
Secure Federated Correlation Test and Entropy Estimation

Qi Pang * 1 † Lun Wang * 2 ‡ Shuai Wang 3 Wenting Zheng 1 Dawn Song 4

Abstract
We propose the first federated correlation test
framework compatible with secure aggregation,
namely FED-χ2. In our protocol, the statisti-
cal computations are recast as frequency moment
estimation problems, where the clients collabo-
ratively generate a shared projection matrix and
then use stable projection to encode the local in-
formation in a compact vector. As such encod-
ings can be linearly aggregated, secure aggrega-
tion can be applied to conceal the individual up-
dates. We formally establish the security guaran-
tee of FED-χ2 by proving that only the minimum
necessary information (i.e., the correlation statis-
tics) is revealed to the server. We show that our
protocol can be naturally extended to estimate
other statistics that can be recast as frequency
moment estimations. By accommodating Shan-
non’e Entropy in FED-χ2, we further propose the
first secure federated entropy estimation proto-
col, FED-H. The evaluation results demonstrate
that FED-χ2 and FED-H achieve good perfor-
mance with small client-side computation over-
head in several real-world case studies.

1. Introduction
Correlation test, as the name implies, is the process of ex-
amining the correlation between two random variables us-
ing observational data. It is a fundamental building block
in a wide variety of real-world applications, including fea-
ture selection (Zheng et al., 2004), cryptanalysis (Nyberg,
2001), causal graph discovery (Spirtes et al., 2000), empiri-
cal finance (Ledoit & Wolf, 2008; Kim & Ji, 2015), medical
studies (Kassirer, 1983) and genomics (Wilson et al., 1999;

*Equal contribution 1Carnegie Mellon University 2Google
3Hong Kong University of Science and Technology 4UC Berke-
ley. Correspondence to: Qi Pang <qpang@andrew.cmu.edu>,
Lun Wang <lunwang@google.com>.

†Part of the work is done when Qi Pang was at HKUST. ‡Work
is done when Lun Wang was at UC Berkeley.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Dudoit et al., 2003). Entropy estimation also has a wide ap-
plication like clustering (Rosenberg & Hirschberg, 2007),
complexity measurement (Harrison, 1992), DNN compres-
sion (Park et al., 2017), anomaly detection (Nychis et al.,
2008), etc. Because the observational data used in the cor-
relation tests and entropy estimation may contain sensitive
information such as genomic information, and collecting
participants’ information to a central repository poses a sig-
nificant privacy risk. To address this problem, we utilize the
federated setting, where each client maintains its own data
and communicates with a central server to calculate a func-
tion. The communication transcript should contain as little
information as feasible to prevent the server from inferring
sensitive information.

To motivate our work and ease the understanding of the
problem setting, we consider a medical company that wants
to study the correlation between genetic defects and races
using the patients’ private data from several hospitals. For
a traditional method in the federated setting, the server,
which is the medical company, will aggregate the hos-
pitals’ local private contingency tables1 using secure ag-
gregation (Bonawitz et al., 2017; Bell et al., 2020). The
company can conduct correlation tests with the aggregated
global contingency table without directly accessing the in-
dividual hospitals’ private data. Attentive readers might be
aware that the method mentioned above leaks the joint dis-
tribution, which is the whole global contingency table, to
the server. The joint distribution may contain sensitive in-
formation, and leaking it will probably violate privacy reg-
ulations. For instance, the medical company can observe
the genetic distribution across races from the global table.

The secure aggregation primarily supports linear aggrega-
tion. However, in correlation tests and entropy estimation,
the calculations involve computing a summed p-th moment
and summed logarithmic function over the aggregated data,
where p ∈ (0, 1)∪(1, 2]. Thus, the joint distribution will be
leaked if we directly apply secure aggregation. To bridge
the gap between secure aggregation and the important ap-
plications like federated correlation tests and entropy esti-
mation, we take an important step towards designing non-
linear secure aggregation protocols. Specifically, we design

1Contingency table contains the frequency distribution of the
variables; see (Wikipedia, 2021).

