with p as their size t/p decreases. Finally, we evaluate the parallel scalability using the
speedup S(p) = Tseq/T (p), where Tseq is the training time of the sequential baseline and T (p) is the parallel
training time with p compute nodes. Ideally, the speedup would scale linearly with the number of compute
nodes p. Our results show linear speedup initially, but this saturates as the number of nodes increases. This
effect is more pronounced for the 10M dataset compared to the 1M dataset. This is expected as the work
assigned to each node reduces with increasing p. At p = 64, the subforests on each node contain only 25
(1M) and 7 (10M) trees, limiting the gain from further parallelization.

In weak scaling, we aim to solve a larger problem by increasing the computing resources while the problem
size per node remains constant. In our case, we scale up the number of trees t as we increase the number
of compute nodes p. Specifically, we train a global forest with t = t1 · p trees, where t1 is the baseline
number of trees, and each node trains a local subforest with t1 trees. As for strong scaling, we train a
forest with p ∈ {1, 2, 4, 8, 16, 32, 64} nodes on the 1M and 10M datasets. We use t1 = 800 for 1M and
t1 = 224 for 10M. That is, the global forests trained by strong scaling correspond to those trained at p = 2
in the weak scaling experiments. Figure 4 and Table 1 give our results. In contrast to strong scaling, the
accuracy of the local forests remains constant while the global forest improves as we increase the number
of compute nodes p and, in turn, the global model size t = t1 · p. The improvement in global accuracy is
significantly higher for the 1M compared to the 10M dataset, as there is much more room for improvement
from the t1 baseline. Since the problem size increases with p, we measure the parallel performance in terms
of weak scaling efficiency E(p) = Tseq/T (p) instead of speedup. Efficiency typically ranges from zero to one,
with higher values indicating better performance and one being the expected ideal. Our implementation
demonstrates good scalability with efficiencies over 0.96 across all scales. In contrast to strong scaling, we
observe no saturation as we increase p and scale successfully up to 64 compute nodes (the maximum tested).
Since we scale the problem size in tandem with the available resources, we avoid the issue of having too little
work left on each node.

7

Under review as submission to TMLR

1 2 4 8 16 32 64
Number of Nodes

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(a) Test Accuracy 1M-Dataset

Global Model
Local Models

1 2 4 8 16 32 64
Number of Nodes

80%

90%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(b) Test Accuracy 10M-Dataset

Global Model
Local Models

1 2 4 8 16 32 64
Number of Nodes

0.8

0.9

1.0

E
ffi

ci
en

cy

:
H

ig
he

ri
s

be
tte

r

(c) Efficiency

Ideal
1M
10M

Figure 4: Weak scaling experiments: increasing the global number of trees t = t1 · p in the random forest
while increasing the number of compute nodes p for two baseline problems, training t1 = 800 trees on the
1M dataset and t1 = 224 trees on the 10M dataset. Each node trains a subforest of size t1. The global
accuracy increases with p as the number of trees in the global forest increases. The parallel efficiency remains
over 0.96 for both datasets and all tested scales p.

Table 1: The global training time T (p), strong scaling speedup S(p), and weak scaling efficiency E(p) for
p = 1, . . . , 64 nodes with the corresponding number of cores, trees t, and trees per node t/p.

Strong Scaling Weak Scaling
Nodes p Cores Trees t t/p T (p) : S(p) : Trees t t/p T (p) : E(p) :

1M

1 76 1600 1600 5923.104 s 1.000 800 800 2870.629 s 1.000
2 152 1600 800 2911.042 s 2.035 1600 800 2930.780 s 0.979
4 304 1600 400 1528.165 s 3.876 3200 800 2907.165 s 0.987
8 608 1600 200 784.943 s 7.546 6400 800 2941.895 s 0.976

16 1216 1600 100 456.719 s 12.969 12800 800 2915.327 s 0.985
32 2432 1600 50 238.113 s 24.875 25600 800 2936.716 s 0.977
64 4864 1600 25 185.237 s 31.976 51200 800 2930.885 s 0.979

10
M

1 76 448 448 5839.393 s 1.000 224 224 2881.014 s 1.000
2 152 448 224 2938.522 s 1.987 448 224 2964.515 s 0.972
4 304 448 112 1681.794 s 3.472 896 224 2961.187 s 0.973
8 608 448 56 874.932 s 6.674 1792 224 2987.388 s 0.964

16 1216 448 28 662.736 s 8.811 3584 224 2990.356 s 0.963
32 2432 448 14 617.535 s 9.456 7168 224 2992.089 s 0.963
64 4864 448 7 606.976 s 9.620 14336 224 2980.575 s 0.967

Figure 5 gives the strong and weak scaling performance on the HIGGS dataset. We train a global forest of
t = 640 trees for strong scaling and scale up from t1 = 10 trees in weak scaling, each with up to 64 nodes.
The scaling behavior for both predictive and parallel performance matches our results on synthetic data.
The accuracy is not affected by the parallelization and depends only on the model size. In strong scaling,
the accuracy of the global model remains constant while that of the local models decreases slightly as they
become smaller. In weak scaling, the local models have constant size and accuracy while the accuracy of
the global model improves with more nodes, and thus trees. As with the synthetic data, the strong scaling
speedup increases linearly at first but saturates after about 16 nodes. Similarly, the weak scaling efficiency
remains close to one at all tested scales.

5.3 Scalability of Distributed Inference

We compare the two approaches to inference introduced in Section 4 in terms of their time and memory
consumption. With global voting, each node i holds only the local subforest Flocal(i) it trained. For
inference on the global model, each test sample must be shared across all nodes, which perform independent
inference on local subforests. The resulting local predictions are then aggregated via voting to obtain the
global result. In contrast, building a shared global model would aggregate the local subforests Flocal once

8

Under review as submission to TMLR

1 2 4 8 16 32 64
Number of Nodes

60%

70%

80%

90%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(a) Strong Scaling Accuracy

Global Model
Local Models

1 2 4 8 16 32 64
Number of Nodes

60%

70%

80%

90%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(b) Weak Scaling Accuracy

Global Model
Local Models

1 2 4 8 16 32 64
Number of Nodes

1

2

4

8

16

32

64

Sp
ee

du
p

:
H

ig
he

ri
s

be
tte

r

(c) Strong Scaling Speedup

Linear
HIGGS

1 2 4 8 16 32 64
Number of Nodes

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

:
H

ig
he

ri
s

be
tte

r

(d) Weak Scaling Efficiency

Ideal
HIGGS

Figure 5: Strong scaling with t = 640 global trees and weak scaling with t1 = 10 trees per node on the HIGGS
dataset. The results mirror the behavior on synthetic data: The accuracy is not affected by parallelization
and depends only on model size. The strong scaling speedup initially increases linearly but saturates as the
work per node decreases, while weak scaling efficiency remains high throughout all scales.

