
MathCAMPS: Fine-grained Synthesis of
Mathematical Problems From Human Curricula

Shubhra Mishra∗,1 Gabriel Poesia∗,1 Belinda Mo1 Noah D. Goodman1,2

{shubhra,poesia,ngoodman}@stanford.edu bmo98@alumni.stanford.edu
Departments of Computer Science1 and Psychology2, Stanford University

Abstract

Mathematical problem solving is an important skill for Large Language Models
(LLMs), both as an important capability and a proxy for a range of reasoning
abilities. Existing benchmarks probe a diverse set of skills, but they yield aggregate
accuracy metrics, obscuring specific abilities or weaknesses. Furthermore, they are
difficult to extend with new problems, risking data contamination over time. To
address these challenges, we propose MathCAMPS: a method to synthesize high-
quality mathematical problems at scale, grounded on 44 fine-grained “standards”
from the Mathematics Common Core (CC) Standard for K-8 grades. We encode
each standard in a formal grammar, allowing us to sample diverse symbolic prob-
lems and their answers. We then use LLMs to realize the symbolic problems into
word problems. We propose a cycle-consistency method for validating problem
faithfulness. Finally, we derive follow-up questions from symbolic structures and
convert them into follow-up word problems—a novel task of mathematical dia-
logue that probes for robustness in understanding. Experiments on 23 LLMs show
surprising failures even in the strongest models (in particular when asked simple
follow-up questions). Moreover, we evaluate training checkpoints of Pythia 12B on
MathCAMPS, allowing us to analyze when particular mathematical skills develop
during its training. Our framework enables the community to reproduce and extend
our pipeline for a fraction of the typical cost of building new high-quality datasets.
Project page: https://mathcamps.cc.

1 Introduction

As Large Language Models (LLMs) become increasingly capable, mathematical reasoning has
become a key benchmark for evaluating their abilities. Traditional benchmarking, which relies on
fixed sets of human-generated problems (e.g., GSM8k[8], or MATH [11]), now faces new challenges.
Many LLMs are trained on vast public datasets that may include these benchmarks, raising concerns
about data contamination [20, 7, 4]. This issue is amplified by the lack of transparency in the training
data of most state-of-the-art models, including GPT-4 [1], Claude [2], and LLaMA [19]. While
creating novel problems could mitigate contamination concerns but is resource-intensive. Moreover,
current benchmarks offer limited insights into the specific mathematical skills of LLMs, as aggregate
accuracy alone does not reveal where models excel or struggle, and how this has changed over time.

To address these issues, we introduce the Mathematics Common Core Assessment of Problem
Solving (MathCAMPS), a framework for generating high-quality mathematical problems based on
the Common Core (CC) standards. MathCAMPS enables detailed analysis of LLMs’ mathematical
proficiency, aligned with skills taught in schools. Our pipeline employs a composable grammar
for generating problems, symbolic solvers (e.g. SymPy) to get final solutions, and an LLM for
transforming them into word problems. We ensure problem faithfulness through a cycle-consistency
check, where the LLM back-translates word problems into symbolic form.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://mathcamps.cc


Figure 1: Overview of the MathCAMPS generation pipeline. We start from a grammar (A) that
represents problems tied to a Common Core Standard - a specific mathematical ability drawn from a
human curriculum. We sample problems in a symbolic form (B), and use a language model to realize
it in natural language (C), applying a cycle-consistency where we back-translate the problem into
symbolic form and ensure the answer remains the same, validating truthfulness. We also synthesize
incremental and counterfactual follow-up problems

We also propose a novel "mathematical dialogue" task, where the model answers follow-up questions
after solving a problem. These follow-ups can be either counterfactual, modifying an aspect of the
original problem, or incremental, providing additional information and changing the question.

Using our framework, we synthesize problems for each of 44 CC standards (Appendix C), resulting in
a dataset of 4,900 initial problems and 4707 total follow-ups. Our results reveal surprising weaknesses,
particularly in response to follow-up responses, highlighting significant gaps in even the strongest
models. Additionally, we provide a first-of-its-kind analysis of learning dynamics of mathematical
abilities in LLM training using checkpoints from Pythia 12B [6] (Appendix B).

2 MathCAMPS

We now describe our pipeline for automatically generating mathematical problems and follow-up
questions that are grounded in a human curriculum – the Mathematics Common Core (https:
//www.thecorestandards.org). Figure 1 overviews our pipeline. We describe how we represent
CC standards in a grammar, sample symbolic problems, generate follow-ups, realize those in natural
language, and finally improve quality by checking for cycle consistency.

Representing Common Core Standards We represent CC standards using an attribute grammar [10],
allowing both syntactic and semantic rules. This formalism supports context-sensitive constraints,
enabling encoding of information like numerical bounds directly in production rules.

From Symbolic to Word Problems To convert symbolic problems into natural language, we use
few-shot prompting with GPT-4 (Figure 1 (C)). For each standard, we manually create word problems
from two symbolic examples. For word problems requiring cover stories, we randomly select a theme
from a set of 188. These examples guide GPT-4 in generating diverse, natural problems. To ensure
faithfulness to the original structure, we apply a cycle consistency approach: GPT-4 converts its
generated word problem back into a symbolic structure, which is solved and compared to the original.
Problems failing this test are discarded.

