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Abstract

The use of heuristics to assess the convergence and compress the output of Markov chain
Monte Carlo can be sub-optimal in terms of the empirical approximations that are pro-
duced. Typically a number of the initial states are attributed to “burn-in” and removed,
whilst the remainder of the chain is “thinned” if compression is also required. In this paper,
we consider the problem of retrospectively selecting a subset of states, of fixed cardinality,
from the sample path such that the approximation provided by their empirical distribution
is close to optimal. We report a method based on greedy minimisation of a kernel Stein
discrepancy, that is suitable for problems where heavy compression is required. Theoretical
results guarantee consistency of the method and its effectiveness is demonstrated in the
challenging context of parameter inference for ordinary differential equations.

1. Introduction

The most popular computational tool for non-conjugate Bayesian inference is Markov chain
Monte Carlo (MCMC; Robert and Casella, 2013). The output (Xi)

n
i=1 from MCMC is

usually post-processed to remove burn-in and, if compression is desired, to reduce the total
amount of data that are stored (useful, for example, when the MCMC output is used as
experimental design in multi-scale models). This results in just a subset of the states being
retained, say indexed by π ∈ {1, . . . , n}m, corresponding to an empirical approximation
Qm := 1

m

∑m
j=1 δ(Xπ(j)) of the distribution P being targeted. Here δ(x) denotes a point

mass centred at x. From the perspective of statistical efficiency, this post-processing can
be sub-optimal: for a fixed computational budget, imposing tight control on bias through
burn-in removal leads to estimators with high variance, due to the limited number of states
that remain once the initial portion have been removed.
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In this abstract we ask whether an “optimal” index set π can be selected. To this end,
we summarize Stein Thinning, a method introduced by the authors (Riabiz et al., 2020),
that selects an index set π, of specified cardinality m, such that the associated Qm is close
to optimal, and it is a consistent approximation of P . This is achieved by adopting a kernel
Stein discrepancy (KSD) as the optimality criterion. The minimisation of KSD is performed
using a greedy sequential algorithm and we report results that study the interplay of the
greedy algorithm with the randomness inherent to the MCMC output.

This work lies in an active area of research that attempts to cast discrete approximation
of a posterior distribution as an optimisation problem. Liu and Lee (2017) considered the
use of KSD to optimally weight an arbitrary set (Xi)

n
i=1 ⊂ Rd of states in an manner

loosely analogous to importance sampling, and Hodgkinson et al. (2020) studied the effect
of applying this to the output of MCMC. Outside of the MCMC framework, various criteria
have been proposed to capture how well a discrete measure approximates P , so that global
numerical optimisation methods can be used to arrive at a suitable point set: this is the
case for the “minimum energy design” (MED) of Joseph et al. (2015, 2019), the “Stein
points” (SP) of Chen et al. (2018) and “Support Points” of Mak and Joseph (2018). The
reliance on global optimisation renders the theoretical analysis of these methods difficult,
and, to obviate this, Chen et al. (2019) considered using Markov chains, in the context of SP,
to approximately perform numerical optimisation, allowing a tractable analytic treatment.
Stein Thinning differs from the contributions cited above, in one or more of the following
senses: (1) It is primarily intended for compression, not re-weighting, of the MCMC output.
(2) Continuous optimisation is avoided by working directly on the MCMC output. (3)
Finite sample size error bounds and consistency of the algorithm can be established. In the
remainder we report Stein Thinning, together with a theoretical and empirical assessment.

Notation: Throughout we assume that the target distribution P admits a positive and
continuously differentiable density p on Rd. Let Qn ⇒ P denote weak convergence of a
sequence (Qn) of measures to P . H(k) denotes a reproducing kernel Hilbert space (RKHS)
of functions on Rd, namely a Hilbert space, equipped with a function k : Rd×Rd → R, called
a kernel, such that ∀x ∈ Rd k(·, x) ∈ H(k) and ∀x ∈ Rd, h ∈ H(k), h(x) = 〈h, k(·, x)〉H(k),
where 〈·, ·〉H(k) denotes the inner product in H(k) and the induced norm is denoted ‖·‖H(k).
On the other hand, 〈·, ·〉 is the standard Euclidean inner product, with induced Euclidean
norm ‖x‖ = 〈x, x〉1/2. We denote ∇· the divergence operator in Rd.