2 4 8 16 32 64
Number of Nodes

0.0

0.5

1.0

T x
(p

)/
T s

eq

:

L
ow

er
is

be
tte

r

(a) Training Time

Training Ttrain

All-Gather Tgather

2 4 8 16 32 64
Number of Nodes

0.0

0.5

1.0

T t
es

t(
p)
/T

se
q

:

L
ow

er
is

be
tte

r

(b) Inference Time

2 4 8 16 32 64
Number of Nodes

0

50

100

150

M
em

or
y

/N
od

e
(G

iB
) :

L
ow

er
is

be
tte

r

(c) Memory Consumption

Dataset – Approach
100K – Global Voting
100K – Global Model
1M-b – Global Voting
1M-b – Global Model

Figure 6: Comparison of two inference variants: aggregating a shared global model on each node after
training or performing distributed inference via global voting for two baseline problems, 100K and 1M-b
with t1 = 76 trees per node in a weak-scaling setup. Building a shared global model comes at both a one-time
overhead to aggregate the local models after training and a consistent overhead during the serial inference
phase for both inference time and memory consumption. In contrast, global voting requires less time and
memory per node but utilizes all p nodes during inference. Training and inference times are normalized with
the corresponding single-node time Tseq on the same-size forest with t1 · p trees.

after training and combine them into a global model Fglobal =
⋃i=1

p Flocal(i) on each node. For inference,
each node can use its own global model independent of the other nodes, meaning test data does not need
to be shared among nodes. This approach is also motivated by federated learning, where clients may not
want to send real test data to others due to privacy concerns. Sharing the model allows each individual
node to act independently of the others during the inference phase. In contrast, global voting would be more
suited to a single stakeholder distributing the random forest for computational performance, as in an HPC
environment. Note that they do not affect the predictive performance of the global model.

To fit both the data and the global model into the memory of individual compute nodes, we use the smaller
datasets 100K and 1M-b and t1 = 76 local trees. We use a weak scaling setup, meaning the global model
and thus the communication volume increase with p. The complexity of all-gathering a message of size m
across p nodes is O(α log p + βpm), where α is the message startup latency and β is the communication cost
per word (Sanders et al., 2019, Chapter 13). To all-gather the global model, each node sends the t1 trees
in its local subforest. The resulting message size m is about 461.97 MiB for 100K and 2.11 GiB for 1M-b.
All-reducing the histograms for global voting has complexity O(α log p + βm). The size of the histograms m
depends on the number of classes and test samples and is about 90 B per sample for both datasets.

Figure 6 illustrates our results; detailed values are provided in Table 4. First, we consider the overhead of
all-gathering the global model after training. Figure 6(a) gives the time to train and aggregate the t1 · p-tree
forest on p nodes, normalized with the single-node training time Tseq of a t1 · p-tree forest. As expected,
the time to train the local subforest Ttrain remains constant, independent of the chosen inference variant.
Compared to the sequential time, the training time thus decreases with increasing p. Aggregating the global
model adds an overhead Tgather to the training. This overhead grows with increasing p and thus forest size,
while remaining constant with respect to the sequential training time. At p = 64 nodes and t = 4864 trees,

9

Under review as submission to TMLR

all-gathering the model takes between 3.7 (1M-b) and 5.1 (100K) times as long as the parallel training
itself. Despite this overhead, both variants are significantly faster than sequential training. Figure 6(b)
considers the inference time Ttest on the global test set, again normalized with the sequential time Tseq on
the corresponding model size. With a shared global model, a node needs to process the entire forest and is
thus on par with sequential inference (Ttest(p)/Tseq ≈ 1). This is a significant overhead compared to global
voting, which distributes the inference across all p nodes, each processing only their local subforest and thus
reducing the inference time with increasing p. Finally, Figure 6(c) illustrates the memory consumption per
node. With global voting, the memory consumption remains constant, while using a global model increases
it with the size of the aggregated global model, growing to more than 150 GiB. This memory consumption
drastically limits the base problem size we could use in this experiment compared to using global voting.
Overall, the aggregation of a shared global model comes at both the one-time cost of the all-gathering
overhead and the recurring cost of holding and operating on the entire global model. In contrast, global
voting reduces the overall wall-clock time and consumes less memory per node. However, it requires using
all p nodes and the parallel efficiency can drop below 0.5, especially for small datasets and forests. One thus
needs to carefully consider the trade-off between wall-clock time and efficient use of computing resources for
the given use case. In some cases, the inference approach can also be prescribed by the application. For
example, in federated learning settings, it is often not possible to share local test data with other participants,
requiring the entire global model to be held locally. In other cases, the global model may be too big to fit
onto a single node, requiring distributed inference.

5.4 Training with Distributed Data

In Sections 5.2 and 5.3, we demonstrate the parallel scalability of distributed random forests using shared
training data. However, distributed machines may not always have access to the same data. For example, in
federated learning scenarios, participants might not wish to share their training data, or data is gathered in
different locations with limited communication capacities. We therefore investigate the impact of partitioning
the training data across nodes on both the predictive and the computational performance. This approach is
related to data parallel training employed for neural networks, where the data is partitioned across machines
that collaboratively train a global model (Ben-Nun & Hoefler, 2019). We repeat the strong scaling experiment
from Section 5.2, but in addition to the trees, we also partition the training data and distribute it across
nodes. Thus, each node trains t/p trees on n/p samples compared to the global t trees and n samples, using
the 1M dataset with t = 1600 global trees and the 10M dataset with t = 448 global trees. Figure 7 and
Table 5 present the predictive and computational performance for p ∈ {1, 2, 4, 8, 16, 32, 64} compute nodes.
For comparison, the corresponding values from the strong scaling experiment (Figure 3) are included with low
transparency. For both datasets, the accuracy of the trained forest decreases significantly as the number of
nodes increases and the local datasets reduce in size. Compared to strong scaling without data distribution,
the accuracy of the local subforests decreases more strongly, and even the global accuracy decreases. With
distributed datasets, the bagging of samples on each node is restricted to a much smaller base dataset.
This decrease in accuracy is more pronounced for the 1M dataset. With n = 0.75 × 106 samples, only
n/p = 1.17 × 104 samples per node remain at p = 64 nodes—or about 1.17 samples per feature. Due to
its higher ratio of samples to features, the 10M dataset retains about 117.18 samples per feature per node
at p = 64. While the predictive performance decreases, we observe a super-linear speedup in training time.
This is expected as the total workload decreases from O (t · u · n log n) to O (t · u · n/p log(n/p)) as each local
forest is trained on only n/p instead of n samples.

5.5 Breaking the IID Assumption

So far, we have assumed the training data to be independent and identically distributed (IID). However,
in many federated settings, this assumption no longer holds, for example, due to different data collection
methods or class prevalence. In this section, we examine the behavior of distributed random forests when
breaking the IID assumption. Specifically, we vary the class probabilities of both the global dataset and
the local subsets independently and examine the impact on the global and local accuracy. We use the
probability mass function of the Skellam distribution p(k; µ1, µ2) = e−(µ1+µ2) (µ1/µ2)k/2

Ik(2√µ1µ2) (Irwin,
1937; Skellam, 1946) with µ = µ1 = µ2 to generate different class imbalances, as it is a parametrizable discrete

10

Under review as submission to TMLR

1 2 4 8 16 32 64
Number of Nodes

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(a) Test Accuracy 1M-Dataset

Global Model
Local Models

No DD
No DD

1 2 4 8 16 32 64
Number of Nodes

0%

25%

50%

75%

100%

Te
st

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(b) Test Accuracy 10M-Dataset

Global Model
Local Models

No DD
No DD

1 2 4 8 16 32 64
Number of Nodes

1

4

16

64

256

1024

Sp
ee

du
p

:
H

ig
he

ri
s

be
tte

r

(c) Speedup

1M
10M
Linear

No DD
No DD

Figure 7: Results for training with distributed data, where the training data is partitioned and distributed
over the nodes together with the trees. We solve two fixed-size problems, training t = 1600 trees on the 1M
dataset and t = 448 trees on the 10M dataset while increasing the number of compute nodes p. Each node
trains a subforest of size t/p on n/p samples. The corresponding strong scaling results from Figure 3, i.e.,
without data distribution (No DD), are superimposed with low transparency. With data partitioning, both
local and global accuracy degrade with increasing p; this effect is stronger for 1M with fewer samples overall.
However, we observe a super-linear speedup of the overall work decreases with more compute resources.

