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ABSTRACT

Semantic parsers convert natural language to logical forms, which can then be
evaluated on knowledge bases (KBs) to produce denotations. Recent semantic
parsers have been developed with sequence-to-sequence (seq2seq) pre-trained
language models (PLMs) or large language model, where the models treat logical
forms as sequences of tokens. For syntactic and semantic validity, the semantic
parsers use grammars that enable constrained decoding. However, the grammars
lack the ability to utilize large information of KBs, although logical forms contain
representations of KB components, such as entities or relations. In this work, we
propose a grammar augmented with candidate expressions for semantic parsing on
large KBs with a seq2seq PLM.1 The grammar defines actions as production rules,
and our semantic parser predicts actions during inference under the constraints
by types and candidate expressions. We apply the grammar to knowledge base
question answering, where the constraints by candidate expressions assist a
semantic parser to generate valid KB components. Experiments on the KQAPRO
benchmark showed that the constraints by candidate expressions increased the
accuracy of our semantic parser, and our semantic parser achieved state-of-the-art
performance on KQAPRO.

1 INTRODUCTION

Semantic parsing is the task of mapping natural language to logical forms, which can be evaluated
on given knowledge bases (KBs) to produce corresponding denotations. For example, a question
answering system can use a semantic parser to convert a user’s question to a query (logical form),
then the query derives an answer (denotation) from a database (KB) (Zelle & Mooney, 1996; Cai
& Yates, 2013). Traditional semantic parsers depend on grammars with lexicons that map spans of
utterances to atomic units, which are subsequently composed into logical forms by following the
grammars (Zettlemoyer & Collins, 2005; Wong & Mooney, 2007; Liang et al., 2011). In contrast,
the emergence of sequence-to-sequence (seq2seq) frameworks (Sutskever et al., 2014; Bahdanau
et al., 2015) have led to the development of neural semantic parsers whose neural networks convert
natural language token sequences to action sequences that construct logical forms (Jia & Liang,
2016; Dong & Lapata, 2016).

Neural semantic parsers have used grammars that utilize types for constrained action decoding,
in which the actions are designed to generate only well-typed logical forms. The actions can be
defined as production rules that expand typed placeholders into sub-expressions of logical forms
(Yin & Neubig, 2017; Rabinovich et al., 2017; Krishnamurthy et al., 2017), or as typed atomic units
that are inserted into partially constructed logical forms (Guu et al., 2017; Cheng et al., 2017; Liang
et al., 2017; Dong & Lapata, 2018; Goldman et al., 2018). In particular, semantic parsers that take
production rules as actions are easily adapted to diverse applications with different logical forms,
once the corresponding production rules are defined.

Recent work has incorporated grammars into semantic parsers based on seq2seq pre-trained
language models (PLMs) (Lewis et al., 2020; Raffel et al., 2020), or based on large language models
(LLMs) (Brown et al., 2020; Chen et al., 2021a), where the models have specific decoders with
tokenizers. The semantic parsers sequentially generate tokens that extend prefixes of logical forms

1Our code will be publicly available if this paper is accepted.
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date of birth : 1904-01-18
date of death : 1986-11-29
work period (start) : 1932

Cary Grant

short name : USA
area : 9,826,675 km2

country calling code : +1

United States of America

start time : 1942-06-26

country of citizenship
k :

x : When did Cary Grant become a citizen of United States of America?

a : [ a1 : <result-rel-q-value> → (query-rel-qualifier <kw-relation> <kw-qualifier>
<obj-entity> <obj-entity>),

a2 : <kw-relation> → (keyword-relation <kp-relation> <kp-relation>∗),
a3 : <kp-relation ...> → (nlt ·country), ...]

r(a) : (program (query-rel-qualifier (keyword-relation (nlt ·country) (nlt ·of)
(nlt ·citizenship) reduce) ...)

l(r(a)) : (query-rel-qualifier (find "Cary Grant") (find "United States of America")
"country of citizenship" "start time")

Jl(r(a))Kk : 1942-06-26

Figure 1: Semantic parsing on an example of KQAPRO. k is a KB, x is an utterance, a is an
action sequence, r(a) is an intermediate representation built by a, l(r(a)) is a logical form which
corresponds to r(a), and Jl(r(a))Kk is the denotation when l(r(a)) is evaluated on k.

under the guidance of the grammars that keep the prefixes always valid. The semantic parsers use
context-free grammars (CFGs) for syntactic validity (Wu et al., 2021; Shin et al., 2021; Wang et al.,
2023), and additionally uses context-sensitive constraints for semantic validity (Scholak et al., 2021;
Poesia et al., 2022).

However, the grammars for semantic parsing with specific decoders lack the ability to utilize large
information of KBs. The information includes KB components, such as entities or relations, and
categories that the components belong to. Since logical forms contain representations of KB
components, the information of KBs is necessary for semantic parsers to generate valid logical
forms. Therefore, incorporating the large information of KBs into grammars is important, but
scalable and efficient designs of the grammars are inevitable for practical use.

In this work, we propose a grammar augmented with candidate expressions for semantic parsing
on large KBs with a seq2seq PLM. Our grammar combine previous constrained decoding methods
that construct compositional structures (Yin & Neubig, 2017) and generate KB components (Cao
et al., 2021a), which correspond to candidate expressions. The two different methods are seamlessly
unified into our grammar which formulate constrained decoding as the problem of restricting actions
for a given intermediate representation. In addition, we efficiently implemented the constrained
decoding method with our grammar, then the method has small overhead during decoding.

We experiment on KQAPRO (Cao et al., 2022), which is a benchmark for large-scale complex
knowledge base question answering (KBQA). Our semantic parser is based on BART (Lewis et al.,
2020), and the semantic parser is fine-tuned with supervision on action sequences. Experimental
results show that the constraints by candidate expressions increase accuracy of our semantic parser.
Our semantic parser with the proposed grammar achieved state-of-the-art performance on KQAPRO.

2 SEMANTIC PARSING

We first formally define a semantic parser as a function fθ : X → A that maps a natural language
utterance x ∈ X to an action sequence a ∈ A =

⋃
i∈NAi that builds an intermediate representation

r(a) which corresponds to a logical form l(r(a)), which is evaluated on a KB k to produce a
denotation Jl(r(a))Kk (Figure 1). As a seq2seq model with a probability distribution over actions at
each time step, we formulate a semantic parser as:

fθ(x) = arg max
a∈A

pθ(a | x) = arg max
a∈A

|a|∏
i=1

pθ(ai | a1:i−1, x) (1)

where θ is the set of parameters of the model. In practice, a semantic parser finds a sub-optimal
solution by greedy search or beam search within a limited number of operations.
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Table 1: Subset of a grammar definition. Each row specifies the properties of a node class. About
logical form templates, @i means the logical form of a child node for an index i, @* means the
logical forms of all child nodes, and #(expr) means that the logical form is the result of the
evaluation of (expr).

Class name Return type Parameter types Logical form template

program result [result] @0

query-rel-qualifier result-rel-q-value [kw-relation kw-qualifier (query-rel-qualifier
obj-entity obj-entity] @2 @3 @0 @1)

keyword-relation kw-relation [kp-relation #(concat @*)
&rest kp-relation]

(nlt ·country) (ut kp-entity N/A ·country
kp-relation ...)

Table 2: Example of building an intermediate representation by taking actions. For each step, an
action expands the leftmost non-terminal, written in bold, into a logical form expression, underlined
in the next step.

