
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Paths-over-Graph: Knowledge Graph Enpowered Large Language
Model Reasoning

Anonymous Author(s)

ABSTRACT
Large Language Models (LLMs) have achieved impressive results

in various tasks but struggle with hallucination problems and lack

of relevant knowledge, especially in deep complex reasoning and

knowledge-intensive tasks. Knowledge Graphs (KGs), which cap-

ture vast amounts of facts in a structured format, offer a reliable

source of knowledge for reasoning. However, existing KG-based

LLM reasoning methods face challenges like handling multi-hop

reasoning, multi-entity questions, and effectively utilizing graph

structures. To address these issues, we propose Paths-over-Graph

(PoG), a novel method that enhances LLM reasoning by integrating

knowledge reasoning paths from KGs, improving the interpretabil-

ity and faithfulness of LLM outputs. PoG tackles multi-hop and

multi-entity questions through a three-phase dynamic multi-hop

path exploration, which combines the inherent knowledge of LLMs

with factual knowledge from KGs. In order to improve the efficiency,

PoG prunes irrelevant information from the graph exploration first

and introduces efficient three-step pruning techniques that incor-

porate graph structures, LLM prompting, and a pre-trained lan-

guage model (e.g., SBERT) to effectively narrow down the explored

candidate paths. This ensures all reasoning paths contain highly

relevant information captured from KGs, making the reasoning

faithful and interpretable in problem-solving. PoG innovatively

utilizes graph structure to prune the irrelevant noise and represents

the first method to implement multi-entity deep path detection on

KGs for LLM reasoning tasks. Comprehensive experiments on five

benchmark KGQA datasets demonstrate PoG outperforms the state-

of-the-art method ToG across GPT-3.5-Turbo and GPT-4, achieving

an average accuracy improvement of 18.9%. Notably, PoG with

GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.

ACM Reference Format:
Anonymous Author(s). 2018. Paths-over-Graph: Knowledge Graph En-

powered Large Language Model Reasoning. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 17 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Large Language Models (LLMs) have demonstrated remarkable per-

formance in various tasks [4, 6, 8, 37]. These models leverage pre-

training techniques by scaling to billions of parameters and training

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

Question: What country bordering France contains an airport that serves Nijmegen?

GPT-3.5/GPT-4 LLM
Only Belgium

LLM enpowered KG
exploration search

(Chain of Thoughts prompt): Let's step by step.
Response: Nijmegen is served by airports in the neighboring countries, and one of the closest
major ones is Brussels Airport (BRU) in Belgium, which is relatively near Nijmegen compared to
other major airports. The answer is Belgium.

France

Nijmegen
Netherlands

(ToG): Exlporated triples: [France, location.location.containedby, Europe], [France,
location.location.containedby, Western Europe], [France, location.location.geolocation, Unnamed
Entity],[Nijmegen, second_level_division, Netherland]
Answering: First, Nijmegen is a city in the Netherlands. Second, the Netherlands is a country
bordering France.The answer is {Netherlands}

LLM enpowered KG
Subgraph answering

Refuse to
answering

(MindMap): MindMap cannot prompt LLM to construct a graph and generate the graph descript
document since the retrieved subgraph is extremely large and dense.

+ +

PoG

+

+ ... +

Question Analysis

Subgraph Detection

Reasoning Path
Exploration

Reasoning Path
Pruning

Germany

(PoG) Reasoning paths:

Response: from the provided knowledge graph path, the entity {Germany} is the country that
contains an airport serving Nijmegen and is also the country bordering France. Therefore, the
answer to the main question "What country bordering France contains an airport that serves
Nijmegen?" is {Germany}.

+ KG Triples

(a)

(b)

(c)

(d)

Figure 1: Representative workflow of four LLM reasoning
paradigms

on extensive, diverse, and unlabeled data [31, 37]. Despite these im-

pressive capabilities, LLMs face two well-known challenges. First,

they struggle with deep and responsible reasoning when tackling

complex tasks [19, 30, 36]. Second, the substantial cost of training

makes it difficult to keep models updated with the latest knowledge

[34, 41], leading to errors when answering questions that require

specialized information not included in their training data. For

example, in Figure 1(a), though models like GPT can generate rea-

sonable answers for knowledge-specific questions, these answers

may be incorrect due to outdated information or hallucination of

reasoning on LLMs inherent Knowledge Base (KB).

To deal with the problems of error reasoning and knowledge

gaps, the plan-retrieval-answering method has been proposed

[23, 25, 48]. In this approach, LLMs are prompted to decompose

complex reasoning tasks into a series of sub-tasks, forming a plan.
Simultaneously, external KBs are retrieved to answer each step of

the plan. However, this method still has the issue of heavily relying

on the reasoning abilities of LLMs rather than the faithfulness

of the retrieved knowledge. The generated reasoning steps guide

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

information selection, but answers are chosen based on the LLM’s

interpretation of the retrieved knowledge rather than on whether

the selection leads to a correct and faithful answer.

To address these challenges, incorporating external knowledge

sources like Knowledge Graphs (KGs) is a promising solution to

enhance LLM reasoning [24, 25, 27, 34]. KGs offer abundant factual

knowledge in a structured format, serving as a reliable source to

improve LLM capabilities. Knowledge Graph Question Answering

(KGQA) serves as an approach for evaluating the integration of KGs

with LLMs, which requires machines to answer natural language

questions by retrieving relevant facts from KGs. These approaches

typically involve: (1) identifying the initial entities from the ques-

tion, and (2) iteratively retrieving and refining inference paths until

sufficient evidence has been obtained. Despite their success, they

still face challenges such as handling multi-hop reasoning problems,

addressing questions with multiple topic entities, and effectively

utilizing the structural information of graphs.

Challenge 1: Multi-hop reasoning problem. Current methods [16,

26, 34, 44], such as the ToG model presented in Figure 1(b), begin

by exploring from each topic entity, with LLMs selecting connected

knowledge triples like (France, contained_by, Europe). This
process relies on the LLM’s inherent understanding of these triples.

However, focusing on one-hop neighbors can result in plausible but

incorrect answers and prematurely exclude correct ones, especially

when multi-hop reasoning is required. Additionally, multi-hop rea-

soning introduces significant computational overhead, making effi-

cient pruning essential, especially in dense and large KGs.

Challenge 2: Multi-entity question. As shown in Figure 1(b), exist-

ing work [16, 26, 34, 44] typically explores KG for each topic entity

independently. When a question involves multiple entities, these

entities are examined in separate steps without considering their

interconnections. This approach can result in a large amount of

irrelevant information in the candidate set that does not connect to

the other entities in the question, leading to suboptimal results.

Challenge 3: Utilizing graph structure. Existing methods [7, 14, 41]

often overlook the inherent graph structures when processing re-

trieved subgraphs. For example, the MindMap model in Figure 1(c)

utilizes LLMs to generate text-formatted subgraphs from KG triples,

converting them into graph descriptions that are fed back into the

LLM to produce answers. This textual approach overlooks the in-

herent structural information of graphs and can overwhelm the

LLMwhen dealing with large graphs. Additionally, during KG infor-

mation selection, most methods use in-context learning by feeding

triples into the LLM, ignoring the overall graph structure.

Contributions. In this paper, we introduce a novel method, Paths-
over-Graph (PoG). Unlike previous studies that utilize knowledge
triples for retrieval [26, 34], PoG employs knowledge reasoning

paths, that contained all the topic entities in a long reasoning length,

as a retrieval-augmented input for LLMs. The paths in KGs serve

as logical reasoning chains, providing KG-supported, interpretable

reasoning logic that addresses issues related to the lack of specific

knowledge background and unfaithful reasoning paths.

To address multi-hop reasoning problem, as shown in Figure 1(d),

PoG first performs question analysis, to extract topic entities from

questions. Utilizing these topic entities, it decomposes the com-

plex question into sub-questions and generates an LLM thinking

indicator termed "Planning". This planning not only serves as an

answering strategy but also predicts the implied relationship depths

between the answer and each topic entity. The multi-hop paths are

then explored starting from a predicted depth, enabling a dynamic

search process. Previous approaches using planing usually retrieve
information from scratch, which often confuse LLMs with source

neighborhood-based semantic information. In contrast, our method

ensures that LLMs follow accurate reasoning paths that directly

lead to the answer.

To address multi-entity questions, PoG employs a three-phase ex-

ploration process to traverse reasoning paths from the retrieved

question subgraph. All paths must contain all topic entities in the

same order as they occur in the LLM thinking indicator. In terms of

reasoning paths in KGs, all paths are inherently logical and faithful.

Each path potentially contains one possible answer and serves as

the interpretable reasoning logic. The exploration leverages the

inherent knowledge of both LLM and KG.

To effectively utilize graph structure, PoG captures the question

subgraph by expanding topic entities to their maximal depth neigh-

bors, applying graph clustering and reduction to reduce graph

search cost. In the path pruning phase, we select possible correct

answers from numerous candidates. All explored paths undergo a

three-step beam search pruning, integrating graph structures, LLM

prompting, and a pre-trained language understanding model (e.g.,

BERT) to ensure effectiveness and efficiency. Additionally, inspired

by the Graph of Thought (GoT) [4], to reduce LLM hallucination,

PoG prompts LLMs to summarize the obtained Top-𝑊max paths

before evaluating the answer, where𝑊max is a user-defined maxi-

mum width in the path pruning phase. In summary, the advantage

of PoG can be abbreviated as:

• Dynamic deep search: Guided by LLMs, PoG dynamically ex-

tracts multi-hop reasoning paths from KGs, enhancing LLM ca-

pabilities in complex knowledge-intensive tasks.

• Interpretable and faithful reasoning: By utilizing highly

question-relevant knowledge paths, PoG improves the inter-

pretability of LLM reasoning, enhancing the faithfulness and

question-relatedness of LLMs-generated content.

• Efficient pruning with graph structure integration: PoG
incorporates efficient pruning techniques in both the KG and

reasoning paths to reduce computational costs, mitigate LLM

hallucinations caused by irrelevant noise, and effectively narrow

down candidate answers.

• Flexibility and effectiveness: a) PoG is a plug-and-play frame-

work that can be seamlessly applied to various LLMs and KGs.

b) PoG allows frequent knowledge updates via the KG, avoid-

ing the expensive and slow updates required for LLMs. c) PoG

reduces the LLMs token usage by over 50% with only a ±2% dif-

ference in accuracy compared to the best-performing strategy.

d) PoG achieves state-of-the-art results on all the tested KGQA

datasets, outperforming the strong baseline ToG by an average

of 18.9% accuracy using both GPT-3.5 and GPT-4. Notably, PoG

with GPT-3.5 can outperform ToG with GPT-4 by up to 23.9%.