2. Methods

In Section 2.1 we recall KSD and in Section 2.2 we summarize our Stein Thinning algo-
rithm for minimisation of KSD.

2.1. Kernel Stein Discrepancy

To select states from the MCMC output we require a notion of optimal approximation for
probability distributions. To this end, recall the notion of a Stein discrepancy, proposed
in Gorham and Mackey (2015). This was based on Stein’s method (Stein, 1972), which
consists of finding a differential operator AP , depending on P and acting on d-dimensional
vector fields on Rd, and a set G of sufficiently differentiable d-dimensional vector fields on
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Rd such that
∫
Rd AP g dP = 0 for all g ∈ G. The seminal paper of Gorham and Mackey

(2015) introduced the Stein discrepancy

DAPG(P,Q) = sup
g∈G

∣∣∣∣∫
Rd

AP g dQ

∣∣∣∣ . (1)

In this paper we focus on a particular form of (1) due to Liu et al. (2016); Chwialkowski
et al. (2016); Gorham and Mackey (2017), called a kernel Stein discrepancy (KSD). In this
case, AP is the Langevin Stein operator AP g := p−1∇· (pg) derived in Gorham and Mackey
(2015), where G := {g : Rd → Rd|∑d

i=1 ‖gi‖2H(k) ≤ 1} is the unit ball in a Cartesian product
of RKHS. It follows from construction that the set APG is the unit ball of another RKHS,
denoted H(kP ), whose elements h satisfy

∫
Rd hdP = 0. The explicit form of the kernel kP

was derived in Oates et al. (2017) and depends only on k and the gradient of the log-density
of P . KSD is recognised as a maximum mean discrepancy in H(kP ) (Gretton et al., 2006)
and is therefore fully characterised by the kernel kP ; we can thus unambiguously adopt the
shorthand DkP (Q) for DAPG(P,Q).

Under suitable conditions on the kernel k, elements ofH(kP ) have zero mean with respect
to P , and under further conditions on k and P , the KSD can be explicitly computed for an
empirical measure Qn = 1

n

∑n
i=1 δ(xi), supported on states xi ∈ Rd:

DkP (Qn) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

kP (xi, xj). (2)

Theoretical analysis in Gorham and Mackey (2017); Chen et al. (2018); Huggins and Mackey
(2018); Chen et al. (2019); Hodgkinson et al. (2020); Gorham et al. (2020) has established
sufficient conditions for when DkP (Qn)→ 0 implies Qn ⇒ P (a property called convergence
control). Assuming that such conditions for convergence control are met, KSD is a suitable
optimality criterion to minimise for the post-processing of MCMC output.

2.2. Greedy Minimisation of KSD

Continuous optimisation algorithms over Rd were proposed for greedy minimisation of KSD
in Chen et al. (2018, 2019), wherein at iteration n a new state xn is appended to the current
sequence (x1, . . . , xn−1) by searching over a continuous domain in Rd. Our proposed method
does not attempt to solve the fundamentally difficult continuous optimisation problem for
selection of the next point xn ∈ Rd. Instead, we exactly solve the discrete optimisation
problem of selecting a suitable element xn from supplied MCMC output. The method, called
Stein Thinning, is straight-forward to implement and is succinctly stated in Algorithm 1.
(The convention

∑0
i=1 = 0 is employed.)

The algorithm is illustrated on a simple bivariate Gaussian mixture in Figure 1. Observe
that, when m is fixed, the computational complexity of Stein Thinning is equal to O(n),
identical to the linear complexity of MCMC, while it is higher when m is increasing with
n, being at most O(nm2). Notice moreover that, in general, the indices in π need not be
distinct. That is, Algorithm 1 may prefer to include a duplicate state rather than to include
a state which is not useful for representing P .
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Data: The output {xi}ni=1 from an MCMC method, a kernel kP for which convergence
control holds, and a desired cardinality m ∈ N.

