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Abstract

Ensuring both syntactic and semantic correctness in Large Language Model (LLM) outputs
remains a significant challenge, despite being critical for real-world deployment. In this
paper, we introduce SEM-CTRL, a unified approach that allows for enforcing rich context-
sensitive constraints, and task and instance specific semantics directly on the LLM decoder.
Our approach integrates token-level MCTS which is guided by specific syntactic and se-
mantic constraints. The constraints over desired outputs are expressed using Answer Set
Grammars, which is a logic-based formalism that generalizes context sensitive grammars
while incorporating background knowledge to represent task-specific semantics. We show
that our approach helps guarantee valid completions for any off-the-shelf LLM without the
need for fine-tuning. We evaluate SEM-CTRL on a range of tasks, including synthetic grammar
synthesis, combinatorial reasoning, JSON parsing, and planning. Our experimental results
demonstrate that SEM-CTRL allows even small pre-trained LLMs to efficiently outperform
larger variants and state-of-the-art reasoning models (e.g., 04-mini) while simultaneously
guaranteeing semantic validity.

1 Introduction

Controlled generation aims at designing better decoding methodologies for Large Language Models (LLMs),
which guarantees output validity according to formal specifications (Welleck et al., [2024). The challenge
of controlled generation has so far seen many appealing approaches that can be broadly categorized as: (i)
syntactic control — such as constraining based on regular or Context-Free Grammars (CFGs) (Geng et al.,
2023; Beurer-Kellner et al., 2024} interalia); (ii) control based on domain-specific semantic constraints (e.g.,
Scholak et al., [2021} [Poesia et all 2022); and (iii) search-guided reasoning — improving control (e.g., |Zhang
et al., |2023b; [Hao et al.| 2023)).

Nevertheless, the effectiveness of existing approaches remains limited. Syntactic control is insufficient for
real-world tasks demanding context-sensitive correctness based on a token’s relative position in a sequence
(Scholak et al., |2021)). Domain-specific solutions lack generalizability across tasks (Poesia et al.| |2022; [Roy
et al.} 2023)). Critically, both focus exclusively on ensuring the LLM’s generations conform to some specifica-
tion (validity) without explicitly encoding the notion of solving the task correctly (correctness). Search-based
methods, while designed to capture correctness, suffer from ineflicient exploration and premature pruning
of valid solutions precisely because they do not explicitly capture validity (e.g., |Zhang et al., [2023b} [Wan
et al [2024). These empirical findings suggest fundamental limitations in current frameworks for handling
both syntactic and semantic constraints simultaneously, as well as for expressing correctness.

We conjecture that the most plausible reason for these limitations is that existing approaches either focus
solely on local constraints or lack semantic guidance during search. In this paper, we introduce a new
approach, called Semantically Controlled Decoding (SEM-CTRL), that unifies semantic constraints with guided
search to enable robust, controlled generation. SEM-CTRL exploits Answer Set Grammars (ASGs) to specify
both syntactic structures and semantic rules within a single formalism, and combines this with token-level
Monte-Carlo Tree-Search (MCTS), guided by domain-specific rewards. SEM-CTRL distinguishes itself from
prior work through: (1) directly encoding CSGs to capture validity, versus simpler CFGs (Geng et al., 2023}
Beurer-Kellner et al. 2023, interalia) or ad-hoc constraint checks (e.g.,|Scholak et al., [2021; Roy et al.| 2023]);
(2) using ASGs to capture semantic meanings; and (3) employing MCTS for global correctness optimization.
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Figure 1: Overview of SEM-CTRL showing: (a) Blocksworld planning task with initial and goal states. (b)
ASG fragment showing syntax and semantic rules. Curly braces {...} denote parse tree semantic constraints
VU pr, with domain rules and state encoding ¥ 5 under “Background". (c) Partial parse tree of a valid solution
sequence. (d) MCTS search over the token space, with correct (green / v'), suboptimal (orange / —2), and
invalid paths (red / x). States are simplified to show the generated token at each node instead of the entire
sequence. Blue arrow shows MCTS-parse tree correspondence; each node maps to a valid parse tree as
constraints are computed per step.

As an illustration, consider the Blocksworld planning task presented in Figure [1] (a), where an agent must
rearrange a series of colored boxes into a target configuration. Here, valid solutions must satisfy multiple
constraint classes: action formatting (e.g., “pickup x”), precondition satisfaction, and state consistency
maintenance. Traditional approaches that rely only on syntactic constraints, such as CFGs, cannot express
such context-dependent rules—a sequence may be syntactically valid yet selects invalid actions given the
current state. Likewise, a semantically valid sequence may be functionally inadequate, such as repeatedly
manipulating blocks without progressing towards the goal state. Conversely, an unconstrained search-based
mechanism must prune the token action-space due to computational feasibility, risking the elimination of the
solution and thereby losing reachability guarantees. SEM-CTRL addresses these issues by pruning semantically
invalid actions from MCTS search space (Figure (1| (d)) guided by an ASG (Figure [1| (b)).

Our empirical results show that SEM-CTRL successfully addresses these challenges through three key contribu-
tions: 1) a domain-independent framework using ASGs to capture a comprehensive hierarchy of token-aligned
constraints; 2) an efficient token-level MCTS procedure that explores only semantically valid trajectories;
and finally 3) using experiments across Synthetic Grammar Synthesis, Combinatorial Reasoning, JSON pars-
ing, and Planning, we demonstrate that SEM-CTRL enables even smaller language models (such as with 1B
parameters), to outperform larger state-of-the-art reasoning specific models (such as ol-preview, o4-mini,
and DeepSeek-R1), while guaranteeing output correctness. The results underscore the importance of jointly
capturing validity and correctness, which is underexplored in the current research landscape.

2 Background

In this section, we present the relevant background for SEM-CTRL, and introduce formal languages and ASGs.

Formal Languages and Grammars A formal language L is a (possibly infinite) set of strings composed
of a finite alphabet or vocabulary X, adhering to specific rules governing syntax and semantics. Each word in
the language, w = sg, - , s;, is a finite sequence of symbols s, € ¥. The set of all possible strings (including
the empty string €) over X forms the Kleene closure ¥*, with L C 3*. Languages are generated by means of
formal grammars G = (N, T, P, S), where N is a finite set of non-terminal symbols, T is the set of terminal
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symbols (T' = ¥), P is a finite set of production rules of the form A — «a (where, the left hand side A € N
and the right hand side & € (N UT)*), and S € N is the start symbol. A string w belongs to the language
of a grammar G, denoted by w € L(G), if there exists a sequence of rule applications (derivation) from S to
w. A parse tree PT then represents this derivation hierarchically, with internal nodes labeled by N, leaves
by T', and edges showing the application of production rules (Linz & Rodger} [2022]).

The expressiveness of formal languages varies with grammar restrictions. CFGs restrict productions to
A — «a where A € N, thus suitable for nested structures like natural language syntax. Context-Sensitive
Grammars (CSGs) allow more expressive productions of the form aAf — ayf where a, f € (N U T)*EL and
ve(NU T)*ﬂ This enables CSGs to capture context-dependent patterns — e.g., while CFGs can generate
Ly = {a'bc* | i,j,k > 0}, only CSGs can generate Ly = {a™b"c™ | n > 0} where counts are equal.

Answer Set Grammars ASG is a symbolic framework for expressing CSGs that extend CFG production
rules with context-sensitive constraints (for a thorough introduction, we refer the reader to|Law et al.l |2019)).
An ASG is composed of a CFG, augumented with a set Upgr of context-sensitive constraints annotating
the CFG’s productions rules, and a domain knowledge ¥, capturing domain-specific semantic information
as general rules and instance-specific facts. Both context-sensitive constraints and domain knowledge are
expressed using Answer Set Programming (ASP), a symbolic formalism for representing knowledge and
performing reasoning using a specialized symbolic solver. In ASP, general rules are of the form h : — by,--- , b,
(read as “h is true if all b; are true”) and constraints are of the form : — by,--- ,b, (ruling out solutions
where all b;’s are satisfied). A string w is said to belong to the language of a given ASG (i.e., w € L(Gasc))
if there exists a parse tree PT from S to w that satisfies all the constraints and domain knowledge specified
in the given ASG. This is formally defined by Equation , where str(PT) returns the string generated by
the parse tree PT, and sat(G[PT]) defines the satisfiability (based on the ASP semantics (Lifschitzl [2019))
of the ASP program G[PT] that encodes the parse tree PT and ¥ = Upp U Up.

w € L(Gasg) <= IPT : str(PT) = w A sat(G[PT)), (1)

In other words, the set of logical statements, rules, and constraints encoded in ¥ must all be true simulta-
neously in the parse tree of w (for a more comprehensive introduction to ASGs the reader is referred |Law
et al.| (2019)).

ASG Grammar Parse Tree for aabbcc
start — as bs cs { _ start
:- size(X)@1, not size(X)Q2. size(2)@1,2,3
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Figure 2: ASG for a"b"c¢™ (left) and corresponding parse tree for aabbcc with ASP annotations (right). The

grammar uses ASP annotations to enforce equal sequence lengths, with nodes showing computed size.