Generating Follow-Up Questions We leverage symbolic representations to generate two types of
follow-up questions: counterfactual (altering a constant) and incremental (adding information). For
each CC standard, we identify applicable follow-up types. Symbolically, follow-up questions are
modeled as differences applied to the original problem, which we solve to produce ground-truth
answers. We use few-shot prompting to translate these changes into natural language questions and
apply cycle consistency to verify accuracy.

2

https://www.thecorestandards.org
https://www.thecorestandards.org


Table 1: Final answer accuracy of LLMs on MathCAMPS, both over all problems (All) and consider-
ing only standards in each grade we cover (K to 8). Highlights compare to gradewise avg.

Vendor Model All K 1 2 3 4 5 6 7 8

OpenAI GPT-4o [1] 0.92 0.98 0.98 0.98 0.98 0.92 0.88 0.95 0.89 0.64
Anthropic Claude-3 Opus [2] 0.89 0.97 0.99 0.96 0.98 0.89 0.83 0.96 0.73 0.56

Google Gemini-1.5 Pro [17] 0.89 0.95 0.98 0.97 0.97 0.89 0.83 0.93 0.78 0.54
Google Gemini-1.5 Flash [17] 0.87 0.98 0.98 0.97 0.98 0.80 0.80 0.90 0.84 0.56
OpenAI GPT-3.5 Turbo [1] 0.87 0.96 0.98 0.98 0.97 0.86 0.77 0.90 0.77 0.56

Anthropic Claude-3 Sonnet [2] 0.86 0.96 0.98 0.97 0.98 0.88 0.74 0.94 0.66 0.49
Anthropic Claude-3 Haiku [2] 0.84 0.97 0.98 0.97 0.98 0.87 0.69 0.92 0.59 0.51

Meta Llama 3 70B [19] 0.85 0.96 0.97 0.97 0.97 0.85 0.71 0.87 0.73 0.50
Mistral Mixtral 8x22B [13] 0.84 0.96 0.99 0.98 0.96 0.79 0.69 0.88 0.73 0.61

DeepSeek DeepSeek 67B [5] 0.80 0.95 0.99 0.96 0.93 0.82 0.60 0.84 0.61 0.47
Meta Llama 3 8B [19] 0.77 0.94 0.97 0.96 0.94 0.78 0.55 0.79 0.53 0.43

Mistral Mixtral 8x7B [13] 0.76 0.94 0.96 0.93 0.91 0.75 0.52 0.80 0.53 0.45
EleutherAI Llemma 34B [3] 0.71 0.95 0.96 0.93 0.87 0.61 0.47 0.77 0.46 0.44

Mistral Mistral 7B [12] 0.68 0.89 0.94 0.91 0.84 0.61 0.42 0.66 0.45 0.42
DeepSeek DeepSeek Coder 33B [9] 0.65 0.88 0.93 0.92 0.83 0.54 0.36 0.66 0.44 0.38

Meta CodeLlama 34B [15] 0.64 0.90 0.94 0.92 0.85 0.51 0.38 0.70 0.37 0.30
Microsoft phi-2 [14] 0.63 0.95 0.96 0.89 0.78 0.46 0.38 0.61 0.37 0.41
EleutherAI Llemma 7B [3] 0.62 0.88 0.90 0.85 0.79 0.48 0.41 0.67 0.41 0.36

Google Gemma 7B [18] 0.62 0.83 0.92 0.90 0.82 0.47 0.36 0.65 0.36 0.30
Meta CodeLlama 13B [15] 0.58 0.87 0.92 0.87 0.75 0.41 0.30 0.61 0.32 0.34
Meta CodeLlama 7B [15] 0.52 0.85 0.92 0.84 0.69 0.37 0.25 0.57 0.25 0.16

Google Gemma 2B [18] 0.51 0.66 0.76 0.74 0.67 0.42 0.28 0.55 0.30 0.27
- Avg. Performance 0.74 0.87 0.91 0.89 0.87 0.70 0.59 0.78 0.57 0.38

3 Experiments

We now evaluate a suite of 23 LLMs from 8 different vendors on MathCAMPS. We evaluate all
models by sampling with temperature 0, using a fixed 1-shot prompt with the first example from
GSM8K, mostly to demonstrate the format. For all models (most of them instruction-tuned), a
single example was enough for to adhere to the task and the format we specify. The rich structure
in MathCAMPS allows us to perform a number of unique analyses on LLMs relating to specific
mathematical abilities and their corresponding grade levels for human students.

Table 1 shows both aggregate accuracy on MathCAMPS, as well as accuracy across standards
partitioned by grade, whereas Figure 3 compares the aggregate accuracies on MathCAMPS and
GSM8K. Closed-weights models are shown above the line, with open-weights models below. GPT-4o
ranks at the top in overall accuracy. Since we used GPT-4 to generate the problems, we must rule out
familiarity bias [16] in this result, which we do in Appendix D.

Models of similar overall performance can have large disparities in specific abilities or grades.
Several models that have comparable overall accuracies show large differences when compared
on specific mathematical skills. As an example, Claude-3 Opus and Claude-3 Sonnet have similar
overall accuracy both in MathCAMPS (.89 vs .86) and in GSM8K (.95 vs .923). However, we
find that Claude-3 Opus is significantly better at manipulating fractions. For instance, in the CC
standard 5.NF.A.2, described as “Solve word problems involving addition and subtraction of
fractions referring to the same whole, including cases of unlike denominators”, Opus has a 36%
advantage over Sonnet, scoring a 70% accuracy for this standard, whereas Sonnet only achieves 34%.
Similarly, while Gemma 7B and phi-2 have comparable overall performance (.62 vs .63 accuracy on
MathCAMPS), some capabilities in each model seem nearly absent from the other. Gemma 7B is
highly accurate when performing multi-digit multiplication (4.NBT.B.4), which phi-2 struggles with.
And while phi-2 performs well while comparing fractions (4.NF.A.2), Gemma 7B struggles. Such
stark differences are obscured when only analyzing aggregate metrics, whereas MathCAMPS allows
for a much more nuanced understanding of mathematical reasoning capabilities.