Result: The indices π of a sequence (xπ(j))
m
j=1 ⊂ {xi}ni=1 where π ∈ {1, . . . , n}m.

for j = 1, . . . ,m do

π(j) ∈ arg min
i=1,...,n

kP (xi, xi)

2
+

j−1∑
j′=1

kP (xπ(j′), xi)

end
Algorithm 1: The proposed method; Stein Thinning.
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Figure 1: Illustration of Stein Thinning: (a) Contours of the distributional target P .
(b) Markov chain Monte Carlo (MCMC) output, limited to 500 iterations to
mimic a challenging computational context, exhibiting burn-in and autocorrela-
tion that must be identified and mitigated. (c) A subset of m = 40 states from the
MCMC output selected using Stein Thinning, which correctly ignores the burn-
in period and stratifies states approximately equally across the two components
of the target.

The suitability of KSD to quantify how well Qm, the empirical measure resulting from
Stein Thinning, approximates P is determined by the choice of the kernel k that is used
in the definition of kP . Several choices are possible and we follow Chen et al. (2019),
who advocated the pre-conditioned inverse multi-quadric kernel k(x, y) := (1 + ‖Γ−1/2(x−
y)‖2)−1/2, where we take a data-driven approach to select Γ, based on the MCMC output.
To explore different strategies for the selection of Γ, we focus on the following candidates:
(1) Median (med) Γ = `2I, where ` = med := median{‖Xi − Xj‖ : 1 ≤ i < j ≤ n0} is
the median Euclidean distance between states; (2) Scaled median (sclmed) Γ = `2I, where
` = med/

√
log(m), proposed in the context of Stein variational gradient descent in Liu and

Wang (2016); (3) Sample covariance (smpcov), Γ = Σ̂ provided that the sample covariance
matrix Σ̂ of the MCMC output is non-singular. The experiments in Section 4 shed light on
which of these settings is the most effective, but we acknowledge that many other settings
could also be considered. In what follows, we set n0 = min(n, 103) for the med and sclmed

settings, to avoid an O(n2) cost of computing `, and otherwise set n0 = n, so that the whole
of the MCMC output is used to select Γ.
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3. Theoretical Assessment

This section clarifies the limiting behaviour of Stein Thinning as m,n → ∞, reporting
convergence in mean-square of the KSD, along with a finite sample size error bound. Let
V be a function V : Rd → [1,∞) and, for a function f : Rd → R and a measure µ on Rd, let

‖f‖V := supx∈Rd
|f(x)|
V (x) , ‖µ‖V := sup‖f‖V ≤1

∣∣∫
Rd fdµ

∣∣. Then a ψ-irreducible and aperiodic

Markov chain (Xi)i∈N ⊂ X with nth step transition kernel Pn is V -uniformly ergodic if and
only if ∃R ∈ [0,∞), ρ ∈ (0, 1) such that

‖Pn(x, ·)− P‖V ≤ RV (x)ρn (3)

for all initial states x ∈ Rd and all n ∈ N. The notation E will be used to denote expectation
with respect to the law of the Markov chain. The proof of this result can be found in Riabiz
et al. (2020).

Theorem 1 Let P be a probability distribution on Rd. Let kP : Rd × Rd → R be a
reproducing kernel with

∫
Rd kP (x, ·)dP (x) = 0 for all x ∈ Rd. Consider a P -invariant,

time-homogeneous, reversible Markov chain (Xi)i∈N ⊂ Rd generated using a V -uniformly
ergodic transition kernel, such that (3) is satisfied with V (x) ≥

√
kP (x, x) for all x ∈ Rd.

Suppose that, for some γ > 0,

b := sup
i∈N

E
[
eγkP (Xi,Xi)

]
<∞, M := sup

i∈N
E
[√

kP (Xi, Xi)V (Xi)
]
<∞.