0} alongside its
(shown in bold)

Figure [2] illustrates the ASG for the above mentioned language Ly = {a™b"c" | n

2
corresponding parse tree for the string aabbcc. The constraints in curly brackets {...}

1zero or more elements from the set
20ne or more elements from the set
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represent the parse tree annotations Wpp expressed as ASP code. Up is, in this case, empty. The predicate
size(X) tracks the length n of each sequence, where @i indicates the i-th child position in the production
rule. The constraint :- size(X)@1, not size(X)@2. reads as: “if the first child has size X, but the second
child does not have size X, then reject this parse”. The production rules (except for the first one) contain two
alternatives separated by ‘|’: the first alternative outputs one terminal symbol (i.e., a) and increments the size
counter by one, using the value propagated from the recursively generated second child (i.e., size (X)@2), via
the rule size(X+1) :- size(X)@2. The second branch initializes the base case counter with size(0). The
parse tree demonstrates how these annotations are computed: each non-terminal node shows its computed
size value, building up from size(0) to size(2) at the sequence roots. The parse tree root node accepts the
string aabbcc if all three child sequences have equal length. This is verified by checking the satisfiability of
the two constraints. Note that, in Figure [2] if all annotations in the curly brackets were empty (i.e., ¥ = ),
the corresponding ASG would reduce to the CFG language L = {a’b’cF | i,j, k > 0}.

3 Our Approach: SEM-CTRL

We now present SEM-CTRL, which, at its core, uses ASGs to enable token-level constraint verification during
generation, guided by semantically controlled MCTS. This approach ensures both semantic validity and
solution quality: the constraints guarantee correctness (by construction), while tree search efficiently explores
the semantically valid token space to find correct solutions.

3.1 Controlled Decoding through Semantic Constraints

To achieve controlled and valid generation, we require that every partial output of the language model remains
extendable to a complete sequence in a predetermined target language. Equivalently, at each generation step
we restrict admissible tokens to preserve the possibility of producing a valid final string. We achieve this by
defining a general constraint function that maps partial sequences to valid next tokens, then instantiate this
framework with constraints of increasing expressivity.

Concretely, we now formalize semantic control in autoregressive generation. Let )V be the vocabulary of the
LLM defined by its tokenizer and V* its Kleene closure. We aim to ensure that any generated sequence
belongs to a target formal language L C V*. We define a constraint function C : V* — V that maps any
prefix y<r = (Y1, ,yt—1) € V* to its valid next tokens:

Cly<t) = {yt

Jw € L: (y<t oy)is a prefix ofw}, (2)

where o denotes token concatenation. Intuitively, the function C(y<:) returns the set of possible derivation
steps from y.; (set of tokens) that may yield a valid string w € L.

Given a language L, Equation defines how a set of valid tokens can be generated. Depending on L,
C(y<t) encodes different levels of control.

Definition 3.1 (Syntactic Control). Given a CFG G, and its associated language L(G), Ccrg is the con-
straint function that returns tokens governed by the CFG derivation steps.

Definition 3.2 (Context-Sensitive Control). Given a CSG G, and its associated language L(G), Cosg is
the constraint function that returns tokens governed by the CSG derivation steps, i.e., that satisfy the
context-sensitive constraints in ¥ pp with Up = 0.

Definition 3.3 (Semantic Control). Given an ASG G with U # (), and its associated language L(G), Csgm
is the constraint function that returns tokens governed by the ASG derivation steps, i.e., that satisfy the
semantic constraints in ¥ pgr and ¥pg.

As an illustration, consider automated planning domains. Ccrg ensures parseable action sequences. Cosg
enforces type consistency of action predicates. Cggy guarantees that the action sequence in y.; maps
to valid, executable operations in the target environment — maintaining state consistency and avoiding
invalid trajectories. We note that the semantic constraints capture domain knowledge about what makes
action sequences meaningful in the real planning environment. This is because semantic constraints refer
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to domain-specific knowledge, meaningful relationships, and rules that transcend typical local, positional
nature of (CFG or CSG) grammar rules.

Controlled Autoregressive Sampling To incorporate these constraint functions at inference, we define
a constrained sampling mechanism. Let x denote the input and y.; the prefix of tokens generated up to
timestep ¢ — 1. The language model defines the autoregressive conditional distribution py(y: | ,y<¢). To
enforce constraints, the constrained distribution gc(y: | z,y<¢) is given by:

ac(ye | @, y<t) < po(ye | 2, y<t) Ilye € Cly<y)), (3)

where I[y; € C(y<:)] = 1 when y; € C(y<:), and 0 otherwise.

3.2 Decoding with ASGs

We instantiate C using ASGs, which is expressive enough to capture Csgy. Standard ASG formulation allows
specification of whether a complete string w € L(G). To integrate ASG into decoding and enable semantic
control, we have extended ASGs to enable next-token walid completions. We expand on this here.

3.2.1 Semantically Valid Completions

When instantiating our constraint function with ASGs, valid next-token choices cannot be determined from
the current parse frontier alone, since semantic constraints may encode complex, non-local relationships
and background facts. To address this, we track the complete set of partial parse trees consistent with the
generated prefix and, for each candidate token, verify whether extending at least one of these trees still
satisfies all ASP constraints. Thereby, admitting only tokens that preserve some valid partial parse, we can
ensure every prefix remains on a guaranteed path to a fully derivable, hence semantically coherent output.

Formally, given a vocabulary X, a valid ASG is the tuple Gasg = (Gor, ¥) where the terminals T € ¥
align with LLM’s vocabulary V (we discuss this in Section . For any prefix sequence y.; € T*, we
define A(y<;) as the set of partial parse trees rooted at a start symbol S with terminal frontier y.;. Each
tree § € A(y<:) must satisfy all ASP constraints ¥ (i.e., sat(Gasc[d])). In order to handle multiple valid
parse trees for a given string, we maintain the complete set of partial trees, each representing a possible
grammatical derivation of the prefix. We use J @ a to denote extending a partial tree § by token a € T, and
A(y<t o a) to represent a collection of all partial parse trees consistent with the extended sequence y; o a.
Building on these definitions, we can specify the set of valid completions:

Casc(W<t) ={ye €T |30 € A(y<t),0 D yr € Aly<t o ys)}- (4)

The completion function Cagg(y<¢) essentially returns precisely those tokens y; for which at least one partial
parse tree in A(y<;) can be correctly extended to yield A(y<; o y¢). This procedure guarantees that every
selected token y; € Casc(y<¢) maintains Gagg[PT] with respect to ¥ as defined in Equation , preserving
a feasible path to a complete derivation in L(Gasg).

The decoding procedure initiates with a special start symbol S (corresponding to LLM’s <B0S> token) and
continues until either the only valid completion is an end symbol (<EQS> token), or the LLM terminates
generation when <E0S> appears among the valid completions.

Guaranteeing Semantic Validity We restrict each generation step only to tokens that preserve at least
one valid partial parse, the goal here is to ensure that every prefix remains extendable to a complete derivation
satisfying all constraints. This invariance guarantees that once decoding terminates, the complete output is
in the (ASG’s) language.

More precisely, the structure of ASGs guarantees, by construction, that any complete sequence y ~ gc,qq
belongs to L(Gasg), where g¢ and Cage are defined in Equation and Equation respectively. This
guarantee follows from our token-level invariant: at each step ¢, selecting y: € Casc(y<:¢) ensures that at
least one partial parse d;—1 € A(y<:) can be extended to some d; € A(y<t41) while preserving all ASP
constraints. The ASP solver enforces this invariant by examining all feasible extensions at every step.
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When generation terminates, the resulting parse tree satisfies sat(Gasg[PT]) by construction, guaranteeing
y € L(Gasc). This provides stronger semantic guarantees than approaches that rely on external solvers or
prompt engineering (detailed in Section @ through aligning constraints at the token-level.

3.2.2 Vocabulary Alignment

Our discussion thus far has assumed perfect alignment between the ASG terminals T and the LLM vocabulary
V. In practice, however, this alignment requires careful consideration as multiple LLM tokens might compose
to a single terminal, and vice versa (Beurer-Kellner et al., [2024)).

As such, we formalize this alignment through bidirectional mapping functions 7 : 7% — V* and 771 : V* —
T*U{L}. For any sequence of terminals (ay,...,a,) € T*, 7(a1,...,a,) produces a sequence of vocabulary
tokens (vy,---,v,) € V* that compose it, while 7= maps a sequence of tokens back to a sequence of
terminals if valid, returning J_E| otherwise. These mappings must satisfy the following consistency property:

Vs € T* : 77 '(7(s)) = s (mapping consistency) (5)

In practice, 7 automatically precomputes all possible expansions of sequences in T* wrt. V. Since in our
domains T is finite, enumerating valid expansions is tractable.