Overall ranking between models is largely a function of which skills we choose to evaluate.
Overall accuracies in any dataset induce a single performance ranking of models. However, when
we look at individual CC standards in MathCAMPS, rankings are largely a function of which skills
we choose to evaluate. Comparing pairs of models across all standards, rarely we find cases where

3



one model Pareto-dominates another (i.e. is better on all standards): only 23.08% of all pairs of
models have a Pareto winner. Table 3 shows how the ranking of a model in individual skills can
often deviate strongly from its overall ranking. Here, the first ordinal in each cell shows the model’s
ranking on overall performance on MathCAMPS, whereas the second shows the model’s ranking on
that particular CC standard. We find many cases of large discrepancies. For instance, on systems of
equations, GPT-4o tends to excessively rely on decimal approximations when operating with fractions,
resulting in poor performance. Llemma 34B, which places 13th overall, is the best performing model
on a simple kindergarten-level word problems on adding to complete 10.

Follow-up tasks We now evaluate the performance of LLMs on follow-up questions. Here, we first
give a problem, and in case the model answers correctly we ask either an incremental follow-up, a
counterfactual follow-up, or both (in separate contexts), depending on the standard (some standards
don’t have follow-ups, and for some problems we failed to find a cycle-consistent follow-up within
the max attempts). Here, we’re interested in analyzing the (lack of) robustness that LMs might have
when probed with extra questions — our follow-ups are generally answerable using the same core
mathematical knowledge involved in the initial problem but require longer range attention and dialog
understanding.

Table 3 (full table with all models in the Appendix) shows overall accuracies when we only consider
a model successful on a problem when it also answers its follow-up questions correctly. We also
show the major accuracy drops across CC standards for each model (last two columns). We find
many notable cases, in both stronger and weaker models. GPT-4o, for instance, is 90% accurate
in evaluating expressions of addition of fractions with multi-digit numerators and denominators
(5.NF.A.1 — notably, this requires putting fractions in the same denominator). When asked to
add another fraction to the result, or change one of the original fractions to a new one and re-do
the computation, its success rate when evaluated at correctly answering both follow-ups drops to
61%, or a 29% decrease. Other models drop even more dramatically. For instance, phi-2 solves
57% of the problems in 7.NS.A.2, which are about multiplying two fractions (only requires two
multi-digit multiplications — we do not require the result to be in lowest terms). However, when
asked to multiply the result by a further third fraction, phi-2 tends to not reuse its previous (correct)
result, and instead proceeds by writing down the product of the three numerators (and denominators),
and attempt to directly evaluate this product. This strategy is rarely successful, and it only achieves
8% accuracy when accounting for the follow-ups (an absolute 49% drop). Overall, we find many
cases where models are not robust to simple follow-up questions. We hypothesize that this setup of
mathematical dialogue is much less frequent in pre-training data, and that follow-up problems in
MathCAMPS can be a rich source of further analyses for future work.

Table 2: Model performance on our mathematical dialogue task, where the model must answer
follow-up questions besides the initial problem. Results for all models are shown in the Appendix.

Model Acc. with follow-ups Largest accuracy drop w/ follow-ups

GPT-4o 0.82 5.NF.A.1 - Add/sub fractions 0.90 0.61)
Claude-3 Opus 0.76 7.NS.A.1-fraction - Add/sub with fractions 0.57 0.25)
Gemini-1.5 Pro 0.77 5.NF.A.1 - Add/sub fractions 0.60 0.35)
GPT-3.5 Turbo 0.71 7.NS.A.1-fraction - Add/sub with fractions 0.73 0.22)

Llama 3 70B 0.69 4.NF.A.2 - Compare two fractions 0.99 0.66)
Mixtral 8x22B 0.69 7.NS.A.1-fraction - Add/sub with fractions 0.69 0.18)
DeepSeek 67B 0.68 6.NS.B.3 - Add/sub/mult/div decimals 0.59 0.37)

phi-2 0.39 7.NS.A.2 - Mult/div with fractions 0.57 0.08)
Gemma 7B 0.33 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.32)

4 Conclusion

We introduce MathCAMPS, a fine-grained synthetic benchmark of mathematical reasoning in LLMs.
MathCAMPS is directly grounded on the Common Core Standards, a widely used curriculum in
human education. By tying our problems to a human curriculum, we enable a much wider range
of analyses to understand mathematical reasoning capabilities and weaknesses of LLMs. We show
analyses of performance by grade level and identify particularly challenging skills for a range of
models, though we believe these are only a few examples of analyses that MathCAMPS permits.

4



References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

[3] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer,
Albert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language
model for mathematics. arXiv preprint arXiv:2310.10631, 2023.

[4] Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek. Leak, cheat,
repeat: Data contamination and evaluation malpractices in closed-source llms. arXiv preprint
arXiv:2402.03927, 2024.

[5] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models
with longtermism. arXiv preprint arXiv:2401.02954, 2024.