Step Intermediate representation

0 (program <result>)

1 (program (query-rel-qualifier <kw-relation> <kw-qualifier> <obj-entity> <obj-entity>))

2 (program (query-rel-qualifier (keyword-relation <kp-relation> <kp-relation>∗)
<kw-qualifier> <obj-entity> <obj-entity>))

3 (program (query-rel-qualifier (keyword-relation (nlt ·country) <kp-relation>∗)
<kw-qualifier> <obj-entity> <obj-entity>))

4 (program (query-rel-qualifier (keyword-relation (nlt ·country) (nlt ·citizenship) <kp-relation>∗)
<kw-qualifier> <obj-entity> <obj-entity>))

5 (program (query-rel-qualifier (keyword-relation (nlt ·country) (nlt ·citizenship) reduce)
<kw-qualifier> <obj-entity> <obj-entity>))

The semantic parser learns to predict an action sequence a when given an utterance x by maximizing
the objective J(D, θ) with respect to parameters θ for a training set D:

J(D, θ) =
∑

(x,a)∈D

log pθ(a | x). (2)

However, to use a seq2seq PLM, we should reduce the discrepancy in formats between the actions
and the natural language tokens that are predicted by the seq2seq PLM.

To adapt a seq2seq PLM to our semantic parsing framework, we divide A, which is the set of
actions, into two subsets: ACOM which contains actions that build compositional structures or atomic
units, andANLT which contains actions that generate natural language tokens (Yin & Neubig, 2017).
An action in ANLT constructs a node (nlt *) where * is a natural language token. Then, (1) the
embedding of an action inACOM is learned from scratch and (2) the embedding of an action inANLT

is fine-tuned from the pre-trained embedding of the corresponding token.

3 GRAMMARS WITH TYPES

An action a is a production rule that is applied to the leftmost non-terminal ν(r(a?)) in an
intermediate representation r(a?) built from a past action sequence a?. The action a = α(c)
corresponds to a node class c that is defined by a grammar that specifies a return type and parameter
types for c (Table 1). The action a expands the return type of c to an expression that is composed of
the name of c and the parameter types of c:

<return-type>→ (class-name <param-type-0> <param-type-1> ...)
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or a expands to the name of c when c does not have any parameter type:

<return-type>→ class-name

where the types become non-terminals. We express an intermediate representation as an
S-expression which consists of symbols and parentheses (McCarthy, 1978). The S-expression is a
tree structure in which the first symbol in a pair of parentheses is the parent node and the remaining
symbols or sub-expressions are child nodes.

Under type constraints, an action a can be applied to the leftmost non-terminal ν(r(a?)) when a’s
left-hand side, κ(a), and ν(r(a?)) have the same type or compatible types (Yin & Neubig, 2017;
Krishnamurthy et al., 2017) (Figure 2). We define three special conditions for type compatibility:

Sub-type inference allows an action a to be applied to the leftmost non-terminal ν(r(a?)) when
the left-hand side κ(a) has a sub-type of ν(r(a?)). For example, a = α(query-rel-qualifier)
has <result-rel-q-value> as κ(a), then a can be applied to ν(r(a?)) = <result>, as
result-rel-q-value is a sub-type of result.

Union types allow the left-hand side κ(a) of an action a to have multiple types, then a can be
applied to the leftmost non-terminal ν(r(a?)) when the type of ν(r(a?)) is same or compatible
with a type that belongs to κ(a). We assign a union type to κ(a) for an action a = α((nlt *)).
For example, a = α((nlt ·country)) has <kp-entry kp-relation ...> as κ(a), whose type
is (ut kp-entry kp-relation ...), then a can be applied to ν(r(a?)) such as <kp-entry> or
<kp-relation>, but it cannot be applied to <vp-quantity> which requires another action a′, such
as α((nlt ·7)), whose left-hand side κ(a′) is <vp-quantity ...>.

Repeated types allow the leftmost non-terminal ν(r(a?)) that has ∗ as a suffix to be repeated until
a special action ∗ → reduce is taken (Yin & Neubig, 2017). The special non-terminal that has
∗ is derived from a parameter type declared with the &rest keyword. For example, a node class
keyword-relation has kp-relation as the second parameter type, which is declared with the &rest
keyword, then the type becomes a non-terminal <kp-relation>∗, which is repeated as ν(r(a?))
until ∗→ reduce is taken.

The parsing procedure is to sequentially take actions, which expand the leftmost non-terminals to
sub-expressions, until no non-terminal exists (Table 2). When the past action sequence is a1:t−1,
an action at replaces the leftmost non-terminal ν(r(a1:t−1)) with the right-hand side of at, then the
intermediate representation is updated as r(a1:t). For each step during parsing, a semantic parser
should distinguish which actions are valid in the current intermediate representation. Therefore, a
semantic parser needs a function Ψ : R → 2A that maps an intermediate representation r(a?) ∈ R
to a set of valid actions Ψ(r(a?)) ⊂ A.

We define ΨTYPE(r(a?)) as the set of all valid actions with respect to types. For an action
a ∈ ΨTYPE(r(a?)), the leftmost non-terminal ν(r(a?)) and the left-hand side κ(a) have compatible
types. Therefore, ΨTYPE guides a semantic parser to gradually compose well-typed intermediate
representations. When parsing is finished, the final expression is a complete intermediate
representation r(a), which can be converted to a logical form l(r(a)), as each node has a
corresponding logical form template (Table 1).

4 CANDIDATE EXPRESSIONS

Our grammar with types build compositional structures of intermediate representations, but the
grammar is insufficient to synthesize valid KB components. A KB component is constructed by
a node, such as keyword-relation, and the node has a sequence of (nlt *) nodes as children.
Unless the sequence of (nlt *) nodes becomes an existing KB component, a logical form that
involves the sequence cannot produce a meaningful denotation.

We augment the grammar with candidate expressions to generate existing KB components. A
candidate expression e ∈ E(c) for a node class c is a predefined instance of a specific KB
component category that corresponds to c. For example, the KB component category “relation”,
which corresponds to a node class c = keyword-relation, has predefined instances, such as
"country of citizenship" and "country for sport", as candidate expressions E(c) (Table 3).
The candidate expressions E(c) are shared with a node o that is instantiated from the node class c;
therefore E(c) = E(o).
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Table 3: Node classes, subsets of their candidate expressions, and the total numbers of candidate
expressions.

Class name Subset of candidate expressions Quantity

keyword-concept "human", "music", "chief executive officer", "Academy Awards" 791
keyword-entity "United States of America", "Nobel Peace Prize", "Cary Grant" 14,471
keyword-relation "affiliation", "country of citizenship", "country for sport" 363
keyword-attribute-string "DOI", "ISSN", "catalog code", "media type", "GitHub username" 403
keyword-attribute-number "height", "width", "speed", "price", "radius", "melting point" 201
keyword-attribute-time "date of birth", "work period (start)", "production date" 25
keyword-qualifier-string "place of publication", "appointed by", "official website" 226
keyword-qualifier-number "proportion", "ranking", "frequency", "number of subscribers" 34
keyword-qualifier-time "start time", "end time", "point in time", "last update" 15
constant-unit "mile", "inch", "gram", "hour", "year", "square kilometre" 118

r(a?) : (program (query-rel-qualifier (keyword-relation (nlt ·country) <kp-relation>∗)
<kw-qualifier> <obj-entity> <obj-entity>))

ΨTYPE(r(a?)) : {<kp-relation ...> → (nlt ·of), <kp-relation ...> → (nlt ·with), ...}

ΨCAND(r(a?)) : {<kp-relation ...> → (nlt ·of), <kp-relation ...> → (nlt ·for), ...}

Figure 2: Example of two action sets ΨTYPE(r(a?)) and ΨCAND(r(a?)) for an intermediate
representation r(a?). <kp-relation>∗ is ν(r(a?)) which is the leftmost non-terminal
in r(a?), and keyword-relation is ρ(ν(r(a?))) which is the parent node of ν(r(a?)).
<kp-relation ...> → (nlt ·of) and <kp-relation ...> → (nlt ·for) are actions that result
in valid prefixes of candidate expressions. <kp-relation ...> → (nlt ·with) is an action that
results in an invalid prefix of a candidate expression. <kp-relation ...> is κ(a) which is the
left-hand side of a ∈ <kp-relation ...> → (nlt ·of) | (nlt ·with) | (nlt ·for).