2 RELATEDWORK
KG-based LLM reasoning. KGs provide structured knowledge

valuable for integrationwith LLMs [27]. Early studies [23, 25, 28, 46]

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

embed KG knowledge into neural networks during pre-training or

fine-tuning, but this can reduce explainability and hinder efficient

knowledge updating [27]. Recent methods combine KGs with LLMs

by converting relevant knowledge into textual prompts, often ig-

noring structural information [27, 41]. Advanced works [17, 26, 34]

involve LLMs directly exploring KGs, starting from an initial entity

and iteratively retrieving and refining reasoning paths until the

LLM decides the augmented knowledge is sufficient. However, by

starting from a single vertex and ignoring the question’s position

within the KG’s structure, these methods overlook multiple topic

entities and the explainability provided by multi-entity paths.

Reasoning with LLM prompting. LLMs have shown significant

potential in solving complex tasks through effective prompting

strategies. Chain of Thought (CoT) prompting [40] enhances rea-

soning by following logical steps in few-shot learning. Extensions

like Auto-CoT [47], Complex-CoT [10], CoT-SC [39], Zero-Shot

CoT [21], ToT [42], and GoT [4] build upon this approach. However,

these methods often rely solely on knowledge present in training

data, limiting their ability to handle knowledge-intensive or deep

reasoning tasks. To solve this, some studies integrate external KBs

using plan-and-retrieval methods such as CoK [23], RoG [25], and

ReAct [43], decomposing complex questions into subtasks to re-

duce hallucinations. However, they may focus on the initial steps of

sub-problems and overlook further steps of final answers, leading

to locally optimal solutions instead of globally optimal ones. To

address these deep reasoning challenges, we introduce dynamic

multi-hop question reasoning. By adaptively determining reason-

ing depths for different questions, we enable the model to handle

varying complexities effectively.

KG information pruning. KGs contain vast amounts of facts [15],

making it impractical to involve all relevant triples in the context

of the LLM due to high costs and potential noise [38]. Existing

methods [17, 26, 34] typically identify initial entities and iteratively

retrieve reasoning paths until an answer is reached, often treating

the LLM as a function executor and relying on in-context learning

or fine-tuning, which is expensive. Some works attempt to reduce

pruning costs. KAPING [2] projects questions and triples into the

same semantic space to retrieve relevant knowledge via similar-

ity measures. KG-GPT [20] decomposes multi-hop questions into

sub-questions, matches entity relations, and selects top-𝑘 relevant

relations to form evidence triples. Similarly, KGR [13] splits re-

trieved triples into chunks and uses LLMs to identify critical ones.

However, these methods often overlook the overall graph structure

and the interrelations among multiple topic entities, leading to

suboptimal pruning and reasoning performance.

3 PRELIMINARY
Consider a Knowlegde Graph (KG) G(E,R,T), where E, R and T
represent the set of entities, relations, and knowledge triples, respec-

tively. Each knowledge triple𝑇 ∈ T encapsulates the factual knowl-

edge in G, and is represented as 𝑇 = (𝑒ℎ, 𝑟 , 𝑒𝑡), where 𝑒ℎ, 𝑒𝑡 ∈ E
and 𝑟 ∈ R. Given an entity set ES ⊆ E, the induced subgraph of

ES is denoted as S = (ES,RS,TS), where T𝑆 = {(𝑒, 𝑟, 𝑒′) ∈ T |
𝑒, 𝑒′ ∈ E𝑆 }, and R𝑆 = {𝑟 ∈ R | (𝑒, 𝑟, 𝑒′) ∈ T𝑆 }. Furthermore, we

denote D(𝑒) and D(𝑟) as the sets of short textual descriptions for

each entity 𝑒 ∈ E and each relation 𝑟 ∈ R, respectively. For exam-

ple, the text description of the entity “m.0f8l9c” is D(“m.0f8l9c”)=

“France”. For simplicity, in this paper, all entities and relations are

referenced through their D representations and transformed into

natural language.

Definition 1 (Reasoning Path). Given a KGG, a reasoning path
withinG is defined as a connected sequence of knowledge triples, repre-
sented as: 𝑝𝑎𝑡ℎG (𝑒1, 𝑒𝑙+1) = {𝑇1,𝑇2, ...,𝑇𝑙 } = {(𝑒1, 𝑟1, 𝑒2), (𝑒2, 𝑟2, 𝑒3)
, ..., (𝑒𝑙 , 𝑟𝑙 , 𝑒𝑙+1)} , where 𝑇𝑖 ∈ T denotes the 𝑖-th triple in the path
and 𝑙 denotes the length of the path, i.e., 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝𝑎𝑡ℎG (𝑒1, 𝑒𝑙+1)) = 𝑙 .

Example 1. Consider a reasoning path between the entity "Uni-
versity" and the entity "Student" in a KG. The reasoning path is given
by: 𝑝𝑎𝑡ℎG (University, Student) = {(University, employs, Professor),
(Professor, teaches, Course), (Course, enrolled_in, Student)}, and can
be visualized as:

University
employs
−−−−−−→ Professor

teaches−−−−−→ Course
enrolled_in−−−−−−−−−→ Student.

This path indicates that a “University" employs a “Professor," who
teaches a “Course," in which a "Student" is enrolled. The length of the
path is 3.

For any entity 𝑠 and 𝑡 in G, if there exists a reasoning path

between 𝑠 and 𝑡 , we say 𝑠 and 𝑡 can reach each other, denoted as

𝑠 ↔ 𝑡 . The distance between 𝑠 and 𝑡 in G, denoted as 𝑑𝑖𝑠𝑡G (𝑠, 𝑡),
is the shortest reasoning path distance between 𝑠 and 𝑡 . For the

non-reachable vertices, their distance is infinite. Given a positive

integer ℎ, the ℎ-hop neighbors of an entity 𝑠 in G is defined as

𝑁G (𝑠, ℎ) = {𝑡 ∈ E|𝑑𝑖𝑠𝑡G (𝑠, 𝑡) ≤ ℎ}.

Definition 2 (Entity Path). Given a KG G and a list of entities
𝑙𝑖𝑠𝑡𝑒 = [𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑙], the entity path of 𝑙𝑖𝑠𝑡𝑒 is defined as a con-
nected sequence of reasoning paths, which is denoted as 𝑝𝑎𝑡ℎG (𝑙𝑖𝑠𝑡𝑒)
= {𝑝𝑎𝑡ℎG (𝑒1, 𝑒2), 𝑝𝑎𝑡ℎG (𝑒2, 𝑒3), . . . , 𝑝𝑎𝑡ℎG (𝑒𝑙−1, 𝑒𝑙)} = {(𝑒𝑠 , 𝑟 , 𝑒𝑡)
| (𝑒𝑠 , 𝑟 , 𝑒𝑡) ∈ 𝑝𝑎𝑡ℎG (𝑒𝑖 , 𝑒𝑖+1) ∧ 1 ≤ 𝑖 < 𝑙}.

Knowledge Graph Question Answering (KGQA) is a fundamental

reasoning task based on KGs. Given a natural language question

𝑞 and a KG G, the objective is to devise a function 𝑓 that predicts

answers 𝑎 ∈ 𝐴𝑛𝑠𝑤𝑒𝑟 (𝑞) utilizing knowledge encapsulated in G,
i.e., 𝑎 = 𝑓 (𝑞,G). Consistent with previous research [25, 26, 33, 34],

we assume the topic entities 𝑇𝑜𝑝𝑖𝑐 (𝑞) mentioned in 𝑞 and answer

entities 𝐴𝑛𝑠𝑤𝑒𝑟 (𝑞) in ground truth are linked to the corresponding

entities in G, i.e., 𝑇𝑜𝑝𝑖𝑐 (𝑞) ⊆ E and 𝐴𝑛𝑠𝑤𝑒𝑟 (𝑞) ⊆ E.

4 METHOD
PoG implements the “KG-based LLM Reasoning" by first exploring

all possible faithful reasoning paths and then collaborating with

LLM to perform a 3-step beam search selection on the retrieved

paths. Compared to previous approaches [26, 34], our model fo-

cuses on providing more accurate and question-relevant retrieval-

argument graph information. The framework of PoG is outlined in

Figure 2, comprising four main components.

• Initialization. The process begins by identifying the set of topic
entities from the question input, and then queries the source

KG G by exploring up to 𝐷max-hop from each topic entity to

construct the evidence sub-graph G𝑞 , where 𝐷max is the user-

defined maximum exploration depth. Subsequently, we prompt

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Indicator

Paths_Set

Fuzzy Selection

location.administrative_division,
containedby

nearby
airportsNijmegen France

olympic.
athletesNetherlands athlete.

affiliation
UnnamedEntity, ...

participating
countries

 2000, 2002.1924
Olympics

country

containedby Kingdom of the
Netherlands

time
zones

 Veghel,Strijen,
Rhenen,Oostzaan

in_this
time_zone

 Central European
Time Zone

contain

 Europe, Western
Europe

containedby

airport_typeWeeze
Airport

continent

adjoin_sGermany

airports of
this type

Public
airport

containedbyLyon–Saint
Exupéry
Airport

adjoin_s

UnnamedEntitiy

Ryanair user.topics

user.topics
Wiredsecond_level_division

Question:
What country bordering
France contains an airport
that serves Nijmegen?

Topic Entity
Recognition

LLM Supplement Path
Exploration

Node Expand Exploration

AnswerYes!

No

Path Pruning

Path
Summarizing

Question Answering

Topic Entity Path
Exploration

Question
Subgraph
Detection

BranchReduction SelectionPrecise Path Selection

InitializationExploration

Split Questions,
LLM indicator,

Ordered Entities

Figure 2: Overview architecture of our proposed PoG

the LLM to analyze the question and generate an indicator that

serves as a strategy for the answer formulation process and

predicting the exploration depth 𝐷
predict

.

• Exploration.After initialization, the model retrieves topic entity

paths from G𝑞 through three exploration phases: topic entity

path exploration, LLM supplement path exploration, and node

expand exploration. All reasoning paths are constrained within

the depth range 𝐷 ∈ [𝐷
predict

, 𝐷max].
• Path Pruning. Following each exploration phase, PoG employs

a pre-trained LM, LLM prompting, and graph structural analysis

to perform a three-step beam search. The pruned paths are then

evaluated in the question answering.

• Question Answering. Finally, LLM is prompted to assess if the

pruned reasoning paths sufficiently answer the question. If not,

continue exploration with deeper paths incrementally until the

𝐷max is exceeded or proceed to the next exploration phase.

4.1 Initialization
The initialization has two main stages, i.e., question subgraph de-

tection and question analysis. The framework is shown in Figure 3.

Question subgraph detection. Given a question 𝑞, PoG initially

identifies the question subgraph, which includes all the topic entities

of 𝑞 and their 𝐷max-hop neighbors.