[6] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[7] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[9] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[10] Bernd Heine and Tania Kuteva. The genesis of grammar: A reconstruction, volume 9. Oxford
University Press, USA, 2007.

[11] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[12] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[13] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[14] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

[15] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950, 2023.

[16] Rickard Stureborg, Dimitris Alikaniotis, and Yoshi Suhara. Large language models are incon-
sistent and biased evaluators. arXiv preprint arXiv:2405.01724, 2024.

5



[17] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[18] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[19] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[20] Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao,
Pranav Raja, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele Lunati, and
Summer Yue. A careful examination of large language model performance on grade school
arithmetic, 2024.

6



A Tables

Table 3: Largest model rank changes when focusing on one CC standard. Here, A B indicates that
the model ranks Ath on MathCAMPS overall, but ranks Bth when only evaluating on problems from
the indicated CC standard. Conversely, marks notable cases where a model’s performance on the
indicated CC standard is lower than its overall performance on MathCAMPS. We show selected rows
here, the complete table can be found in the Appendix.

Model Top outlier skill Rank change

GPT-4o 8.EE.C.8 - Solve two-variable systems (1st 22th)
Claude-3 Opus 2.MD.B.5 - Add/sub within 100 (2nd 13th)
Gemini-1.5 Pro K.OA.A.4 - Adding to equal 10 (3rd 19th)

Gemini-1.5 Flash 4.OA.B.4 - Factor pairs within 100 (4th 20th)
Claude-3 Haiku 3.OA.A.4 - Determine unknowns in mul/div probs (9th 1st)

Llama 3 70B K.OA.A.4 - Adding to equal 10 (7th 17th)
DeepSeek 67B K.NBT.A.1 - Decompose into 10s (10th 1st)
Llemma 34B K.OA.A.4 - Adding to equal 10 (13th 1st)
Mistral 7B 1.OA.A.1 - Add/sub within 20 (14th 21th)

DeepSeek Coder 33B 6.EE.A.1 - Evaluate exponents (15th 3rd)
Llemma 7B 6.EE.A.1 - Evaluate exponents (18th 5th)
Gemma 2B 8.EE.C.8 - Solve two-variable systems (22th 11th)

Table 4: Model performance on our mathematical dialogue task, where the model must answer
follow-up questions besides the initial problem. The second column, Accuracy with follow-ups,
shows overall success rate across standards that contain follow-up questions, considering a model
successful only when it answers a problem and its follow-up questions correctly. The third and fourth
columns show the hardest standard for each model when it comes to follow-up questions, showing
a standard’s code and abbreviated description, the model’s accuracy ignoring follow-ups, and after
follow-ups.

Model Acc. with follow-ups Largest accuracy drop w/ follow-ups

GPT-4o 0.82 5.NF.A.1 - Add/sub fractions 0.90 0.61)
Claude-3 Opus 0.76 7.NS.A.1-fraction - Add/sub with fractions 0.57 0.25)
Gemini-1.5 Pro 0.77 5.NF.A.1 - Add/sub fractions 0.60 0.35)

Gemini-1.5 Flash 0.76 7.NS.A.1-fraction - Add/sub with fractions 0.78 0.38)
GPT-3.5 Turbo 0.71 7.NS.A.1-fraction - Add/sub with fractions 0.73 0.22)

Claude-3 Sonnet 0.72 5.NF.A.1 - Add/sub fractions 0.41 0.07)
Claude-3 Haiku 0.70 3.OA.A.3 - Mul/div within 100 1.00 0.73)

Llama 3 70B 0.69 4.NF.A.2 - Compare two fractions 0.99 0.66)
Mixtral 8x22B 0.69 7.NS.A.1-fraction - Add/sub with fractions 0.69 0.18)
DeepSeek 67B 0.68 6.NS.B.3 - Add/sub/mult/div decimals 0.59 0.37)

Llama 3 8B 0.58 4.NF.A.2 - Compare two fractions 0.90 0.52)
Mixtral 8x7B 0.58 5.NF.B.4 - Mult fractions 0.61 0.31)
Llemma 34B 0.55 5.NF.B.4 - Mult fractions 0.69 0.33)
Mistral 7B 0.48 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.50)

DeepSeek Coder 33B 0.60 3.OA.A.3 - Mul/div within 100 0.95 0.81)
CodeLlama 34B 0.60 5.NF.B.4 - Mult fractions 0.52 0.39)

phi-2 0.39 7.NS.A.2 - Mult/div with fractions 0.57 0.08)
Llemma 7B 0.43 5.NF.B.4 - Mult fractions 0.61 0.22)
Gemma 7B 0.33 7.NS.A.1-decimal - Add/sub with decimals 0.91 0.32)

CodeLlama 13B 0.43 4.NBT.B.4 - Add/sub multi-digit nums 0.81 0.49)
CodeLlama 7B 0.49 2.NBT.B.7 - Add/sub within 100 0.80 0.67)

Gemma 2B 0.24 3.NBT.A.2 - Add/sub within 1000 0.93 0.26)

7



Figure 2: Performance of Pythia 12B checkpoints on MathCAMPS standards as it evolves during
training. We show all 7 standards where the last checkpoint has at least 30% accuracy.