We define ΨCAND(r(a?)) as the set of valid actions with respect to candidate expressions.
ΨCAND(r(a?)) depends on ρ(ν(r(a?))) which is the parent node of the leftmost non-terminal
ν(r(a?)) (Figure 2). The parent node ρ(ν(r(a?))) has (nlt *) nodes as children, whose
concatenation should be always a prefix of a candidate expression e ∈ E(ρ(ν(r(a?)))). Therefore,
an action at ∈ ΨCAND(r(a1:t−1)) adds an (nlt *) node as a child to ρ(ν(r(a1:t−1))), then the new
concatenation of child nodes of ρ(ν(r(a1:t))) becomes an extended prefix of a candidate expression
e ∈ E(ρ(ν(r(a1:t−1)))).

We implement ΨCAND with trie data structures (Cormen et al., 2009) that store candidate expressions
which are split into natural language tokens (Cao et al., 2021a; Shu et al., 2022). For each node class
c, we convert its candidate expressions E(c) into token sequences, which are then added to the trie
τ(c). The trie τ(c) is shared with a node o instantiated from the node class c; therefore τ(c) = τ(o).
A constructed trie τ(o) takes a token sequence as a prefix of a candidate expression e ∈ E(o),
then retrieves valid tokens that can extend the prefix. Therefore, an action a ∈ ΨCAND(r(a?)) is
represented as <...>→ (nlt *) where the token * is retrieved from the trie τ(ρ(ν(r(a?)))) when
given a token sequence from child nodes of ρ(ν(r(a?))). Previous work has used one trie for entities
(Cao et al., 2021a) or two distinct tries for predicates (Shu et al., 2022), whereas we use a distinct
trie for each node class that corresponds to a KB component category.

Finally, we introduce ΨHYBR which is a hybrid function of ΨTYPE and ΨCAND. For an intermediate
representation r(a?), ΨHYBR returns a set of valid actions from ΨCAND(r(a?)) when candidate
expressions are defined for ρ(ν(r(a?))), or from ΨTYPE(r(a?)) otherwise:

ΨHYBR(r(a?)) =

{
ΨCAND(r(a?)) if HASCANDEXPR(ρ(ν(r(a?))))

ΨTYPE(r(a?)) otherwise.
(3)

Therefore, ΨHYBR uses ΨTYPE to construct compositional structures, and uses ΨCAND to generate
KB components, which are attached to the compositional structures.
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5 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

We implement our semantic parser with the proposed grammar on KQAPRO, which is a large-scale
benchmark for KBQA (Cao et al., 2022).

Datasets. We use the standard KQAPRO data splits: the training set DTRAIN, the validation set
DVAL and the test set DTEST; they contain 94,376, 11,797 and 11,797 examples respectively (Cao
et al., 2022). Each example includes a question, a logical form written in KoPL (Cao et al., 2022)
and an answer. We map a question to an utterance x, and an answer to a gold denotation y. We
also augment an example in DTRAIN with an action sequence a, which is converted from the KoPL
logical form of the example. The average, maximum and minimum length of a in DTRAIN is 28.8,
149 and 8 respectively.

Models. We develop our semantic parser with BART (Lewis et al., 2020), which is a seq2seq PLM.
For a fair comparison with previous work, we especially use the BART-base model, with which
previous semantic parsers are developed (Cao et al., 2022; Nie et al., 2022; 2023).

Grammars. Our grammar defines the actions in A = ACOM ∪ ANLT (Section 2), where |ACOM|
is 53 and |ANLT| is 50,260, which is same with the number of non-special tokens of BART. From
the grammar, different Ψ functions are derived: (1) ΨHYBR, (2) ΨTYPE, (3) ΨTYPE – which replaces
different union types with the same type and (4) ΨNONE which always returns A, the set of all
actions, without applying any constraint. The action sets that are returned from the four functions
have the following subset relations:

ΨHYBR(r(a?)) ⊂ ΨTYPE(r(a?)) ⊂ ΨTYPE –(r(a?)) ⊂ ΨNONE(r(a?)) = A. (4)

We address the effect of the functions Ψ = {ΨHYBR,ΨTYPE,ΨTYPE –,ΨNONE} in Section 7.1.

Intermediate representations. An intermediate representation r(a?) is stored in a linked list that
consists of nodes and complete sub-expressions. An action a that is not ∗→ reduce attaches a node
to the linked list. When the parent node ρ(ν(r(a?))) has no more non-terminal as a child node, or
when the last action is ∗ → reduce, ρ(ν(r(a?))) and its children are popped from the linked list,
then they are again attached to the linked list as a complete sub-expression (Cheng et al., 2017).
Since a linked list can be shared as a sub-linked list for other linked lists, search algorithms do not
need to the copy the previous intermediate representation r(a1:t−1) when multiple branches with
different actions from Ψ(r(a1:t−1)) occur for a time step t.

Search. Our semantic parser searches for an action sequence a when given an utterance x. A
search algorithm, such as greedy search or beam search, depends on a scoring function:

s(a ; a1:t−1, x, θ) = log pθ(a | a1:t−1, x) + log pθ(a1:t−1 | x) = log pθ((a1:t−1, a) | x) (5)

which assigns a priority to an action a ∈ ΨNONE(a1:t−1) = A as a candidate for the next action at.
We replace the scoring function s with sΨ which uses Ψ ∈ {ΨHYBR,ΨTYPE,ΨTYPE –}:

sΨ(a ; a1:t−1, x, θ) =

{
s(a ; a1:t−1, x, θ) if a ∈ Ψ(r(a1:t−1))

−∞ otherwise.
(6)

We use greedy search and beam search in the transformers library (Wolf et al., 2020). The search
implementation can take a scoring function sΨ as an argument to predict a when given x. Our
semantic parser uses greedy search by default and additionally uses beam search in Section 6.

We efficiently implement sΨ and ΨHYBR, so the time cost for our method is small enough for
practical applications (Appendix B). During evaluation on DVAL with batch size 64, the average
time to predict a from x by greedy search was (1) 3.8 milliseconds (ms) with s, and (2) 10.2 ms
with sΨ and Ψ = ΨHYBR on our machine 2; therefore, the time cost for sΨ and ΨHYBR was 6.4 ms.
The time cost when using beam search with a beam size of 4 was 23.2 ms, as the cost is proportional
to the beam size.

Execution. A search process finds an action sequence a, from which an executable logical form
l(r(a)) is derived. The logical form l(r(a)) is written as an S-expression, so a transpiler (Odendahl,
2019) converts l(r(a)) into Python code on the fly, then the code is executed over a KB k to produce
the denotation Jl(r(a))Kk.

2CPU = Ryzen Threadripper PRO 5975WX, GPU = NVIDIA GeForce RTX 3090
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Table 4: Accuracies on the overallDVAL, the overallDTEST and each category of examples inDTEST.