0 1 2 3 4 5 6 7 8 9
Class

0%

10%

20%

30%

40%

50%

C
la

ss
Fr

eq
ue

nc
y

∞
10
5
2
1
0.5

Global

µdata = ∞, µpartition = ∞

Local

µdata = ∞, µpartition = 2

Global

µdata = 2, µpartition = ∞

0 1 2 3 4 5 6 7 8 9
Class

Local

µdata = 2, µpartition = 2

0 1 2 3 4 5 6 7 8 9
Class

(a) (b)

Figure 8: (a) The class frequencies for ten classes with µ = {∞, 10, 5, 2, 1, 0.5} and a peak at class five.
(b) The class frequencies of the global dataset and the different local subsets on p = 4 nodes for different
combinations of data and partition imbalance. The global data is balanced with µdata = ∞ in the top row
and imbalanced in the bottom row with µdata = 2. The partition into local subsets is balanced in the left
column (µpartition =∞) and imbalanced in the right column (µpartition = 2).

distribution which tends toward the normal distributionN (0, 2µ) for large µ (Irwin, 1937). To obtain the class
weights for the C classes ZC = {0, 1, . . . , C−1}, we sample p(k; µ, µ) at k ∈ {c− ⌊C/2⌋ | c ∈ ZC}. Decreasing
µ thus increases class imbalance. We use the edge case µ = ∞ to indicate balanced classes. Figure 8(a)
illustrates the resulting class frequencies for different µ. In this experiment, we consider two different kinds of
class imbalances. First, we consider the imbalance of the global dataset, that is, when generating the global
dataset, we use the class frequencies prescribed by µdata. Second, we vary the imbalance of the data partition
into local datasets to create non-IID data, i.e., the class frequencies of the node-local datasets are different
across nodes and compared to the global dataset. For this, we use a class distribution with µpartition where
each node i ∈ Zp uses a cyclically shifted distribution, shifting the assignment of sampling position k to class
c by (c + ⌊i · C/p + 0.5⌋) mod C. We then partition the global dataset class-wise, assigning each node a
fraction of the samples labeled with that class according to their relative frequency compared to other nodes.
Depending on the global class imbalance, this may not result in the exact local class frequencies prescribed
by µpartition, but rather the closest match to partition the global dataset according to these weights. It can
also lead to an imbalance in the size of the local datasets across nodes, as requesting a large share from
the majority class results in more samples than a large share of a minority class. Figure 8(b) illustrates the
resulting global and local class frequencies for all four combinations of µdata = {∞, 2} and µpartition = {∞, 2}.

We evaluate the predictive performance of distributed random forests trained on distributed data with
different factors of imbalance. We train three dataset sizes 100K with t = 224 trees, 1M with t = 800, and

11

Under review as submission to TMLR

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

B
al

an
ce

d
A

cc
ur

ac
y :

H
ig

he
ri

s
be

tte
r

(a) 100K-Dataset

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

B
al

an
ce

d
A

cc
ur

ac
y :

H
ig

he
ri

s
be

tte
r

(b) 1M-Dataset

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

B
al

an
ce

d
A

cc
ur

ac
y :

H
ig

he
ri

s
be

tte
r

(c) 10M-Dataset

µpartition

∞
10
5
2
1
0.5

Figure 9: The balanced accuracy for different combinations of class imbalance in the global data (µdata)
and the local subsets (µpartition) using three different problem sizes: 100K with t = 224 trees, 1M with
t = 800, and 10M with t = 224 trees on p = 16 compute nodes. The smaller µ, the stronger the imbalance.
Increasing the imbalance of the global data consistently decreases predictive performance, while an increased
partition imbalance can improve performance on imbalanced global data.

10M with t = 224 trees on p = 16 compute nodes, partitioning and distributing both trees and training
data over the nodes. Using the process described above, we generate global datasets ranging from no class
imbalance (µdata =∞) to a strong imbalance of up to µdata = 0.5. These global datasets are then partitioned
and distributed among the 16 nodes, using varying partition imbalances µpartition, which affect the difference
in data distribution across the 16 local subforests. Overall, we evaluate six values µ = {∞, 10, 5, 2, 1, 0.5}
for both µdata and µpartition, resulting in a total of 36 combinations per dataset size. To avoid the over-
representation of majority classes, we use balanced accuracy (macro average). Figure 9 gives the balanced
accuracy on three datasets 100K, 1M, and 10M, while varying both the data and partition imbalance
from ∞ to 0.5. Additional metrics are given in Figures 10 and 11. The imbalance of the global dataset is
shown on the x-axis, with the imbalance increasing as µdata decreases. As expected, the classification gets
increasingly harder, and the balanced accuracy decreases with a stronger imbalance. This applies across
all three datasets and for all partition imbalances. Interestingly, increasing the partition imbalance (by
decreasing µpartition) can actually improve the predictive performance of the global model. For imbalanced
global datasets with µdata ≤ 10, the accuracy consistently improves as the local imbalance increases from
µpartition = ∞ to µpartition = 1. For a balanced global dataset µdata = ∞, we observe almost no difference
between µpartition =∞ to µpartition = 1. Only µpartition = 0.5 performs significantly worse than µpartition =∞
for some cases, especially for datasets with fewer samples and more balanced global class frequency. This
suggests that there is a limit to how imbalanced the local subsets may be before performance degrades.
Overall, our results suggest that some class imbalance in the local datasets has only a small impact on
accuracy when the global dataset is balanced and may even improve performance on imbalanced global
data. Appendix A.5 investigates this effect in more detail by comparing local and global confusion matrices
for IID and non-IID partitions. An important limitation of this experiment is the restriction to synthetic
data; however, this allows us to vary the dataset size and imbalance freely, focusing purely on the effects of
non-IID data without side effects. Repeating these experiments with real-world data will be an important
next step in evaluating the practical implications of these observations.

6 Conclusion

This paper studies the scalability of distributed random forests. By distributing independent subforests
across compute nodes and utilizing shared-memory parallelization within each node, we implement a hybrid
parallel approach to distributed random forests. We examine the parallel scalability of this approach in both
strong and weak scaling experiments, scaling up to 64 compute nodes with 76 cores each, to a total of 4864
cores. We achieve strong scaling speedups of up to 31.98, which level out as the work per node diminishes,
and weak scaling efficiencies above 0.96 for all tested scales. The parallelization does not impact the random
forest’s predictive performance and the accuracy of the global model with t trees remains unchanged when
increasing the compute nodes p. In contrast, the mean accuracy of the local models decreases with p as their
size t/p decreases. We compare two approaches to inference using either a distributed model with global
voting or aggregating the global model on a single node, followed by sequential inference. The global voting

12

Under review as submission to TMLR

approach benefits from low memory consumption per node and faster inference at the cost of using more
compute nodes. In contrast, aggregating a global model introduces a computational and memory overhead,
yet requires only a single node and no sharing of inference data. We further investigate how model size, the
number of training samples, their partitioning, and class distribution impact the predictive performance of
large-scale random forests. As expected, increasing both the number of trees and the number of training
samples improves results. However, partitioning the training data, for example, across distributed machines,
has a significant impact on the resulting accuracy. In testing various combinations of class imbalance in the
global data and the partition into local subsets, we find that increasing global imbalance complicates the
classification of minority classes. Introducing a partition imbalance can counteract this increasing diversity
between subforests. This work improves the understanding of the performance characteristics of distributed
random forests and their limitations at scale. While the training scales near perfectly, given enough work is
available, inference involves a tradeoff between memory consumption, computation time, and data privacy.
Our results on data distribution and heterogeneity provide key insights for applying distributed ensembles
like random forests in practice and in the context of federated learning. In the future, we aim to extend our
experiments to real-world datasets, non-classification tasks like regression, and a broader range of ensemble
methods.