B Learning dynamics

We use Pythia [6] to showcase another analysis that MathCAMPS enables: understanding the learning
dynamics of mathematical skills during LM training. We evaluate checkpoints of Pythia 12B on
all standards, and track the performance change as the model was trained. Figure 2 shows Pythia’s
performance evolving during training on all 7 CC standards where the last checkpoint achieves
at least 30% accuracy. Early in training, after 28k steps, Pythia performs best in a Kindergarten
standard, K.OA.A.5 — “Fluently add and subtract within 5.”. At 57k steps, its performance is best
in both K.OA.A.5 (37% accuracy) and two first-grade standards, 1.OA.A.1 and 1.OA.A.2 — both
standards involve simple word problems with addition and subtraction within 20. Pythia starts to
become proficient at a sixth-grade standard around midway during training: 6.EE.A.1, which involves
evaluating simple expressions using whole-number exponents (e.g, computing squares and cubes).
These skills develop in tandem with its linguistic competence – at first, Pythia repeats questions
verbatim often, but at 57k steps it already often produces responses. Overall, the high-resolution of
MathCAMPS as a reasoning benchmark can support future work to deepen our understanding of how
language models acquire capabilities during training, and how specific factors (such as data, or scale)
contribute to their learning.

C Common Core Standards in MathCAMPS

MathCAMPS is available on Github at https://github.com/gpoesia/mathcamps. All of the
Common Core standards we implement are described in a configuration file, commoncore.yaml,
where standards are instantiated by composing high-level components from the Common Core
attribute grammar. Moreover, we provide our prompts used to generate the dataset and model
responses, as well as all problems and model responses for all LLMs we evaluated.

We list the Common Core standards we represent in MathCAMPS in Tables 5 through 13, segregated
by grade. Standards 3.MD.D.8, 4.MD.A.2, 7.NS.A.1, and 7.NS.A.3 are split up into sub-standards.
This was done for ease of implementation of the grammar.

D Familiarity bias

MathCAMPS was generated using GPT-4. GPT-4o, a model of the same family, was also the best
performer overall (Table 1). To test whether this might be due to a familiarity bias — problems being

8

https://github.com/gpoesia/mathcamps


Standard ID Description
K.CC.C.7 Compare two numbers between 1 and 10 presented as written numerals.
K.OA.A.4 For any number from 1 to 9, find the number that makes 10 when added

to the given number, e.g., by using objects or drawings, and record the
answer with a drawing or equation.

K.OA.A.5 Fluently add and subtract within 5.
K.NBT.A.1 Compose and decompose numbers from 11 to 19 Into ten ones and

some further ones, e.g., by using objects or drawings, and record each
composition or decomposition by a drawing or equation (e.g., 18 = 10
+ 8); understand that these numbers are composed of ten ones and one,
two, three, four, five, six, seven, eight, or nine ones.

Table 5: CC Standards for Grade K

Standard ID Description
1.OA.A.1 Use addition and subtraction within 20 to solve word problems involving

situations of adding to, taking from, putting together, taking apart, and
comparing, with unknowns in all positions, e.g., by using objects, draw-
ings, and equations with a symbol for the unknown number to represent
the problem.

1.OA.A.2 Solve word problems that call for addition of three whole numbers
whose sum is less than or equal to 20, e.g., by using objects, drawings,
and equations with a symbol for the unknown number to represent the
problem.

1.OA.D.8 Determine the unknown whole number in an addition or subtraction
equation relating three whole numbers.

Table 6: CC Standards for Grade 1

Standard ID Description
2.OA.A.1 Use addition and subtraction within 100 to solve one- and two-step word

problems involving situations of adding to, taking from, putting together,
taking apart, and comparing, with unknowns in all positions, e.g., by
using drawings and equations with a symbol for the unknown number to
represent the problem.

2.NBT.B.5 Fluently add and subtract within 100 using strategies based on place
value, properties of operations, and/or the relationship between addition
and subtraction.

2.NBT.B.6 Add up to four two-digit numbers using strategies based on place value
and properties of operations.

2.NBT.B.7 Add and subtract within 1000, using concrete models or drawings and
strategies based on place value, properties of operations, and/or the
relationship between addition and subtraction; relate the strategy to a
written method. Understand that in adding or subtracting three-digit
numbers, one adds or subtracts hundreds and hundreds, tens and tens,
ones and ones; and sometimes it is necessary to compose or decompose
tens or hundreds.

2.MD.B.5 Use addition and subtraction within 100 to solve word problems involv-
ing lengths that are given in the same units, e.g., by using drawings (such
as drawings of rulers) and equations with a symbol for the unknown
number to represent the problem.

2.MD.C.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and
pennies, using $ and ¢ symbols appropriately.

Table 7: CC Standards for Grade 2

9



Standard ID Description
3.OA.A.3 Use multiplication and division within 100 to solve word problems in

situations involving equal groups, arrays, and measurement quantities,
e.g., by using drawings and equations with a symbol for the unknown
number to represent the problem.

3.OA.A.4 Determine the unknown whole number in a multiplication or division
equation relating three whole numbers.

3.OA.C.7 Fluently multiply and divide within 100, using strategies such as the
relationship between multiplication and division (e.g., knowing that 8 ×
5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of
Grade 3, know from memory all products of two one-digit numbers.

3.OA.D.8 Solve two-step word problems using the four operations. Represent these
problems using equations with a letter standing for the unknown quantity.
Assess the reasonableness of answers using mental computation and
estimation strategies including rounding.

3.MD.D.8-
triangle

Solve real world and mathematical problems involving perimeters of
polygons, including finding the perimeter given the side lengths, finding
an unknown side length, and exhibiting rectangles with the same perime-
ter and different areas or with the same area and different perimeters.