1



Secure Federated Correlation Test and Entropy Estimation

federated protocol frameworks, namely FED-χ2 and FED-
H, optimized for χ2-test and Shannon’s Entropy. FED-
χ2 and FED-H are designed to have low computation and
communication costs and only disclose information that is
much less sensitive than the joint distribution. Our first in-
sight is to recast correlation tests and entropy estimation as
frequency moment estimation problems. To approximate
the frequency moments in a federated manner, each client
collaborates with the other clients to generate a projection
matrix and encodes its raw data into a low-dimensional vec-
tor via stable random projection (Indyk, 2006; Vempala,
2005; Li, 2008). Such encodings can be aggregated with
only summation, allowing clients to leverage secure aggre-
gation to aggregate the encodings. The server then decodes
the aggregated encoding to approximate the frequency mo-
ments. As secure aggregation conceals each client’s in-
dividual update within the aggregated global update, the
server learns only necessary information for the correlation
test and entropy estimation.

We evaluate FED-χ2 on 4 synthetic datasets and 16 real-
world datasets. The results show that FED-χ2 can replace
centralized correlation tests with good accuracy. Com-
pared to the traditional method with secure aggregation
mentioned above, FED-χ2 saves a factor of O(m) com-
munication cost per client, where m is the size of the con-
tingency tables. In FED-χ2, clients only need to upload
a low-dimensional encoding with size ℓ ≪ m, while in
the traditional method the clients will upload the complete
contingency tables. Additionally, we analyze FED-χ2 in
two real-world use cases: feature selection and online false
discovery rate control. The results show that FED-χ2 can
achieve comparable performance with centralized correla-
tion tests and can withstand up to 20% of clients dropping
out with only minor influence on the accuracy. Besides
Pearson’s χ2-test, we also demonstrate how to estimate the
entropy in federated setting by accommodating Shannon’s
Entropy in FED-χ2. We refer to this protocol as FED-H,
and we also empirically show the effectiveness of FED-H.

In summary, we make the following contributions:

• We propose FED-χ2, the first secure federated cor-
relation test framework, which is computation- and
communication-efficient and leaks much less informa-
tion than directly using secure aggregation to collect
the contingency table.

• FED-χ2 decomposes correlation test into fre-
quency moments estimation that can easily be
encoded/decoded using stable projection and secure
aggregation. We provide formal security proof and
utility analysis of the protocol.

• We demonstrate how to accommodate other statistical
computations like Shannon’s Entropy in FED-χ2 and

propose the first secure federated entropy estimation
protocol FED-H.

• We empirically evaluate FED-χ2 and FED-H in sev-
eral real-world use cases. The findings suggest that
FED-χ2 and FED-H can substitute centralized χ2-test
and Shannon’s Entropy estimation with comparable
accuracy.

We maintain our code at https://github.com/
Qi-Pang/Federated-Correlation-Test.

2. Related Work
There have been a line of works studying secure feder-
ated learning or statistics. Bonawitz et al. (2017) pro-
posed the well-quoted secure aggregation protocol as a
low-cost way to securely calculate linear functions in a fed-
erated setting. It has seen many variants and improvements
since then. For instance, Truex et al. (2019) and Xu et al.
(2019) employed advanced crypto tools for secure aggrega-
tion, such as threshold homomorphic encryption and func-
tional encryption. So et al. (2021) proposed TURBOAGG,
which combines secure sharing with erasure codes for bet-
ter dropout tolerance. To address the class imbalance is-
sue in federated learning, Wang et al. (2021b) proposed a
monitoring scheme that can infer the composition of train-
ing data for each FL round. Zhu et al. (2023) studied the
robust mean estimators with optimal statistical rates to de-
fend against malicious clients. To improve communication
efficiency, Bell et al. (2020) and Choi et al. (2020a) re-
placed the complete graph in secure aggregation with either
a sparse random graph or a low-degree graph.

Secure aggregation is deployed in a variety of applications.
Agarwal et al. (2018) added binomial noise to local gra-
dients, resulting in both differential privacy and commu-
nication efficiency. Wang et al. (2020) replaced the bino-
mial noise with discrete Gaussian noise, which is shown to
exhibit better composability. Kairouz et al. (2021) proved
that the sum of discrete Gaussian is close to discrete Gaus-
sian, thus discarding the common random seed assumption
from Wang et al. (2020).

