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ABSTRACT

Predicting the responses of a cell under perturbations may bring important ben-
efits to drug discovery and personalized therapeutics. In this work, we propose
a novel graph variational Bayesian causal inference framework to predict a cell’s
gene expressions under counterfactual perturbations (perturbations that this cell
did not factually receive), leveraging information representing biological knowl-
edge in the form of gene regulatory networks (GRNs) to aid individualized cellular
response predictions. Aiming at a data-adaptive GRN, we also developed an adja-
cency matrix updating technique for graph convolutional networks and used it to
refine GRNs during pre-training, which generated more insights on gene relations
and enhanced model performance. Additionally, we propose a robust estimator
within our framework for the asymptotically efficient estimation of marginal per-
turbation effect, which is yet to be carried out in previous works. With exten-
sive experiments, we exhibited the advantage of our approach over state-of-the-art
deep learning models for individual response prediction.

1 INTRODUCTION

Studying a cell’s response to genetic, chemical, and physical perturbations is fundamental in un-
derstanding various biological processes and can lead to important applications such as drug dis-
covery and personalized therapies. Cells respond to exogenous perturbations at different levels, in-
cluding epigenetic (DNA methylation and histone modifications), transcriptional (RNA expression),
translational (protein expression), and post-translational (chemical modifications on proteins). The
availability of single-cell RNA sequencing (scRNA-seq) datasets has led to the development of sev-
eral methods for predicting single-cell transcriptional responses (Ji et al., 2021). These methods
fall into two broad categories. The first category (Lotfollahi et al., 2019; 2020; Rampášek et al.,
2019; Russkikh et al., 2020; Lotfollahi et al., 2021a) approaches the problem of predicting sin-
gle cell gene expression response without explicitly modeling the gene regulatory network (GRN),
which is widely hypothesized to be the structural causal model governing transcriptional responses
of cells (Emmert-Streib et al., 2014). Notably among those studies, CPA (Lotfollahi et al., 2021a)
uses an adversarial autoencoder framework designed to decompose the cellular gene expression re-
sponse to latent components representing perturbations, covariates and basal cellular states. CPA ex-
tends the classic idea of decomposing high-dimensional gene expression response into perturbation
vectors (Clark et al., 2014; 2015), which can be used for finding connections among perturbations
(Subramanian et al., 2017). However, while CPA’s adversarial approach encourages latent indepen-
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dence, it does not have any supervision on the counterfactual outcome construction and thus does
not explicitly imply that the counterfactual outcomes would resemble the observed response distri-
bution. Existing self-supervised counterfactual construction frameworks such as GANITE (Yoon
et al., 2018) also suffer from this problem.

The second class of methods explicitly models the regulatory structure to leverage the wealth of the
regulatory relationships among genes contained in the GRNs (Kamimoto et al., 2020). By bring-
ing the benefits of deep learning to graph data, graph neural networks (GNNs) offer a versatile
and powerful framework to learn from complex graph data (Bronstein et al., 2017). GNNs are
the de facto way of including relational information in many health-science applications includ-
ing molecule/protein property prediction (Guo et al., 2022; Ioannidis et al., 2019; Strokach et al.,
2020; Wu et al., 2022a; Wang et al., 2022), perturbation prediction (Roohani et al., 2022) and RNA-
sequence analysis (Wang et al., 2021). In previous work, Cao & Gao (2022) developed GLUE,
a framework leveraging a fine-grained GRN with nodes corresponding to features in multi-omics
datasets to improve multimodal data integration and response prediction. GEARS (Roohani et al.,
2022) uses GNNs to model the relationships among observed and perturbed genes to predict cellular
response. These studies demonstrated that relation graphs are informative for predicting cellular re-
sponses. However, GLUE does not handle perturbation response prediction, and GEARS’s approach
to randomly map subjects from the control group to subjects in the treatment group is not designed
for response prediction at an individual level (it cannot account for heterogeneity of cell states).

GRNs can be derived from high-throughput experimental methods mapping chromosome occupancy
of transcription factors, such as chromatin immunoprecepitation sequencing (ChIP-seq), and assay
for transposase-accessible chromatin using sequencing (ATAC-seq). However, GRNs from these ap-
proaches are prone to false positives due to experimental inaccuracies and the fact that transcription
factor occupancy does not necessarily translate to regulatory relationships (Spitz & Furlong, 2012).
Alternatively, GRNs can be inferred from gene expression data such as RNA-seq (Maetschke et al.,
2014). It is well-accepted that integrating both ChIP-seq and RNA-seq data can produce more ac-
curate GRNs (Mokry et al., 2012; Jiang & Mortazavi, 2018; Angelini & Costa, 2014). GRNs are
also highly context-specific: different cell types can have very distinctive GRNs mostly due to their
different epigenetic landscapes (Emerson, 2002; Davidson, 2010). Hence, a GRN derived from the
most relevant biological system is necessary to accurately infer the expression of individual genes
within such system.

In this work, we employed a novel variational Bayesian causal inference framework to construct
the gene expressions of a cell under counterfactual perturbations by explicitly balancing individual
features embedded in its factual outcome and marginal response distributions of its cell population.
We integrated a gene relation graph into this framework, derived the corresponding variational lower
bound and designed an innovative model architecture to rigorously incorporate relational informa-
tion from GRNs in model optimization. Additionally, we propose an adjacency matrix updating
technique for graph convolutional networks (GCNs) in order to impute and refine the initial relation
graph generated by ATAC-seq prior to training the framework. With this technique, we obtained
updated GRNs that discovered more relevant gene relations (and discarded insignificant gene re-
lations in this context) and enhanced model performance. Besides, we propose an asymptotically
efficient estimator for estimating the average effect of perturbations under a given cell type within
our framework. Such marginal inference is of great biological interest because scRNA-seq experi-
mental results are typically averaged over many cells, yet robust estimations have not been carried
out in previous works on predicting cellular responses.