References
Sherif F. Abdoh, Mohamed Abo Rizka, and Fahima A. Maghraby. Cervical Cancer Diagnosis Using Random

Forest Classifier With SMOTE and Feature Reduction Techniques. IEEE Access, 6:59475–59485, 2018.
ISSN 2169-3536. doi:10.1109/ACCESS.2018.2874063.

Ibrahim M. Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting Neural Scaling Laws in
Language and Vision. Advances in Neural Information Processing Systems, 35:22300–22312, December
2022.

Md. Zahangir Alam, M. Saifur Rahman, and M. Sohel Rahman. A Random Forest based predictor for
medical data classification using feature ranking. Informatics in Medicine Unlocked, 15:100180, January
2019. ISSN 2352-9148. doi:10.1016/j.imu.2019.100180.

Penjan Antonio Eng Lim and Cheong Hee Park. A collaborative ensemble construction method for fed-
erated random forest. Expert Systems with Applications, 255:124742, December 2024. ISSN 0957-4174.
doi:10.1016/j.eswa.2024.124742.

Marjan Asgari, Wanhong Yang, and Mahdi Farnaghi. Spatiotemporal data partitioning for distributed
random forest algorithm: Air quality prediction using imbalanced big spatiotemporal data on spark dis-
tributed framework. Environmental Technology & Innovation, 27:102776, August 2022. ISSN 2352-1864.
doi:10.1016/j.eti.2022.102776.

N Azizah, LS Riza, and Y Wihardi. Implementation of random forest algorithm with parallel computing in
R. In Journal of Physics: Conference Series, volume 1280, pp. 022028. IOP Publishing, 2019.

Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neu-
ral scaling laws. Proceedings of the National Academy of Sciences, 121(27):e2311878121, July 2024.
doi:10.1073/pnas.2311878121.

P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy physics with deep
learning. Nature Communications, 5(1):4308, July 2014. ISSN 2041-1723. doi:10.1038/ncomms5308.

Justin D. Basilico, M. Arthur Munson, Tamara G. Kolda, Kevin R. Dixon, and W. Philip Kegelmeyer.
COMET: A Recipe for Learning and Using Large Ensembles on Massive Data. In 2011 IEEE 11th
International Conference on Data Mining, pp. 41–50, December 2011. doi:10.1109/ICDM.2011.39. ISSN:
2374-8486.

Mariana Belgiu and Lucian Drăguţ. Random forest in remote sensing: A review of applications and future
directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31, April 2016. ISSN 0924-
2716. doi:10.1016/j.isprsjprs.2016.01.011.

13

https://doi.org/10.1109/ACCESS.2018.2874063
https://doi.org/10.1016/j.imu.2019.100180
https://doi.org/10.1016/j.eswa.2024.124742
https://doi.org/10.1016/j.eti.2022.102776
https://doi.org/10.1073/pnas.2311878121
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1109/ICDM.2011.39
https://doi.org/10.1016/j.isprsjprs.2016.01.011

Under review as submission to TMLR

Tal Ben-Nun and Torsten Hoefler. Demystifying Parallel and Distributed Deep Learning: An In-depth
Concurrency Analysis. ACM Computing Surveys, 52(4):65:1–65:43, August 2019. ISSN 0360-0300.

L. Benali, G. Notton, A. Fouilloy, C. Voyant, and R. Dizene. Solar radiation forecasting using artificial neural
network and random forest methods: Application to normal beam, horizontal diffuse and global compo-
nents. Renewable Energy, 132:871–884, March 2019. ISSN 0960-1481. doi:10.1016/j.renene.2018.08.044.

Gérard Biau. Analysis of a random forests model. Journal of Machine Learning Research, 13(1):1063–1095,
April 2012. ISSN 1532-4435.

Leo Breiman. Classification and regression trees. The Wadsworth statistics/probability series. Wadsworth
& Brooks/Cole, Pacific Grove, California, 1984.

Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001. ISSN 1573-0565.
doi:10.1023/A:1010933404324.

Jianguo Chen, Kenli Li, Zhuo Tang, Kashif Bilal, Shui Yu, Chuliang Weng, and Keqin Li. A Parallel Random
Forest Algorithm for Big Data in a Spark Cloud Computing Environment. IEEE Transactions on Parallel
and Distributed Systems, 28(4):919–933, 2017. doi:10.1109/TPDS.2016.2603511.

Ashley Cliff, Jonathon Romero, David Kainer, Angelica Walker, Anna Furches, and Daniel Jacobson. A
High-Performance Computing Implementation of Iterative Random Forest for the Creation of Predictive
Expression Networks. Genes, 10(12):996, December 2019. ISSN 2073-4425. doi:10.3390/genes10120996.
Publisher: Multidisciplinary Digital Publishing Institute.

Marcos F. Criado, Fernando E. Casado, Roberto Iglesias, Carlos V. Regueiro, and Senén Barro. Non-IID
data and Continual Learning processes in Federated Learning: A long road ahead. Information Fusion,
88:263–280, December 2022. ISSN 1566-2535. doi:10.1016/j.inffus.2022.07.024.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi:10.1145/1327452.1327492.

Leo Gao, John Schulman, and Jacob Hilton. Scaling Laws for Reward Model Overoptimization. In Pro-
ceedings of the 40th International Conference on Machine Learning, pp. 10835–10866. PMLR, July 2023.
ISSN: 2640-3498.

Mert Gencturk, A. Anil Sinaci, and Nihan Kesim Cicekli. BOFRF: A Novel Boosting-Based Federated
Random Forest Algorithm on Horizontally Partitioned Data. IEEE Access, 10:89835–89851, 2022. ISSN
2169-3536. doi:10.1109/ACCESS.2022.3202008.

Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, and Nathalie Villa-Vialaneix. Random Forests for
Big Data. Big Data Research, 9:28–46, September 2017. ISSN 2214-5796. doi:10.1016/j.bdr.2017.07.003.

Jiawei Han, Yanheng Liu, and Xin Sun. A scalable random forest algorithm based on MapReduce. In 2013
IEEE 4th International Conference on Software Engineering and Service Science, pp. 849–852. IEEE,
2013. doi:10.1109/ICSESS.2013.6615438.

Anne-Christin Hauschild, Marta Lemanczyk, Julian Matschinske, Tobias Frisch, Olga Zolotareva, Andreas
Holzinger, Jan Baumbach, and Dominik Heider. Federated Random Forests can improve local performance
of predictive models for various healthcare applications. Bioinformatics, 38(8):2278–2286, April 2022. ISSN
1367-4803. doi:10.1093/bioinformatics/btac065.