Topic entity recognition. To identify the relevant subgraph, PoG

first employs LLMs to extract the potential topic entities from the

question. Following the identification, the process applies BERT-

based similarity matching to align these potential entities with

entities from KG. Specifically, as shown in Figure 3, we encode both

the keywords and all entities fromKG into dense vector embeddings

as𝐻𝑇 and𝐻G . We then compute a cosine similarity matrix between

these embeddings to determine the matches. For each keyword, the

entities with the highest similarity scores are selected to form the

set 𝑇𝑜𝑝𝑖𝑐 (𝑞). This set serves as the foundation for constructing the

question subgraph in subsequent steps.

Subgraph detection. Upon identifying the topic entities, PoG cap-

tures the induced subgraph G𝑞 ⊆ G by expanding around each

entity 𝑒 in 𝑇𝑜𝑝𝑖𝑐 (𝑞). For each entity, we retrieve knowledge triples

associated with its 𝐷max-hop neighbors, thereby incorporating

query-relevant and faithful KG information into G𝑞 . Through this

process, we update E𝑞 with newly added intermediate nodes that

serve as bridging pathways between the topic entities. The result

subgraph, G𝑞 is defined as (E𝑞,R𝑞,T𝑞), where E𝑞 encompasses

𝑇𝑜𝑝𝑖𝑐 (𝑞) together with the set {𝑁G (𝑒, 𝐷max) | 𝑒 ∈ 𝑇𝑜𝑝𝑖𝑐 (𝑞)}, ef-
fectively linking all relevant entities and their connective paths

within the defined hop distance. To interact with KG, we utilize the

pre-defined SPARQL queries as detailed in Appendix D.

Graph pruning. To efficiently manage information overhead and

reduce computational cost, we implement graph pruning on the

question subgraph G𝑞 using node and relation clustering along-

side graph reduction techniques. As illustrated in Figure 3, node

and relation clustering is achieved by compressing multiple nodes

and their relations into supernodes, which aggregate information

from the original entities and connections. For graph reduction, we

employ bidirectional BFS to identify all paths connecting the topic

entities. Based on these paths, we regenerate induced subgraphs

that involve only the relevant connections, effectively excluding

nodes and relations that lack strong relevance to the topic entities.

Question Analysis. To reduce hallucinations in LLMs, the ques-

tion analysis phase is divided into two parts and executed within a

single LLM call using an example-based prompt (shown in Appen-

dix E). First, the complex question 𝑞 is decomposed into simpler

questions based on the identified topic entities, each addressing

their relationship to the potential answer. Addressing these simpler

questions collectively guides the LLM to better answer the original

query, thereby reducing hallucinations. Second, a LLM indicator is

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Graph DetectionNode and Relation
Clustering

Graph Reduction

Question:
What country bordering
France contains an airport
that serves Nijmegen?

Country
France
Airport

Nijmegen

Topic Entity:
France

Nijmegen

LLM Indictor:

Split_question1: What country contains an airport that serves Nijmegen?
Split_question2: What country borders France?

Question Analysis

Input:

Output1:

Output2:

+

Knowledge
Graph

France Nijmegen

Figure 3: Illustration of initialization

generated, encapsulating all topic entities and predicting the answer

position within a single chain of thought derived from the original

question. This indicator highlights the relationships and sequence

among the entities and answer. Based on this, a predicted depth

𝐷
predict

is calculated, defined as the maximum distance between

the predicted answer and each topic entity. An example of question

analysis is shown in Figure 3 with predicted depth 2.

4.2 Exploration
As discussed in Section 1, identifying reasoning paths that encom-

pass all topic entities is essential to derive accurate answers. These

paths serve as interpretable chains of thought, providing both the

answer and the inference steps leading to it, a feature we refer as in-
terpretability. To optimize the discovery of such paths efficiently

and accurately, the exploration process is divided into three phases:

topic entity path exploration, LLM supplement path exploration,

and node expand exploration. After each phase, we perform path

pruning and question answering. If a sufficient path is found, the

process terminates; otherwise, it advances to the next phase to ex-

plore additional paths. Due to the space limitation, the pseudo-code

of exploration is shown in Appendix A.1.

Topic entity path exploration. To reduce LLM usage and search

space, PoG begins exploration from a predicted depth𝐷
predict

rather

than the maximum depth. Using the question subgraph G𝑞 , topic
entities 𝑇𝑜𝑝𝑖𝑐 (𝑞), LLM indicator 𝐼LLM, and 𝐷

predict
, PoG identifies

reasoning paths containing all topic entities by iteratively adjusting

the exploration depth 𝐷 . Entities in𝑇𝑜𝑝𝑖𝑐 (𝑞) are ordered according
to 𝐼LLM to facilitate reasoning effectively. Starting from the pre-

dicted depth 𝐷 = 𝐷
predict

, we employ a bidirectional BFS to derive

all potential entity paths, which is defined as:

𝑃𝑎𝑡ℎ𝑠𝑡 = {𝑝 | |𝑇𝑜𝑝𝑖𝑐 (𝑞) | × (𝐷 − 1)<𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)≤ |𝑇𝑜𝑝𝑖𝑐 (𝑞) | × 𝐷},

where 𝑝 = 𝑃𝑎𝑡ℎG𝑞 (𝑇𝑜𝑝𝑖𝑐 (𝑞)). To reduce the complexity, a prun-

ing strategy is employed and selects the top-𝑊max paths based

on 𝑃𝑎𝑡ℎ𝑠𝑡 , 𝐼LLM, and split questions from Section 4.1. These paths

are evaluated for sufficiency verification. If inadequate, 𝐷 is incre-

mented until 𝐷max is reached. Then the next phase commences.

LLM supplement path exploration. Traditional KG-based LLMs

reasoning often rephrase facts without utilizing the LLM’s inherent

knowledge. To overcome this, PoG prompts the LLM to generate

predictions based on path understanding and its implicit knowledge,

providing additional relevant insights. It involves generating new

LLM thinking indicators 𝐼Sup for predicted entities 𝑒 ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑞),
aligning them with E𝑞 and using text similarity to form and reorder

the supplementary entity list 𝐿𝑖𝑠𝑡𝑆 (𝑒) = 𝑇𝑜𝑝𝑖𝑐 (𝑞) + 𝑒 . Supplemen-

tary paths 𝑃𝑎𝑡ℎ𝑠𝑠 are then generated with a fixed depth 𝐷max:

𝑃𝑎𝑡ℎ𝑠𝑠 = {𝑝 | length(𝑝) ≤ |𝑇𝑜𝑝𝑖𝑐 (𝑞) | × 𝐷max},

where 𝑝 = 𝑃𝑎𝑡ℎG𝑞 (𝐿𝑖𝑠𝑡𝑆 (𝑒)). These paths with new indicators are

evaluated similarly to the topic entity path exploration phase. The

prompting temple is shown in Appendix E.

Node expand exploration. If previous phases cannot yield suf-

ficient paths, PoG proceeds to node expansion. Unlike previous

methods [26, 34] that separately explore relations and entities, PoG

explores both simultaneously, leveraging clearer semantic infor-

mation for easier integration with existing paths. During the ex-

ploration, PoG expands unvisited entities by 1-hop neighbors in G.
New triples are merged into existing paths to form the new paths,

followed by pruning and evaluation.

4.3 Path Pruning
As introduced in Section 2, KGs contain vast amounts of facts,

making it impractical to involve all relevant triples in the LLM’s

context due to high costs. To address this complexity and reduce

LLM overhead, we utilize a three-step beam search for path pruning.

The corresponding pseudo-code can be found in Appendix A.2.

Fuzzy selection. Considering that only a small subset of the gen-

erated paths is relevant, the initial step of our beam search involves

fuzzy selection by integrating a pre-trained language model (e.g.

SentenceBERT [32]), to filter the irrelevant paths quickly. As shown

in Figure 2, we encode the LLM indicator 𝐼LLM (or 𝐼Sup) and all

reasoning paths into vector embeddings, denoted as 𝐻𝐼 and 𝐻𝑃𝑎𝑡ℎ𝑠 ,

and calculate cosine similarities between them. The top-𝑊1 paths

with the highest similarity scores are selected for further evaluation.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Precise path selection. Following the initial fuzzy selection, the

number of candidate paths is reduced to 𝑊1. At this stage, we

prompt the LLM to select the top-𝑊max reasoning paths most likely

to contain the correct answer. The specific prompt used to guide

LLM in selection phase can be found in Appendix E.

Branch reduced selection. Considering that paths are often rep-

resented in natural language and can be extensive, leading to high

processing costs for LLMs, we implement a branch reduced se-

lection method integrated with the graph structure. This method

effectively balances efficiency and accuracy by further refining path

selection. Starting with 𝐷 = 1, for each entity 𝑒 in the entity list, we

extract the initial 𝐷-step paths from every path in the candidate set

𝑃𝑎𝑡ℎ𝑠𝑐 into a new set 𝑃𝑎𝑡ℎ𝑠𝑒 . If the number of 𝑃𝑎𝑡ℎ𝑠𝑒 exceeds the

maximum designated width𝑊max, these paths are pruned using

precise path selection. The process iterates until the number of

paths in 𝑃𝑎𝑡ℎ𝑠𝑐 reaches 𝐷max. For example, as illustrated in Figure

2, with𝑊max = 1, only the initial step paths (depicted in green)

are extracted for further examination, while paths represented by

dashed lines are pruned. This selection method enables efficient

iterative selection by limiting the number of tokens and ensuring

the relevance and conciseness of the reasoning paths.

Beam search strategy. Based on the three path pruning methods

above, PoG can support various beam search strategies, ranging

from non-reliant to fully reliant on LLMs. These strategies are

selectable in a user-friendly manner, allowing flexibility based on

the specific requirements of the task. We have defined four such

strategies in Algorithm 2 of Appendix A.2.

4.4 Question Answering
Based on the pruned paths in Section 4.3, we introduce a two-step

question-answering method.

Path Summarizing. To address hallucinations caused by paths

with excessive or incorrect text, we develop a summarization strat-

egy by prompting LLM to review and extract relevant triples from

provided paths, creating a concise and focused path. Details of the

prompts used are in Appendix E.

Question answering. Based on the current reasoning path derived

from path pruning and summarizing, we prompt the LLM to first

evaluate whether the paths are sufficient for answering the split

question and then the main question. If the evaluation is positive,

LLM is prompted to generate the answer using these paths, along

with the question and question analysis results as inputs, as shown

in Figures 2. The prompts for evaluation and generation are detailed

in Appendix E. If the evaluation is negative, the exploration process

is repeated until completion. If node expand exploration reaches its

depth limit without yielding a satisfactory answer, LLM will lever-

age both provided and inherent knowledge to formulate a response.

Additional details on the prompts can be found in Appendix E.