We tested our framework on three benchmark datasets from Srivatsan et al. (2020), Schmidt et al.
(2022) and a novel CROP-seq genetic knockout screen that we release with this paper. Our model
achieved state-of-the-art results on out-of-distribution predictions on differentially-expressed genes
— a task commonly used in previous works on perturbation predictions. In addition, we carried
out ablation studies to demonstrate the advantage of using refined relational information for a better
understanding of the contributions of framework components.

2 PROPOSED METHOD

In this section we describe our proposed model — Graph Variational Causal Inference (graphVCI),
and a relation graph refinement technique. A list of all notations can be found in Appendix A.
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Figure 1: The causal relation diagram. Each individual has a feature state Z following a conditional
distribution p(Z|G , X). Treatment T (or counterfactual treatment T ′) along with Z determines
outcome Y (or counterfactual outcome Y ′). In the causal diagram, white nodes are observed and
dark grey nodes are unobserved; dashed relations are optional (case dependant). In the context of
this paper, graph G is a deterministic variable that is invariant across all individuals.

2.1 COUNTERFACTUAL CONSTRUCTION FRAMEWORK

We define outcome Y : Ω → Rn to be a n-dimensional random vector (e.g. gene expressions),
X : Ω → EX to be a m-dimensional mix of categorical and real-valued covariates (e.g. cell types,
donors, etc.), T : Ω → ET to be a r-dimensional categorical or real-valued treatment (e.g. drug
perturbation) on a probability space (Ω,Σ, P ). We seek to construct an individual’s counterfactual
outcome under counterfactual treatment a ∈ ET from two major sources of information. One
source is the individual features embedded in high-dimensional outcome Y . The other source is the
response distribution of similar subjects (subjects that have the same covariates as this individual)
that indeed received treatment a.

We employ the variational causal inference (Wu et al., 2022b) framework to combine these two
sources of information. In this framework, a covariate-dependent feature vector Z : Ω → Rd

dictates the outcome distribution along with treatment T ; counterfactuals Y ′ and T ′ are formulated
as separate variables apart from Y and T with a conditional outcome distribution p(Y ′|Z, T ′ = a)
identical to its factual counterpart p(Y |Z, T = a) on any treatment level a. The learning objective
is described as a combined likelihood of individual-specific treatment effect p(Y ′|Y,X, T, T ′) (first
source) and the traditional covariate-specific treatment effect p(Y |X,T ) (second source):

J(D) = log [p(Y ′|Y,X, T, T ′)] + log [p(Y |X,T )] (1)
whereD = (X,Z, T, T ′, Y, Y ′). Additionally, we assume that there is a graph structure G = (V ,E)
that governs the relations between the dimensions of Y through latent Z, where V ∈ Rn×v is the
node feature matrix and E ∈ {0, 1}n×n is the node adjacency matrix. For example, in the case of
single-cell perturbation dataset where Y is the expression counts of genes, V is the gene feature
matrix and E is the GRN that governs gene relations. See Figure 1 for a visualization of the causal
diagram. The objective under this setting is thus formulated as

J(D) = log [p(Y ′|Y,G , X, T, T ′)] + log [p(Y |G , X, T )] (2)
where D = (G , D). The counterfactual outcome Y ′ is always unobserved, but the following theorem
provides us a roadmap for the stochastic optimization of this objective.
Theorem 1. Suppose that D = (G , X, Z, T, T ′, Y, Y ′) follows a causal structure defined by the
Bayesian network in Figure 1. Then J(D) has the following evidence lower bound:

J(D) ≥ Ep(Z|Y,G,X,T ) log [p(Y |Z, T )] + log [p(Y ′|G , X, T ′)]

−KL [p(Z|Y,G , X, T ) ∥ p(Z|Y ′,G , X, T ′)] . (3)

Proof of the theorem can be found in Appendix B. We estimate p(Z|Y,G , X, T ) and p(Y |Z, T ) (as
well as p(Y ′|Z, T ′)) with a neural network encoder qϕ and decoder pθ, and optimize the following
weighted approximation of the variational lower bound:

J(θ, ϕ) = Eqϕ(Z|Y,G,X,T ) log [pθ(Y |Z, T )] + ω1 · log
[
p̂(Ỹ ′

θ,ϕ|G , X, T ′)
]

− ω2 ·KL
[
qϕ(Z|Y,G , X, T ) ∥ qϕ(Z|Ỹ ′

θ,ϕ,G , X, T ′)
]

(4)
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Figure 2: Model workflow — variational causal perspective. In a forward pass, the graphVCI
encoder takes graph G (e.g. gene relation graph), outcome Y (e.g. gene expressions), covariates
X (e.g. cell types, donors, etc.) and treatment T (e.g. drug perturbation) as inputs and generates
latent Z; (Z, T ) and (Z, T ′) where T ′ is a randomly sampled counterfactual treatment are separately
passed into the graphVCI decoder to attain reconstruction of Y and construction of counterfactual
outcome Y ′; Y ′ is then passed back into the encoder along with G , X , T ′ to attain counterfactual
latent Z ′. The objective consists of the reconstruction loss of Y , the distribution loss of Y ′ and the
KL-divergence between the conditional distributions of Z and Z ′.