Model
DVAL DTEST

Over- Over- Multi- Quali- Comp- Logi- Count Verify Zero-
all all hop fier arison cal shot

BART KoPL (Cao et al., 2022) - 90.55 89.46 84.76 95.51 89.30 86.68 93.30 89.59
GraphQ IR (Nie et al., 2022) - 91.70 90.38 84.90 97.15 92.64 89.39 94.20 94.20
Semantic Anchors (Nie et al., 2023) - 91.72 - - - - - - -

Ours with ΨNONE or ΨTYPE – 92.08 91.74 90.74 86.88 97.05 90.38 87.06 93.51 90.55
Ours with ΨTYPE 92.08 91.75 90.76 86.88 97.05 90.41 87.13 93.51 90.55
Ours with ΨHYBR 92.96 92.60 91.51 87.73 97.47 91.37 87.96 94.20 91.31

+ beam size = 4 93.17 92.81 91.67 88.12 97.57 91.73 88.11 94.06 91.88

Evaluation. As an evaluation measure, we use denotation accuracy, which is the fraction of
examples where the predicted denotation Jl(r(a))Kk and the gold denotation y are identical.

Training procedure. Our semantic parser fθ learns to predict an action sequence a from a given
utterance x. At each epoch, we optimize the parameters θ by maximizing the objective J(DTRAIN, θ)
(Eq. 2), and evaluate fθ with each Ψ ∈ Ψ on DVAL. Once the training is complete, each Ψ ∈ Ψ has
a checkpoint of parameters, with which Ψ achieves the highest accuracy on DVAL during training.
In Sections 6 and 7, we report accuracies by the checkpoints.

Hyperparameters. We adapt the hyperparameters for training from BART KoPL (Cao et al., 2022),
which is a previous semantic parser on KQAPRO. The number of epochs is 25. The batch size is 16,
which is much smaller than that of other previous work (Nie et al., 2022; 2023), whose batch size
is 128. For each update on parameters when given a batch, the learning rate linearly increases from
0 to 3e-5 for the first 2.5 epochs, then linearly decreases to 0. The objective Eq. 2 is optimized by
AdamW (Loshchilov & Hutter, 2017), which takes the learning rate and other arguments with the
following values; β1 is 0.9, β2 is 0.999, ε is 1e-8 and the weight decay rate λ is 1e-5.

6 MAIN RESULTS

We report the accuracies of our semantic parers, and compare the accuracies with those of previous
semantic parsers (Cao et al., 2022; Nie et al., 2022; 2023) (Table 4). The accuracies are computed
on the overall DVAL, the overall DTEST and each category of examples in DTEST (Cao et al., 2022).
Since the semantic parser with ΨNONE achieved the same result as that of ΨTYPE –, we report their
accuracies without duplication.

The previous semantic parsers are BART KoPL (Cao et al., 2022), GraphQ IR (Nie et al., 2022)
and Semantic Anchors (Nie et al., 2023). The three previous semantic parsers, as well as ours, are
developed with BART-base. The BART KoPL model predicts logical forms written in KoPL, which
is linearized in postfix representations. The GraphQ IR model predicts intermediate representations
written in the GraphQ IR language, which resembles English. The Semantic Anchors model predicts
logical forms written in SPARQL, and the model learns from sub-tasks about semantic anchors.

All of our semantic parsers achieved higher accuracies on the overall DTEST than the previous
semantic parsers (Table 4). The model with ΨNONE achieved decent accuracies without using any
constraint during parsing; this shows that a seq2seq PLM can be effectively fine-tuned to predict
a sequence of actions that are production rules. The model with ΨTYPE slightly increased our
accuracies on DTEST. The model with ΨHYBR noticeably increased our accuracies on DVAL and
DTEST. Finally, when the beam size was 4, the model with ΨHYBR achieved the highest accuracies
on the overall DVAL and the overall DTEST.

However, our semantic parsers achieved lower accuracies than GraphQ IR on the categories of
Logical, Count and Zero-shot in DTEST. Ours and GraphQ IR have different designs of actions
for intermediate representations: production rules for S-expressions, and tokens for English-like
expressions. Therefore, the two designs generalize differently on specific categories of examples.
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Table 5: Accuracies on DVAL with different functions in Ψ.

Ψ ∈ Ψ

Constraints Number of training examples (percentage)

Cand. Union Types 94 283 944 2.83k 9.44k 28.3k 94.4k
expr. types (0.1 %) (0.3 %) (1 %) (3 %) (10 %) (30 %) (100 %)

ΨHYBR 3 3 3 35.36 57.74 74.00 82.14 87.62 90.74 92.96
ΨTYPE 7 3 3 31.36 52.33 70.48 79.05 85.52 89.37 92.08
ΨTYPE – 7 7 3 31.29 52.31 70.45 79.01 85.49 89.36 92.08
ΨNONE 7 7 7 28.44 50.78 70.20 78.98 85.48 89.36 92.08

7 ABLATION STUDY

We address the effect of constraints by each Ψ ∈ Ψ in Section 7.1 and the effect of candidate
expressions in Section 7.2. Since the number of examples in DTRAIN is 94,376, which is a large
number, the models that are trained on DTRAIN have high accuracies, whose difference is then
small. Therefore, we train semantic parsers on various subsets of DTRAIN, where the size of a
subset changes exponentially and a larger subset includes a smaller subset. In addition, we evaluate
the semantic parsers with DVAL instead of DTEST, since the denotations in DTEST are not publicly
available.

7.1 EFFECT OF CONSTRAINTS ON ACTIONS

We report the accuracies of our semantic parsers to show the difference among Ψ (Table 5). The
functions in Ψ are listed in decreasing order of the number of applied constraints: ΨHYBR, ΨTYPE,
ΨTYPE – and ΨNONE. In the same order, the size of the action set Ψ(r(a?)) for a function Ψ ∈ Ψ
increases (Eq. 4). Therefore, a function Ψ ∈ Ψ with more constraints results in smaller search
space, which is the set of all complete action sequences. Since the constraints reject actions that
leads to an incorrect logical form, a search algorithm benefits from the small search space.

In particular, candidate expressions, which ΨHYBR uses, made the biggest contribution to the
improvement in accuracy. Candidate expressions are effective when a knowledge component is
differently represented in an utterance x since neural networks cannot correctly remember all KB
components. For example, in Figure 1, the relation "country of citizenship", which is a KB
component, is represented as “a citizen of” in the utterance x, where the candidate expressions of
the node class query-rel-qualifier can guide a semantic parser to generate the relation.

Although the effect of union types and other types was small, the type constraints consistently
increased accuracies. Union types distinguish among actions that generate (nlt *) nodes, so
the union types are useful for node classes (e.g., constant-number) that do not have candidate
expressions due to their unlimited number of possible instances. Other types, which construct
compositional structures or atomic units, are effective when the number of training examples is
small. The type constraints would be useful for weakly-supervised learning where a semantic parser
searches for an action sequence a whose denotation Jl(r(a))Kk equals the gold denotation y during
training (Liang et al., 2011; Krishnamurthy et al., 2017; Dasigi et al., 2019). Applying our grammar
to weakly-supervised semantic parsing would be interesting future work (Appendix C).

7.2 EFFECT OF CANDIDATE EXPRESSIONS FOR EACH NODE CLASS

We report decreases in accuracies when candidate expressions for specific node classes were not
used (Table 6). The candidate expressions for all the node classes contributed to accuracies unless the
number of training examples was large. In particular, the node class keyword-entity, which has the
most candidate expressions (Table 3), contributed the most to accuracies. Other node classes, such as
keyword-concept, keyword-relation and keyword-attribute-string have many fewer candidate
expressions than keyword-entity, but they also contributed to accuracies. The contributions to
accuracies would increase when the KB becomes larger and the node classes have more candidate
expressions.