5 EXPERIMENTS
Experimental settingsWe evaluate PoG on five KGQA datasets,

i.e., CWQ [35], WebQSP [45], GrailQA [12], SimpleQuestions [29],

and WebQuestions [3]. PoG is tested against methods without ex-

ternal knowledge (IO, CoT[40], SC[39]) and the state-of-the-art

(SOTA) approaches with external knowledge, including prompting-

based and fine-tuning-based methods. Freebase [5] serves as the

background knowledge graph for all datasets. Experiments are con-

ducted using two LLMs, i.e., GPT-3.5 (GPT-3.5-Turbo) and GPT-4.

Following prior studies, we use exact match accuracy (Hits@1) as

the evaluation metric. Due to the space limitation, detailed experi-

mental settings, including dataset statistics, baselines, and imple-

mentation details, are provided in Appendix C.

PoG setting. We adopt the Fuzzy + Precise Path Selection
strategy in Algorithm 2 of Appendix A.2 for PoG, with𝑊1 = 80

for fuzzy selection. Additionally, we introduce PoG-E, which ran-

domly selects one relation from each edge in the clustered question

subgraph to evaluate the impact of graph structure on KG-based

LLM reasoning.𝑊max and 𝐷max are 3 by default for beam search.

5.1 Main Results
Since PoG leverages external knowledge to enhance LLM reasoning,

we first compare it with other methods that utilize external knowl-

edge. Although PoG is a training-free, prompting-based method

and has natural disadvantages compared to fine-tuned methods

trained on evaluation data. As shown in Table 1, PoG with GPT-3.5-

Turbo still achieves new SOTA performance across most datasets.

Additionally, PoG with GPT-4 surpasses fine-tuned SOTA across

all the multi-hop and open-domain datasets by an average of 17.3%

and up to 28.3% on the WebQuestions dataset. Comparing all the in-

context learning (ICL) methods, PoG with GPT-3.5-Turbo surpasses

all the previous SOTA methods. When comparing PoG with GPT-

3.5-Turbo against SOTA using GPT-4, PoG outperforms the SOTA

by an average of 12.9% and up to 23.9%. When using the same LLM,

PoG demonstrates substantial improvements: with GPT-3.5-Turbo,

it outperforms SOTA by an average of 21.2% and up to 27.3% on

the WebQuestions dataset; with GPT-4, it outperforms SOTA by

16.6% on average and up to 26.7% on the WebQuestions dataset.

Additionally, PoG with GPT-3.5-Turbo outperforms methods with-

out external knowledge (e.g., IO, CoT, SC prompting) by 62% on

GrailQA and 60.5% on Simple Questions. These results show that

incorporating external knowledge graphs significantly enhances

reasoning tasks. PoG-E also achieves excellent results. Under GPT-4,

PoG-E surpasses all SOTA in ICL by 14.1% on average and up to

24.1% on the WebQuestions dataset. These findings demonstrate

that the graph structure is crucial for reasoning tasks, particularly

for complex logical reasoning. By integrating the structural infor-

mation of the question within the graph, PoG enhances the deep

reasoning capabilities of LLMs, leading to superior performance.

5.2 Ablation Study
We perform various ablation studies to understand the importance

of different factors in PoG. These ablation studies are performed

with GPT-3.5-Turbo on two subsets of the CWQ and WebQSP test

sets, each containing 500 randomly sampled questions.

Does search depth matter? As described, PoG’s dynamic deep

search is limited by 𝐷𝑚𝑎𝑥 . To assess the impact of 𝐷max on per-

formance, we conduct experiments with depth from 1 to 4. The

results, shown in Figures 4(a) and (c), indicate that performance

improves with increased depth, but the benefits diminish beyond a

depth of 3. Figures 4(b) and (d), showing which exploration phase

the answer is generated from, reveal that higher depths reduce the

effectiveness of both LLM-based path supplementation and node

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Results of PoG across various datasets, compared with the state-of-the-art (SOTA) in Supervised Learning (SL) and
In-Context Learning (ICL) methods. The highest scores for ICL methods are highlighted in bold, while the second-best results
are underlined. The Prior FT (Fine-tuned) SOTA includes the best-known results achieved through supervised learning.

Method Class LLM Multi-Hop KGQA Single-Hop KGQA Open-Domain QA

CWQ WebQSP GrailQA Simple Questions WebQuestions

Without external knowledge

IO prompt - GPT-3.5-Turbo 37.6 63.3 29.4 20.0 48.7

CoT - GPT-3.5-Turbo 38.8 62.2 28.1 20.3 48.5

SC - GPT-3.5-Turbo 45.4 61.1 29.6 18.9 50.3

With external knowledge

Prior FT SOTA SL - 70.4[9] 85.7[25] 75.4[11] 85.8[1] 56.3[18]

KB-BINDER[22] ICL Codex - 74.4 58.5 - -

ToG/ToG-R[34] ICL GPT-3.5-Turbo 58.9 76.2 68.7 53.6 54.5

ToG-2.0[26] ICL GPT-3.5-Turbo - 81.1 - - -

ToG/ToG-R[34] ICL GPT-4 69.5 82.6 81.4 66.7 57.9

PoG-E ICL GPT-3.5-Turbo 71.9 90.9 87.6 78.3 76.9

PoG ICL GPT-3.5-Turbo 74.7 93.9 91.6 80.8 81.8

PoG-E ICL GPT-4 78.5 95.4 91.4 81.2 82.0

PoG ICL GPT-4 81.4 96.7 94.4 84.0 84.6

1 2 3 4
Varying maximum depth (Dmax)

50

55

60

65

70

75

80

85

A
cc

ur
ac

y
(%

)

PoG PoG-E

(a) CWQ (Vary 𝐷max)

1 2 3 4
Varying maximum depth (Dmax)

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Accuracy Total

Topic Entity Path Exploration

LLM Supplement Path Exploration

Node Expand Exploration

(b) CWQ(PoG)

1 2 3 4
Varying maximum depth (Dmax)

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

PoG PoG-E

(c) WebQSP (Vary 𝐷max)

1 2 3 4
Varying maximum depth (Dmax)

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Accuracy Total

Topic Entity Path Exploration

LLM Supplement Path Exploration

Node Expand Exploration

(d) WebQSP(PoG)

Figure 4: The accuracy of PoG and PoG-E among CWQ and
WebQSP datasets by varying different 𝐷max.

exploration. Excessive depth leads to LLM hallucinations and dif-

ficulties in managing long reasoning paths. Therefore, we set the

maximum depth to 3 for experiments to balance performance and

computational efficiency. Additionally, even at lower depths, PoG

maintains strong performance by effectively combining the LLM’s

inherent knowledge with the structured information from the KG.

Compare the effect of different beam searches. As introduced
in Section 4.3, PoG supports various beam search strategies, rang-

ing from non-reliant to fully reliant on LLMs, selectable in a user-

friendly manner. To evaluate the computational cost and perfor-

mance, we test four cases outlined in Algorithm 2. In the 3-Step

Beam Search case, we set𝑊2 = 20 for internal narrowing. The

Fuzzy Selection approach, as described in Section 4.3, utilizes all

candidate paths and a LLM-generated indicator for encoding and

comparison. We report accuracy, average LLM calls in total, and

average token input during the path pruning for each beam search

strategy applied to PoG in Table 2. The experimental results for

PoG-E are provided in Table 6 in Appendix B.1. These results indi-

cate that PoG with Fuzzy and Precise Path Selection achieves
the highest accuracy. Additionally, the BranchReduced Selection
method, which leverages the graph structure, not only delivers ex-

cellent results but also reduces token usage by over 50% with only a

±2% difference in accuracy compared to the best-performing strat-

egy. Furthermore, the Fuzzy Selection method, which employs

lightweight models instead of relying solely on LLMs, also demon-

strates strong performance. These results validate the effectiveness

of our beam search strategies and underscore the importance of

structure-based faithful path reasoning.

5.3 Effectiveness Evaluation
Effective evaluation on multi-entity questions. To evaluate

PoG’s performance on multi-entity questions, we report the accu-

racy on all test sets by categorizing questions based on the number

of topic entities. The results, shown in Table 3, demonstrate that, de-

spite the increased complexity of multi-entity questions compared

to single-entity ones, PoG maintains excellent accuracy, achieving

up to 93.9% on the WebQSP dataset. This underscores the effective-

ness of our structure-based model in handling complex multi-entity

queries. Notably, the slightly lower performance on the GrailQA

dataset can be attributed to some questions lacking matched topic

entities, which prevents effective reasoning using KG.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Performance comparison of PoGwith different beam
search methods on CWQ and WebQSP.

PoG Evaluation CWQ WebQSP

w/ Fuzzy Selection Accuracy 57.1 86.4

Token Input - -

LLM Calls 6.8 6.5

w/ Fuzzy and Accuracy 79.3 93.0

BranchReduced Selection Token Input 101,455 328,742

LLM Calls 9.7 9.3

w/ Fuzzy and Accuracy 81.4 93.9
Precise Path Selection Token Input 216,884 617,448

LLM Calls 9.1 7.5

w/ 3-Steps Beam Search Accuracy 79.8 91.9

Token Input 102,036 369,175

LLM Calls 8.8 9.0

Table 3: Performance of PoG and PoG-E on multi-entity and
single-entity questions of all datasets. The symbol ‘-’ indi-
cates no multi-entity question inside.

Question Set CWQWebQSP GrailQAWebQuestions Simple Questions

PoG with GPT-3.5-Turbo

Single-entity 70.3 93.9 92.1 81.7 78.3

Multi-entity 80.2 93.1 70.7 82.8 -

PoG-E with GPT-3.5-Turbo

Single-entity 67.5 91 88.2 76.8 80.8

Multi-entity 77.5 82.8 76.0 82.8 -

Effective evaluation on multi-hop reasoning. To assess PoG’s

performance on multi-hop reasoning tasks, we analyze accuracy by

categorizing questions based on the length of their ground-truth

SPARQL queries. We randomly sample 1,000 questions from CWQ

and WebQSP datasets and determine the reasoning length of each

question by counting the number of relations in their ground-truth

SPARQL queries. The distribution of questions with varying reason-

ing lengths is illustrated in Figure 5.We evaluate the performance of

PoG and PoG-E across different ground-truth lengths to understand

their effectiveness under varying query complexities. As shown in

Figure 6, the performance of PoG and PoG-E remains consistent

across different reasoning lengths. Even at the highest length levels

in the WebQSP dataset, PoG achieves excellent accuracy, reaching

up to 90%. Notably, although some questions have ground-truth

lengths of eight or more, PoG successfully addresses them with-

out matching the ground-truth length, demonstrating its ability to

explore novel paths by effectively combining the LLM’s inherent

knowledge with the structured information from the KG. These

results demonstrate the effectiveness of PoG in handling complex

multi-hop reasoning tasks.