where ω1, ω2 are scaling coefficients; Ỹ ′
θ,ϕ ∼ Eqϕ(Z|Y,G,X,T )pθ(Y

′|Z, T ′) and p̂ is the covariate-
specific model fit of the outcome distribution (notice that p(Y ′|G , X, T ′ = a) = p(Y |G , X, T = a)
for any a). In our case where covariates are limited and discrete (cell types and donors), we simply
let p̂(Y |G , X, T ) be the smoothened empirical distribution of Y stratified by X and T (notice that G
is fixed across subjects). Generally, one can train a discriminator p̂(·|Y,G , X, T ) with the adversarial
approach (Goodfellow et al., 2014) and use log

[
p̂(1|Ỹ ′

θ,ϕ,G , X, T ′)
]

for log
[
p̂(Ỹ ′

θ,ϕ|G , X, T ′)
]

if
p(Y |G , X, T ) is hard to fit. See Figure 2 for an overview of the model structure. Note that the
decoder estimates the conditional outcome distribution of Y ′, in which case T ′ need not necessarily
be sampled according to a certain true distribution p(T ′|X) during optimization.

We refer to the negative of the first term in Equation 4 as reconstruction loss, the negative of the
second term as distribution loss, and the positive of the third term as KL-divergence. As discussed
in Wu et al. (2022b), the negative KL-divergence term in the objective function encourages the
preservation of individuality in counterfactual outcome constructions.

Marginal Effect Estimation Although perturbation responses at single cell resolution offers mi-
croscopic view of the biological landscape, oftentimes it is fundamental to estimate the average
population effect of a perturbation in a given cell type. Hence in this work, we developed a ro-
bust estimation for the causal parameter Ψ(p) = Ep(Y

′|X = c, T ′ = a) — the marginal effect of
treatment a within a covariate group c. We propose the following estimator that is asymptotically
efficient when Epθ

(Y ′|Z̃k,ϕ, T
′
k = a) is estimated consistently and some other regularity condi-

tions (Van Der Laan & Rubin, 2006) hold:

Ψ̂θ,ϕ =
1

na,c

na,c∑
k=1a,c

{
Yk − Epθ

(Y ′|Z̃k,ϕ, T
′
k = a)

}
+

1

nc

nc∑
k=1c

{
Epθ

(Y ′|Z̃k,ϕ, T
′
k = a)

}
(5)

where (Yk, Xk, Tk) are the observed variables of the k-th individual; Z̃k,ϕ ∼ qϕ(Z|Yk,G , Xk, Tk);
(1c, . . . , nc) are the indices of the observations having X = c and (1a,c, . . . , na,c) are the indices
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Figure 3: Model architecture — graph attentional perspective. Structure of the graphVCI encoder
and decoder defined by Equations (6) to (11). Note that in the case of single-cell perturbation
datasets, the graph inputs are fixed across samples and graph attention can essentially be reduced to
weighted graph convolution.

of the observations having both T = a and X = c. The derivation of this estimator can be found
in Appendix C.2 and some experiment results can be found in Appendix C.1. Intuitively, we use
the prediction error of the model on the observations that indeed have covariate level c and received
treatment a to adjust the empirical mean. Prior works in cellular response studies only use the
empirical mean estimator over model predictions to estimate marginal effects.

2.2 INCORPORATING RELATIONAL INFORMATION

Since the elements in the outcome Y are not independent, we aim to design a framework that can
exploit predefined relational knowledge among them. In this section, we demonstrate our model
structure for encoding and aggregating relation graph G within the graphVCI framework. Denote
deterministic models as f·, probabilistic models (output probability distributions) as q· and p·. We
construct feature vector Z as an aggregation of two latent representations:

Z = (ZG , ZH) (6)

ZH ∼ qH
(
ZM , aggrG(ZG)

)
(7)

ZM = fM (Y,X, T ) (8)
ZG = fG(G) (9)

where aggrG is a node aggregation operation such as sum, max or mean. The optimization of
qϕ can then be performed by optimizing the MLP encoder fM,ϕ1

: Rn+m+r → Rd, the GNN
encoder fG,ϕ2

: Rn×v → Rn×dG and the encoding aggregator qH,ϕ3
: Rd+dG → ([0, 1]d)Σ where

ϕ = (ϕ1, ϕ2, ϕ3). We designed such construction so that Z possesses a node-level graph embedding
ZG that enables more involved decoding techniques than generic MLP vector decoding, while the
calculation of term KL [qϕ(Z|Y,G , X, T ) ∥ qϕ(Z|Y ′,G , X, T ′)] can also be reduced to the KL-
divergence between the conditional distributions of two graph-level vector representations ZH and
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Z ′
H (since ZG is deterministic and invariant across subjects). In decoding, we construct

Y =

(
n

∥
i=1

fH
(
ZG(i), YM

))⊤

· YM (10)

YM ∼ pM (ZH , T ) (11)

where ∥ represents vector concatenation and optimize pθ by optimizing the MLP decoder pM,θ1 :
Rd+r → ([0, 1]d)Σ and the decoding aggregator fH,θ2 : Rd+dG → Rd where θ = (θ1, θ2).
The decoding aggregator maps graph embedding ZG(i) of the i-th node along with feature vec-
tor YM to outcome Y(i) of the i-th dimension, for which we use an attention mechanism and let
Y(i) = attθ2(ZG(i), YM )⊤ ·YM where att(Q(i),K) gives the attention score for each of K’s feature
dimensions given a querying node embedding vector Q(i) (i.e., a row vector of Q). One can simply
use a key-independent attention mechanism Y(i) = attθ2(ZG(i))

⊤ · YM if GPU memory is of con-
cern. See Figure 3 for a visualization of the encoding and decoding models. A complexity analysis
of the model can be found in Appendix D.