Song He, Jianhua Wu, Dan Wang, and Xiaodong He. Predictive modeling of groundwater nitrate pollution
and evaluating its main impact factors using random forest. Chemosphere, 290:133388, March 2022. ISSN
0045-6535. doi:10.1016/j.chemosphere.2021.133388.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford, Aditya
Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam McCandlish. Scaling
Laws for Autoregressive Generative Modeling, November 2020. arXiv:2010.14701 [cs].

14

https://doi.org/10.1016/j.renene.2018.08.044
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/TPDS.2016.2603511
https://doi.org/10.3390/genes10120996
https://doi.org/10.1016/j.inffus.2022.07.024
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/ACCESS.2022.3202008
https://doi.org/10.1016/j.bdr.2017.07.003
https://doi.org/10.1109/ICSESS.2013.6615438
https://doi.org/10.1093/bioinformatics/btac065
https://doi.org/10.1016/j.chemosphere.2021.133388

Under review as submission to TMLR

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the Effects of Non-Identical Data Distri-
bution for Federated Visual Classification, September 2019. arXiv:1909.06335 [cs].

Joseph Oscar Irwin. The frequency distribution of the difference between two independent variates following
the same poisson distribution. Journal of the Royal Statistical Society Series A: Statistics in Society, 100
(3):415–416, 1937.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language Models, January 2020.
arXiv:2001.08361 [cs, stat].

Pavleen Kaur, Ravinder Kumar, and Munish Kumar. A healthcare monitoring system using random forest
and internet of things (IoT). Multimedia Tools and Applications, 78(14):19905–19916, July 2019. ISSN
1573-7721. doi:10.1007/s11042-019-7327-8.

Mohammed Khalilia, Sounak Chakraborty, and Mihail Popescu. Predicting disease risks from highly im-
balanced data using random forest. BMC Medical Informatics and Decision Making, 11(1):51, July 2011.
ISSN 1472-6947. doi:10.1186/1472-6947-11-51.

Hong Li, Jiajian Lin, Xiaobao Lei, and Tianxia Wei. Compressive strength prediction of basalt fiber reinforced
concrete via random forest algorithm. Materials Today Communications, 30:103117, March 2022. ISSN
2352-4928. doi:10.1016/j.mtcomm.2021.103117.

Qinbin Li, Wu Zhaomin, Yanzheng Cai, Ching Man Yung, Tianyuan Fu, Bingsheng He, et al. FedTree: A
Federated Learning System for Trees. Proceedings of Machine Learning and Systems, 5:89–103, 2023.

Chao Liu, Zhaojun Gu, and Jialiang Wang. A Hybrid Intrusion Detection System Based on Scalable
K-Means+ Random Forest and Deep Learning. IEEE Access, 9:75729–75740, 2021. ISSN 2169-3536.
doi:10.1109/ACCESS.2021.3082147.

Yang Liu, Yingting Liu, Zhijie Liu, Yuxuan Liang, Chuishi Meng, Junbo Zhang, and Yu Zheng. Federated
forest. IEEE Transactions on Big Data, 8(3):843–854, 2020.

Zili Lu, Heng Pan, Yueyue Dai, Xueming Si, and Yan Zhang. Federated Learning With Non-IID
Data: A Survey. IEEE Internet of Things Journal, 11(11):19188–19209, June 2024. ISSN 2327-4662.
doi:10.1109/JIOT.2024.3376548.

Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. A state-of-the-art survey on solving
non-IID data in Federated Learning. Future Generation Computer Systems, 135:244–258, October 2022.
ISSN 0167-739X. doi:10.1016/j.future.2022.05.003.

Mehul Madaan, Aniket Kumar, Chirag Keshri, Rachna Jain, and Preeti Nagrath. Loan default prediction
using decision trees and random forest: A comparative study. IOP Conference Series: Materials Science
and Engineering, 1022(1):012042, January 2021. ISSN 1757-899X. doi:10.1088/1757-899X/1022/1/012042.
Publisher: IOP Publishing.

Tijana Markovic, Miguel Leon, David Buffoni, and Sasikumar Punnekkat. Random Forest Based on Feder-
ated Learning for Intrusion Detection. In Ilias Maglogiannis, Lazaros Iliadis, John Macintyre, and Paulo
Cortez (eds.), Artificial Intelligence Applications and Innovations, pp. 132–144, Cham, 2022. Springer
International Publishing. ISBN 978-3-031-08333-4. doi:10.1007/978-3-031-08333-4_11.

Saman Masarat, Saeed Sharifian, and Hassan Taheri. Modified parallel random forest for intrusion
detection systems. The Journal of Supercomputing, 72(6):2235–2258, June 2016. ISSN 1573-0484.
doi:10.1007/s11227-016-1727-6.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, pp. 1273–1282. PMLR, April 2017.
ISSN: 2640-3498.

15

https://doi.org/10.1007/s11042-019-7327-8
https://doi.org/10.1186/1472-6947-11-51
https://doi.org/10.1016/j.mtcomm.2021.103117
https://doi.org/10.1109/ACCESS.2021.3082147
https://doi.org/10.1109/JIOT.2024.3376548
https://doi.org/10.1016/j.future.2022.05.003
https://doi.org/10.1088/1757-899X/1022/1/012042
https://doi.org/10.1007/978-3-031-08333-4_11
https://doi.org/10.1007/s11227-016-1727-6

Under review as submission to TMLR

Eric Michaud, Ziming Liu, Uzay Girit, and Max Tegmark. The Quantization Model of Neural Scaling.
Advances in Neural Information Processing Systems, 36:28699–28722, December 2023.

U. Milasheuski, L. Barbieri, B. Camajori Tedeschini, M. Nicoli, and S. Savazzi. On the Impact of Data Het-
erogeneity in Federated Learning Environments with Application to Healthcare Networks. In 2024 IEEE
Conference on Artificial Intelligence (CAI), pp. 1017–1023, June 2024. doi:10.1109/CAI59869.2024.00185.

Lawrence Mitchell, Terence M Sloan, Muriel Mewissen, Peter Ghazal, Thorsten Forster, Michal Pi-
otrowski, and Arthur S Trew. A Parallel Random Forest Classifier for R. In Proceedings of the Sec-
ond International Workshop on Emerging Computational Methods for the Life Sciences, pp. 1–6, 2011.
doi:10.1145/1996023.1996024.

James N Morgan and Robert C Messenger. THAID, a sequential analysis program for the analysis of nominal
scale dependent variables, 1973.

James N. Morgan, , and John A. Sonquist. Problems in the Analysis of Survey Data, and a Pro-
posal. Journal of the American Statistical Association, 58(302):415–434, June 1963. ISSN 0162-1459.
doi:10.1080/01621459.1963.10500855.

Cuong Nguyen, Yong Wang, and Ha Nam Nguyen. Random forest classifier combined with feature selection
for breast cancer diagnosis and prognostic. 2013, May 2013. doi:10.4236/jbise.2013.65070. Publisher:
Scientific Research Publishing.

Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. How Many Trees in a Random
Forest? In Petra Perner (ed.), Machine Learning and Data Mining in Pattern Recognition, pp. 154–168,
Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-31537-4. doi:10.1007/978-3-642-31537-4_13.

Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. PLANET: massively parallel
learning of tree ensembles with MapReduce. Proc. VLDB Endow., 2(2):1426–1437, August 2009. ISSN
2150-8097. doi:10.14778/1687553.1687569.

Philipp Probst and Anne-Laure Boulesteix. To Tune or Not to Tune the Number of Trees in Random Forest.
Journal of Machine Learning Research, 18(181):1–18, 2018. ISSN 1533-7928.

J. Ross Quinlan. Induction of Decision Trees. Machine Learning, 1:81–106, 1986.

Paulo Angelo Alves Resende and André Costa Drummond. A Survey of Random Forest Based Methods
for Intrusion Detection Systems. ACM Comput. Surv., 51(3):48:1–48:36, May 2018. ISSN 0360-0300.
doi:10.1145/3178582.

Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. Sequential and Parallel
Algorithms and Data Structures: The Basic Toolbox. 1 edition, 2019. ISBN 978-3-030-25209-0.

Kennedy Senagi and Nicolas Jouandeau. Parallel construction of Random Forest on GPU. The Journal of
Supercomputing, 78(8):10480–10500, May 2022. ISSN 1573-0484. doi:10.1007/s11227-021-04290-6.

Utkarsh Sharma and Jared Kaplan. Scaling Laws from the Data Manifold Dimension. Journal of Machine
Learning Research, 23(9):1–34, 2022. ISSN 1533-7928.

Zebang Shen, Juan Cervino, Hamed Hassani, and Alejandro Ribeiro. An agnostic approach to federated
learning with class imbalance. In International Conference on Learning Representations, 2022.

Jingzhe Shi, Qinwei Ma, Huan Ma, and Lei Li. Scaling Law for Time Series Forecasting. Advances in Neural
Information Processing Systems, 37:83314–83344, December 2024.

John G Skellam. The frequency distribution of the difference between two poisson variates belonging to
different populations. Journal of the Royal Statistical Society Series A: Statistics in Society, 109(3):
296–296, 1946.

16

https://doi.org/10.1109/CAI59869.2024.00185
https://doi.org/10.1145/1996023.1996024
https://doi.org/10.1080/01621459.1963.10500855
https://doi.org/10.4236/jbise.2013.65070
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.14778/1687553.1687569
https://doi.org/10.1145/3178582
https://doi.org/10.1007/s11227-021-04290-6

Under review as submission to TMLR

Yu-Lin Tsou, Hong-Min Chu, Cong Li, and Shao-Wen Yang. Robust Distributed Anomaly Detection Using
Optimal Weighted One-Class Random Forests. In 2018 IEEE International Conference on Data Mining
(ICDM), pp. 1272–1277, November 2018. doi:10.1109/ICDM.2018.00171. ISSN: 2374-8486.

Hristos Tyralis, Georgia Papacharalampous, and Andreas Langousis. A Brief Review of Random Forests
for Water Scientists and Practitioners and Their Recent History in Water Resources. Water, 11(5):910,
May 2019. ISSN 2073-4441. doi:10.3390/w11050910. Number: 5 Publisher: Multidisciplinary Digital
Publishing Institute.

Mohammad S. Uddin, Guotai Chi, Mazin A. M. Al Janabi, and Tabassum Habib. Leveraging random
forest in micro-enterprises credit risk modelling for accuracy and interpretability. International Journal
of Finance & Economics, 27(3):3713–3729, 2022. ISSN 1099-1158. doi:10.1002/ijfe.2346.

Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. Accelerating a Random Forest
Classifier: Multi-Core, GP-GPU, or FPGA? In 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, pp. 232–239, April 2012. doi:10.1109/FCCM.2012.47.

Fernando Vázquez-Novoa, Javier Conejero, Cristian Tatu, and Rosa M. Badia. Scalable Random Forest
with Data-Parallel Computing. In José Cano, Marios D. Dikaiakos, George A. Papadopoulos, Miquel
Pericàs, and Rizos Sakellariou (eds.), Euro-Par 2023: Parallel Processing, pp. 397–410, Cham, 2023.
Springer Nature Switzerland. ISBN 978-3-031-39698-4. doi:10.1007/978-3-031-39698-4_27.

Ryoji Wakayama, Ryuei Murata, Akisato Kimura, Takayoshi Yamashita, Yuji Yamauchi, and Hironobu
Fujiyoshi. Distributed forests for MapReduce-based machine learning. In 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), pp. 276–280. IEEE, 2015.

Chenxu Wang, Tingting Cai, Guang Suo, Yutong Lu, and Enqiang Zhou. DistForest: A Parallel Random
Forest Training Framework Based on Supercomputer. In 2018 IEEE 20th International Conference on
High Performance Computing and Communications; IEEE 16th International Conference on Smart City;
IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 196–204,
June 2018. doi:10.1109/HPCC/SmartCity/DSS.2018.00057.

Sutong Wang, Yuyan Wang, Dujuan Wang, Yunqiang Yin, Yanzhang Wang, and Yaochu Jin. An improved
random forest-based rule extraction method for breast cancer diagnosis. Applied Soft Computing, 86:
105941, January 2020. ISSN 1568-4946. doi:10.1016/j.asoc.2019.105941.

Daniel Whiteson. HIGGS, 2014. URL https://archive.ics.uci.edu/dataset/280.

Marvin N. Wright and Andreas Ziegler. ranger: A Fast Implementation of Random Forests for High Di-
mensional Data in C++ and R. Journal of Statistical Software, 77:1–17, March 2017. ISSN 1548-7660.
doi:10.18637/jss.v077.i01.

Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi. Privacy preserving vertical
federated learning for tree-based models. Proc. VLDB Endow., 13(12):2090–2103, July 2020. ISSN 2150-
8097. doi:10.14778/3407790.3407811.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated Machine Learning: Concept and
Applications. ACM Trans. Intell. Syst. Technol., 10(2):12:1–12:19, January 2019. ISSN 2157-6904.
doi:10.1145/3298981.

Chuanting Zhang and Dongfeng Yuan. Fast Fine-Grained Air Quality Index Level Prediction Using Random
Forest Algorithm on Cluster Computing of Spark. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence
and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE
15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-
ScalCom), pp. 929–934, August 2015. doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177.

17

https://doi.org/10.1109/ICDM.2018.00171
https://doi.org/10.3390/w11050910
https://doi.org/10.1002/ijfe.2346
https://doi.org/10.1109/FCCM.2012.47
https://doi.org/10.1007/978-3-031-39698-4_27
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00057
https://doi.org/10.1016/j.asoc.2019.105941
https://archive.ics.uci.edu/dataset/280
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.14778/3407790.3407811
https://doi.org/10.1145/3298981
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.177

Under review as submission to TMLR

A Appendix

A.1 Distributed Random Forests – Pseudocode

Algorithm 1 summarizes the tree-parallel training of distributed random forests. Algorithms 2 and 3 describe
the two variants for inference, either aggregating a global model or using global voting for distributed
inference.