Graph structure pruning. To evaluate the effectiveness of the

graph pruning method proposed in Section 4.1, we conduct exper-

iments using 200 random samples from each dataset. We report

the average number of entities per question before and after graph

reduction, as well as the proportion of entities reduced, in Table

4. The results indicate that up to 75% of entities in the WebQSP

1 2 3 4 5 6 7 8+

Length of paths in SPARQL

100

101

102

103

N
um

b
er

of
qu

es
ti

on
s CWQ WebQSP

Figure 5: The lengths of the ground-truth SPARQL queries
within the CWQ and WebQSP datasets.

1 2 3 4 5 6 7 8+
Length of paths in SPARQL

20

40

60

80

100

A
cc

ur
ac

y
(%

)

PoG PoG-E

(a) CWQ

1 2 3 4 5 6 7 8+
Length of paths in SPARQL

20

40

60

80

100

A
cc

ur
ac

y
(%

)

PoG PoG-E

(b) WebQSP

Figure 6: The accuracy of PoG and PoG-E on the CWQ and
WebQSP datasets, categorized by the different lengths of the
ground-truth answers for each question.

Table 4: The illustration of graph size reduction.

CWQ WebQSP GrailQAWebQuestions

Ave Entity Number 3,540,267 243,826 62,524 240,863

Ave Entity Number After Pruned 1,621,055 182,673 30,267 177,822

Ave Entitiy Reduction Proportion (%) 46% 75% 48% 74%

dataset can be pruned before path exploration. This demonstrates

the effectiveness of eliminating irrelevant data from the outset.

Case study: interpretable reasoning. We also conduct the case

study to demonstrate interpretability of PoG, we present three rea-

soning examples in Table 8 of Appendix B.5. These examples feature

questions with one, two, and three entities, respectively. Through

the case study, we showcase PoG’s effectiveness in handling multi-

entity and multi-hop tasks by providing faithful and interpretable

reasoning paths that lead to accurate answers.

To further evaluate the effectiveness and efficiency of PoG, we

perform additional experiments, including prompt setting ablation

(Appendix B.1), reasoning faithfulness analysis (Appendix B.2), er-

ror analysis (Appendix B.3), LLM cost analysis (Appendix B.4), and

graph reduction and path pruning case study (Appendix B.5).

6 CONCLUSION
In this paper, we introduce Paths-over-Graphs (PoG), a novel

method that integrates LLMs with KGs to enable faithful and inter-

pretable reasoning. PoG addresses complex reasoning tasks through

a three-phase dynamic multi-hop path exploration, combining the

inherent knowledge of LLMs with factual information from KGs.

Efficiency is enhanced by graph-structured pruning and a three-

step pruning process to effectively narrow down candidate paths.

Extensive experiments on five public datasets demonstrate that PoG

outperforms existing baselines, showcasing its superior reasoning

capabilities and interoperability.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and Sung Ju Hwang. 2023. Direct

Fact Retrieval from Knowledge Graphs without Entity Linking. In ACL.
[2] Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023. Knowledge-augmented

language model prompting for zero-shot knowledge graph question answering.

arXiv preprint arXiv:2306.04136 (2023).
[3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic

Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. 1533–1544.

[4] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski,

Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr

Nyczyk, et al. 2024. Graph of thoughts: Solving elaborate problems with large

language models. In AAAI, Vol. 38. 17682–17690.
[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human

knowledge. In SIGMOD. 1247–1250.
[6] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint

arXiv:2005.14165 (2020).
[7] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei,

Shuaiqiang Wang, Dawei Yin, Wenqi Fan, Hui Liu, et al. 2024. Exploring the

potential of large language models (llms) in learning on graphs. ACM SIGKDD
Explorations Newsletter 25, 2 (2024), 42–61.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav

Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-

bastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways.

Journal of Machine Learning Research 24, 240 (2023), 1–113.

[9] Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon

Lee, Lizhen Tan, Lazaros Polymenakos, and AndrewMcCallum. 2021. Case-based

Reasoning for Natural Language Queries over Knowledge Bases. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing.

[10] Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. 2022.

Complexity-based prompting for multi-step reasoning. In ICLR.
[11] Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t Generate, Discriminate: A Proposal

for Grounding Language Models to Real-World Environments. In ACL.
[12] Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu

Su. 2021. Beyond I.I.D.: Three Levels of Generalization for Question Answering

on Knowledge Bases. In WWW. 3477–3488.

[13] Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and

Le Sun. 2024. Mitigating large language model hallucinations via autonomous

knowledge graph-based retrofitting. In AAAI, Vol. 38. 18126–18134.
[14] Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. 2023.

Gpt4graph: Can large language models understand graph structured data? an

empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066 (2023).
[15] Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learning to exploit long-term

relational dependencies in knowledge graphs. In International conference on
machine learning. PMLR, 2505–2514.

[16] Tiezheng Guo, Qingwen Yang, Chen Wang, Yanyi Liu, Pan Li, Jiawei Tang,

Dapeng Li, and Yingyou Wen. 2024. Knowledgenavigator: Leveraging large

language models for enhanced reasoning over knowledge graph. Complex &
Intelligent Systems 10, 5 (2024), 7063–7076.

[17] Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Wayne Xin Zhao, and Ji-Rong

Wen. 2023. Structgpt: A general framework for large language model to reason

over structured data. arXiv preprint arXiv:2305.09645 (2023).
[18] Akhil Kedia, Mohd Abbas Zaidi, and Haejun Lee. 2022. FiE: Building a Global

Probability Space by Leveraging Early Fusion in Encoder for Open-Domain

Question Answering. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing.

[19] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter

Clark, and Ashish Sabharwal. 2022. Decomposed prompting: Amodular approach

for solving complex tasks. arXiv preprint arXiv:2210.02406 (2022).
[20] Jiho Kim, Yeonsu Kwon, Yohan Jo, and Edward Choi. 2023. Kg-gpt: A general

framework for reasoning on knowledge graphs using large language models.

arXiv preprint arXiv:2310.11220 (2023).
[21] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[22] Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su, and Wenhu Chen. 2023.

Few-shot In-context Learning on Knowledge Base Question Answering. In ACL.
[23] Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng Ding, Shafiq Joty, Soujanya

Poria, and Lidong Bing. 2023. Chain-of-knowledge: Grounding large language

models via dynamic knowledge adapting over heterogeneous sources. arXiv
preprint arXiv:2305.13269 (2023).

[24] Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li, Gholamreza Haffari, and Shirui

Pan. 2023. Chatrule: Mining logical rules with large language models for knowl-

edge graph reasoning. arXiv preprint arXiv:2309.01538 (2023).
[25] LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui Pan. 2024. Reasoning on

Graphs: Faithful and Interpretable Large Language Model Reasoning. In The

Twelfth International Conference on Learning Representations.
[26] Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, and Jian Guo. 2024.

Think-on-Graph 2.0: Deep and Interpretable Large Language Model Reasoning

with Knowledge Graph-guided Retrieval. arXiv preprint arXiv:2407.10805 (2024).
[27] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu.

2024. Unifying large language models and knowledge graphs: A roadmap. IEEE
Transactions on Knowledge and Data Engineering (2024).

[28] Matthew E Peters, Mark Neumann, Robert L Logan IV, Roy Schwartz, Vidur

Joshi, Sameer Singh, and Noah A Smith. 2019. Knowledge enhanced contextual

word representations. arXiv preprint arXiv:1909.04164 (2019).
[29] Michael Petrochuk and Luke Zettlemoyer. 2018. SimpleQuestions Nearly Solved:

A New Upperbound and Baseline Approach. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. 554–558.

[30] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani,

Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard,

et al. 2020. KILT: a benchmark for knowledge intensive language tasks. arXiv
preprint arXiv:2009.02252 (2020).

[31] Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A survey of hallucination in

large foundation models. arXiv preprint arXiv:2309.05922 (2023).
[32] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

[33] Haitian Sun, Tania Bedrax-Weiss, and William W Cohen. 2019. Pullnet: Open

domain question answering with iterative retrieval on knowledge bases and text.

arXiv preprint arXiv:1904.09537 (2019).

[34] Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun

Gong, Lionel Ni, Heung-Yeung Shum, and Jian Guo. 2024. Think-on-Graph: Deep

and Responsible Reasoning of Large Language Model on Knowledge Graph. In

ICLR.
[35] Alon Talmor and Jonathan Berant. 2018. The Web as a Knowledge-Base for

Answering Complex Questions. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics.

[36] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2018. Com-

monsenseqa: A question answering challenge targeting commonsense knowl-

edge. arXiv preprint arXiv:1811.00937 (2018).

[37] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[38] KaiWang, Yuwei Xu, ZhiyongWu, and Siqiang Luo. 2024. LLM as Prompter: Low-

resource Inductive Reasoning on Arbitrary Knowledge Graphs. arXiv preprint
arXiv:2402.11804 (2024).

[39] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2022. Self-consistency improves chain

of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022).
[40] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reason-

ing in large language models. Advances in neural information processing systems
35 (2022), 24824–24837.

[41] Yilin Wen, Zifeng Wang, and Jimeng Sun. 2023. Mindmap: Knowledge graph

prompting sparks graph of thoughts in large language models. arXiv preprint
arXiv:2308.09729 (2023).

[42] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and

Karthik Narasimhan. 2024. Tree of thoughts: Deliberate problem solving with

large language models. Advances in Neural Information Processing Systems 36
(2024).

[43] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.

arXiv preprint arXiv:2210.03629 (2022).
[44] Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. 2021.

Rng-kbqa: Generation augmented iterative ranking for knowledge base question

answering. arXiv preprint arXiv:2109.08678 (2021).
[45] Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and Jina Suh.

2016. The Value of Semantic Parse Labeling for Knowledge Base Question

Answering. In ACL. 201–206.
[46] Hang Zhang, Yeyun Gong, Yelong Shen, Weisheng Li, Jiancheng Lv, Nan Duan,

and Weizhu Chen. 2021. Poolingformer: Long document modeling with pooling

attention. In International Conference on Machine Learning. 12437–12446.
[47] Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. 2022. Automatic chain

of thought prompting in large language models. arXiv preprint arXiv:2210.03493
(2022).

[48] Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. 2023.

Verify-and-edit: A knowledge-enhanced chain-of-thought framework. arXiv
preprint arXiv:2305.03268 (2023).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A ALGORITHM
A.1 Exploration
We summarize the comprehensive algorithmic procedure for explo-

ration detailed in Section 4.2 as presented in Algorithm 1.