8
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Table 6: Reduced accuracies on DVAL when candidate expressions for specific node classes were
not used.

Unused class name
Number of training examples (percentage)

94 283 944 2.83k 9.44k 28.3k 94.4k
(0.1 %) (0.3 %) (1 %) (3 %) (10 %) (30 %) (100 %)

keyword-concept 0.67 1.53 1.02 0.90 0.36 0.15 0.06
keyword-entity 0.71 1.29 1.26 1.24 1.16 0.95 0.65
keyword-relation 0.75 0.66 0.45 0.15 0.14 0.07 0.03
keyword-attribute-string 0.90 0.86 0.62 0.57 0.31 0.15 0.13
keyword-attribute-number 0.82 0.94 0.21 0.19 0.08 0.01 0.01
keyword-attribute-time 0.31 0.08 0.03 0.03 0.02 0.02 0.00
keyword-qualifier-string 0.03 0.03 0.03 0.02 0.03 0.02 0.01
keyword-qualifier-number 0.03 0.03 0.00 0.01 0.01 0.01 0.00
keyword-qualifier-time 0.01 0.07 – 0.01 0.01 0.00 0.00 0.00
constant-unit 0.07 0.33 0.03 0.02 0.03 0.01 0.00

All 4.01 5.41 3.52 3.09 2.09 1.37 0.88

8 RELATED WORK

We follow Yin & Neubig (2017); Krishnamurthy et al. (2017) whose grammars define actions as
production rules that build well-typed formal representations such as logical forms or abstract syntax
trees. The grammars can be designed for complex syntax, and be applied for various logical form
languages (Yin & Neubig, 2018; Yin et al., 2018; Guo et al., 2019; Dasigi et al., 2019; Wang et al.,
2020; Gupta et al., 2021; Cao et al., 2021b; Chen et al., 2021b). We further enhance the grammars
with sub-type inference, union types (Section 3) and candidate expressions (Section 4) for flexible
designs and to reduce search space.

There have been constrained decoding methods for semantic parsers based on seq2seq PLMs or
LLMs. Scholak et al. (2021) use an incremental parser to filter hypotheses by examining the top-k
tokens with the highest prediction probabilities for each hypothesis. In contrast, our method instantly
retrieves all valid actions ΨHYBR(r(a1:t−1)) for each time step t during parsing. Shu et al. (2022)
use constraints to decode operators into valid positions in logical forms, and to decode two categories
of predicates by using two respective trie data structures. Their constrained decoding method can
be formulated in our grammar framework with (1) three types to distinguish between operators,
two categories of predicates, and (2) candidate expressions for the two categories. Therefore, our
grammar framework is a generalization of their constrained decoding method. Wu et al. (2021); Shin
et al. (2021); Poesia et al. (2022); Wang et al. (2023) developed grammar-based decoding methods
for PLMs or LLMs with a few training examples. We briefly describes the idea to apply our grammar
to the constrained decoding method by Shin et al. (2021) in Appendix D.

Bottom-up parsing has also been applied to neural semantic parsers, and it uses constrained
decoding. Rubin & Berant (2021) define production rules for relational algebra (Codd, 1970), and
they apply the production rules to compose logical forms in a bottom-up manner. Liang et al.
(2017; 2018); Yin et al. (2020); Gu & Su (2022); Gu et al. (2023) execute sub-logical forms during
inference, then use the constraints on the execution results. This approach can filter out meaningless
logical forms that are valid with respect to types. However, executing sub-logical forms during
inference requires non-trivial computational cost.

9 CONCLUSION

We present a grammar augmented with candidate expressions for semantic parsing on a large
KB with a seq2seq PLM. Our grammar has a scalable and efficient design that incorporates both
various types and many candidate expressions for a large KB. The grammar guides a semantic
parser to construct compositional structures by using types, and to generate KB components by
using candidate expressions. We experiment on the KQAPRO benchmark, and our semantic parsers
achieved higher accuracies than previous work. In particular, semantic parsing with candidate
expressions established state-of-the-art performance on KQAPRO.
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APPENDIX

We describe our grammar in more detail in Appendix A, the optimization algorithms that enhance the
speed of constrained decoding in Appendix B, the application of our grammar to weakly-supervised
learning in Appendix C, the combination of our grammar with Earley’s algorithm (Earley, 1970) in
Appendix D, and qualitative analysis in Appendix E.

A GRAMMAR DETAILS

A.1 TYPES

The node classes in our grammar have return types and parameter types as properties, and the types
have sub-type relations (Section 3) (Figure 3).

obj-entity

obj-entity-with-fact

obj-entity-with-rel

obj-entity-with-attr

keyword

kw-concept

kw-entity

kw-relation

kw-attribute

kw-attr-string

kw-attr-comparable

kw-attr-number

kw-attr-time

kw-qualifier

kw-q-string

kw-q-comparable

kw-q-number

kw-q-time

operator

op-direction

op-comparison

op-st-or-bt

op-min-or-max

value

v-string

v-number

v-quantity

v-unit

v-time

v-date

v-year

keyword-part

kp-concept

kp-entity

kp-relation

kp-attribute

kp-attr-string

kp-attr-number

kp-attr-time

kp-qualifier

kp-q-string

kp-q-number

kp-q-time

value-part

vp-string

vp-quantity

vp-unit

vp-time

vp-date

vp-year

result

result-entity-name

result-relation

result-number

result-boolean

result-attr-value

result-attr-q-value

result-rel-q-value

Figure 3: Type hierarchies. The types that are underlined are used only to group their sub-types
without being used as return types or parameter types of node classes.
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Table 7: Example of converting an intermediate representation to the corresponding logical form.
For each row, a sub-intermediate representation that is written in bold with a specific color is
converted to a sub-logical that is underlined with the color in the next row. Since the node class
find has the same expression as its intermediate representation and as its logical form, the step 5 – 6
makes no difference.

Step Intermediate representation→ Logical form

0 (program (query-rel-qualifier (keyword-relation (nlt ·country) (nlt ·of)
(nlt ·citizenship) reduce)

(keyword-qualifier-time (nlt ·start) (nlt ·time) reduce)
(find (keyword-entity (nlt ·Cary) (nlt ·Grant) reduce))
(find (keyword-entity (nlt ·United) (nlt ·States)

(nlt ·of) (nlt ·America) reduce))

1 – 4 (program (query-rel-qualifier "country of citizenship" "start time"
(find "Cary Grant") (find "United States of America")))

5 – 6 (program (query-rel-qualifier "country of citizenship" "start time"
(find "Cary Grant") (find "United States of America")))

7 – 8 (program (query-rel-qualifier (find "Cary Grant") (find "United States of America")
"country of citizenship" "start time" ))

9 (query-rel-qualifier (find "Cary Grant") (find "United States of America")
"country of citizenship" "start time" )

A.2 LOGICAL FORM TEMPLATES

An intermediate representation can be converted to a logical form by using logical form templates
(Tables 1, 10 and 11). The conversion process is to apply the logical form template of each node
to the intermediate representation of the node in a bottom-up manner (Table 7). The logical form
template can be designed for various formats, such as S-expressions Krishnamurthy et al. (2017)
or abstract syntax trees Yin & Neubig (2017). In our application to KQAPRO, a logical form is an
S-expression for KBQA.