3.3 Decoding with Token-Aligned Semantic Tree Search

In Section we introduced constrained sampling, and in Section we defined the constraint function
Casc that guarantees semantic validity. While this guarantees that every generated sequence y is semantically
valid, it does not guarantee that y is the correct solution to the problem. Consider the Blocksworld example
in Figure [1] (a): a sequence of actions repeatedly picking up and putting down the same block would be
semantically valid as it follows all the domain rules. However, it would not achieve the desired goal state.

One might consider encoding the goal-state as a requirement directly into the ASG’s constraints ¥, forcing
only sequences terminating in the goal to be valid. However, this approach would transform SEM-CTRL
from being task-specific (applicable to any instance of Blocksworld) to being instance-specific (tied to one
particular Blocksworld configuration and goal). Instead, we want ¥ to express general rules and semantic
knowledge about the domain, while using a separate mechanism to achieve instance goals. We exploit a
semantic MCTS procedure to enforce token-level control over the generation process such that it is capable
of globally optimizing sequences using domain-specific rewards to search for correct solutions. This allows for
explicit exploration of multiple semantically valid trajectories through task-aware scoring of the trajectories
and value backpropagation to guide future expansions.

We note that our approach fundamentally differs from traditional constrained decoding approaches, which
only perform local pruning of invalid tokens at each step.

3.3.1 Token-level decoding as MDP

We formulate sequence generation as a Markov Decision Process (MDP), treating token selection as sequential
decision-making (Zhang et al 2023b; Wan et al 2024). This formulation will allow us to apply principled
search while maintaining semantic control through our ASGs. The MDP is defined as follows: 1) States s € S
represents partial generation (z, y<:) consisting of the input prompt x and the tokens generated so far y¢; 2)
Actions a € A correspond to selecting tokens from the LLM vocabulary V; and 3) Transitions 7 : Sx A — S
that deterministically appends the selected token to the current sequence: T ((z,y<¢),a) = (z,y<¢ 0 a).

In this framework, the LLM serves as a policy my : S — A that maps each state to a distribution over
actions: mg(als;) = pe(alx,y<s). Here, the goal is thus to find a sequence y that maximizes the cumulative
reward. Generation continues until a maximum length is reached or EOS is generated.

Domain Specific Reward Design Unlike prior work that rely on LLM-based approximate rewards (Hao
et al., 2023} Wan et al.| [2024), we design explicit domain-specific rewards R : S x A — R. This aligns with

3representing an invalid or undefined mapping
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our overarching goal of guaranteed correctness. Our reward function combines two key elements: 1) semantic
validity (enforced by ASG constraints); and 2) task-specific distance functions. Formally, we define:

1 if yctoa € L(Gasc) A p(y<toa) =0

—p(y<toa) ifycsoad L(Gasa)V p(y<ioa)#0 ©

R(st,a) = {

Here, p(-) measures the “distance to goal” and imposes penalties for invalid generations. In our empirical
evaluations in Section [4] we highlight tasks where formal guarantees and exact correctness are achievable.

3.3.2 Semantically guided search

Building on our MDP formulation, we exploit MCTS to compute sequences that simultaneously satisfy
necessary semantic constraints L(Gasg) and optimize the final task-specific objective. Our semantic MCTS
variant modifies the standard algorithm in three key ways:

1. Constrained Selection: We guide node selection using constrained token distribution ¢¢,,. For each
state we select the action a according to:

argmax Q(st. @) + Use,a), ™)

where Q(s¢, a) are average returns and U (s, a) is the PUCB term (Silver et all |2017; |Zhang et al., 2023b):

25 N(s1,b)

U(St,a) = ﬂ(s) ’ qCASG(a ‘ st) ’ m

(8)

where N(-) tracks visit counts and 3(s) balances exploration against exploitation.

2. Semantic Expansion: When expanding leaf nodes s;, we exploit Caosg to enumerate only valid next
tokens. This semantic pruning yields a small set of children (|Casa(s;)| = 1-15 in our experiments), greatly
reducing the branching factor compared to unconstrained methods that consider thousands of tokens.

3. Controlled Rollouts: We simulate rollouts by generating a complete sequence y from state s; according
to y ~ Lyl Qease (| st), where gc,s, guarantees semantic validity throughout the rollout. In practice, we

use beam search with beam size=1 or greedy decoding for efficient and deterministic completions.

This semantic guidance distinguishes SEM-CTRL from previous search-guided (reasoning-related and other)
approaches (detailed in Section @ Our strategy of constraining exploration to valid trajectories and using
domain-specific rewards helps ensure LLM’s search process remains within the space of meaningful solutions,
providing reliable control when coupled with ASGs.

3.4 Handling Computational Overheads

While our semantically constrained MCTS approach provides robust control over generation, it introduces
additional computational costs. We address this through three complementary optimization strategies:

(1) Caching Partial ASG Derivations. We cache partial parse trees ¢ to avoid recomputing Casc(y<t)-

(2) Semantic Tree Pruning Unlike methods that rely on arbitrary top-k sampling (Zhang et al., 2023b;
Wan et al., 2024} Hao et al.l 2023), our semantic constraints enable effective deep search by maintaining a
small branching factor. As detailed in Section Casc enables exploration at significant depths (e.g.,
256 tokens) while preserving both domain feasibility and solution reachability—if a correct solution exists
at depth d, it remains discoverable. This allows reliable traversal to high-reward solutions.

(3) Tree-Structure Caching Following [Zhang et al.| (2023b)), we exploit the hierarchical nature of MCTS
by caching tree structures and sequences. For any prefix y.; that reappears across iterations, we reuse its
stored top-k expansions and rollouts. Similarly, we cache partial or complete rollouts to avoid redundant
sub-tree computations and duplicate model calls. This ensures we only pay for expansions once per node.
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4 Experiments

We evaluate SEM-CTRL across four diverse classes of tasks to assess its effectiveness in enforcing complex
constraints while generating correct solutions. Our evaluation spans Synthetic Grammar Synthesis (SGS),
Combinatorial Reasoning (CR), JSON parsing, and Planning tasksﬁ

4.1 Task Setup

We describe the details of each class of tasks below.

Synthetic Grammar Synthesis We evaluate SEM-CTRL on three canonical SGS tasks: Ly = {a"b"c" | n >
1}, Ly = {a™b"c™d" | m,n > 1,m # n}, and Leopy = {ww | w € {a,b}T}. For each task, we evaluate over
30 samples. For L, we linearly increment n from 1 to 3OE| We define the distance function p; = n — ny,,
where n,, represents the count of n in the generated string y. For Lo, we increment m + n from 3 to 32 and
use distance function py = (m+n) — (my, +n,, ), where m,, and n,, are the respective counts in y. For Leopy,
we divide the 30 samples into 10 equal parts across three evaluation criteria: incrementing a from 1 to 10,
incrementing b from 1 to 10, and maximizing their product. Here, p3 measures the distance to these targets.
Each task involves prompting an LLM with exemplars F = ej,--- ,e; where [ € [0, 5], with the number of
exemplars varying based on the complexity of the target string (e.g., fewer examples for simpler cases).

Combinatorial Reasoning The combinatorial reasoning related tasks include benchmarks from prior work
(Long, 2023; |Borazjanizadeh et al.,|2024; |Seely et al.,|2025)), these include: (1) Sudoku 3x3 boards, (2) Sudoku
4x4 boards, and (3) 3-Graph Coloring (NP-complete) (Law et al) 2019). For Sudoku, we use the dataset
from [Long] (2023]) with one-shot prompts, where we expect the solutions in a nested list format (as shown in
Table [6] in the Appendix). The MCTS employs a sparse reward function where p(-) = 0 for solved boards
and 1 otherwise. We further note that our ASG only encodes game rules.

For 3-Graph Coloring, we prompt the LLM to generate valid colorings for graphs with at most 5 nodes and
between 3 and 10 edges, using p(-) = e — e, as the distance function. Following the SGS setup, we use
few-shot prompting and require solutions to be formatted as edge lists (i, j).

Planning Our benchmark comprises the Blocksworld domain using PlanBench’s plan generation task
(Valmeekam et al.| [2024]). The dataset contains 600 one-shot problems requiring the LLM to provide action
sequences from an initial state to the goal. In our cases, we expect the LLM to return a structured output:
comma-separated action sequences. Our ASG constraints (U pg) ensure action preconditions are satisfied,
while W g tracks state information and general rules (e.g., goal completion termination). The distance func-
tion p(-) combines a heuristic function h(s, g) approximating goal distance (i.e., relaxed plan heuristic given
by Pyperplan |Alkhazraji et al.| (2020])) with a plan length penalty «-len(plan) discouraging repetitive actions.

Parsing Our final benchmark is a parsing task using the dataset from |NousResearch| (2024]), where the LLM
extracts information from natural language and formats it as JSON according to a schema. While SEM-CTRL
is designed for tasks with well-defined semantics and a reward function capturing correctness, some structured
generation and semantic parsing tasks lack these properties (Lei et al., |2025; Roy et al., [2023; [Wang et al.|
2023l interalia). We include this task as a representative example to demonstrate SEM-CTRL’s broader
applicability. Here, we run SEM-CTRL without MCTS and use an ASG encoding a CFG, demonstrating
semi-open-ended structural generation capability without semantic constraints.