2.3 RELATION GRAPH REFINEMENT

Since GRNs are often highly context-specific (Oliver, 2000; Romero et al., 2012), and experimental
methods such as ATAC-seq and Chip-seq are prone to false positives, we provide an option to impute
and refine a prior GRN by learning from the expression dataset of interest. We propose an approach
to update the adjacency matrix in GCN training while maintaining sparse graph operations, and use
it in an auto-regressive pre-training task to obtain an updated GRN.

Let g(·) be a GCN with learnable edge weights between all nodes. We aim to acquire an updated
adjacency matrix by thresholding updated edge weights post optimization. In practice, such GCNs
with complete graphs performed poorly on our task and had scalability issues. Hence we apply
dropouts to edges in favor of the initial graph — edges present in Ẽ = |E − I|+ I (I is the identity
matrix) are accompanied with a low dropout rate rl and edges not present in Ẽ with a high dropout
rate rh (rl ≪ rh). A graph convolutional layer of g(·) is then given as

H l+1 = σ(softmaxr(M ⊙ L)H lΘl) (12)

where L ∈ Rn×n is a dense matrix containing logits of the edge weights and M ∈ Rn×n is a sparse
mask matrix where each element Mi,j is sampled from Bern(I(Ẽi,j = 1)rl + I(Ẽi,j = 0)rh) in
every iteration; ⊙ is element-wise matrix multiplication; softmaxr is row-wise softmax operation;
H l ∈ Rn×dl , H l+1 ∈ Rn×dl+1 are the latent representations of V after the l-th, (l + 1)-th layer;
Θl ∈ Rdl×dl+1 is the weight matrix of the (l + 1)-th layer; σ is a non-linear function. The updated
adjacency matrix Ê ∈ Rn×n is acquired by rescaling and thresholding the unnormalized weight
matrix W = exp(L) after optimizing g(·):

Êi,j = sgn
∣∣(1 +W−1

i,j )
−1 − α

∣∣ (13)

where α is a threshold level. We define W̃ ∈ Rn×n to be the rescaled weight matrix having W̃i,j =

(1 + W−1
i,j )

−1. With this design, the convolution layer operates on sparse graphs which benefit
performance and scalability, while each absent edge in the initial graph still has an opportunity to
come into existence in the updated graph.

We use this approach to obtain an updated GRN Ê prior to main model training presented in the
previous sections. We train g(·) : Rn×(1+v+m) → Rn×1 on a simple node-level prediction task
where the output of the i-th node is the expression Y(i) of the i-th dimension; the input of the i-th
node is a combinationO′

(i) = (Y(i),V(i), X) with expression Y(i), gene features V(i) of the i-th gene
and cell covariates X . Essentially, we require the model to predict the expression of a gene (node)
from its neighbors in the graph. This task is an effective way to learn potential connections in a gene
regulatory network as regulatory genes should be predictive of their targets (Kamimoto et al., 2020).
The objective is a lasso-style combination of reconstruction loss and edge penalty:

J(g) = −∥g(O)− Y ∥L2 − ω · ∥W̃∥L1 (14)

where ω is a scaling coefficient. Note that although V(i) is not cell-specific and X is not gene-
specific, the combination of (V(i), X) forms a unique representation for each gene of each cell
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(a) original (b) updated

Figure 4: An example of an updated gene regulatory network U (where Ui,j = |W̃i,j − α| with
α = 0.2) after refining the original ATAC-seq-based network Kamimoto et al. (2020) using the
Schmidt et al. (2022) dataset. Source nodes are shown as rows and targets are shown as columns
for key immune-related genes. The learned edge weights in (b) recapitulate known biology such as
STAT1 regulating IRF1. Also note that while many of the edges are present in the original ATAC-seq
data from (a), we see some novel edges in (b) such as IFNg regulating MYC (Ramana et al., 2000).

type. We employ such dummy task since node-level predictions with strong self-connections grants
interpretability, but additional penalization on the diagonal of W̃ can be applied if one wishes to
weaken the self-connections. Otherwise, although self-connections are the strongest signals in this
task, dropouts and data correlations will still prevent them from being the only notable signals. See
Figure 4 for an example of an updated GRN in practice.

3 EXPERIMENTS

We tested our framework on three datasets in experiments. We employ the publicly available sci-
Plex dataset from Srivatsan et al. (2020) (Sciplex) and CRISPRa dataset from Schmidt et al. (2022)
(Marson). Sci-Plex is a method for pooled screening that relies on nuclear hashing, and the Sciplex
dataset consists of three cancer cell lines (A549, MCF7, K562) treated with 188 compounds. Marson
contains perturbations of 73 unique genes where the intervention served to increase the expression
of those genes. In addition, we open source in this work a new dataset (L008) designed to showcase
the power of our model in conjunction with modern genomics.

L008 dataset We used the CROP-seq platform (Shifrut et al., 2018) to knock out 77 genes related
to the interferon gamma signaling pathway in CD4+ T cells. They include genes at multiple steps of
the interferon gamma signaling pathway such as JAK1, JAK2 and STAT1. We hope that by including
multiple such genes, machine learning models will learn the signaling pathway in more detail.