Algorithm 1: Training of local subforest on each compute node.
Input: Local training data Dlocal, number of global trees tglobal, number of compute nodes p

1 tlocal ← tglobal/p ▷ Global forest distributed over nodes
2 Flocal ← randomforest(tlocal) ▷ Create independent local subforest
3 foreach T ∈ Flocal do in parallel ▷ Shared-memory parallelization within each node
4 grow(T, Dlocal)

Algorithm 2: Aggregation of the global model and local inference.
Input: Local inference data D, local forest Flocal

1 Fglobal ← all_gather(Flocal) ▷ Collect global model, only once after training
2 return Fglobal. predict(D) ▷ Local inference on global model

Algorithm 3: Inference with the distributed model via global voting.
Input: Shared inference data D, local forest Flocal

1 hlocal ← Flocal. predict_histogram(D) ▷ Collect local predictions as histogram
2 hglobal ← all_reduce(hlocal) ▷ Sum local histograms
3 return argmax(hglobal) ▷ Global prediction is the most-voted class

A.2 Experimental Setup

A.2.1 Implementation

We implement the distributed random forest in Python using scikit-learn and MPI. Each node-local sub-
forest is a scikit-learn RandomForestClassifier and trained via the fit method, passing in local training
data and labels to train each individual decision tree in the ensemble. For shared-memory parallelization,
we enable scikit-learn’s parallelization in the local subforests via the n_jobs parameter. All-gathering
the global model and aggregating the local histograms for global voting is implemented in mpi4py. We train
random forests of different sizes, varying the number of trees t but keeping to the default hyperparameters
defined by scikit-learn. Our code is open-source and publicly available at [link omitted for anonymization].

A.2.2 Computational Environment

All experiments were conducted on up to 64 compute nodes, each of which has two Intel Xeon Platinum 8368
processors for a total of 76 cores, 64 kB L1 and 1 MB L2 cache per core, and 57 MB L3 cache per processor.
Most experiments used standard compute nodes with 256 GB main memory. The exception is the serial
baseline for the strong scaling experiments, which used high-memory nodes with 512 GB main memory but
otherwise identical hardware to fit the model and data. All nodes are connected with InfiniBand 4X HDR
200 Gbit/s interconnect. All experiments used OpenMPI v4.1.6, Python v3.11.2, mpi4py v4.0.1, numpy v2.2.2,
scikit-learn v1.6.1, and scipy v1.15.1.

18

Under review as submission to TMLR

A.3 Detailed Results on Scaling Laws of Random Forests

Tables 2 and 3 give the results illustrated in Figure 1 in tabular format.

Table 2: The predictive performance in test accuracy when scaling the total number of trees t = λ · t1 for
two baselines 1M with t1 = 25 and 10M with t1 = 7.

1M 10M
λ n t1 Trees t Accuracy : n t1 Trees t Accuracy :

1 7.5× 105 25 25 0.136 7.5× 106 7 7 0.490
2 7.5× 105 25 50 0.152 7.5× 106 7 14 0.632
4 7.5× 105 25 100 0.176 7.5× 106 7 28 0.767
8 7.5× 105 25 200 0.213 7.5× 106 7 56 0.862

16 7.5× 105 25 400 0.271 7.5× 106 7 112 0.915
32 7.5× 105 25 800 0.357 7.5× 106 7 224 0.941
32 7.5× 105 25 800 0.358 7.5× 106 7 224 0.941
64 7.5× 105 25 1600 0.476 7.5× 106 7 448 0.953
64 7.5× 105 25 1600 0.476 7.5× 106 7 448 0.953

128 7.5× 105 25 3200 0.613 7.5× 106 7 896 0.958
256 7.5× 105 25 6400 0.736 7.5× 106 7 1792 0.961
512 7.5× 105 25 12 800 0.820 7.5× 106 7 3584 0.962

1024 7.5× 105 25 25 600 0.867 7.5× 106 7 7168 0.963
2048 7.5× 105 25 51 200 0.892 7.5× 106 7 14 336 0.963

Table 3: The predictive performance in test accuracy when scaling the total number of trees t = λ · t1 with
or without data scaling. With data scaling, the number of training samples grows with λ as n = λ · n1.
Without data scaling, the training set does not grow with λ, remaining at a constant n = n1.

With Data Scaling Without Data Scaling
n1 t1 λ Trees t n Accuracy : n = n1 Accuracy :

1.2× 104 25 1 25 1.2× 104 0.111 1.2× 104 0.111
1.2× 104 25 2 50 2.3× 104 0.116 1.2× 104 0.113
1.2× 104 25 4 100 4.7× 104 0.129 1.2× 104 0.117
1.2× 104 25 8 200 9.4× 104 0.165 1.2× 104 0.127
1.2× 104 25 16 400 1.9× 105 0.214 1.2× 104 0.145
1.2× 104 25 32 800 3.8× 105 0.315 1.2× 104 0.160
1.2× 104 25 64 1600 7.5× 105 0.474 1.2× 104 0.188
1.2× 105 7 1 7 1.2× 105 0.276 1.2× 105 0.276
1.2× 105 7 2 14 2.3× 105 0.415 1.2× 105 0.357
1.2× 105 7 4 28 4.7× 105 0.588 1.2× 105 0.471
1.2× 105 7 8 56 9.4× 105 0.767 1.2× 105 0.600
1.2× 105 7 16 112 1.9× 106 0.882 1.2× 105 0.721
1.2× 105 7 32 224 3.8× 106 0.933 1.2× 105 0.810
1.2× 105 7 64 448 7.5× 106 0.953 1.2× 105 0.862

19

Under review as submission to TMLR

A.4 Detailed Results on Parallel Scalability

Tables 4 and 5 give the results presented in Section 5 in tabular format.

Table 4: Comparison of the two inference variants either aggregating the global model or using distributed
inference via global voting in a weak scaling setup, giving the parallel training time Ttrain(p), time to aggregate
the global model Tgather(p), and time to perform inference on the entire test set Ttest(p). Note that the global
model performs sequential inference on a single node, while the inference with global voting is parallelized
across p nodes. We further include the memory consumption (Mem) per node. When aggregating a global
model, the memory consumption per node scales with the global model size t, while with global voting, it
scales only with the local model size t/p.

Global Model Global Voting
p t t/p Ttrain(p) : Tgather(p) : Ttest(p) : Mem :

Ttrain(p) : Ttest(p) : Mem :
10

0K

2 152 76 5.776 s 0.550 s 0.179 s 3.3 GiB 5.677 s 0.110 s 2.5 GiB
4 304 76 5.588 s 3.673 s 0.307 s 4.2 GiB 5.584 s 0.115 s 2.6 GiB
8 608 76 5.677 s 6.052 s 0.558 s 6.0 GiB 5.632 s 0.123 s 2.6 GiB

16 1216 76 5.753 s 7.756 s 1.059 s 9.7 GiB 5.739 s 0.112 s 2.5 GiB
32 2432 76 5.944 s 14.592 s 2.047 s 17.0 GiB 6.022 s 0.123 s 2.6 GiB
64 4864 76 6.412 s 23.226 s 4.015 s 31.5 GiB 6.514 s 0.122 s 2.8 GiB

1M
-b

2 152 76 30.119 s 4.748 s 0.908 s 10.4 GiB 30.396 s 0.523 s 6.4 GiB
4 304 76 30.244 s 6.135 s 1.672 s 14.9 GiB 30.100 s 0.527 s 8.1 GiB
8 608 76 30.051 s 13.004 s 3.206 s 24.2 GiB 30.002 s 0.545 s 8.6 GiB

16 1216 76 30.327 s 23.451 s 6.313 s 44.2 GiB 30.280 s 0.545 s 6.7 GiB
32 2432 76 30.519 s 42.331 s 12.504 s 82.6 GiB 30.632 s 0.546 s 7.0 GiB
64 4864 76 31.089 s 115.327 s 25.889 s 159.8 GiB 31.016 s 0.546 s 6.6 GiB

Table 5: The global training time T (p), speedup S(p), and accuracy for p = 1, . . . , 64 nodes when distributing
the training data, i.e., each node trains t/p trees on n/p local training samples.