4.2 Experimental Setup

Models and Baselines We evaluate SEM-CTRL using three variants of Llama 3: Llama 3.2 1B, Llama 3.1 8B,
and Llama 3.1 70B, and three state-of-the-art reasoning models: o4-mini, DeepSeek-R1, and ol-preview. To
disentangle the contributions of different components, we systematically evaluate combinations of sampling
algorithms with varying constraint types. We describe the key baselines below:

e Base Unconstrained: Greedy sampling to assess the base model’s capability.

4See Appendix for detailed task descriptions, constraints, and distance functions p(-).
51n fact, our choice of 30 is due in part to|Allen-Zhu & Li (2024)’s work.
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e Base with Corg: Locally constrained syntactic decoding. This approach is analogous to various
work in controlled decoding where the LLM’s next tokens are masked according to CFG constraints
(Geng et al. [2023; [Ugare et al., [2024} Beurer-Kellner et al., 2024, interalia), though we implement
this through an ASG encoding a CFG.

o XGrammar (Dong et al., 2024): While Base with Ccrg is functionally equivalent to prior work
in syntactic control, we run an additional baseline for the parsing task for completeness and to
empirically highlight this equivalence.

e Base with Ccsa: We mask LLM logits with terminals from an ASG encoding context-sensitive
and semantic constraints. This parallels work in semantic parsing, though prior methods typically
use CFG with ad-hoc constraints (e.g., |Scholak et al., |2021} [Poesia et al., [2022; Roy et al.| [2023)).

o BoN Unconstrained: Best-of-N (BoN) serves as a simple constraint satisfaction mechanism by
sampling N generations and rejecting invalid samples according to C and ranking solutions by R(-)
(Welleck et al.l [2024). We set N to match SEM-CTRL’s computational budget (maximum number of
MCTS samples generated during search) for fair comparison. See Appendix [Ef for N values.

e MCTS Unconstrained: MCTS applied at the token level, corresponding to a range of search-
guided reasoning approaches (e.g., Zhang et al.| [2023b; Wan et al., [2024]).

Throughout the main text, we compare against two primary baselines: (1) Base unconstrained; (2) Un-
constrained BoN sampling. In Section we present a comprehensive ablation study on the Blocksworld
benchmark with all algorithm-constraint combinations, and provide the full results for the other tasks in
Appendix |G} The complete list of all baseline methods is detailed in Appendix @ﬁ

For BoN, we use temperature-1 nucleus sampling with standard parameters (top-p = 1.0, top-k = 50). For
SEM-CTRL, we set top-k to the number of terminals in the grammar. For the reasoning models, we use
Microsoft Azure’s APL. We average all results over 3 rungd’]

Evaluation Metrics We assess performance using three primary evaluation metrics: (1) A: Measures task-
specific accuracy (correctness); (2) Veorg: Measures CFG validity (y € L(Gere)); (3) Vesa: Measures
CSG validity (y € L(Gesa)); (4) Vsem: Measures semantic validity (y € L(Gsgm))-

5 Results

5.1 Overall Results

We present our main findings in Table[I] We observe that SEM-CTRL consistently matches or exceeds baseline
performance across all tasks. We highlight the following key observations:

Parameter Efficiency SEM-CTRL with Llama 1B consistently outperforms both greedy and BoN Llama 70B
variants across all tasks. Prominently, in the complex a™b"c™d" task, SEM-CTRL with Llama 1B achieves
100% accuracy while Llama 70B fails completely (0% accuracy). This indicates that our semantic control
framework effectively compensates for model size, enabling smaller models to solve complex reasoning tasks
through guided exploration.

Comparison to State-of-the-Art SEM-CTRL achieves superior or competitive performance compared to
current state-of-the-art reasoning models, including o4-mini, DeepSeek-R1, and ol-preview, across SGS,
Combinatorial Reasoning, and Planning domains. On SGS and Combinatorial Reasoning tasks, SEM-CTRL
consistently outperforms all reasoning models. For instance, in a™b™c", SEM-CTRL achieves 100% accuracy
compared to ol-preview’s 83.3% and o04-mini’s 93.3%. The performance gap becomes more pronounced on
the more complex a™b™c™d"™ task, where performance degrades for ol-preview (80.0%) and DeepSeek-R1
(70.0%), while o4-mini maintains 93.3% and SEM-CTRL reaches perfect accuracy. The advantage is particu-
larly notable in Graph Coloring, a complex NP-complete problem, where all reasoning models achieve only
75% accuracy while SEM-CTRL maintains 100% accuracy. This demonstrates that our semantic constraints

6Code will be released upon acceptance of the paper or once the review process has concluded, in order to preserve anonymity.
7except in Blocksworld due to computational cost and our inference budget constraints.
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Table 1: Accuracy (A) results for the tasks: a™b™c™, a™b"c™d", Copy, Graph Coloring (Graph), Sudoku 3x3
(Sudoku-3), Sudoku 4x4 (Sudoku-4), and Planning (Blocks), using various sampling algorithms (Alg.), with
different base LLMs (Model).

Synthetic Grammar Synthesis Combinatorial Reasoning Planning

Alg. Model a™b"c® a™b"c™d"” Copy Graph Sudoku-3 Sudoku-4 Blocks
Base Llama 1B 3.3% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0%
Llama 70B 30.0% 0.0% 60.0% 37.5% 90.0% 30.0% 23.2%

BoN Llama 1B 7.8% 1.1% 48.9% 0.0% 0.0% 0.0% 4.3%
Llama 70B 71.1% 22.2% 88.9% 100.0% 96.7% 80.0% 48.8%

ol-preview 83.3% 80.0% 96.7% 75.0% 100.0% 100.0% 94.5%

API DeepSeek-R1 83.3% 70.0% 96.7% 75.0% 100.0% 100.0% 96.5%
04-mini 93.3% 93.3% 100.0% 75.0% 100.0% 100.0% 98.5%

SEM-CTRL Llama 1B 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 74.0%
Llama 70B  100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 96.8%

and guided search provide reliable, systematic, and consistent reasoning capabilities for structured problems,
ensuring semantic validity and strong empirical performance across these diverse domains.

Task Complexity The effectiveness of SEM-CTRL is particularly evident in Blocksworld planning, arguably
our most complex task requiring long-horizon reasoning, precise state tracking, and satisfying action pre-
and post-conditions across 600 samples. Even with the smaller Llama 1B model, SEM-CTRL achieves 74% ac-
curacy, outperforming larger closed-source models including Claude 3.5 Sonnet (57.6%) and GPT-40 (28.3%)
(Valmeekam et al., [2025]). Statistical analysis using paired permutation tests (o = 0.05) reveals that perfor-
mance differences between SEM-CTRL with Llama 70B (96.8%) and o4-mini (98.5%) or DeepSeek-R1 (96.5%)
are not statistically significant, though the improvement over ol-preview (94.5%) is.

Notably, SEM-CTRL achieves this superior or comparable performance to state-of-the-art reasoning models
despite the complexity of this task purely at inference time with off-the-shelf LLMs. This competitive
performance comes with the added benefit of guaranteed semantic validity (100% constraint satisfaction),
whereas reasoning models cannot ensure constraint adherence. This demonstrates SEM-CTRL’s effectiveness
in achieving reliable and consistent inference with semantic guarantees across complex reasoning tasks.

Specializing LLM models One general pattern that we observe in our experiments is that SEM-CTRL is
capable of transforming general-purpose off-the-shelf LLMs into domain-specialized models at inference time
with guarantees on obtaining the correct and semantically valid solutions.

5.2 Can SEM-CTRL guarentee grammatical validity?

To evaluate how well SEM-CTRL and unconstrained LLMs Table 2: Accuracy (A), context-free (Vorg)
capture control levels, we follow prior work (Schucher et al., and context-sensitive (Vesg) correctness re-
2022; Drozdov et all |2023; [Levy et al.l [2023, especially) and sults on SGS

present Vorpe and Vegg scores on SGS in Table The

results reveal the unreliability of LLMs, where unconstrained — Alg. Model A Vere  Vesc

models fail to adhere to constraints consistently; SEM-CTRL B Llama 1B 4.4% 79.0% 23.0%
. . o 7. . . ase

addresses this by guaranteeing validity at inference time. Llama 70B ~ 30.0%  99.0%  39.0%

. Llama 1B 19.3% 65.0% 35.0%
Two key patterns emerge: First, all models struggle notably BoN Llama 70B 60.7% 97.0% 79.0%

more with Vogg than Veopg—small modelsl like Llama 1B olLproview 6.7%  100.0% 55.0%
achieve 79% Vcrg but only 23% Vs, while large models  API  DeepSeek-R1  83.3% 100.0%  87.0%
like Llama 70B achieve 99% Vcrg vs. 39% Vesg. This con- o4-mini 94.7% 99.0% 95.0%
trasts with prior work’s focus on syntax alone and motivates SEM- Llama 1B 100.0% 100.0% 100.0%

more expressive controls. Second, while sampling algorithms ~_CTBL  Llama 70B  100.0% 100.0% 100.0%

like BoN improve performance (Llama 70B with BoN reaches
79% Vs and 35% for 1B), none guarantee perfect validity.