Baseline We compare our framework to three state-of-the-art self-supervised models for individ-
ual counterfactual outcome generation — CEVAE (Louizos et al., 2017), GANITE (Yoon et al.,
2018) and CPA (Lotfollahi et al., 2021b), along with the non-graph version of our framework VCI
(Wu et al., 2022b). To give an idea how well these models are doing, we also compare them to
a generic autoencoder (AE) with covariates and treatment as additional inputs, which serves as an
ablation study for all other baseline models. For this generic approach, we simply plug in counter-
factual treatments instead of factual treatments during test time.

3.1 OUT-OF-DISTRIBUTION PREDICTIONS

We evaluate our model and benchmarks on a widely accepted and biologically meaningful metric —
the R2 (coefficient of determination) of the average prediction against the true average from the out-
of-distribution (OOD) set (see Appendix E.2) on all genes and differentially-expressed (DE) genes
(see Appendix E.1). Same as Lotfollahi et al. (2021a), we calculate the R2 for each perturbation
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of each covariate level (e.g. each cell type of each donor), then take the average and denote it as
R̄2. Table 1 shows the mean and standard deviation of R̄2 for each model over 5 independent runs.
Training setups can be found in Appendix E.3.

Table 1: R̄2 of OOD predictions

Sciplex Marson L008

all genes DE genes all genes DE genes all genes DE genes

AE§ 0.740 ± 0.043 0.421 ± 0.021 0.804 ± 0.020 0.448 ± 0.009 0.948 ± 0.010 0.729 ± 0.041
CEVAE 0.760 ± 0.019 0.436 ± 0.014 0.795 ± 0.014 0.424 ± 0.015 0.941 ± 0.010 0.632 ± 0.034
GANITE¶ 0.751 ± 0.013 0.417 ± 0.014 0.795 ± 0.017 0.443 ± 0.025 0.946 ± 0.009 0.730 ± 0.030
CPA 0.836 ± 0.002 0.474 ± 0.014 0.876 ± 0.005 0.549 ± 0.019 0.962 ± 0.005 0.849 ± 0.021
VCI 0.828 ± 0.006 0.492 ± 0.011 0.884 ± 0.010 0.604 ± 0.044 0.962 ± 0.002 0.865 ± 0.038
graphVCI 0.841 ± 0.002 0.497 ± 0.014 0.892 ± 0.003 0.642 ± 0.016 0.965 ± 0.002 0.831 ± 0.018

As can be seen from these experiments, our variational Bayesian causal inference framework with
refined relation graph achieved a significant advantage over other models on all genes of the OOD
set, and a remarkable advantage on DE genes on Marson. Note that losses were evaluated on all
genes during training and DE genes were not being specifically optimized in these runs.

We also examined the predicted distribution of gene expression for various genes and compared to
experimental results. Fig 5 shows an analysis of the CRISPRa dataset where MAP4K1 and GATA3
were overexpressed in CD8+ T cells (Schmidt et al., 2022), but these cells were not included in the
model’s training set. Nevertheless, the model’s prediction for the distribution of gene expression
frequently matches the ground truth. Quantitative agreement can be obtained from Table 1.

(a) MAP4K1 Overexpression (b) GATA3 Overexpression

Figure 5: Model predictions versus true distributions for overexpression of genes in CRISPRa exper-
iments (Schmidt et al., 2022). For two perturbations in CD8+ T cells, (a) MAP4K1 overexpression
and (b) GATA3 overexpression, we plot the distribution of gene expressions for unperturbed cells
(“Control”), the model’s prediction of perturbed gene expressions using unperturbed cells as factual
inputs (“Pred”), and the true gene expressions for perturbed cells (“True”). The predicted distribu-
tional shift relative to control often matches the direction of the true shift.

For graphVCI, we used the key-dependent attention (see Section 2.2) for the decoding aggregator
in all runs and there were a few interesting observations we found in these experiments. Firstly,
the key-independent attention is more prone to the quality of the GRN and exhibited a more sig-
nificant difference on model performance with the graph refinement technique compared to the
key-dependent attention. Secondly, with graphVCI and the key-dependent attention, we are able to
get stable performances across runs while setting ω1 to be much higher than that of VCI.

§Autoencoder with covariates and treatment as additional inputs.
¶GANITE’s counterfactual block. GANITE’s counterfactual generator does not scale with a combination of

high-dimensional outcome and multi-level treatment, hence we made the same adaptation as Wu et al. (2022b).
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3.2 GRAPH EVALUATIONS

In this section, we perform some ablation studies and analysis to validate the claim that the adjacency
updating procedure improves the quality of the GRN. We first examine the performance impact of
the refined GRN over the original GRN derived from ATAC-seq data. For this purpose, we used
the key-independent attention decoding aggregator and conducted 5 separate runs with the original
GRN and refined GRN on the Marson dataset (Fig 6a). We found that the refined GRN helps the
graphVCI to learn faster and achieve better predictive performance of gene expression, suggesting
the updated graph contains more relevant gene connections for the model to predict counterfactual
expressions. Note that there is a difference in length of the curves and bands in Fig 6a because we
applied early stopping criteria to runs similar to CPA.

(a) runs with different GRNs (b) Agreement of learned graph with TF targets

Figure 6: (a) Graph refinement improves model training. We learned a GRN with graph refinement
as described in section 2.3, and edges were retained using a threshold of α = 0.3. Following the
refinement, the model is better able to reconstruct all genes and differentially expressed (DE) genes
during training as can be seen in a graph of R2 vs. number of training epochs. (b) We examine
whether the edges learned in refinement are accurate by comparing to a database of targets for two
important TFs, STAT1 and IRF1. Refined edges between these TFs and their targets agree well with
the interactions in the database, according to a precision-recall curve where we treat the database
as the true label and edge weights as a probability of interaction. We also compare the refined
edges (“GCN”) to a gene-gene correlation benchmark (“Corr”) and find that the refined graph can
outperform the benchmark.