In the implementation of our grammar, (1) all actions have logical form templates that are closely
related to Python code, and (2) many actions have logical form templates for simplified expressions.
We use two keywords, default and visual, to separate the two groups of logical form templates
(Figure 4). The default templates make logical forms that can be converted to the Python code for
KBQA by using a transpiler (Odendahl, 2019). The Python code from a logical form is a function
that takes a KB and return a denotation, where the function is a lambda expression and the KB is the
argument context. In contrast, the visual templates make concise logical forms, which are used
throughout this paper.

Since a logical form is constructed from templates rather than directly from actions, the order of
the parameter types of an action is customizable. We customize the order of the parameter types
of an action to put off constructing a sub-intermediate representation that requires relatively many
actions. For example, some actions, such as filter-number, have obj-entity as a parameter type,
and an intermediate representation for obj-entity has relatively many nodes; therefore, the actions
put obj-entity as the last parameter type. The customized order of parameter types reduces the
average difference in time steps between the actions that have parent-child relations; we assume
that a seq2seq model benefits from the reduced distances between the actions, which are located in
sequences.

A.3 NODE CLASSES

Our grammar define node classes for the actions inACOM andANLT. The node classes for the actions
in ACOM are manually specified (Tables 10 and 11). The node classes for the actions in ANLT are
converted from the natural language tokens of a seq2seq PLM by using a few rules.

The key differences between (nlt *) node classes are return types. To assign a proper
return type to the (nlt *) node class from its natural language token, we use a few rules.
First, the type of an (nlt *) node class is a union type that include the following types by
default: kp-concept, kp-entity, kp-relation, kp-attr-string, kp-attr-number, kp-attr-time,
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(define-action
:name ’program
:act-type ’result
:param-types ’(result)
:expr-dict (mapkv :default $(lambda (context)

(postprocess-denotation {0}))
:visual "{0}")

:starting True)

(define-action
:name ’query-rel-qualifier
:act-type ’result-rel-q-value
:param-types ’(kw-relation kw-qualifier obj-entity obj-entity)
:expr-dict (mapkv :default $(context.QueryRelationQualifier {2} {3} {0} {1})

:visual $(query-rel-qualifier {2} {3} {0} {1})))

(define-action
:name ’keyword-relation
:act-type ’kw-relation
:param-types ’(kp-relation &rest kp-relation)
:arg-candidate (retrieve ’(candidate kw-relation))
:expr-dict (mapkv :default (retrieve ’(function concat-parts))))

(define-meta-action
:meta-name ’nl-token
:meta-params ’(token)
:name-fn (retrieve ’(name nl-token))
:expr-dict-fn (lambda (token)

(mapkv :default token))
:param-types ’())

Figure 4: Part of code for our grammar. In the code, an action for a node class is defined
by define-action. There is discrepancies in terminology between the code and our grammar;
act-type means a return type, param-types means parameter types, expr-dict means logical form
templates, and arg-candidate means a function that uses candidate expressions for the node class.
In addition, the code defines the meta-action for the meta-node class nl-token, which corresponds
to the nlt symbol in (nlt *) node classes. The meta-node class and the tokens from a seq2seq
PLM create all actions for (nlt *) node classes.

kp-q-string, kp-q-number, kp-q-time, vp-string and vp-unit. Second, the return type of the
node class additionally include vp-quantity, vp-date or vp-year if the natural language token of
the node class is a number or a special character for the types. For example, the return type of
(nlt ·7) includes the three additional types, and the return type of (nlt ·.) includes vp-quantity
since the period character (.) is used for rational numbers (e.g., 3.14).
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Algorithm 1 Method to compute a set that consists of either all valid actions or all invalid actions.
The input values are an incomplete action sequence a? and a cache memory M . The return value is
either 〈ΨHYBR(r(a?)),True〉 or 〈A −ΨHYBR(r(a?)),False〉

procedure COMPUTEACTIONSVALIDNESS(a?,M )
if HASCANDEXPR(ρ(ν(r(a?)))) then

return 〈ΨCAND(r(a?)),True〉 . Assume |ΨCAND(r(a?))| < 1
2 |A|

else
if TYPE(ν(r(a?))) /∈ KEYS(M) then

if |ΨTYPE(r(a?))| < 1
2 |A| then

M [TYPE(ν(r(a?)))]← 〈ΨTYPE(r(a?)),True〉
else

M [TYPE(ν(r(a?)))]← 〈A−ΨTYPE(r(a?)),False〉
end if

end if
return M [TYPE(ν(r(a?)))]

end if
end procedure

Algorithm 2 Method to compute a scoring mask for valid actions. The input values are a batch B
of incomplete action sequences and a cache memory M . The return value is a scoring mask S.

procedure COMPUTESCORINGMASK(B,M )
S ← a tensor with the size of |B| × |A|
for i← 1 to |B| do

for j ← 1 to |A| do
Si,j ← −∞ . By GPUs

end for
end for
for k ← 1 to |B| do

a? ← Bk
〈C, v〉 ← COMPUTEACTIONSVALIDNESS(a?,M) . Mostly, |C| < |A − C|
if v then

for a ∈ C do
Sk,ID(a) ← 0 . By CPUs

end for
else

for i← 1 to |A| do
Sk,i ← 0 . By GPUs

end for
for a ∈ C do

Sk,ID(a) ← −∞ . By CPUs
end for

end if
end for
return S

end procedure

B DECODING SPEED OPTIMIZATION

For Ψ ∈ {ΨHYBR,ΨTYPE,ΨTYPE –}, we observed that |Ψ(r(a?))| is usually very small or large. For
example, when the leftmost non-terminal ν(r(a?)) has the type op-direction, Ψ(r(a?)) includes
actions that produce ’forward and ’backward, then |Ψ(r(a?))| = 2. For another example, when
the leftmost non-terminal ν(r(a?)) has the type vp-string, Ψ(r(a?)) = ANLT, then |Ψ(r(a?))| =
50, 260.

We devise algorithms that enhance the speed of constrained decoding by patterns of the size
|Ψ(r(a?))| (Algorithms 1 and 2). Algorithm 1 retrieves either (1) a set of valid actions from trie
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Table 8: Average time to decode an output sequence by greedy search. When optimization is
disabled, Algorithm 1 doesn’t consider the size |ΨTYPE(r(a?))|, then the cache memory M is only
used to store 〈ΨTYPE(r(a?)),True〉, and the return value is always 〈ΨHYBR(r(a?)),True〉.

Model Optimization Time (ms)
Batch size = 1 Batch size = 64

BART KoPL (Cao et al., 2022) N/A 117.8 4.5
Ours with ΨNONE N/A 101.7 3.8

Ours with ΨTYPE – 3 110.3 10.0
Ours with ΨTYPE 3 110.0 10.0
Ours with ΨHYBR 3 110.7 10.2

Ours with ΨTYPE – 7 140.9 39.3
Ours with ΨTYPE 7 138.9 37.5
Ours with ΨHYBR 7 114.9 14.7

data structures for candidate expressions, or (2) a set of valid actions or a set of invalid actions
from a cache memory for types. Algorithm 2 takes the retrieved set of actions as an input, then
computes a scoring mask, where the usage of CPUs are minimized. The algorithms generalize the
PrefixConstrainedLogitsProcessor method (Cao et al., 2021a), which is implemented
in the transformers library (Wolf et al., 2020).

We also measured the average decoding time with different settings (Table 8). The result shows
that the optimization algorithms achieved meaningful decrease in decoding time. In particular, the
effect of the algorithms is noticeable when the batch size is large. This means that our algorithms
greatly reduce the overhead occurred from our constraints, then search algorithms such as beam
search, which perform concurrent operations, benefit from the reduction in the overhead. In addition,
ΨTYPE – and ΨTYPE greatly benefit from the algorithms, since ΨTYPE –(r(a?)) and ΨTYPE(r(a?))
have many actions in ANLT as valid actions due to the absence of candidate expressions.