3.MD.D.8-
quadrilateral

Solve real world and mathematical problems involving perimeters of
polygons, including finding the perimeter given the side lengths, finding
an unknown side length, and exhibiting rectangles with the same perime-
ter and different areas or with the same area and different perimeters.

3.MD.D.8-
polygon

Solve real world and mathematical problems involving perimeters of
polygons, including finding the perimeter given the side lengths, finding
an unknown side length, and exhibiting rectangles with the same perime-
ter and different areas or with the same area and different perimeters.

3.NBT.A.2 Fluently add and subtract within 1000 using strategies and algorithms
based on place value, properties of operations, and/or the relationship
between addition and subtraction.

Table 8: CC Standards for Grade 3

in-distribution for GPT-4o, but out-of-distribution for other models —, we generated a 10%-scale
dataset using the exact same pipeline, but using Claude 3 Opus for both generating word problems
and testing cycle consistency. This dataset has the same distribution of standards as MathCAMPS.
We evaluated GPT-4o and Claude 3 Opus on this dataset — accuracies are reported in Table 14.
GPT-4o also performs better in this dataset, suggesting that its performance in MathCAMPS was not
due to a higher relative familiarity with the problems.

10



Standard ID Description
4.OA.A.3 Solve multistep word problems posed with whole numbers and having

whole-number answers using the four operations, including problems
in which remainders must be Interpreted. Represent these problems
using equations with a letter standing for the unknown quantity. Assess
the reasonableness of answers using mental computation and estimation
strategies including rounding.

4.OA.B.4 Find all factor pairs for a whole number in the range 1-100. Recognize
that a whole number is a multiple of each of its factors. Determine
whether a given whole number in the range 1-100 is a multiple of a given
one-digit number. Determine whether a given whole number in the range
1-100 is prime or composite.

4.NBT.B.4 Fluently add and subtract multi-digit whole numbers using the standard
algorithm.

4.NBT.B.5 Multiply a whole number of up to four digits by a one-digit whole
number, and multiply two two-digit numbers, using strategies based on
place value and the properties of operations. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area models.

4.NBT.B.6 Find whole-number quotients and remainders with up to four-digit divi-
dends and one-digit divisors, using strategies based on place value, the
properties of operations, and/or the relationship between multiplication
and division. Illustrate and explain the calculation by using equations,
rectangular arrays, and/or area models.

4.NF.A.2 Compare two fractions with different numerators and different denom-
inators, e.g., by creating common denominators or numerators, or by
comparing to a benchmark fraction such as 1/2. Recognize that com-
parisons are valid only when the two fractions refer to the same whole.
Record the results of comparisons with symbols >, =, or <, and justify
the conclusions, e.g., by using a visual fraction model.

4.MD.A.2-
decimal

Use the four operations to solve word problems involving distances,
Intervals of time, liquid volumes, masses of objects, and money, includ-
ing problems involving simple fractions or decimals, and problems that
require expressing measurements given in a larger unit in terms of a
smaller unit. Represent measurement quantities using diagrams such as
number line diagrams that feature a measurement scale.

4.MD.A.2-
fraction

Use the four operations to solve word problems involving distances,
Intervals of time, liquid volumes, masses of objects, and money, includ-
ing problems involving simple fractions or decimals, and problems that
require expressing measurements given in a larger unit in terms of a
smaller unit. Represent measurement quantities using diagrams such as
number line diagrams that feature a measurement scale.

4.MD.A.3 Apply the area and perimeter formulas for rectangles in real world and
mathematical problems.

Table 9: CC Standards for Grade 4

11



Standard ID Description
5.OA.A.1 Use parentheses, brackets, or braces in numerical expressions, and eval-

uate expressions with these symbols.
5.NBT.B.5 Fluently multiply multi-digit whole numbers using the standard algo-

rithm.
5.NBT.B.6 Find whole-number quotients of whole numbers with up to four-digit div-

idends and two-digit divisors, using strategies based on place value, the
properties of operations, and/or the relationship between multiplication
and division. Illustrate and explain the calculation by using equations,
rectangular arrays, and/or area models.

5.NBT.B.7 Add, subtract, multiply, and divide decimals to hundredths, using con-
crete models or drawings and strategies based on place value, properties
of operations, and/or the relationship between addition and subtraction;
relate the strategy to a written method and explain the reasoning used.

5.NF.A.1 Add and subtract fractions with unlike denominators (including mixed
numbers) by replacing given fractions with equivalent fractions in such a
way as to produce an equivalent sum or difference of fractions with like
denominators.

5.NF.A.2 Solve word problems involving addition and subtraction of fractions
referring to the same whole, including cases of unlike denominators, e.g.,
by using visual fraction models or equations to represent the problem.
Use benchmark fractions and number sense of fractions to estimate
mentally and assess the reasonableness of answers.

5.NF.B.4 Apply and extend previous understandings of multiplication to multiply
a fraction or whole number by a fraction.

Table 10: CC Standards for Grade 5

Standard ID Description
6.NS.B.2 Fluently divide multi-digit numbers using the standard algorithm.
6.NS.B.3 Add, subtract, multiply, and divide decimals to hundredths, using con-

crete models or drawings and strategies based on place value, properties
of operations, and/or the relationship between addition and subtraction;
relate the strategy to a written method and explain the reasoning used.

6.EE.A.1 Write and evaluate numerical expressions involving whole-number ex-
ponents.