Next, we compared the learned edge weights from our method to known genetic interactions from
the ChEA transcription factor targets database (Lachmann et al., 2010). We treat edge weights
following graph refinement as a probability of an interaction and treat the known interactions in the
database as ground truth for two key TFs, STAT1 and IRF1. We found the refined GRN obtained
by graph refinement is able to place higher weights on known targets than a more naive version of
the GRN based solely on gene-gene correlation in the same dataset (Fig 6b). The improvement is
particularly noticeable in the high-precision regime where we expect the ground truth data is more
accurate, since it is expected that a database based on ChIP-seq would contain false positives.

4 CONCLUSION

In this paper, we developed a theoretically grounded novel model architecture to combine deep graph
representation learning with variational Bayesian causal inference for the prediction of single-cell
perturbation effect. We proposed an adjacency matrix updating technique producing refined rela-
tion graphs prior to model training that was able to discover more relevant relations to the data
and enhance model performances. Experimental results showcased the advantage of our frame-
work compared to state-of-the-art methods. In addition, we included ablation studies and biological
analysis to generate sensible insights. Further studies could be conducted regarding complete out-
of-distribution prediction — the prediction of treatment effect when the treatment is completely held
out, by rigorously incorporating treatment relations into our framework on top of outcome relations.
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APPENDIX

A LIST OF NOTATIONS

Y outcome random vector / gene expressions
X covariates random vector (or variable) / cell type, donor, replicate, etc.
Z latent features random vector
T treatment random vector (or variable) / perturbation
V ′ counterfactual random vector of a random vector V
D concatenation of all vectors (and variables) above
n outcome dimensions / number of genes
m combined dimensions of covariates
r treatment dimensions / number of perturbations
Σ event space
P probability measure on Σ
EV measurable space generated by a random vector (or variable) V on Ω
c a covariate value / a sample in EX

a a treatment value / a sample in ET

G relation graph / gene graph
E adjacency matrix / gene relation network
V feature matrix / gene feature matrix
D concatenation of D and G (see G as a fixed random vector with its compo-

nents flattened)
v feature dimensions of G / diagonal length of E / column dimensions of V
A(i) the i-th row of a matrix A
Ai,j the element on the i-th row and j-th column of a matrix A
J objective function
KL Kullback–Leibler divergence
ω· scaling coefficient
pθ estimating model for p(Y |Z, T ) (and p(Y ′|Z, T ′))
qϕ estimating model for q(Z|Y,G , X, T )
Ỹ ′
θ,ϕ a sample from Eqϕ(Z|Y,G,X,T )pθ(Y

′|Z, T ′)

Z̃ ′
ϕ a sample from qϕ(Z|Y,G , X, T )

pM true model for the distribution of latent YM
qH true model for the distribution of latent ZH

fH true model for the attention score on YM
fM true model for latent ZM

fG true model for latent ZG
ha,β estimating model for a true model ha with a parameterization β
d dimensions of ZM , ZH , YM
dG feature dimensions of ZG
att alias for fH
aggrG a graph node aggregation operation / a matrix row aggregation operation
softmaxr row-wise softmax function
⊙ element-wise matrix multiplication
σ a non-linear function
g graph convolution network
r· a probability value
α a threshold value for probability values
I identity matrix
M mask matrix / probability matrix
L edge weight logits matrix
W unnormalized edge weight matrix
W̃ rescaled weight matrix / matrix after applying element-wise sigmoid function

on L
U matrix after thresholding W̃
O input node feature matrix to g in the graph refinement task
H l latent representation matrix after the l-th layer of g
Θl weight matrix of the l-th layer of g
Ψ causal parameter
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B PROOF OF THEOREM 1

Proof. By the d-separation (Pearl, 1988) of paths on the causal graph defined in Figure 1, we have
log [p(Y ′|Y,G , X, T, T ′)] = logEp(Z|Y,G,X,T ) [p(Y

′|Z, Y,G , X, T, T ′)] (15)

≥ Ep(Z|Y,G,X,T ) log [p(Y
′|Z, Y,G , X, T, T ′)] (Jensen’s ineq.) (16)

= Ep(Z|Y,G,X,T ) log
p(Y ′, Z|Y,G , X, T, T ′)

p(Z|Y,G , X, T )
(17)

= Ep(Z|Y,G,X,T ) log
p(Y ′, Z, Y,G , T |X,T ′)

p(Z|Y,G , X, T )p(Y, T |G , X)p(G)
(18)

= Ep(Z|Y,G,X,T ) log
p(Y ′|G , X, T ′)p(Z|Y ′,G , X, T ′)p(Y, T |Z,X)

p(Z|Y,G , X, T )
− log [p(Y, T |G , X)] (19)

= log [p(Y ′|G , X, T ′)]−KL [p(Z|Y,G , X, T ) ∥ p(Z|Y ′,G , X, T ′)]

+ Ep(Z|Y,G,X,T ) log [p(Y |Z, T )p(T |X)]− log [p(Y, T |G , X)] (20)

= log [p(Y ′|G , X, T ′)]−KL [p(Z|Y,G , X, T ) ∥ p(Z|Y ′,G , X, T ′)]

+ Ep(Z|G,Y,X,T ) log [p(Y |Z, T )]− log [p(Y |G , X, T )] (21)
Reorganizing the terms yields

log [p(Y ′|Y,G , X, T, T ′)] + log [p(Y |G , X, T )] ≥ Ep(Z|Y,G,X,T ) log [p(Y |Z, T )]
+ log [p(Y ′|G , X, T ′)]−KL [p(Z|Y,G , X, T ) ∥ p(Z|Y ′,G , X, T ′)] (22)

C MARGINAL EFFECT ESTIMATION

C.1 EXPERIMENT

To evaluate the marginal estimator Ψ̂θ,ϕ in Equation 5, we compute Ψ̂θ,ϕ for treatment a and co-
variate level c with samples from the training set and calculate its R2 against the true average of
the samples with treatment a and covariate level c in the validation set. We record the average R2

of all treatment-covariate combo similar to Section 3.1, and compare it (robust) to that of the reg-
ular empirical mean estimator (mean). Table 2 shows the results on Marson (Schmidt et al., 2022)
episodically during training.