Algorithm 1: Exploration
Input : Question subgraph (G𝑞), source KG (G),question and split

question (𝑄 = 𝑞 + 𝑞𝑠𝑝𝑙𝑖𝑡), topic entities (𝑇𝑜𝑝𝑖𝑐 (𝑞)), LLM
indicator (𝐼LLM), predict depth (𝐷

predict
), maximum depth

(𝐷max), maximum width (𝑊max), and path pruning case

(𝑐𝑎𝑠𝑒)

Output : PoG answers (𝑎 (𝑞)), final reasoning path (𝑃𝑎𝑡ℎ𝑠𝑓 (𝑞))
/* Start with topic entity path exploration */

𝐿𝑖𝑠𝑡𝑇 ← Reorder(𝑇𝑜𝑝𝑖𝑐 (𝑞), 𝐼LLM), 𝐷 ← min(𝐷
predict

, 𝐷max);1

while 𝐷 ≤ 𝐷max do2

𝑃𝑎𝑡ℎ𝑠𝑡 ← EntityPathFind (𝐿𝑖𝑠𝑡𝑇 , 𝐷 ,G𝑞);3

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑡 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒) ;4

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑇 ← QuestionAnswering(𝑃𝑎𝑡ℎ𝑠𝑡 ,𝑄, 𝐼LLM) ;5

if "{Yes}" in 𝐴𝑛𝑠𝑤𝑒𝑟 then return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑇 ;6

else 𝐷 ← 𝐷 + 1;7

/* LLM supplement path exploration procedure */

𝑃𝑎𝑡ℎ𝑠𝑠 ← [];8

𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑞) ←SupplementPrediction(𝑃𝑎𝑡ℎ𝑠𝑇 ,𝑄, 𝐼LLM);9

for each 𝑒, 𝐼𝑠𝑢𝑝 (𝑒) ∈ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 (𝑞) do10

𝐿𝑖𝑠𝑡𝑆 ← Reorder (𝐿𝑖𝑠𝑡𝑇 + 𝑒, 𝐼𝑠𝑢𝑝 (𝑒));11

𝑃𝑎𝑡ℎ𝑠′𝑠 ← EntityPathFind (𝐿𝑖𝑠𝑡𝑆 , 𝐷max,G𝑞);12

𝑃𝑎𝑡ℎ𝑠𝑠 ← 𝑃𝑎𝑡ℎ𝑠𝑠 + FuzzySelect (𝑃𝑎𝑡ℎ𝑠′𝑠 , 𝐼𝑠𝑢𝑝 (𝑒) ,𝑊max);13

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑠 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑆 , 𝑐𝑎𝑠𝑒) ;14

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑆 ← QuestionAnswering(𝑃𝑎𝑡ℎ𝑠𝑠 ,𝑄, 𝐼LLM) ;15

if "{Yes}" in 𝐴𝑛𝑠𝑤𝑒𝑟 then return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑆 ;16

/* Node expand exploration procedure */

𝑉𝑖𝑠𝑡𝑒𝑑 ← ∅, 𝐷 ← 1, 𝑃𝑎𝑡ℎ𝑠𝑒 ← 𝑃𝑎𝑡ℎ𝑠𝑇 + 𝑃𝑎𝑡ℎ𝑠𝑆 ;17

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒) ;;18

while 𝐷 ≤ 𝐷max do19

for each 𝑒 ∈ ExtractEntity(𝑃𝑎𝑡ℎ𝑠𝑒) ∧ 𝑒 ∉ 𝑉𝑖𝑠𝑡𝑒𝑑 do20

𝑅𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒𝑠 = Find_1_hop_Edges(G, 𝑒) ;21

𝑃𝑎𝑡ℎ𝑠𝑒 ← MergeTogether(𝑃𝑎𝑡ℎ𝑠𝑒 , 𝑅𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒) ;22

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒) ;23

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑒 ← QuestionAnswering(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼LLM) ;24

if "{Yes}" in 𝐴𝑛𝑠𝑤𝑒𝑟 then return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝑒 ;25

else𝑉𝑖𝑠𝑡𝑒𝑑 ← 𝑉𝑖𝑠𝑡𝑒𝑑 ∪ 𝑒 ; 𝐷 ← 𝐷 + 1;26

𝑃𝑎𝑡ℎ𝑠𝑙 ← 𝑃𝑎𝑡ℎ𝑠𝑇 + 𝑃𝑎𝑡ℎ𝑠𝑆 + 𝑃𝑎𝑡ℎ𝑠𝐸 ;27

PathPruning(𝑃𝑎𝑡ℎ𝑠𝑙 ,𝑄, 𝐼LLM,𝑊max, 𝐷max, 𝐿𝑖𝑠𝑡𝑇 , 𝑐𝑎𝑠𝑒) ;28

𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝐿 ← QuestionAnsweringFinal(𝑃𝑎𝑡ℎ𝑠𝑙 ,𝑄, 𝐼LLM) ;29

Return 𝐴𝑛𝑠𝑤𝑒𝑟, 𝑃𝑎𝑡ℎ𝑠𝐿 ;30

A.2 Path Pruning
We summarize the comprehensive algorithmic procedure of path

pruning detailed in Section 4.3 as presented in Algorithm 2.

Algorithm 2: PathPruning
Input : Candidate paths(𝑃𝑎𝑡ℎ𝑠𝑐), question and split question

(𝑄 = 𝑞 + 𝑞𝑠𝑝𝑙𝑖𝑡), indicator (𝐼), maximum width (𝑊max),

maximum depth (𝐷max), entity list (𝑙𝑖𝑠𝑡)

Output : Pruned candidate paths (𝑃𝑎𝑡ℎ𝑠𝑐)

if Case = Fuzzy Selection Only then1

FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max) ;2

else if Case = Fuzzy + Precise Path Selection then3

FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊1) ;4

FullPathSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max) ;5

else if Case = Fuzzy + Branch Reduced Selection then6

FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊1) ;7

BranchReduceSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max, 𝐷max, 𝑙𝑖𝑠𝑡) ;8

else if Case = Fuzzy + Branch Reduced + Precise Path then9

/* case = 3-Step Beam Search */
FuzzySelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊1) ;
BranchReduceSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊2, 𝐷max, 𝑙𝑖𝑠𝑡) ;10

FullPathSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊max) ;11

Procedure BranchReduceSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊 ,𝐷max, 𝑙𝑖𝑠𝑡)12

𝐷 ← 1, 𝑃𝑎𝑡ℎ𝑠𝑒 ← ∅;13

while |𝑃𝑎𝑡ℎ𝑠𝑐 | ≥𝑊 ∧𝐷 ≤ 𝐷max do14

for each 𝑒 ∈ 𝑙𝑖𝑠𝑡 do15

𝑃𝑎𝑡ℎ𝑠𝑒 ← 𝑃𝑎𝑡ℎ𝑠𝑒 ∪ ExtractHeadSteps(𝑃𝑎𝑡ℎ𝑠𝑐 , 𝑒, 𝐷) ;16

if |𝑃𝑎𝑡ℎ𝑠𝑒 | >𝑊 then17

FullPathSelect(𝑃𝑎𝑡ℎ𝑠𝑒 ,𝑄, 𝐼 ,𝑊) ;18

𝑃𝑎𝑡ℎ𝑠𝑐 ← IntersectMatchUpdate(𝑃𝑎𝑡ℎ𝑠𝑒 , 𝑃𝑎𝑡ℎ𝑠𝑐) ;19

𝑃𝑎𝑡ℎ𝑠𝑒 ← ∅;20

𝐷 ← 𝐷 + 1;21

if |𝑃𝑎𝑡ℎ𝑠𝑐 | >𝑊 then FullPathSelect(𝑃𝑎𝑡ℎ𝑠𝑐 ,𝑄, 𝐼 ,𝑊) ;22

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

B EXPERIMENT
B.1 Additional Ablation Study
Howdo summary prompts affect? Inspired byGoT [4], we utilize

summary prompts to reduce LLM hallucinations and decrease com-

putational costs. To evaluate their impact, we conduct an ablation

study comparing PoG and PoG-E with and without path summa-

rization. We measure both accuracy and average token input to

the LLM API during the path pruning phase to measure efficiency

and effectiveness. The results, present in Tabel 5, show that using

graph summaries increases accuracy by up to 10% on the CWQ

dataset with PoG-E, while reducing token input by up to 36% on

WebQSP. These results indicate hat path summarization effectively

minimizes LLM hallucinations, enhances the LLM’s understanding

of the explored paths, facilitates answer retrieval, enables earlier

termination of the reasoning process, and reduces costs.

Table 5: Performance comparison of PoG and PoG-Ewith and
without path summarizing on CWQ and WebQSP datasets.

Method Evaluation CWQ WebQSP

PoG
w/ Path Summarizing Accuracy 81.4 93.9

Token Input 216,884 297,359

w/o Path Summarizing Accuracy 74.7 91.9

Token Input 273,447 458,545

PoG-E
w/ Path Summarizing Accuracy 80.4 91.4

Token Input 314,747 273,407

w/o Path Summarizing Accuracy 70.4 90.4

Token Input 419,679 428,545

How do different beam searches affect PoG-E? As detailed in

Section 5.2, Table 6 presents the accuracy, average LLM calls in

total, and average token input during the path pruning for each

beam search strategy applied to PoG-E. PoG-E using Fuzzy and
Precise Path Selection achieves the highest accuracy. The

BranchReduced Selection method, which leverages graph struc-

ture, not only delivers excellent results but also reduces token usage

by up to 65% with only a ±4.3% accuracy drop compared to the best

strategy. Additionally, the Fuzzy Selection method, employing

lightweight models instead of solely relying on LLMs, also demon-

strates strong performance.

B.2 Reasoning Faithfulness Analysis
Overlap Ratio between Explored Paths and Ground-Truth
Paths. We analyzed correctly answered samples from three datasets

to investigate the overlap ratio between the paths 𝑃 explored by

PoG and the ground-truth paths 𝑆 in SPARQL queries. The overlap

ratio is defined as the proportion of overlapping relations to the

total number of relations in the ground-truth SPARQL path:

𝑅𝑎𝑡𝑖𝑜 (𝑃) = |𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) ∩ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) ||𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑆) | ,

where 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑃) denotes the set of relations in path 𝑃 . Figure 7

illustrates the distribution of questions across different overlap ra-

tios. For the WebQSP dataset, PoG achieves the highest proportion

Table 6: Performance comparison of PoG-E with different
beam search Methods among CWQ and WebQSP datasets.

PoG-E Evaluation CWQ WebQSP

w/ FuzzySelect Accuracy 62.31 82.3

Token Input - -

Ave LLM Calls 6 6.3

w/ Fuzzy and Accuracy 71.9 88.4

BranchReduced Selection Token Input 128,407 371,083

Ave LLM Calls 9.4 9.1

w/ Fuzzy and Accuracy 80.4 91.4
Precise Path Selection Token Input 344,747 603,261

Ave LLM Calls 8.3 7.4

w/ 3-Steps Beam Search Accuracy 73.87 89.4

Token Input 120,159 411,283

Ave LLM Calls 8.3 9.1

of fully overlapping paths with the ground truth, reaching approx-

imately 60% accuracy. In contrast, PoG-E applied to the GrailQA

dataset shows the highest proportion of paths with up to 70% non-

overlapping relations, indicating that PoG-E explores novel paths

to derive the answers. The different results between PoG and PoG-E

are due to PoG-E’s strategy of randomly selecting one related edge

from each clustered edge. This approach highlights the effective-

ness of our structure-based path exploration method in generating

diverse and accurate reasoning paths.