6.EE.B.7 Solve real-world and mathematical problems by writing and solving
equations of the form x + p = q and px = q for cases in which p, q and x
are all nonnegative rational numbers.

Table 11: CC Standards for Grade 6

Standard ID Description
7.NS.A.1-
fraction

Apply and extend previous understandings of addition and subtraction
to add and subtract rational numbers; represent addition and subtraction
on a horizontal or vertical number line diagram.

7.NS.A.1-
decimal

Apply and extend previous understandings of addition and subtraction
to add and subtract rational numbers; represent addition and subtraction
on a horizontal or vertical number line diagram.

7.NS.A.2 Apply and extend previous understandings of multiplication and division
and of fractions to multiply and divide rational numbers.

7.NS.A.3-
fraction

Solve real-world and mathematical problems involving the four opera-
tions with rational numbers.

7.NS.A.3-
decimal

Solve real-world and mathematical problems involving the four opera-
tions with rational numbers.

Table 12: CC Standards for Grade 7

12



Standard ID Description
8.EE.A.2 Use square root and cube root symbols to represent solutions to equations

of the form x² = p and x³ = p, where p is a positive rational number.
Evaluate square roots of small perfect squares and cube roots of small
perfect cubes. Know that the square root of 2 is irrational.

8.EE.C.7 Solve linear equations in one variable.
8.EE.C.8 Analyze and solve pairs of simultaneous linear equations.

Table 13: CC Standards for Grade 8

Model GPT4-generated MathCAMPS accuracy Claude-generated MathCAMPS accuracy

GPT-4o 0.910 0.954
Claude 3 Opus 0.887 0.909

Table 14: Performance of GPT-4o and Claude 3 Opus on the dataset genreated using Claude

E Data generation pipeline details

E.1 Grammar

We implemented a global attribute grammar in Python, where production rules are implemented as
recursive Python functions. Effectively, each CC standard has its own grammar, composed of pieces
from components from the global CC grammar, as well as possibly adding unique non-terminals.
Each CC standard contains the following parameters:

Description: The description of the CC standard.

Short description: A shortened description of the CC standard.

Filters: A list of problem filters to ensure that all problems in this standard satisfy some requirement
given in the Common Core description of the standard. The ProblemLength filter makes
sure that the problem is within the desired length. CheckIntermediateValues filters out
any problems with intermediate values greater or lesser than max_value or min_value,
respectively. The ChainsOfVariables filter eliminates any problems where variables are
assigned to equal exactly another variable, and nothing else. The ContainsTen filter checks
if the math word problem contains numbers adding up to 10, or contains a 10 in the problem
(for standards K.OA.A.4 and K.NBT.A.1, respectively).

Transforms: List of problem transformations applied to all symbolic structures from this standard.
The NoUselessVariables transform performs dead code elimination — it removes any
variables that do not contribute to the final answer by applying a simple graph reachability
algorithm on a dependency graph between statements, removing statements that the answer
does not depend on. The Simplify transform essentially inlines variables that are used only
once.

Expressions: Lists non-terminals available to generate expressions in symbolic structures for this
standard. For example, this can make specific binary operations (e.g. addition, division)
available on that particular standard.

Min/max value: Specifies bounds on values for both the final answer and all intermediate values in
the solution.

Min/max number: Specifies bounds on numeric constants sampled in the symbolic structure.

Max depth: Sets a maximum depth for expressions in the symbolic structure.

Samples: We include 2+ hand-written, standard-relevant examples of a symbolic problem followed
by a relevant natural language problem generation, which we use as few-shot prompts during
problem generation. We also use these prompts, but in reverse (natural language followed
by symbolic problem), when we prompt GPT-4 during cycle consistency.

13



E.2 Answer Grading During Evaluation

Given a solution in natural language, we first use a rule-based answer extractor to extract any model’s
numerical answer. In cases where a language model doesn’t answer in the required format, or
answers in an unexpected format, the answer is initially marked as incorrect. For all problems with
incorrect answers, we use Llama-3 70B to re-extract the final answer. We few-shot prompt it with
hand-generated examples of solutions and extracted final answers, and ask it to extract the final
answer from the new solution. If a problem that was previously incorrect is marked as correct (given
the newly extracted answer), we rerun the model on any followups the problem might have. Note
that this “regrading” step can only improve accuracy from the base result, since we only run it on
problems that failed under the rule-based evaluation. In practice, we found this process to have
negligible false-positive rate — only in a handful of cases across all models we observed either
answer extraction processes extracting the correct answer out of a wrong response (e.g., if the answer
to a problem is 2, and the model responds “On day 2, Sally bought 9 dolls”, the rule-based parser
extracts 2 as being the model’s answer, though the sentence implies its answer to be 9). On the other
hand, the LLaMA-3 70B extractor greatly reduces our false negative rate in a handful of models
(especially DeepSeek) which are more likely to respond in a format different from what our prompt
asks for.

E.3 Cost estimate

All problems in MathCAMPS were generated using OpenAI gpt-4-0613, in May 2024. We estimate
an approximate cost of 330 USD to generate 9607 problems (including main problems and follow-
ups). This includes the cost to perform cycle consistency, and problems that are discarded by cycle
consistency. This gives an average cost of 0.034 USD (3.4 cents) per cycle-consistent problem or
follow-up question.