10
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Even state-of-the-art reasoning models fall short: ol-preview and DeepSeek-R1 achieve only 88% and 87%
Vesa respectively, while o4-mini reaches 95%. This reveals two failure modes for accuracy: inability to
capture constraints and failure to ensure solution correctness. These empirical observations suggest that
while LLMs can approximate constraints, they lack robustness. SEM-CTRL instead achieves perfect Vcopg and
Vesa across tasks and model sizes, demonstrating explicit semantic control is crucial for reliable generation.

5.3 How does each disentangled dimension contribute to SEM-CTRL’s abilities?

We now present the results of an ablation study
for SEM-CTRL on Blocksworld planning in Table [3]

Table 3: Results from Blocksworld ablation study

to disentangle the contributions of each dimension Alg. Model C A Vcre Vsem
(semantic control,. semantic search, and parame- Llama 1B _ 0%  100% 0%
ter scale). Following |Valmeekam et al.| (2023), we Llama 1B Corg 0%  100% 0%
subsample 50 problems and systematically evaluate Bas Llama 1B Csgm 6%  100%  100%
constraint types (unconstrained, Ccra, Csgpm) across %€ lama 70B - 30%  100% 40%
sampling algorithms (Base, BoN, and MCTS). Llama 70B  Ccre  30%  100% 40%
Llama 70B  Csgm  40% 100% 100%

Key .emplrlcal findings emerge: F}rst, 1ncrem(?ntally Llama 1B i} % 94% 6%
moving from no control to syntactic to semantic con- Llama 1B Cerpa 6%  100% 6%
straints shows consistent improvements—most pro- BoN Llama 1B Csem  56% 100% 100%
nounced with BoN where Llama 1B improves from © Llama 70B - 66%  100% 66%
6% to 56%. Second, Ccrg only benefits when com- Llama 70B  Corc  66%  100% 66%
bined with MCTS, yet still underperforms BoN with Llama 70B  Csem  90%  100%  100%
Csgm. Across all configurations, we find that Csgm Llama 1B - 12%  100% 40%
provides the most substantial gains. MC-  Llama 1B Cerc  38%  100% 66%
TS Llama 70B - 46% 96% 68%

Our SEM-CTRL strategy, (which essentially is Csgm Llama 70B  Ccra  62%  100% 92%
+ MCTS) achieves substantially better results than SEM-  Llama 1B  Cspn  76%  100%  100%
either component alone, enabling even the Llama 1B CTRL Llama 70B  Csem  98%  100%  100%

model to outperform baselines and the 70B model to
match or exceed reasoning model performance. This

highlights the importance of semantic control, which fundamentally provides crucial structure for MCTS
to effectively navigate the solution space, producing improvements exceeding the sum of their individual
contributions. We present ablations on SGS and CR in Appendix [G] where we observe similar trends.

5.4 How computationally efficient is SEM-CTRL compared to reasoning models?

We analyze computational and token costs compared to reason-
ing models to evaluate SEM-CTRL’s efficiency established via well-
structured search. The class of reasoning models is understood to
perform a form of reasoning via reasoning tokens before outputting
the final generation. We follow recent work (e.g.,|Valmeekam et al.
2025} |Zhou et all 2024) and use the number of tokens generated
during generation (Tokens) as a key metric to evaluate the compu-
tational efficiency of our approach. While SEM-CTRL introduces con-
straint checking overhead (C Time), the results demonstrate a sig-
nificant reduction in total token generation. We observe that across
all tasks, SEM-CTRL reduces token usage by an order of magnitude.
For example, we see in CR tasks that SEM-CTRL is 25.8x, 24.5x,
and 9.7x more efficient than ol-preview, DeepSeek-R1, and o4-
mini, respectively, while achieving perfect accuracy. The constraint-
checking overhead varies by task structure, with SGS showing a
higher overhead (123s). This is due to the task’s synthetic nature,
having notably deeper parse trees (up to depth 64) than the shal-
lower structures in CR and Planning.
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Table 4: Average computational effi-
ciency per sample on SGS, CR, and
Blocksworld Planning (Blocks) using

Llama 70B

Class Alg. Tokens C Time
ol-preview 1639.0 -
DeepSeek-R1 927.3 -

SGS. 04-mini 705.3 -
SEM-CTRL 250.2 123.24
ol-preview 3184.8 -

CR DeepSeek-R1 3016.5 -
: o04-mini 1190.5 -
SEM-CTRL 123.3 15.90
ol-preview 2457.9 -
DeepSeek-R1 2345.8 -

Blocks 4 rmini 1544.5 -
SEM-CTRL 589.3 35.97
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5.5 How well does SEM-CTRL work without semantics and rewards?

We turn to assessing SEM-CTRL’s broader applicability when stripped of
semantic structures and reward signals via the JSON parsing results in
Table o} Here, SEM-CTRL operates under Base sampling and achieves per-

Table 5: Vgpg results on the

JSON parsing task

fect CFG validity (100%) across model sizes, matching XGrammar (Dong — Als. Model  Vcrg
et al., |2024), which we include as a representative baseline of existing .. Llama 1B 75.0%
CFG-constrained methods (see Sections and @ As anticipated, both Llama 708 96.9%
approaches achieve identical results since they are functionally equivalent  Xgrammar Lll‘;f:a‘aﬂl)g igg'g?
when only CFG constraints are present. Large models like Llama 70B - UD
(96.9%) and state-of-the-art reasoning models (98.4%) fail to guarantee  API DeePS;f;ﬁ gg:iéz
perfect syntactic validity on this widely-used structured generation task. Lloma 1B 100.0%
This confirms SEM-CTRL’s reliable constraint enforcement across the spec- ~ SEM-CTEL Llama 70B 100.0%

trum, from complex semantic reasoning tasks to basic syntactic generation.

6 Related Work

Controlled Decoding Research in controlled decoding has evolved to increasingly expressive forms of
control. Early work focused on simple lexical constraints (Welleck et al.| [2024; [Hokamp & Liul|2017;|Anderson
et al.,|2017] interalia), subsequently formalized using predicate logic (Lu et al.l 2022; |Zhang et al., [2023a) and
extended to higher abstraction levels (Lew et all 2023} [Yao et al., |2024a). More sophisticated approaches
exploit CFGs to enforce syntactic validity (Beurer-Kellner et al., |2023; |Koo et all 2024; [Ugare et al., [2024,
interalia). Prior work refers to constrained decoding as control via hard constraints and controlled decoding
via preferences (Yang & Klein, [2021;|Meng et al.,|2024)). We refer to both as control, formalized in Section

Semantic Parsing with LLMs LLM-based semantic parsing has progressed from unconstrained methods
via fine-tuning (interalia Roy et al., 2023} |Li et al., |2021)) and prompting (Schucher et al. [2022; [Drozdov
et al., [2023) to constrained generation with domain-specific rules. Systems like PICARD (Scholak et al.,
2021) combine CFGs with domain-specific guards for SQL generation, with others extending this to other
domains (Ugare et al.,2025; |Shin et al.||2021}; Poesia et al.| 2022). In contrast, Loula et al.|(2025) incorporates
real-world semantic signals instead of constraints alongside CFGs or assumes LLMs can approximate CFGs.
We address these limitations through ASGs, which expresses a hierarchy of constraints, guaranteeing validity
across domains. SEM-CTRL distinguishes itself by directly employing the CSG formalism (to our knowledge,
first to do so) and focusing on tasks where correctness is observable at inference, unlike other semantic
parsing work where semantic constraints, correctness observability, or both are absent (i.e., JSON parsing).

LLMs-Based Reasoning, Search, and Planning Work in augmenting reasoning capabilities of LLMs
have extended Chain-of-Thought (Wei et al., |2022)) to non-linear reasoning through sequence-level tree search
like Tree-of-Thought (Yao et al., [2024b) and MCTS (e.g., Murthy et al., |2024)), enabling better exploration
of solution paths. Token-level search methods (Zhang et al.l [2023b; |Wan et al., 2024]) offer more granular
control. However, both limit tree width, risking the exclusion of valid solutions. Others augment LLMs with
tools (Qin et al., |2024)) or solvers (e.g., [Yang et al.| [2025; Xu et al., 2024)), introducing potential translation
errors (Feng et all|2024)). In planning domains, reasoning models show impressive results (Valmeekam et al.
2025), yet cannot guarantee plan validity, leading to methods using search-guided reasoning (Hao et al.,
2023)), verifiers (Kambhampati et al., 2024), or LLMs as heuristics (Wang et al., 2023). SEM-CTRL addresses
this via token-aligned semantic constraints with MCTS, efficiently exploring the only valid solution spaces.