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

10

20

30

40

P
er

ce
nt

ag
e

(%
)

(a) CWQ (PoG)

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

10

20

30

40

P
er

ce
nt

ag
e

(%
)

(b) CWQ (PoG-E)

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

20

40

60

P
er

ce
nt

ag
e

(%
)

(c) WebQSP (PoG)

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

20

40

60

P
er

ce
nt

ag
e

(%
)

(d) WebQSP (PoG-E)

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

20

40

60

80

P
er

ce
nt

ag
e

(%
)

(e) GrailQA (PoG)

0 (0,25] (25,50] (50,75](75,100) 100
Overlap Ratio (%)

20

40

60

80

P
er

ce
nt

ag
e

(%
)

(f) GrailQA (PoG-E)

Figure 7: The path overlap ratio of PoG and PoG-E among
CWQ, WebQSP, and GrailQA datasets.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

78

9

12

CWQ(%)

86

4
9

WebQSP(%)

95

13

GrailQA(%)

KG Only

LLM Inspired KG

KG Inspired LLM

(a) PoG

77

7

14

CWQ(%)

87

2
10

WebQSP(%)

92

1
6

GrailQA(%)

KG Only

LLM Inspired KG

KG Inspired LLM

(b) PoG-E

Figure 8: The proportions of answer evidence of PoG and
PoG-E among CWQ, WebQSP, and GrailQA datasets.

Evidence of answer exploration sources. We conduct an analy-

sis of correctly answered samples from three datasets to investigate

the sources of evidence used by the LLM in generating answers, as

illustrated in Figure 8. Specifically, we categorize all generated an-

swers into three cases: KG only, LLM-inspired KG, and KG-inspired

LLM. In the KG only scenario, answers are generated solely based

on KG paths. The LLM-inspired KG case involves the LLM predict-

ing an answer using its inherent knowledge and subsequently using

the KG to verify its correctness. Conversely, in the KG-inspired LLM
case, the paths generated by the KG are insufficient to reach the

answer, and the LLM supplements the reasoning using its inherent

knowledge. As shown in the figure, up to 14% of answers are gener-

ated through the KG-inspired LLM approach, and up to 9% involve

LLM-inspired KG path supplementation. Compared to previous

work that integrates LLM inherent knowledge with KG data[34],

PoG more effectively leverages the strengths of both sources. These

results demonstrate that PoG is a faithful reasoning method that

primarily relies on KG-based reasoning while being supplemented

by the LLM, ensuring both accuracy and interpretability in answer

generation.

B.3 Error Analysis
To further analyze the integration of LLMs and KGs, we conduct an

error analysis on the CWQ, WebQSP, and GrailQA datasets. We cat-

egoriz errors into four types: (1) answer generation error, (2) refuse

error, (3) format error, and (4) other hallucination errors. Note that

answer generation error occurs when PoG provides an accurate

reasoning path, but the LLM fails to extract the correct answer from

it. The distribution of these error types is illustrated in Figure 9.

The results indicate that using more powerful LLMs reduces the

number of "other hallucination errors," "refuse errors," and "answer

generation errors," as the model offers enhanced reasoning capa-

bilities based on the retrieved data. Specifically, the reduction in

"answer generation errors" shows the reasoning paths provided by

PoG are effectively utilized by more advanced LLMs. However, we

PoG (GPT-3.5)

PoG (GPT-4)

PoG-E
(GPT-3.5)

PoG-E
(GPT-4)

0

50

100

150

200

250

E
rr

or
S

am
pl

es

CWQ

PoG (GPT-3.5)

PoG (GPT-4)

PoG-E
(GPT-3.5)

PoG-E
(GPT-4)

WebQSP

PoG (GPT-3.5)

PoG (GPT-4)

PoG-E
(GPT-3.5)

PoG-E
(GPT-4)

GrailQA

Others Hallucination Error

Answer Generation Error

Refuse Answer

Format Error

Figure 9: The error instances and categories of PoG and PoG-
E in the CWQ, WebQSP, and GrailQA datasets.

observe an increase in "format errors" with more powerful LLMs,

which may be attributed to their greater creative flexibility.

B.4 LLM Calls Cost Analysis
To further evaluate the cost and efficiency of utilizing LLMs, we

conducted an analysis of LLM calls on the CWQ, WebQSP, and

GrailQA datasets. Initially, we examined the proportion of ques-

tions answered with varying numbers of LLM calls, as depicted in

Figure 10. The results indicate that the majority of questions are

answered within nine LLM calls across all datasets, with approx-

imately 80% and 50% of questions being resolved within six calls

on CWQ and WebQSP, respectively. These findings demonstrate

PoG’s efficiency in minimizing LLM usage costs. Furthermore, we

compared the average number of LLM calls required by PoG with

the current SOTA method, ToG [34], as shown in Table 7. Since we

utilized identical datasets for WebQSP, GrailQA, Simple Questions,

and WebQuestions, we report the ToG results from their paper. The

comparison reveals that PoG achieves comparable or superior accu-

racy while reducing the number of LLM calls by up to 40% on the

GrailQA dataset compared to ToG. This improvement is attributed

to PoG’s dynamic exploration strategy, which avoids starting from

scratch, and its effective use of graph structures to prune irrelevant

information, thereby significantly decreasing computational costs.

(0,3]
(3,6]

(6,9]
(9,12]

(12,15]
(15,18]

(18,21]
21+

0

20

40

60

80

Pe
rc

en
ta

ge
 %

CWQ

(0,3]
(3,6]

(6,9]
(9,12]

(12,15]
(15,18]

(18,21]
21+

WebQSP

(0,3]
(3,6]

(6,9]
(9,12]

(12,15]
(15,18]

(18,21]
21+

GrailQA

Number of LLM calls

Figure 10: The proportion of question of PoG and PoG-E
by different LLM Calls among CWQ, WebQSP, and GrailQA
datasets

Table 7: Average LLM calls per question of PoG and ToG
among all datasets.

Method CWQWebQSP GrailQA Simple QuestionsWebQuestions

PoG 10.7 8.3 6.5 6.1 9.3
ToG - 11.2 10.6 8.7 10.5

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

B.5 Case Study
Case study: graph reduction and path pruning. We conducted

a case study using the example question presented in Figure 2 to il-

lustrate the effects of graph pruning and path pruning on the graph

structure. Figure 11(a) shows the results of graph pruning, where

vertices in blue are selected as part of the question subgraph, and

vertices in black are pruned. In this sample, the number of entities

is reduced from 16,740 to 1,245, resulting in a 92% reduction of

vertices. Figures 11(b) and 11(c) demonstrate the question subgraph

induced by the blue vertices in Figure 11(a) and the results after

applying fuzzy and precise path selection. In these figures, vertices

in blue represent the selected entity after each pruning, vertices in

yellow represent the topic entities, and the vertex in red denotes

the final answer entity. From these graphs, we observe that utilizing

the graph structure allows for the rapid pruning of irrelevant ver-

tices, ensuring that the reasoning paths remain faithful and highly

relevant to the question, since all vertices within question subgraph

are interconnected with all topic entities, thereby maintaining the

integrity and relevance of the reasoning process.

(a) Graph pruning (b) Question subgraph

(c) Fuzzy selection (d) Precise selection

Figure 11: Visualization of graph reduction and Path selec-
tion.

Case study: interpretable reasoning. In this section, we present

Table 8, which illustrates PoG’s interpretability through case studies

involving questions with one, two, and three entities. These exam-

ples demonstrate PoG’s effectiveness in handling multi-entity and

multi-hop tasks by providing clear and understandable reasoning

paths that lead to accurate answers.

C EXPERIMENT DETAILS
Expriment Datasets. To evaluate PoG’s capability in multi-

hop knowledge-intensive reasoning tasks, we assess it on four

KBQA datasets: three multi-hop datasets (CWQ [35], WebQSP [45],

GrailQA [12]) and one single-hop dataset (SimpleQuestions [29]).

Additionally, to examine PoG on more general tasks, we include

an open-domain QA dataset, WebQuestions. For the evaluation of

large datasets such as CWQ, GrailQA, and SimpleQuestions, we

utilize a random sample of 1,000 test cases from CWQ and employ

the 1,000 samples previously reported by ToG [34] to facilitate a

comparison with the SOTA while also minimizing computational

costs. Freebase serves as the background knowledge graph for all

datasets, which encompasses approximately 88 million entities,

20,000 relations, and 126 million triples [5, 25]. The statistics of the

datasets utilized in this study are detailed in Table 9.

Baselines. Inspired by ToG [34], we compare our method with

standard prompting (IO), Chain-of-Thought (CoT), and Self-

Consistency(SC) promptings with six in-context exemplars and

"step-by-step" reasoning chains. For each dataset, we also include

previous SOTA works for comparison. For a fair play, we com-

pare with previous SOTA among all prompting-based methods and

previous SOTA among all methods respectively. Since ToG is the

current SOTA prompting-based method, we directly refer to their

results and those of other baselines reported in their paper for

comparisons.

Experimental implementation. Leveraging the plug-and-play
convenience of our framework, we experiment with two LLMs:

GPT-3.5 and GPT-4. We use the OpenAI API to access GPT-3.5

(GPT-3.5-turbo) and GPT-4. Aligning with ToG, we set the temper-

ature parameter to 0.4 during the exploration process (to increase

diversity) and to 0 during the reasoning process (to ensure repro-

ducibility). The maximum token length for generation is set to 256.

In all experiments, we set both𝑊max and𝐷max to 3 for beam search.

All the experiments are conducted on a machine with Intel Xeon

Gold 6248R CPU, Nvidia A5000 GPU and 512GB memory.

Table 9: Statistics of the datasets used in this paper. † denotes
we randomly select 1,000 samples from the CWQ test set to
create the experiment testing set due to the abundance of test
samples. ∗ denotes that we utilize the 1,000 samples reported
by ToG [34] to compare with the state-of-the-art.

Dataset Answer Format Test Train

ComplexWebQuestions (CWQ)
†

Entity 1,000 27,734

WebQSP Entity/Number 1,639 3,098

GrailQA
∗

Entity/Number 1,000 44,337

Simple Quesiton
∗

Entity/Number 1,000 14,894

WebQuestions Entity/Number 2,032 3,778

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 8: Examples of faithful and interpretable reasoning of PoG.

Field Content

Question Lou Seal is the mascot for the team that last won the World Series when?

Answer 2014 World Series

Topic Entity Lou Seal

LLM indicator "Lou Seal" - mascot for - team - last won - World Series - when

Split Question split_question1: What team is "Lou Seal" the mascot for?

split_question2: When did the last World Series win occur for the team with Lou Seal as the mascot?