Let π be an index sequence of length m produced by Algorithm 1 applied to the Markov chain
output (Xi)

n
i=1. Then, with C = 2Rρ

1−ρ , we have that

E

[
DkP

( 1

m

m∑
j=1

δ(Xπ(j))
)2
]
≤ log(b)

γn
+
CM

n
+

(
1 + log(m)

m

)
log(nb)

γ
. (4)

Observe that the upper bound in (4) is asymptotically minimised when (up to log factors) m
is proportional to n. In practice we are interested in the case m� n, so we may for example
set m = b n

1000c if we aim for substantial compression. It is not claimed that the bound in
(4) is tight and indeed empirical results in Section 4 endorse the use of Stein Thinning in
the small m context.

4. Empirical Assessment

In this section we report a subset of the experiments presented in Riabiz et al. (2020),
which compare the performance of Stein Thinning with traditional approaches to post-
processing MCMC output. Our focus is a Bayesian inference problem defined by a system
of ordinary differential equations (ODEs), due to Goodwin (1965), that has a d = 4 dimen-
sional parameter to be inferred. Random Walk (RW) MCMC was implemented (n = 106)
and trace plots reveal a clear a burn-in period. As in the rest of this abstract, we assume
that compression of the MCMC output to m � n states is desired. We therefore com-
pare the following methods: (1) the traditional approach, which estimates a burn-in period
using the convergence diagnostics of Vats and Knudson (2018) based on L independent
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Figure 2: Goodwin oscillator: Energy distance (ED) to the posterior, and Kernel Stein
discrepancy (KSD) for empirical distributions obtained through traditional burn-
in and thinning (grey lines), Support Points (black line) and Stein Thinning

(colored lines), based on output from four Random Walk (RW) MCMC.

chains1 and discards it, followed by equidistant thinning of the remainder of the chain to
obtain precisely m states; (2) the Support Points algorithm proposed in Mak and Joseph
(2018), implemented in the R package support;2 (3) the Stein Thinning algorithm that
we have proposed, with each of the kernel choices described in Section 2.2. For a principled
assessment, we computed two quantitative measures for how well the resulting empirical
distributions approximate the posterior: (a) the energy distance (ED; Székely and Rizzo,
2004; Baringhaus and Franz, 2004), given up to an additive constant by

ED :=
2

m

m∑
j=1

∫
‖x− xπ(j)‖Σ dP (x)− 1

m2

m∑
j,j′=1

‖xπ(j) − xπ(j′)‖Σ, (5)

where we use the norm ‖x‖Σ := ‖Σ−1/2x‖ induced by the covariance matrix of P , with both
Σ and (5) being estimated from MCMC output, and (b) the KSD based on med, the simplest
setting for Γ. The results for ED and KSD are shown in Figure 2. Stein Thinning based
on med and sclmed performed at least as well as the other methods considered with respect
to ED, even if ED is closely related to the quantity that the Support Points algorithm
attempts to minimise (Mak and Joseph (2018) used the ‖ · ‖ norm in place of ‖ · ‖Σ). The
same holds for KSD, for all but the largest values of m considered. The smpcov setting
performed well for small m but for large m its performance degraded (this may be because
in smpcov there are more degrees of freedom in Γ that must be estimated). Note that
neither ED nor KSD values tend to 0 as m→∞ in this experiment, since the number n of
MCMC iterations was fixed.

1. The burn-in estimate depends on a number of tuning parameters. Here we report results with both the
smallest and the largest estimated burn-in period, to explore the bias-variance trade-off involved with
the choice of this parameter.

2. There do not yet exist theoretical results for this algorithm as implemented.
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5. Conclusion

In this abstract we summarized Stein Thinning, a method that seeks a subset of the
MCMC output, of fixed cardinality, such that the associated empirical approximation is
close to optimal. Our theoretical analysis is able to handle the effect of the post-processing
procedure jointly with the randomness involved in simulating from the Markov chain, such
that finite sample size error bounds and the consistency of the overall estimator can be
established.
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