7 Conclusion

We presented SEM-CTRL, a unified framework enabling controlled generation from LLMs, combining seman-
tic constraints expressed via ASGs with token-level MCTS. We show that combining expressive semantic
constraints with guided search guarantees semantic correctness and augments the capabilities of off-the-shelf
LLMs. Especially, we show that it enables small models to outperform state-of-the-art LLMs (i.e., o4-mini).
Our empirical results demonstrate that rich and expressive control mechanisms can transform general-purpose
LLMs into robust and reliable domain-specialized models while greatly reducing token overhead.
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Broader Impact Statement

SEM-CTRL enables smaller, more efficient models to achieve reliable performance with formal correctness
guarantees, reducing computational costs and environmental impact while democratizing access to high-
quality structured generation without fine-tuning.

However, several limitations warrant consideration. SEM-CTRL requires that the underlying language model’s
learned representations align with the target constraint vocabulary, i.e., domains where the model lacks
sufficient exposure to relevant terminals may exhibit degraded performance. Our approach currently oper-
ates exclusively on text, though we hypothesize extensibility to multimodal scenarios; validation requires
additional research, experimentation, and benchmarks for multimodal constraint enforcement. Furthermore,
our constraint framework operates under a binary validity paradigm, precluding applications requiring soft
continuous constraint measures required for NLP tasks such as text summarization. Finally, systematic
constraint enforcement may amplify distributional biases present in constraint formulations, necessitating
careful specification design to mitigate potential discriminatory outcomes. These limitations, while crucial,
remain out of the scope of this paper, necessitating additional research in the field of controlled decoding.
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A Prompt Examples

System Message:

You are an expert in reasoning, solving puzzles, and formal languages, specifically, Context-Free and Context-
Sensitive Grammars. Given a puzzle or a reasoning problem, you can easily solve it, even those requiring
combinatorial reasoning. Furthermore, you can read and understand grammars, and given a grammar spec-
ification, you can generate words that consistently conform to the grammar, its language, and rules without
a single mistake. Specifically, you are an expert in solving Sudoku puzzles. The generalised rules of an n x n
Sudoku board are as follows:

1. Fill an n X n grid with numbers 1 through n.

2. Each row must contain numbers 1-n without repeating.

3. Each column must contain numbers 1-n without repeating.
4

. Each y/n X v/n box must contain numbers 1-n without repeating (only applicable in the case where
n is a perfect square).

5. Pre-filled numbers cannot be changed.

For each message, you will be presented with a Sudoku board, and you must return a solution to the puzzle

conforming to its grammar. The grammar for Sudoku is as follows: [row_1,...,row_n], where each row_i
is a list of numbers separated by a comma without any spaces representing a row in the Sudoku board, i.e.,
[j,...,n]. Furthermore, separate each row by a comma without any spaces. Simply put, this grammar is

a matrix (nested list format) representation of the Sudoku board. Missing numbers in the partial boards
presented are represented by *. You must leave the pre-filled numbers unchanged. Your goal is to solve the
Sudoku board and only return a valid solution to the puzzle according to the grammar; do not generate any
additional text beyond the solution.

Example Interaction:

User: Generate a valid solution to the Sudoku board [[*,3,1],[*,2,3], [3,*,2]] where * represents a cell
to be filled in. Please return your solution according to the grammar for Sudoku.

Assistant: [[2,3,11,[1,2,3]1,[3,1,2]]

User: Generate a valid solution to the Sudoku board [[1,*,*],[*,1,*], [*,2,*]] where * represents a cell
to be filled in. Please return your solution according to the grammar for Sudoku.

Assistant: [[1,3,21,02,1,3]1,[3,2,11]

Figure 3: Prompt template for the 3x3 Sudoku task, showing the system message that defines the task and
grammar, followed by example interactions.

Figure [3] showcases an example prompt from our tasks, specifically, the Sudoku-3x3 prompt. It adopts a
standard prompting strategy. We find that a combination of a textual description of the task, syntax, and
constraints, and a simplified grammar format provides better results as opposed to simply providing the
entire grammar itself (i.e., in ASG or Extended Backus-Naur Form). This is in contrast with prior work
(Wang et al. 2023), which found providing the complete grammar to the LLM to be helpful in the case of
GPT-4. This was not the case with our experiments. We empirically choose these prompts according to
the baselines’ accuracies (i.e., Greedy or BoN), as we find SEM-CTRL to be robust to slight variations in the
prompt. SGS and Combinatorial Reasoning follow a similar prompting strategy. Hence, we omit them.

We further provide the prompts used for our plan generation PlanBench task in Figure [4], given we slightly
modify the task from the original dataset Valmeekam et al. (2024). Our slight changes were made by
empirically examining the model’s performance when required to return the action sequences as a list of
actions as opposed to free-form text.
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System Message:

You are an expert planner, where given a domain and an instance of a problem, you must provide a sequence
of actions taking the agent in the environment from the initial state to the goal state in the most optimal
manner. You do not select invalid actions, you do not generate sub-optimal plans, and you must conform to
the domain’s specifications as provided to you. In your response, you must only provide a sequence of actions
separated by commas achieving the goal state without providing any other information. You must only use
the actions and environment objects available to you and nothing else. Specifically, you are an expert PDDL
planner in the Blocksworld domain, where given a set of blocks arranged in an initial configuration, you must
provide a sequence of actions achieving the goal of arranging the blocks in a desired configuration. You are
very good at this task.

Initial and goal states are defined by a series of predicates, described below:
1. on BLOCK_NAME_1 BLOCK_NAME_2: The block BLOCK_NAME_1 is on top of block BLOCK
~ NAME 2
2. ontable BLOCK_NAME: The block BLOCK_NAME is on the table

3. clear BLOCK_NAME: The block BLOCK_NAME is clear, i.e., no other blocks are on top of it and it
is not being held

4. handempty: The robotic hand is not holding any blocks and is free
The restrictions of the actions are as follows:

1. You can only pickup or unstack one block at a time
. You can only pickup or unstack a block if the robotic hand is empty

. You can only pickup a block if the block is on the table and the block is clear

=~ W N

. You can only unstack a block from on top of another block if the block you are unstacking was really
on top of the other block

. You can only unstack a block from on top of another block if the block you are unstacking is clear
. Once you pickup or unstack a block, the robotic hand is holding the block
. You can only putdown a block that the robotic hand is holding

o 3 O Ot

. You can only stack a block on top of another block if the robotic hand is holding the block being
stacked

9. You can only stack a block on top of another block if the latter block is clear
10. Once you putdown or stack a block, the robotic hand becomes empty
11. Once you stack a block on top of a second block, the second block is no longer clear
12. You can only terminate the plan when the goal state is reached or your plan is complete

Block names are defined by colors, as will be shown in the specific instances of the problem. To provide a
sequence of actions, you must separate them by a comma.

Example Interaction:

User: Given an instance of the Blocksworld domain as follows:

Block Objects: red, blue, orange, yellow

Initial State: clear red, clear blue, clear yellow, handempty, on blue orange, ontable red, ontable orange,
ontable yellow

Goal State: on orange blue

Generate a plan, i.e., a sequence of actions separated by commas, taking the agent in the environment from
the initial state to the goal state.

Assistant: unstack blue orange, putdown blue, pickup orange, stack orange blue, end

User: Given an instance of the Blocksworld domain as follows:

Block Objects: red, blue, orange, yellow

Initial State: clear red, clear yellow, handempty, on red blue, on yellow orange, ontable blue, ontable orange
Goal State: on orange red

Generate a plan, i.e., a sequence of actions separated by commas, taking the agent in the environment from
the initial state to the goal state.

Assistant: unstack yellow orange, putdown yellow, pickup orange, stack orange red, end

Figure 4: Prompt template for the Blocksworld planning task, showing the system message that defines
predicates and action restrictions, followed by example interactions.
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B Answer Set Programming

Answer Set Programming (ASP) is a declarative paradigm for knowledge representation and reasoning, where
problems are specified logically, and solutions (answer sets) are computed via specialized solvers. An ASP
program consists of rules: normal rules of the form h < by, - , b, (which is read as “h is true if all b; are
true”), choice rules I{hy;- - ;hp,tu < by, -+, b, (specifying that between ! and u atoms from hq, -, hp,
must be true when the body holds), hard constraints of the form < b1,--- , b, (ruling out answer sets where
the body is satisfied), and weak constraints ~ by,--- , b,.[w@l] (assigning weight w at level | to penalize
solutions that satisfy the body of the constraints).

Given an ASP program P, its semantics is defined through its Herbrand Base HBp (the set of all possible
ground atoms) and Herbrand Interpretations (subsets of HBp). ASP solvers compute answer sets AS(P),
i.e., interpretations that satisfy all rules in P. We refer the reader to [Lifschitz (2019) for more thorough
details.