We note that the decoding time is proportional to the length of an output sequence. Since, ours and
BART KoPL respectively have 28.8 and 35.1 as the average lengths of output sequences, ours with
ΨNONE is slightly faster than BART KoPL, although both don’t use any constraint. BART KoPL
tokenizes symbols, such as function names, then its output sequences include slight more tokens.
If sub-type inference (Section 3) is not applied to ours, we should additionally introduce actions
that convert a non-terminal with a super type to a non-terminal with sub-type; an example action is
<result> → <result-rel-q-value>. The average lengths of output sequences of ours without
sub-type inference is 32.8, then its decoding slightly gets slower.

C APPLICATION TO WEAKLY-SUPERVISED LEARNING

Semantic parsers can learn to predict logical forms from weak supervision of gold denotations,
which correspond to gold answers in the task of question answering. The learning process repeats
two steps: (1) finding consistent logical forms, which produce gold denotations, by searching with
the current parameters of a semantic parser, then (2) optimizing the parameters by learning from
the consistent logical forms (Liang et al., 2011; Berant et al., 2013; Krishnamurthy et al., 2017;
Guu et al., 2017; Liang et al., 2017; Goldman et al., 2018; Dasigi et al., 2019; Liang et al., 2018).
However, weakly-supervised semantic parsing is less addressed for seq2seq PLMs, and existing
work (Wolfson et al., 2022) also does not use a semantic parser for search during training.

Our grammar can guide a weakly-supervised semantic parser based on seq2seq PLMs to find a
consistent intermediate representation r(a), whose denotation Jl(r(a))Kk is identical with a gold
denotation y, when given an utterance x. Once consistent intermediate representations are found,
our semantic parser can learn from the action sequences of the intermediate representations by
maximizing marginal log likelihood (Krishnamurthy et al., 2017; Dasigi et al., 2019) or expected
reward (Liang et al., 2017; 2018). These search and optimization steps are repeated, then the
denotation accuracy of the semantic parser gradually increases.
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Table 9: Oracle denotation accuracies on DVAL. For all the accuracies, the same model, which is
trained from 0.1% (98 examples) of DTRAIN, is evaluated with different functions in Ψ and with
different beam sizes. In the experiment, beam search with beam size K finds K intermediate
representations with the approximately highest likelihoods. When the bean size is 1, both oracle
denotation accuracy and denotation accuracy are same.

Ψ ∈ Ψ

Constraints Beam size

Cand. Union Types 1 4 8 12 16expr. types

ΨHYBR 3 3 3 35.36 49.72 54.09 56.49 58.01
ΨTYPE 7 3 3 31.36 42.41 46.28 48.05 49.28
ΨTYPE – 7 7 3 31.29 42.32 46.22 48.05 49.23
ΨNONE 7 7 7 28.44 37.34 40.84 42.65 44.00

To verify the effectiveness of our grammar in weakly-supervised semantic parsing, we conducted
a preliminary experiment where an insufficiently trained semantic parser performs beam search to
find consistent intermediate representations under the guidance of a function Ψ ∈ Ψ (Table 9). In
the experiment, we measured oracle denotation accuracy, which is the fraction of examples where
a search algorithm, which uses pθ(a | x), finds at least one consistent intermediate representation.
The experimental result shows that constraints by types and especially by candidate expressions
increase oracle denotation accuracies.

D COMBINATION WITH EARLEY’S ALGORITHM

Shin et al. (2021) combine Synchronous CFGs (SCFGs) with Earley’s Algorithm (Earley, 1970)
where PLMs or LLMs generate canonical utterances but SCFGs also parse logical forms. This
enable PLMs or LLMs to generate representations in a formal language and synchronously track
their counterparts in another formal language. If the decoding method internally tracks our
intermediate representations, the constraints by candidate expressions can be applied.

E QUALITATIVE ANALYSIS

We compare the results of semantic parsing with ΨHYBR and with ΨTYPE (Tables 12 to 14). For an
utterance x, an intermediate representation r(a) and a logical form l(r(a)), we highlight the parts
that correspond to a candidate expression. The highlighted part in x has a different representation
from that of the corresponding candidate expression. With the guidance of ΨHYBR, the highlighted
parts in r(a) and l(r(a)) are valid KB components. In contrast, with the guidance of ΨTYPE, the
highlighted parts in r(a) and l(r(a)) are invalid, since a semantic parser copies the parts from x just
as it is.
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Table 10: First part of node classes for compositional structures and atomic units.

Class name Return type Parameter types Logical form template

program result [result] @0

all-entities obj-entity N/A all-entities

find obj-entity [kw-entity] (find @0)

filter-concept obj-entity [kw-concept obj-entity] (filter-concept
@1 @0)

filter-str obj-entity-with-attr [kw-attr-string v-string (filter-str
obj-entity] @2 @0 @1)

filter-number obj-entity-with-attr [kw-attr-number v-number (filter-number
op-comparison obj-entity] @3 @0 @1 @2)

filter-year obj-entity-with-attr [kw-attr-year v-year (filter-year
op-comparison obj-entity] @3 @0 @1 @2)

filter-date obj-entity-with-attr [kw-attr-date v-date (filter-date
op-comparison obj-entity] @3 @0 @1 @2)

relate obj-entity-with-rel [kw-relation op-direction (relate @2 @0 @1)
obj-entity]

op-eq op-comparison N/A =

op-ne op-comparison N/A !=

op-lt op-comparison N/A <

op-gt op-comparison N/A >

direction-forward op-direction N/A ’forward

direction-backward op-direction N/A ’backward

q-filter-str obj-entity-with-fact [kw-q-string v-string (q-filter-str
obj-entity-with-fact] @2 @0 @1)

q-filter-number obj-entity-with-fact [kw-q-number v-number (q-filter-number
op-comparison @3 @0 @1 @2)
obj-entity-with-fact]

q-filter-year obj-entity-with-fact [kw-q-year v-year (q-filter-year
op-comparison @3 @0 @1 @2)
obj-entity-with-fact]

q-filter-date obj-entity-with-fact [kw-q-date v-date (q-filter-date
op-comparison @3 @0 @1 @2)
obj-entity-with-fact]

intersect obj-entity [obj-entity obj-entity] (intersect @0 @1)

union obj-entity [obj-entity obj-entity] (union @0 @1)

count result-number [obj-entity] (count @0)

select-between result-entity-name [kw-attr-comparable (select-between
op-st-or-bt @2 @3 @0 @1)
obj-entity obj-entity]

select-among result-entity-name [kw-attr-comparable (select-among
op-min-or-max obj-entity @2 @0 @1)

op-st op-st-or-bt N/A ’less

op-bt op-st-or-bt N/A ’greater

op-min op-min-or-max N/A ’min

op-max op-min-or-max N/A ’max
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Table 11: Second part of node classes for compositional structures and atomic units.