Table 2: Comparison of marginal estimators on Marson

All Genes DE Genes

Episode mean robust mean robust

40 0.9177 ± 0.0015 0.9329 ± 0.0008 0.7211 ± 0.0116 0.9048 ± 0.0040
80 0.9193 ± 0.0019 0.9337 ± 0.0008 0.7339 ± 0.0149 0.9076 ± 0.0043
120 0.9178 ± 0.0037 0.9340 ± 0.0008 0.7234 ± 0.0175 0.9104 ± 0.0038
160 0.9191 ± 0.0009 0.9356 ± 0.0010 0.7343 ± 0.0079 0.9175 ± 0.0034

These runs reflects that the robust estimator was able to produce a more accurate estimation of the
covariate-stratified marginal treatment effect Ep(Y

′|X = c, T ′ = a) with a tigher confidence bound.

C.2 DERIVATION

By Van der Vaart (2000), we derive the efficient influence function of Ψ(p) and thus provides a mean
for asymptotically efficient estimation:
Theorem 2. Suppose D : Ω → E follows a causal structure defined by the Bayesian network in
Figure 1, where the counterfactual conditional distribution p(Y ′, T ′|Z,X) is identical to that of its
factual counterpart p(Y, T |Z,X). Then Ψ(p) has the following efficient influence function:

ψ̃(p) =
I(X = c, T = a)

p(X,T )
(Y − Ep [Y |Z, T ]) + I(X = c)

p(X)
(Ep [Y

′|Z, T ′ = a]−Ψ). (23)
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Proof. Following Van der Vaart (2000), we define a path pϵ(D) = p(D)(1 + ϵS(D)) on den-
sity p of D as a submodel that passes through p at ϵ = 0 in the direction of the score S(D) =
d
dϵ log [pϵ(D)]

∣∣∣
ϵ=0

. Let X = (G , X) and minuscule of a variable denote the value it takes. By Levy
(2019), we have

d

dϵ
Ψ(pϵ)

∣∣∣
ϵ=0

=
d

dϵ

∣∣∣
ϵ=0

Epϵ [Epϵ [Y
′|Z, T ′ = a] |X = c] (24)

=
d

dϵ

∣∣∣
ϵ=0

∫
y′,z

y′ [pϵ(y
′|z, T ′ = a)pϵ(z|X = c)] (25)

=

∫
y′,z

y′
d

dϵ

∣∣∣
ϵ=0

[pϵ(y
′|z, T ′ = a)pϵ(z|X = c)] (dominated convergence) (26)

=

∫
y′,z

y′p(z|X = c)
d

dϵ

∣∣∣
ϵ=0

pϵ(y
′|z, T ′ = a) (27)

+

∫
y′,z

y′p(y′|z, T ′ = a)
d

dϵ

∣∣∣
ϵ=0

pϵ(z|X = c) (28)

=

∫
d
I(x = c, t′ = a)

p(x , t′)
p(x, t′)

y′p(y, t|z, x)p(z|x ) d
dϵ

∣∣∣
ϵ=0

pϵ(y
′|z, t′)

+

∫
y′,z,x

I(x = c)
p(x )
p(x)

y′p(y′|z, T ′ = a)
d

dϵ

∣∣∣
ϵ=0

pϵ(z|x ) (29)

=

∫
d

I(x = c, t′ = a)

p(x, t′)
y′p(y, y′, t, t′|z, x)p(z, x ) {S(d )− E [S(D)|y, z, x , t, t′]}

+

∫
y′,z,x

I(x = c)

p(x)
y′p(y′|z, T ′ = a)p(z, x ) {E [S(D)|z, x ]− E [S(D)|x ]} (30)

=

∫
d

I(x = c, t = a)

p(x, t)
yp(y′, y, t′, t|z, x)p(z, x ) {S(d )− E [S(D)|y′, z, x , t′, t]}

+

∫
y′,z,x

I(x = c)

p(x)
y′p(y′|z, T ′ = a)p(z, x ) {E [S(D)|z, x ]− E [S(D)|x ]} (31)

=

∫
d
S(d ) · I(x = c, t = a)

p(x, t)
yp(d )

−
∫
d

E [S(D)|y′, z, x , t, t′] p(y′, z, x , t, t′) · I(x = c, t = a)

p(x, t)
yp(y|z, t)

+

∫
y′,z,x

E [S(D)|z, x ] p(z, x ) · I(x = c)

p(x)
y′p(y′|z, T ′ = a)

−
∫
y′,z,x

E [S(D)|x ] · I(x = c)

p(x)
y′p(y′|z, T ′ = a)p(z, x ) (32)

=

∫
d
S(d )

{
I(x = c, t = a)

p(x, t)
(y − E [Y |z, t])

+
I(x = c)

p(x)
(E [Y ′|z, T ′ = a]−Ψ)