C Task Breakdown

Table 6: Overview of tasks and their characteristics

Class Task Example Constraint p()
a”b"c" n = 3: aaabbbcce Equal count of n—nw
Synthetic a, b, c
Grammar a™b"cmd" m = 2,n = 3: aabbbccdddd  Paired counts (m+n)—
Synthesis m#n (Mw + nw)
w|w w = ab: abab Exact string Distance to
replication target counts
Sudoku-3x3  [1,*3],[*,*,2],[*,1,*] Row, column 0 if solved,
constraints 1 otherwise
Combinatorial =~ Sudoku-4x4  [1,*,3.4],[*,*,2,*],[*,1,* 2] Row, column, 0 if solved,
Reasoning box constraints 1 otherwise
3-Graph (2,1)(2,0)(0,2); Valid 3-color e—eyw
Coloring Edges: [0,1, 2] assignment
Parsing JSON {“item”: “book”, JSON schema -
“price”: 15} (CFG) (no reward)
Blocks Plan pickup red, stack red blue, State validity + h(s,g)+
Planning Gen. end preconditions a -len(plan)

Table [] provides a comprehensive overview of all tasks evaluated in our experiments. Each row details a
specific task, showing example inputs/outputs, constraints that must be satisfied, and distance functions
used to evaluate solution quality/correctness. The tasks span four categories: Synthetic Grammar Syn-
thesis (testing formal language generation with increasing complexity), Combinatorial Reasoning (assess-
ing structured problem-solving requiring combinatorial reasoning), Parsing (demonstrating semi-open-ended
structural generation capabilities where semantic constraints and correctness rewards are not applicable),
and Blocks Planning (evaluating semantic constraints and sequential decision-making with state-dependent
constraints).

D Complete Baseline Methods

We systematically evaluate all combinations of sampling algorithms (Base, BoN, MCTS) with constraint
types (unconstrained, Ccre, Ccsc) to provide comprehensive ablation analysis. The complete list of baseline
methods is as follows:
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1. Base Unconstrained: Greedy sampling to assess the base model’s capability.

Base with Ccpg: Locally constrained syntactic decoding. This approach is analogous to various
work in controlled decoding where the LLM’s next tokens are masked according to CFG constraints
(Geng et al.| |2023; [Ugare et al., [2024; Beurer-Kellner et al., [2024, interalia), though we implement
this through an ASG encoding a CFG.

XGrammar (Dong et al., 2024)): While Base with Ccrg is functionally equivalent to prior work
in syntactic control, we run an additional baseline for the parsing task for completeness and to
empirically highlight this equivalence.

Base with Ccsg: We mask LLM logits with terminals from an ASG encoding context-sensitive
and semantic constraints. This parallels work in semantic parsing, though prior methods typically
use CFG with ad-hoc constraints (e.g., |Scholak et al., 2021} [Poesia et al., [2022; Roy et al.| [2023)).
BoN Unconstrained: Best-of-N (BoN) serves as a simple constraint satisfaction mechanism by
sampling N generations and rejecting invalid samples according to C and ranking solutions by R(-)
Welleck et al.| (2024]). We set N to match SEM-CTRL’s computational budget (maximum number of
MCTS samples generated during search) for fair comparison. See Appendix [E| for N values.

6. BoN with Ccra: We apply rejection sampling with local syntactic constraints.

7. BoN with Ccsg: This serves as an additional ablation against SEM-CTRL to ascertain whether

10.

SEM-CTRL’s search-guided reasoning capability and token-level incorporation of solution quality in-
duces improvements. This is the first baseline that incorporates both notions of semantic validity
and solution correctness.

MCTS Unconstrained: MCTS applied at the token level, corresponding to a range of search-
guided reasoning approaches (e.g., Zhang et al.| [2023b; Wan et al.| [2024)).

MCTS with Ccrg: Here, we run MCTS with an ASG only encoding syntactic constraints to assess
if the model benefits from additional semantic guidance and pruning achieved by SEM-CTRL.
SEM-CTRL: Our complete approach combining semantic constraints (Ccsg) with MCTS for semanti-
cally guided search.

E Further LLM Sampling Parameters

Table 7: Maximum sample times (V) for BoN and MCTS/SEM-CTRL

Task Sample Times (N)
SGS 50
Graph Coloring 35
Sudoku 3x3 10
Sudoku 4x4 265
Blocks 200

We have already provided most of the LLM sampling parameter details in Section [£.2] Here, we define
the max sample times for BoN and SEM-CTRL/MCTS. We empirically select the maximum sample times
(N) for both BoN and SEM-CTRL/MCTS based on task complexity, as shown in Table |7l In BoN, an LLM
samples N generations, then the reward function R(y;) selects the best output according to the highest
reward. In MCTS, we conduct the four MCTS steps (discussed in Section until we sample N full
generations. Note: for the JSON parsing task, we only sample one generation for all methods (operate under
Base sampling), given the lack of a reward function.

For computational feasibility, we make an exception for Llama 70B BoN in Blocks tasks: we use 15 samples
(matching SEM-CTRL’s average) for main experiments and 50 samples (31 more than SEM-CTRL’s average)
for ablation studies, rather than the full 200 samples, as generating this many sequences from a 70B model
across 600 problems would be prohibitively expensive.
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F Compute Cluster Specifications

Our experiments were conducted using two GPU clusters. The first cluster used nodes with 2x Intel Xeon
Platinum 8358 CPUs (2.60GHz, 32 cores each) and NVIDIA L40S GPUs (48GB GDDR6), where we utilized
up to 4 GPUs with 1TB RAM per node. The second cluster used nodes with 2x Intel Xeon Platinum 8360Y
CPUs (2.40GHz, 36 cores each) and NVIDIA A100 GPUs (80GB), where we utilized up to 2 GPUs with
1TB RAM per node.

G Further Results

This section provides additional experimental results, including those referenced in the main text and further
analyses that support our findings.

G.1 Context-Free and Context-Sensitive Correctness Results on Combinatorial Reasoning and
Planning

Table 8: Accuracy (A), context-free (Veorg) and context-sensitive (Vegg) correctness results on Combina-
torial Reasoning

Alg. Model A Vecre Vese
Llama 1B 0.0% 11.0% 4.0%
Base Llama 8B 25.0% 79.0% 32.0%
Llama 70B 57.4% 96.0% 66.0%
Llama 1B 0.0% 18.0% 10.0%
BoN Llama 8B 65.5% 87.0% 73.0%

Llama 70B 89.7% 99.0% 91.0%
ol-preview 92.9%  100.0%  99.0%

API DeepSeek-R1  92.9%  100.0%  96.0%
o4-mini 92.9%  100.0% 100.0%
Llama 1B 100.0% 100.0% 100.0%
SEM-CTRL Llama 8B 100.0% 100.0%  100.0%

Llama 70B 100.0% 100.0% 100.0%

Table 9: Accuracy (A), context-free (Vorg) and context-sensitive (Vga) correctness results on Planning
(Blocks)

Alg. Model A VCFG VCSG
Llama 1B 0.0% 100.0% 0.0%
Base Llama 8B 2.0%  100.0% 2.8%
Llama 70B 23.2% 100.0%  28.7%
Llama 1B 4.3% 86.2% 5.2%
BoN Llama 8B 27.3%  99.2% 27.8%

Llama 70B 48.8%  98.8% 54.7%

ol-preview 94.5% 99.8%  94.7%
API DeepSeek-r1  96.5%  99.5%  97.2%
04-mini 98.5%  99.0% 98.5%

Llama 1B 74.0% 100.0% 100.0%
SEM-CTRL Llama 8B 90.3% 100.0%  100.0%
Llama 70B 96.8% 100.0% 100.0%
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In Section [5], we discussed the abilities of LLMs to conform to CFG and CSG constraints without enforcing
any form of control across various sampling strategies, contrasting such results with SEM-CTRL and its impact
on accuracy. The discussion specifically presented results on Synthetic Grammar Synthesis in Table[2] Here,
we present the same tables on the tasks Combinatorial Reasoning and Planning in Table [§ and Table [9]
respectively. As detailed in Section [5] similar conclusions can be drawn according to such results. Hence,
any further discussions are omitted.

G.2 Extended Results with Llama 3.1 8B

Table 10: Accuracy (A) results for all tasks: a”b"c", a™b™c™d"™, Copy, Graph Coloring (Graph), Sudoku 3x3
(Sudoku-3), Sudoku 4x4 (Sudoku-4), and Blocksworld Planning (Blocks), using various sampling algorithms
(Alg.), or API in the case of ol-preview, DeepSeek-R1, and o4-mini, with different base LLMs (Model).
Here, we include Llama 3.1 8B.