F Correlation between MathCAMPS and GSM8k

Figure 3 shows accuracies of several models on both GSM8k and MathCAMPS, along with the
line of best fit. There is a strong correlation between overall accuracy in both datasets (ρ = 0.91,
p < 10−6), though MathCAMPS allows for many fine-grained analysis besides overall performance.

G Largest Model Rank Changes When Focusing on One CC Standard
(Complete Table)

Table 15 shows the full table from which Table 3 was extracted.

H Followup Analysis

Table 16 lists model accuracies when only looking at the main problems (Main Acc.), their accuracies
when only looking at the incremental followups (IFUP Acc.), their accuracies when only looking
at the counterfactual followups (CFUP Acc.), and finally, the total number of followups seen by
each model. The total number of followups a model sees relies on whether or not they get the main
question for that followup correct. If a model does not correctly solve the main question, it is not
prompted with follow-ups. Note that each followup serves as a followup to the main question, as
opposed to a followup to each other.

14



Model Top outlier skill Rank change

GPT-4o 8.EE.C.8 - Solve two-variable systems (1st 22th)
Claude-3 Opus 2.MD.B.5 - Add/sub within 100 (2nd 13th)
Gemini-1.5 Pro K.OA.A.4 - Adding to equal 10 (3rd 19th)

Gemini-1.5 Flash 4.OA.B.4 - Factor pairs within 100 (4th 20th)
GPT-3.5 Turbo 6.EE.A.1 - Evaluate exponents (5th 21th)

Claude-3 Sonnet 2.NBT.B.5 - Add/sub within 100 (6th 12th)
Claude-3 Haiku 3.OA.A.4 - Determine unknowns in mul/div probs (9th 1st)

Llama 3 70B K.OA.A.4 - Adding to equal 10 (7th 17th)
Mixtral 8x22B 8.EE.C.8 - Solve two-variable systems (8th 21th)
DeepSeek 67B K.NBT.A.1 - Decompose into 10s (10th 1st)

Llama 3 8B 4.NBT.B.4 - Add/sub multi-digit nums (11th 21th)
Mixtral 8x7B 6.EE.A.1 - Evaluate exponents (12th 20th)
Llemma 34B K.OA.A.4 - Adding to equal 10 (13th 1st)
Mistral 7B 1.OA.A.1 - Add/sub within 20 (14th 21th)

DeepSeek Coder 33B 6.EE.A.1 - Evaluate exponents (15th 3rd)
CodeLlama 34B 5.NF.A.1 - Add/sub fractions (16th 22th)

phi-2 K.OA.A.4 - Adding to equal 10 (17th 4th)
Llemma 7B 6.EE.A.1 - Evaluate exponents (18th 5th)
Gemma 7B K.OA.A.5 - Add/sub within 5 (19th 6th)

CodeLlama 7B 8.EE.C.8 - Solve two-variable systems (21th 15th)
Gemma 2B 8.EE.C.8 - Solve two-variable systems (22th 11th)

Table 15: Largest changes in a model’s ranking when comparing its performance in a particular CC
standard, in contrast to only overall performance. This is a complete version of Table 3, which only
showed some models for brevity.

Vendor Model Main Acc. IFUP Acc. CFUP Acc. Total FUPs seen
Anthropic Claude-3 Opus 0.89 0.90 0.88 4142
Anthropic Claude-3 Sonnet 0.86 0.86 0.87 3964
Anthropic Claude-3 Haiku 0.84 0.88 0.87 3819
DeepSeek DeepSeek Coder 33B 0.65 0.79 0.85 1022
DeepSeek DeepSeek 67B 0.80 0.87 0.88 3286
EleutherAI LLemma 7B 0.62 0.68 0.80 2890

Google Gemini-1.5 Pro 0.89 0.91 0.89 4140
Google Gemini-1.5 Flash 0.87 0.89 0.87 4083
Google Gemma 2B 0.51 0.29 0.54 2044
Google Gemma 7B 0.62 0.55 0.60 2786
Meta Llama 3 8B 0.77 0.84 0.80 3476
Meta Llama 3 70B 0.85 0.87 0.84 3939
Meta CodeLlama 7B 0.52 0.69 0.86 617
Meta CodeLlama 13B 0.58 0.75 0.80 2451
Meta CodeLlama 34B 0.64 0.82 0.88 844

Microsoft phi-2 0.63 0.48 0.78 2873
Mistral Mistral 7B 0.68 0.72 0.80 3090
Mistral Mixtral 8x7B 0.76 0.80 0.82 3439
Mistral Mixtral 8x22B 0.84 0.86 0.83 3948
OpenAI GPT-4o 0.92 0.92 0.90 4358
OpenAI GPT-3.5 Turbo 0.87 0.85 0.86 4063

Table 16: Accuracy of each model on incremental follow-up questions (IFUP) as well as on counter-
factual follow-ups (CFUP). Note that these accuracies are not directly comparable, since models are
only evaluated on follow-ups to problems that they respond correctly to; thus, each accuracy shown
here is over a different subset of follow-up problems in MathCAMPS.

15



Figure 3: Relation between accuracy on GSM8k and on MathCAMPS.

16


	Introduction
	MathCAMPS
	Experiments
	Conclusion
	Tables
	Learning dynamics
	Common Core Standards in MathCAMPS
	Familiarity bias
	Data generation pipeline details
	Grammar
	Answer Grading During Evaluation
	Cost estimate

	Correlation between MathCAMPS and GSM8k
	Largest Model Rank Changes When Focusing on One CC Standard (Complete Table)
	Followup Analysis