}
p(d ) (33)

by assumptions of Theorem 2 and factorization according to Figure 1. Hence

d

dϵ
Ψ(pϵ)

∣∣∣
ϵ=0

=

〈
S(D),

I(X = c, T = a)

p(X,T )
(Y − Ep [Y |Z, T ])

+
I(X = c)

p(X)
(Ep [Y

′|Z, T ′ = a]−Ψ)

〉
L2(Ω;E)

(34)

and we have ψ̃p = I(X=c,T=a)
p(X,T ) (Y − Ep [Y |Z, T ]) + I(X=c)

p(X) (Ep [Y
′|Z, T ′ = a]−Ψ).
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By Theorem 2, we propose the following estimator that is asymptotically efficient among regular
estimators under some regularity conditions (Van Der Laan & Rubin, 2006):

Ψ̂θ,ϕ =
1

n

n∑
k=1

{
I(Tk = a,Xk = c)

p̂(Tk|Xk)p̂(Xk)

[
Yk − Epθ

(Y ′|Z̃k,ϕ, T
′
k = a)

]
+
I(Xk = c)

p̂(Xk)
Epθ

(Y ′|Z̃k,ϕ, T
′
k = a)

}
(35)

where (Yk, Xk, Tk) are the observed variables of the k-th individual and Z̃k,ϕ ∼ qϕ(Yk,G , Xk, Tk);
p̂(T |X) is an estimation of the propensity score and p̂(X) is an estimation of the density of X . In
the context of this work, X and T are discrete, hence p̂(T |X) and p̂(X) can be estimated by the
empirical density pn(T |X) and pn(X). The above estimator then reduces to:

Ψ̂θ,ϕ =
1

na,c

na,c∑
k=1a,c

{
Yk − Epθ

(Y ′|Z̃k,ϕ, T
′
k = a)

}

+
1

nc

nc∑
k=1c

{
Epθ

(Y ′|Z̃k,ϕ, T
′
k = a)

}
(36)

where (1c, . . . , nc) are the indices of the observations having X = c and (1a,c, . . . , na,c) are the
indices of the observations having both T = a and X = c.

D COMPLEXITY ANALYSIS

Overall, the time complexity of VCI compared to a generic framework like VAE (or the time com-
plexity of graphVCI compared to a generic GNN framework like GLUE (Cao & Gao, 2022) does
not over-scale on any factor of any parameter – to put it simply, the workflow of VCI is just twice
the forward passes of an VAE for a batch of inputs, with an additional distribution loss which is
implemented on the same scale O(r) as other losses. Comparing graphVCI to VCI, graphVCI has
additionally a few graph operations. We give a thorough analysis of the time complexity of each
layer in our experiments below:

• Generic method AE has 2 MLP layers with O(rd) number of operations and 4 layers of
O(d2) number of operations. d is the number of hidden neurons.

• VCI has the same layer sizes: 2 MLP layers with O(rd) number of operations and 4 layers
of O(d2) number of operations. But every layer is forward passed twice.

• graphVCI has 1 GNN layer with O(rvd2g + pdgr
2) number of operations. v is number of

gene features, dg is number of hidden neurons for GNN (usually a lot less than d since
v ≪ r) and p is the sparsity of GRN (number of connections divided by r2, usually around
1%), and the following layers which are forward passed twice: 1 MLP layer and 1 dot-
product operation each withO(rd) number of operations, 1 MLP layer withO(rdg(dg+d))
number of operations and 3 MLP layers with O(d2) number of operations.

So the terms to be concerned compared to AE and VCI are O(rvd2g), O(pdgr
2) and O(rdgd). Since

p is around 1% and r is 2000 in our experiment, pdgr2 ≈ 20dgr hence the second term is comparably
smaller than the other two terms. Therefore, as long as dg is set to be reasonably small compared to
d, the graph approach is reasonably scaled compared to pure MLP approaches. We note that this is
a limitation of ours and GNN approaches in general: if there is a much high number of genes r than
2000 to be considered, or a high number of gene features v for each gene (which results in that dg
has to be higher), GNN methods does not scale favorably compared to MLP methods.

E EXPERIMENTS DETAILS

E.1 DIFFERENTIALLY-EXPRESSED GENES

To evaluate the predictions on the genes that were substantially affected by the perturbations, we
select sets of 50 differentially-expressed genes associated with each perturbation and separately
report performance on these genes. The same procedure was carried out by Lotfollahi et al. (2021a).
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E.2 OUT-OF-DISTRIBUTION SELECTIONS

We randomly select a covariate category (e.g. a cell type) and hold out all cells in this category
that received one of the twenty perturbations whose effects are the hardest to predict. We use these
held-out data to compose the out-of-distribution (OOD) set. We computed the euclidean distance
between the pseudobulked gene expression of each perturbation against the rest of the dataset, and
selected the top twenty most distant ones as the hardest-to-predict perturbations. This is the same
procedure carried out by Lotfollahi et al. (2021a).

E.3 TRAINING SETUP

The data excluding the OOD set are split into training and validation set with a four-to-one ratio. A
few additional cell attributes available in each dataset are selected as cell covariates. For Sciplex,
they are cell type and replicate; for Marson, they are cell type, donor and stimulation; for L008, they
are cell type and donor. All these covariates are categorical and transformed into discrete indicators
before passing to the models. All common hyperparameters of all models (network width, network
depth, learning rate, decay rate, etc.) are set to the same as Lotfollahi et al. (2021a). More details
regarding hyperparameter settings can be found in our code repository†.

†https://github.com/yulun-rayn/graphVCI
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