Class name Return type Parameter types Logical form template

query-name result-entity-name [obj-entity] (query-name @0)

query-attr result-attr-value [kw-attribute obj-entity] (query-attr @0 @1)

query-attr-under-cond result-attr-value [kw-attribute kw-qualifier (query-attr-under-cond
value obj-entity] @3 @0 @1 @2)

query-relation result-relation [obj-entity obj-entity] (query-relation @0 @1)

query-attr-qualifier result-attr-q-value [kw-attribute value (query-attr-qualifier
kw-qualifier obj-entity ] @3 @0 @1 @2)

query-rel-qualifier result-rel-q-value [kw-relation kw-qualifier (query-rel-qualifier
obj-entity obj-entity] @2 @3 @0 @1)

verify-str result-boolean [v-string (verify-str
result-attr-value] @1 @0)

verify-number result-boolean [v-number op-comparison (verify-number
result-attr-value] @2 @0 @1)

verify-year result-boolean [v-year op-comparison (verify-year
result-attr-value] @2 @0 @1)

verify-date result-boolean [v-date op-comparison (verify-date
result-attr-value] @2 @0 @1)

keyword-concept kw-concept [kp-concept #(concat @*)
&rest kp-concept]

keyword-entity kw-entity [kp-entity #(concat @*)
&rest kp-entity]

keyword-relation kw-relation [kp-relation #(concat @*)
&rest kp-relation]

keyword-attribute-string kw-attr-string [kp-attr-string #(concat @*)
&rest kp-attr-string]

keyword-attribute-number kw-attr-number [kp-attr-number #(concat @*)
&rest kp-attr-number]

keyword-attribute-time kw-attr-time [kp-attr-time #(concat @*)
&rest kp-attr-time]

keyword-qualifier-string kw-q-string [kp-q-string #(concat @*)
&rest kp-q-string]

keyword-qualifier-number kw-q-number [kp-q-number #(concat @*)
&rest kp-q-number]

keyword-qualifier-time kw-q-time [kp-q-time #(concat @*)
&rest kp-q-time]

constant-string v-string [vp-string #(concat @*)
&rest vp-string]

constant-year v-year [vp-year #(concat @*)
&rest vp-year]

constant-date v-date [vp-date #(concat @*)
&rest vp-date]

constant-number v-number [v-quantity v-unit] #(concat-quantity-unit
@*)

constant-quantity v-quantity [vp-quantity #(raw-concat @*)
&rest vp-quantity]

constant-unit v-unit [&rest vp-unit] #(raw-concat @*)
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Table 12: Example of semantic parsing when ΨCAND is effective for keyword-concept. The correct
candidate expression is game show rather than game.

x : What game has more than 630 episodes and originally aired on NBC?

y : The Price Is Right

Ψ : ΨHYBR

r(a) : (program (query-name (intersect (filter-concept (keyword-concept (nlt ·game)
(nlt ·show) reduce) (filter-number (keyword-attribute-number (nlt ·number)
(nlt ·of) (nlt ·episodes) reduce) (constant-number (constant-quantity

(nlt ·630) reduce) (constant-unit reduce)) op-gt all-entities))

(filter-concept (keyword-concept (nlt ·game) (nlt ·show) reduce) (relate

(keyword-relation (nlt ·original) (nlt ·network) reduce) direction-backward

(find (keyword-entity (nlt ·NBC) reduce)))))))

l(r(a)) : (query-name (intersect (filter-concept (filter-number all-entities "number

of episodes" "630" >) "game show") (filter-concept (relate (find "NBC")

"original network" ’backward) "game show")))

Jl(r(a))Kk : The Price Is Right

Ψ : ΨTYPE

r(a) : (program (query-name (intersect (filter-concept (keyword-concept (nlt ·game)
reduce) (filter-number (keyword-attribute-number (nlt ·number) (nlt ·of)
(nlt ·episodes) reduce) (constant-number (constant-quantity (nlt ·630) reduce)

(constant-unit reduce)) op-gt all-entities)) (filter-concept (keyword-concept

(nlt ·game) reduce) (relate (keyword-relation (nlt ·original) (nlt ·network)
reduce) direction-backward (find (keyword-entity (nlt ·NBC) reduce)))))))

l(r(a)) : (query-name (intersect (filter-concept (filter-number all-entities "number

of episodes" "630" >) "game") (filter-concept (relate (find "NBC") "original

network" ’backward) "game")))

Jl(r(a))Kk : N/A

Table 13: Example of semantic parsing when ΨCAND is effective for keyword-entity. The correct
candidate expression is Tilda Swinton rather than Tilde Swinton.

x : What film has Tilde Swinton in the cast and was distributed by StudioCanal?

y : Julia

Ψ : ΨHYBR

r(a) : (program (query-name (intersect (filter-concept (keyword-concept (nlt ·film)
reduce) (relate (keyword-relation (nlt ·cast) (nlt ·member) reduce)

direction-backward (find (keyword-entity (nlt ·T) (nlt ·ilda) (nlt ·Sw)
(nlt ·inton) reduce)))) (filter-concept (keyword-concept (nlt ·film) reduce)

(relate (keyword-relation (nlt ·distributor) reduce) direction-backward (find

(keyword-entity (nlt ·Studio) (nlt ·Can) (nlt ·al) reduce)))))))

l(r(a)) : (query-name (intersect (filter-concept (relate (find "Tilda Swinton") "cast

member" ’backward) "film") (filter-concept (relate (find "StudioCanal")

"distributor" ’backward) "film")))

Jl(r(a))Kk : Julia

Ψ : ΨTYPE

r(a) : (program (query-name (intersect (filter-concept (keyword-concept (nlt ·film)
reduce) (relate (keyword-relation (nlt ·cast) (nlt ·member) reduce)

direction-backward (find (keyword-entity (nlt ·T) (nlt ·ilde) (nlt ·Sw)
(nlt ·inton) reduce)))) (filter-concept (keyword-concept (nlt ·film) reduce)

(relate (keyword-relation (nlt ·distributor) reduce) direction-backward (find

(keyword-entity (nlt ·Studio) (nlt ·Can) (nlt ·al) reduce)))))))

l(r(a)) : (query-name (intersect (filter-concept (relate (find "Tilde Swinton") "cast

member" ’backward) "film") (filter-concept (relate (find "StudioCanal")

"distributor" ’backward) "film")))

Jl(r(a))Kk : N/A
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Table 14: Example of semantic parsing when ΨCAND is effective for keyword-relation. The correct
candidate expression is ethnic group rather than ethnic community.

x : How many historical countries use the Japanese yen as their currency or are an ethnic community of
African Americans?

y : 2

Ψ : ΨHYBR

r(a) : (program (count (union (filter-concept (keyword-concept (nlt ·historical)
(nlt ·country) reduce) (relate (keyword-relation (nlt ·currency) reduce)

direction-backward (find (keyword-entity (nlt ·Japanese) (nlt ·yen)
reduce)))) (filter-concept (keyword-concept (nlt ·historical) (nlt ·country)
reduce) (relate (keyword-relation (nlt ·ethnic) (nlt ·group) reduce)

direction-backward (find (keyword-entity (nlt ·African) (nlt ·Americans)
reduce)))))))

l(r(a)) : (count (union (filter-concept (relate (find "Japanese yen") "currency"

’backward) "historical country") (filter-concept (relate (find "African

Americans") "ethnic group" ’backward) "historical country")))

Jl(r(a))Kk : 2

Ψ : ΨTYPE

r(a) : (program (count (union (filter-concept (keyword-concept (nlt ·historical)
(nlt ·country) reduce) (relate (keyword-relation (nlt ·currency) reduce)

direction-backward (find (keyword-entity (nlt ·Japanese) (nlt ·yen)
reduce)))) (filter-concept (keyword-concept (nlt ·historical) (nlt ·country)
reduce) (relate (keyword-relation (nlt ·ethnic) (nlt ·community) reduce)

direction-backward (find (keyword-entity (nlt ·African) (nlt ·Americans)
reduce)))))))

l(r(a)) : (count (union (filter-concept (relate (find "Japanese yen") "currency"

’backward) "historical country") (filter-concept (relate (find "African

Americans") "ethnic community" ’backward) "historical country")))

Jl(r(a))Kk : 1
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