Reasoning Path {Lou Seal}→ sports.mascot.team→ {San Francisco Giants}→ sports.sports_team.championships

→ {2014 World Series, 2012 World Series, 2010 World Series}

PoG answer answer: {2014 World Series}
reason: From the given path {Lou Seal} → sports.mascot.team → {San Francisco Giants}, {San

Francisco Giants} is the team that "Lou Seal" serves as the mascot for. From {San Francisco Giants}→
sports.sports_team.championships→ {2014 World Series, 2012 World Series, 2010 World Series}, the

last World Series won by the {San Francisco Giants} is in {2014}. Therefore, the provided knowledge

graph path is sufficient to answer the overall question, and the answer is {2014 World Series}.

Question What European Union country sharing borders with Germany contains the Lejre Municipality?

Answer Denmark

Topic Entity {Germany, Lejre Municipality}

LLM indicator "Lejre Municipality" – contained by - European Union country (answer)- shares borders with-

"Germany"
Split Question split_question1: What European Union country shares borders with "Germany"?

split_question2: What country contains the Lejre Municipality?

Reasoning Path {Lejre Municipality} → location.administrative_division.country → {Denmark} → loca-

tion.location.containedby→ {Eurasia}→ location.location.contains→ {Germany},
{Lejre Municipality} → location.administrative_division.country → {Denmark} →
base.locations.countries. continent → {Europe} → location.location.contains → {Western

Europe}→ location.location.contains→ {Germany}

PoG answer answer: {Denmark}
reason: From {Denmark}→ location.location.containedby→ {Eurasia}→location.location.contains

→ {Germany}, Denmark is European Union country shares borders with "Germany". From {Lejre Mu-

nicipality}→ location.administrative_division.country→ {Denmark}, Denmark is country contains

the Lejre Municipality Both paths lead to Denmark, which is the European Union country sharing

borders with Germany and containing the Lejre Municipality. Therefore, the provided knowledge

graph path is sufficient to answer the main question, and the answer is {Denmark}.

Question What Central Tiem Zone continent do the Falkland Islands belong to?

Answer Americas

Topic Entity {Falkland Islands, Continent, Central Time Zone}

LLM indicator answer("Central Time Zone") – owns - answer("Continent")- located contain -"Falkland Islands"
Split Question split_question1:What continent do the Falkland Islands belong to?

split_question2: What Central Time Zone does the continent belong to?

Reasoning Path {Central Time Zone} → time.time_zone.locations_in_this_time_zone → {Americas} → com-

mon.topic.not able_types→ {Continent}→ common.topic. notable_types→ {Americas}→ loca-

tion.location.con tains→{ Falkland Islands}

PoG answer answer: {Americas}
reason: From {Continent}→ common.topic.notable_types→ {Americas}→ location.location. con-

tains→{ Falkland Islands}, Americas is the continent Falkland Islands belong to. From {Central

Time Zone}→ time.time_zone.locations_in_this_time_zone→ {Americas}→ common.topic. no-

table_types→ {Continent}. Americas is the Central Time Zone. Therefore, the provided knowledge

graph path is sufficient to answer the overall question, and the answer is {Americas}.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

D SPARQL
This section outlines the pre-defined SPARQL queries used for

interacting with the knowledge graph and constructing graphs for

our experiments.

D.1 1-hop Entity and Relation Search
To facilitate the retrieval of 1-hop neighbors of entities within the

Freebase Knowledge Graph, we have predefined a SPARQL query.

This query is designed to be executed by simply substituting the

appropriate ID for the query entity ID. It returns the connected

entities’ IDs and their associated relations’ IDs, indicating whether

the connected entity is at the tail or the head of the relation.

PREFIX ns: <http ://rdf.freebase.com/ns/>

SELECT ?relation ?connectedEntity ?direction

WHERE {

{

ns:ID ?relation ?connectedEntity .

BIND("tail" AS ?direction)

}

UNION

{

?connectedEntity ?relation ns:ID .

BIND("head" AS ?direction)

}

}

D.2 Short Textual Description
The following predefined function implements the retrieval of short

textual descriptions, D(.), for converting the identifiers (IDs) of

entities or relations into natural language descriptions.

PREFIX ns: <http ://rdf.freebase.com/ns/>

SELECT DISTINCT ?tailEntity

WHERE {

{

?entity ns:type.object.name ?tailEntity .

FILTER (?entity = ns:ID)

}

UNION

{

?entity <http ://www.w3.org /2002/07/

owlsameAs > ?tailEntity .

FILTER (?entity = ns:ID)

}

}

D.3 1-hop Subgraph Search
To facilitate subgraph detection in Section 4.1, we implement the

1-hop subgraph detection feature by integrating SPARQL functions

described in Appendix D.1 and D.2. The purpose of this function is

to retrieve, in a single SPARQL query, the function returns the 1-hop

neighbors of a given query with their IDs, natural language names,

and connected relationships, specifying whether the connected

entity is at the tail or the head of the relationship.

PREFIX ns: <http ://rdf.freebase.com/ns/>

SELECT ?relation ?connectedEntity ?connectedEntityName ?

direction

WHERE {

{

ns:ID ?relation ?connectedEntity .

OPTIONAL {

?connectedEntity ns:type.object.name ?

name .

FILTER(lang(?name) = 'en ')

}

BIND(COALESCE (?name , "Unnamed
Entity") AS ?connectedEntityName)

BIND("tail" AS ?direction)

}

UNION

{

?connectedEntity ?relation ns:ID .

OPTIONAL {

?connectedEntity ns:type.object.name ?

name .

FILTER(lang(?name) = 'en ')

}

BIND(COALESCE (?name , "Unnamed
Entity") AS ?connectedEntityName)

BIND("head" AS ?direction)

}

}

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

E PROMPTS
In this section, we detail the prompts required for our main experimental procedures.

Question Analysis Prompt Template

You will receive a multi-hop question, which is composed of several interconnected queries, along

with a list of topic entities that serve as the main keywords for the question. Your task is to break the

question into simpler parts, using each topic entity once and provide a Chain of Thought (CoT) that

shows how the topic entities are related. Note: Each simpler question should explore how one topic

entity connects to others or the answer. The goal is to systematically address each entity to derive

the final answer.

In-Context Few-shot

Q: {Query}

Topic Entity: {Topic Entity}

A:

LLM Supplement Prompt Template

Using the main question, a possibly uncertain chain of thought generated by a language model,

some related split questions, paths from the "Related_paths" section, and main topic entities: please

first provide three predicted results, and second offer three possible chains of thought that could lead

to these results, using the provided knowledge paths and your own knowledge. If any answers are

unclear, suggest alternative answers to fill in the gaps in the chains of thought, following the same

format as the provided examples.

In-Context Few-shot

Q: {Query}

Topic Entity: {Topic Entity}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

A:

where {Think Indicator}, and {Split Question} are obtained in section 4.1. An indicator example is shown in Figure 2.

Precise Path Select Prompt Template

Given a main question, a LLM-generated thinking Cot that considers all the entities, a few split

questions that you can use stepply and finally obtain the final answer, and the associated retrieved

knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships} -> {set of

entities(with id start with "m.")}, Please score and give me the top three lists from the candidate paths

set can be highly to be the answer of the question.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Candidate Paths:{Candidate Paths}

A:

{Candidate Paths} denotes the retrieved reasoning paths 𝐹𝑖𝑛𝑎𝑙𝑝𝑎𝑡ℎ𝑠 to be selected in this request which are formatted as a series of

structural sentences:

{𝑒0𝑥 , ..., 𝑒0𝑧 } → 𝑟1𝑖 → {𝑒1𝑥 , ..., 𝑒1𝑧 } → . . . → 𝑟𝑙 𝑗 → {𝑒𝑙𝑥 , ..., 𝑒𝑙𝑧 }
. . .

{𝑒0𝑥 , ..., 𝑒0𝑧 } → 𝑟1𝑖 → {𝑒1𝑥 , ..., 𝑒1𝑧 } → . . . → 𝑟𝑙 𝑗 → {𝑒𝑙𝑥 , ..., 𝑒𝑙𝑧 },
where, 𝑖 and 𝑗 in 𝑟1𝑖 , 𝑟1𝑖 represent the 𝑖-th, 𝑗-th relation from each relation edge in the clustered question subgraph. And 𝑒 is constructed by

its ID and natural language name D(𝐼𝐷).
16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Paths-over-Graph: Knowledge Graph Enpowered Large Language Model Reasoning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Path Summarizing Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that consider all the entities, a few

split questions that you can use stepply and finally obtain the final answer, the associated accuracy

retrieved knowledge paths from the Related paths section, and main topic entities. Your task is to

summarize the provided knowledge triple in Related paths section and generate a chain of thoughts

by the knowledge triple related to the main topic entities of question, which will used for generating

the answer for the main question and split question further. You have to make sure you summarize

correctly by use the provided knowledge triple, you can only use the entity with id from the given

path and you can not skip in steps.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Related Paths:{Related Paths}

A:

{Related_Paths} has the same format with the {Candidate_Paths} before.

Question Answering Evaluation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers all the entities, a

few split questions that you can use and finally obtain the final answer, and the associated retrieved

knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships} -> {set of

entities(with id start with "m.")}. Your task is to determine if this knowledge graph path is sufficient to

answer the given split question first then the main question. If it’s sufficient, you need to respond {Yes}

and provide the answer to the main question. If the answer is obtained from the given knowledge

path, it should be the entity name from the path. Otherwise, you need to respose {No}, then explain

the reason.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Related Paths:{Related Paths}

A:

Question Answering Generation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that consider all the entities, a

few split questions that you can use stepply and finally obtain the final answer, and the associated

retrieved knowledge graph path, {set of entities (with id start with "m.")} -> {set of relationships}

-> {set of entities(with id start with "m.")}, Your task is to generated the answer based on the given

knowledge graph path and your own knowledge.

In-Context Few-shot

Q: {Query}

Think Indicator:{Think Indicator}

Split Question:{Split Question}

Related Paths:{Related Paths}

A:

17

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Method
	4.1 Initialization
	4.2 Exploration
	4.3 Path Pruning
	4.4 Question Answering

	5 Experiments
	5.1 Main Results
	5.2 Ablation Study
	5.3 Effectiveness Evaluation

	6 CONCLUSION
	References
	A Algorithm
	A.1 Exploration
	A.2 Path Pruning

	B Experiment
	B.1 Additional Ablation Study
	B.2 Reasoning Faithfulness Analysis
	B.3 Error Analysis
	B.4 LLM Calls Cost Analysis
	B.5 Case Study

	C Experiment Details
	D SPARQL
	D.1 1-hop Entity and Relation Search
	D.2 Short Textual Description
	D.3 1-hop Subgraph Search

	E Prompts