Nodes p Trees t t/p n/p T (p) : S(p) : Accuracy :

1M

1 1600 1600 7.5× 105 5923.104 s 1.000 0.476
2 1600 800 3.8× 105 1361.426 s 4.351 0.420
4 1600 400 1.9× 105 331.704 s 17.857 0.365
8 1600 200 9.4× 104 79.640 s 74.373 0.315

16 1600 100 4.7× 104 22.113 s 267.854 0.269
32 1600 50 2.3× 104 5.848 s 1012.908 0.232
64 1600 25 1.2× 104 2.534 s 2337.587 0.196

10
M

1 448 448 7.5× 106 8067.080 s 1.000 0.953
2 448 224 3.8× 106 1331.368 s 6.059 0.942
4 448 112 1.9× 106 350.751 s 22.999 0.929
8 448 56 9.4× 105 86.204 s 93.581 0.913

16 448 28 4.7× 105 28.089 s 287.201 0.892
32 448 14 2.3× 105 11.861 s 680.150 0.868
64 448 7 1.2× 105 5.584 s 1444.747 0.838

20

Under review as submission to TMLR

A.5 Additional Details on the Effects of Class Imbalance

Figures 10 and 11 give the predictive performance with differing class imbalance using two additional metrics.
The micro average of the accuracy weighs each sample with the same importance, thus placing a greater
importance on majority classes. This effect can be observed in Figure 10 where the accuracy increases at
strong imbalance as the majority class makes up an increasing share of all samples, especially in subfigure
(b). Figure 11 gives the Cohen’s kappa score

κ = po − pe

1− pe

comparing the observed agreement po between prediction and true label to the expected agreement pe based
on the underlying class imbalance.

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(a) 100K-Dataset

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(b) 1M-Dataset

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

A
cc

ur
ac

y

:
H

ig
he

ri
s

be
tte

r

(c) 10M-Dataset

µpartition

∞
10
5
2
1
0.5

Figure 10: The (micro-average) accuracy for different combinations of class imbalance in the global data
(µdata) and the local subsets (µpartition).

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

C
oh

en
’s

K
ap

pa
κ

:
H

ig
he

ri
s

be
tte

r

(a) 100K-Dataset

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

C
oh

en
’s

K
ap

pa
κ

:
H

ig
he

ri
s

be
tte

r

(b) 1M-Dataset

∞ 10 5 2 1 0.5
µdata

0%

25%

50%

75%

100%

C
oh

en
’s

K
ap

pa
κ

:
H

ig
he

ri
s

be
tte

r

(c) 10M-Dataset

µpartition

∞
10
5
2
1
0.5

Figure 11: The Cohen’s Kappa κ for different combinations of class imbalance in the global data (µdata) and
the local subsets (µpartition).

To further investigate the beneficial effect of partition imbalance, we provide a more detailed examination of
the predictive performance on imbalanced data. Figures 12 and 13 give global and local confusion matrices for
µdata = 2, comparing a balanced partition with µpartition =∞ and an imbalanced partition with µpartition = 1.
Figure 12 presents the confusion matrix of the global model and an exemplary local model (for node eight,
using a balanced data partition). While the majority classes are retrieved mostly correctly, the global model
struggles to detect the minority classes. As the data partition is balanced, all subforests are trained using the
same class imbalance (that of the global data µdata). As a result, all local subforests fail to detect the rare
classes. Figure 13 gives the corresponding global and local confusion matrices, but using an imbalanced data
partition with µpartition = 1. The class distribution used to train the local subforests thus varies significantly
from the global distribution. While this can reduce the predictive performance of individual subforests on
the global test set, it strengthens the performance of the collective ensemble. In contrast to the balanced
data partition, a non-IID data partition can increase the diversity between the local subforests, thereby
improving the performance of the global ensemble. Table 6 gives the predictive performance of the global
and local models with µdata = 2 and µpartition =∞ compared to µpartition = 1.

21

Under review as submission to TMLR

Global Model Local Model

0 1 2 3 4 5 6 7 8 9
Prediction

0
1
2
3
4
5
6
7
8
9

Tr
ue

L
ab

el

21%

18%

10%

1%

0%

0%

0%

1%

10%

17%

0 1 2 3 4 5 6 7 8 9
Prediction

0
1
2
3
4
5
6
7
8
9

Tr
ue

L
ab

el

21%

17%

9%

1%

0%

0%

0%

1%

9%

17%
0%

10%

20%

30%

40%

0% 25%

Class Distribution
Prediction

0%

25%

0%

25%

Class Distribution
Training

0%

25%

0%

25%

Class Distribution
Test

Figure 12: The confusion matrix of the global model (left) and the local model on node eight (right) using
imbalanced data with µdata = 2 and balanced data partition with µpartition =∞. We also provide the class
distribution of the global test set, the global and local training sets, and the predictions of the global and
local models. The class distribution of the local model is identical to the global distribution, and both fail
at detecting the minority classes 3 to 7.

Table 6: The predictive performance with µdata = 2 and IID (µpartition =∞) or non-IID (µpartition = 1) data
for both the global model and as average over all local models. While the local models trained on non-IID
data perform worse individually, their ensemble outperforms the training on IID data thanks to increased
diversity between the subforests.

µpartition =∞ µpartition = 1
Metric Global Model Local Models Global Model Local Models

Accuracy 0.761 0.745 0.826 0.432
Balanced Accuracy 0.473 0.462 0.560 0.331

Cohen’s Kappa 0.711 0.691 0.791 0.346

22

Under review as submission to TMLR

Global Model Local Model

0 1 2 3 4 5 6 7 8 9
Prediction

0
1
2
3
4
5
6
7
8
9

Tr
ue

L
ab

el

21%

18%

11%

2%

0%

0%

0%

3%

11%

17%

0 1 2 3 4 5 6 7 8 9
Prediction

0
1
2
3
4
5
6
7
8
9

Tr
ue

L
ab

el
0%

0%

5%

6%

2%

0%

2%

6%

5%

0%
0%

10%

20%

30%

40%

0% 25%

Class Distribution
Prediction

0%

25%

0%

25%

Class Distribution
Training

0%

25%

0%

25%

Class Distribution
Test

Figure 13: The confusion matrix of the global model (left) and the local model on node eight (right) using
imbalanced data with µdata = 2 and an imbalanced data partition with µpartition = 1. We also provide the
class distribution of the global test set, the global and local training sets, and the predictions of the global
and local models. The class distribution of the local model differs significantly from the global distribution.
The increased diversity between the local models slightly improves the detection of minority classes compared
to the balanced partition in Figure 12.

23

	Introduction
	Related Work
	Background
	Random Forests

	Distributed Random Forests
	Empirical Results
	Datasets
	Scalability of Distributed Training
	Scalability of Distributed Inference
	Training with Distributed Data
	Breaking the IID Assumption

	Conclusion
	Appendix
	Distributed Random Forests – Pseudocode
	Experimental Setup
	Implementation
	Computational Environment

	Detailed Results on Scaling Laws of Random Forests
	Detailed Results on Parallel Scalability
	Additional Details on the Effects of Class Imbalance