Synthetic Grammar Synthesis Combinatorial Reasoning Planning
Alg. Model a"b"c” a™b"c™d" Copy Graph Sudoku-3 Sudoku-4 Blocks
Llama 1B 3.3% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0%
Base Llama 8B 3.3% 0.0% 13.3% 25.0% 40.0% 10.0% 2.0%
Llama 70B 30.0% 0.0% 60.0% 37.5% 90.0% 30.0% 23.2%
Llama 1B 7.8% 1.1% 48.9% 0.0% 0.0% 0.0% 4.3%
BoN Llama 8B 26.7% 13.3% 98.9% 41.7% 70.0% 80.0% 27.3%
Llama 70B 71.1% 22.2% 88.9% 100.0% 96.7% 80.0% 48.8%
ol-preview 83.3% 80.0% 96.7% 75.0% 100.0% 100.0% 94.5%
API DeepSeek-R1  83.3% 70.0% 96.7% 75.0% 100.0% 100.0% 96.5%
o4-mini 93.3% 93.3% 100.0% 75.0% 100.0% 100.0% 98.5%
Llama 1B 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 74.0%
SEM-CTRL Llama 8B 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 90.3%
Llama 70B 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 96.8%

Table 11: Synthetic Grammar Synthesis tasks results (with Llama 8B)

Alg. Model A Vcre Vesae
Llama 1B 4.4% 79.0% 23.0%
Base Llama 8B 5.6% 94.0% 24.0%
Llama 70B 30.0% 99.0% 39.0%
Llama 1B 19.3% 65.0% 35.0%
BoN Llama 8B 46.3% 91.0% 59.0%

Llama 70B 60.7% 97.0% 79.0%
ol-preview 86.7%  100.0%  88.0%

API DeepSeek-R1 83.3% 100.0% 87.0%
04-mini 94.7% 99.0% 95.0%
Llama 1B 100.0% 100.0% 100.0%
SEM-CTRL Llama 8B 100.0% 100.0% 100.0%

Llama 70B 100.0% 100.0% 100.0%

The results presented in Section [4] showcased model performance on Llama 3.2 1B and Llama 3.1 70B. Here,
we present the full results with Llama 3.1 8B, which was omitted from the original tables due to space
requirements. While similar findings can be drawn, we chose to present models at opposite ends of the
parameter scale (1B and 70B) in the main text. Table [L0] corresponds to Table [l and Table [11] corresponds
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Table 12: Soft Accuracy (%) results for all tasks

Synthetic Grammar Synthesis

Combinatorial Reasoning

Alg. Model a"b"c" a™b"c™d" Copy Graph Sudoku-3 Sudoku-4
Llama 1B 6.1+20.5% 2.14+11.3%  40.54+40.5% 10.4+28.1% 0.0+0.0% 0.0+0.0%
Base Llama 8B 7.7+£24.1% 0.0£0.0% 42.5+42.4%  25.0+44.2%  40.0+49.8%  10.0£30.5%
Llama 70B 30.0+46.1%  3.1+16.6%  77.4+37.2% 37.5+£51.8%  90.04+30.5%  30.0+46.6%
Llama 1B 16.0£33.0%  5.44+20.8%  67.1+41.1% 24.3+36.0% 0.0+0.0% 0.0+0.0%
BoN Llama 8B 39.3+47.6%  33.7+44.0% 98.9+10.5% 52.4+49.5% 70.0+46.6%  80.0+40.7%
Llama 70B 78.3+£40.8%  59.6+45.3% 91.1£26.6% 100.0£0.0% 96.7+£18.3%  80.0+40.7%
ol-preview 83.3+37.5% 80.6+39.4% 98.6+10.7%  92.0+21.3%  100.0+0.0%  100.0+0.0%
API  DeepSeek-R1  87.6+31.6%  70.0£46.6%  99.6+2.3%  85.0+35.0%  100.04+0.0%  100.040.0%
o4-mini 93.34+25.1% 93.34+25.4% 100.0+0.0%  96.1+£7.6% 100.04+0.0%  100.0+0.0%
SEM- Llama 1B 100.0£0.0% 100.0+£0.0% 100.0+0.0% 100.0+0.0%  100.0+0.0%  100.0+0.0%
Llama 8B 100.0+0.0%  100.0+0.0%  100.04+0.0%  100.0+0.0%  100.0£0.0%  100.040.0%
CTRL Llama 70B 100.04+0.0%  100.0+£0.0%  100.040.0%  100.04+0.0%  100.0+£0.0%  100.040.0%

to Table [2] in the main text. Similarly, Table [§] and Table [J] showcase the 8B results on Combinatorial
Reasoning and Planning, respectively.

G.3 Soft Accuracies

In Table |1} we demonstrate the performance of all models and baselines according to binary accuracy (1
if solved, 0 otherwise). Here, we also introduce a complementary metric, Soft Accuracy, which uses the
raw values from the reward function defined in Equation @ Unlike binary accuracy, soft accuracy shows
a continuous progression of results, where partial solutions receive credit proportional to their proximity to
the correct solution, as determined by p(-). Table|12| presents these results, which provide additional nuance
to our model comparisons.

From these soft accuracy results, we make several key observations:

1. The high variance in base models and BoN (shown by large standard deviations) suggests inconsis-
tent performance even when measuring partial correctness, highlighting the inherent unreliability of
unconstrained approaches.

2. The progression from Llama 1B to 70B shows more gradual improvement under soft accuracy com-
pared to binary accuracy, indicating that larger models not only solve more problems but also get
‘closer’ to correct solutions when they fail.

3. Tasks like Copy and Sudoku-3x3 show higher soft accuracy than binary accuracy across all baselines,
suggesting these tasks may be easier to partially solve but challenging to get exactly right. In
contrast, a”b"c"d"™ shows similar scores in both metrics, indicating an ‘all-or-nothing’ task structure.

4. SEM-CTRL maintains perfect scores with zero variance across all models and tasks under both metrics,
further validating its reliability regardless of the evaluation criteria.

G.4 More Ablation Studies

In Section we conduct an ablation study on the PlanBench benchmark |Valmeekam et al.| (2024]), comparing
our approach against prior work’s sampling algorithms like BoN and Greedy with Ccrg. Here, we extend
this analysis to Synthetic Grammar Synthesis and Combinatorial Reasoning, with results shown in Tables
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Table 13: Synthetic Grammar Synthesis ablation tasks results

Alg. Model C A Vere  Vese
Llama 1B - 4.4% 79.0% 23.0%
Llama 1B Ccra 4.4% 100.0%  23.0%
Llama 1B Csem 11.1%  100.0% 100.0%
Base Llama 8B - 5.6% 94.0% 24.0%
Llama 8B Ccra 8.9% 100.0% 34.0%
Llama 8B Csem  21.1%  100.0% 100.0%
Llama 70B - 30.0% 99.0% 39.0%
Llama 1B - 19.3% 65.0% 35.0%
Llama 1B Ccra 26.7% 100.0% 50.0%
Llama 1B Csem  71.5%  100.0% 100.0%
BoN Llama 8B - 46.3% 91.0% 59.0%
Llama 8B Ccra 39.6% 100.0% 60.0%
Llama 8B Csem  85.9%  100.0% 100.0%
Llama 70B - 60.7% 97.0% 79.0%
Llama 1B - 20.0% 80.0% 33.0%
MCTS Llama 1B Ccra 27.8% 100.0% 70.0%
Llama 8B - 36.7% 97.0% 47.0%
Llama 8B Ccra 36.7% 100.0% 78.0%
ol-preview - 86.7%  100.0%  88.0%
API DeepSeek-R1 - 83.3% 100.0% 87.0%
04-mini - 94.7% 99.0% 95.0%
Llama 1B Csem  100.0% 100.0% 100.0%
SEM-CTRL Llama 8B Csem  100.0% 100.0% 100.0%

Llama 70B Csem  100.0% 100.0%  100.0%

and [[4. While our findings largely mirror those from the Blocksworld domain, we observe an interesting
phenomenon with Llama 8B: BoN with Ccpg performs worse than its unconstrained version. This aligns
with prior work (e.g., [Park et al., [2024)) showing that local decoding can misalign the LLM’s generative
distribution by naively redistributing probability mass from invalid tokens, inflating the likelihood of rare
sequences. SEM-CTRL avoids this issue through its combination of semantic control and principled search
guided by domain-specific rewards.
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Table 14: Combinatorial Reasoning ablation tasks results
Alg. Model C A Vecre  Vesc
Llama 1B - 0.0% 11.0% 4.0%
Llama 1B Ccra 3.6% 100.0%  25.0%
Llama 1B Csem  14.3%  100.0%  100.0%
Base Llama 8B - 25.0% 79.0% 32.0%
Llama 8B Ccra 21.1% 100.0% 32.0%
Llama 8B CseMm 28.6% 100.0%  100.0%
Llama 70B - 57.4% 96.0% 66.0%
Llama 1B - 0.0% 18.0% 10.0%
Llama 1B Ccra 19.1% 100.0%  39.0%
Llama 1B Csem  76.2%  100.0% 100.0%
BoN Llama 8B - 65.5% 87.0% 73.0%
Llama 8B Ccra 77.4% 100.0%  81.0%
Llama 8B Csem  94.0%  100.0% 100.0%
Llama 70B - 89.7% 99.0% 91.0%
Llama 1B - 0.0% 18.0% 14.0%
MOTS Llama 1B Ccra  32.1% 100.0%  61.0%
Llama 8B - 82.1% 93.0% 82.0%
Llama 8B Ccra 85.7% 100.0%  93.0%
ol-preview - 92.9%  100.0%  99.0%
API DeepSeek-R1 - 92.9% 100.0%  96.0%
04-mini - 92.9%  100.0% 100.0%
Llama 1B Csem  100.0%  100.0%  100.0%
SEM-CTRL  Llama 8B Csem  100.0%  100.0%  100.0%
Llama 70B Csem  100.0% 100.0% 100.0%
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