The above three studies incorporate secure aggregation in
their protocols to lower the noise scale required for dif-
ferential privacy. Chen et al. (2020) added an extra pub-
lic parameter, ensuring uniform training and enabling ma-
licious clients detection during aggregation. Choi et al.
(2020b) proposed using count-sketch with secure aggrega-
tion for frequency estimation. Rothchild et al. (2020) ap-
plied count-sketch in federated learning to improve com-
munication. Chen et al. (2022) investigated the commu-
nication cost of differentially private federated learning,
and optimized it using count-sketch. For entropy estima-

2

https://github.com/Qi-Pang/Federated-Correlation-Test
https://github.com/Qi-Pang/Federated-Correlation-Test


Secure Federated Correlation Test and Entropy Estimation

tion, Zhao et al. (2007) estimated the entropy of origin-
destination flows using Lp norm estimation.

Nevertheless, designing secure federated correlation tests
and entropy estimations, despite their importance in real-
world scenarios, are not explored by existing research in
this field.

3. Methodology
In this section, we elaborate on the design of FED-χ2

and FED-H. Sec. 3.1 formalizes the problem, establishes
the notation system, and introduces the threat model. In
Sec. 3.2, we detail the design of FED-χ2. In Sec. 3.3
and 3.4, we present the security proof, utility analysis,
communication and computation analysis of FED-χ2. In
Sec. 3.5, we show how Shannon’s Entropy estimation can
be accommodated in FED-χ2 and propose FED-H.

3.1. Problem Setup

We first formulate the problem of the federated correlation
test and establish the notation system, and later we will ex-
tend it to federated entropy estimation. We use [n] to denote
{1, · · · , n}. We denote vectors with bold lower-case letters
(e.g., a,b, c) and matrices with bold upper-case letters (e.g.,
A,B,C).

For the ease of representation, we use the example we men-
tioned in Sec. 1 to introduce all the notations. A medical
company is studying the correlation between genetic de-
fects (denoted by variable X) and race (denoted by variable
Y ). The support domain of X (or Y ) is denoted by X (or
Y). In the example, X = {yes, no} representing whether
the participant has the genetic defect, and Y is the set of all
races. We denote the size of X as mx, the size of Y as my .

The company wants to use the patient records from n hos-
pitals to conduct the research. Concretely, each hospital
holds a 2-dimensional local contingency table Di = {x ∈
X , y ∈ Y : v

(i)
xy ∈ {0} ∪ [M ]}, where x is the row label, y

is the column label, and v
(i)
xy is the number of patients with

the label (x, y). We use m = mxmy to denote the size of
the contingency table.

The first step of the traditional method in federated set-
ting is to collect all the hospitals’ contingency tables on
a centralized server S of the company and sum them to
obtain the global contingency table D = {x, y : vxy =∑

i∈[n] v
(i)
xy}. The total number of samples with row label

x (or column label y) is defined as vx =
∑

y∈Y vxy (or
vy =

∑
x∈X vxy). The total number of samples observed

is v =
∑

x∈X ,y∈Y vxy .

The next step is to calculate a test statistic, s(D), on the
global table. For Pearson’s χ2-test, the statistic is as below:

sχ2(D) :=
∑

x∈X ,y∈Y

(vxy − v̄xy)
2

v̄xy
, (1)

where v̄xy =
vx×vy

v is the expectation of vxy if X and Y
are uncorrelated. The statistics is then compared with a
threshold to decide whether X and Y are correlated.

Attentive readers might be aware that the method de-
scribed above incurs severe ethical issues that the patient
records from different hospitals are collected on a cen-
tralized server of the company, which probably violates
corresponding privacy regulations. In this work, our aim
is to design a secure federated correlation test protocol
only leaking non-sensitive information with low computa-
tion/communication cost. Concretely, we trade off accu-
racy for security, as long as the estimation error is small
with a high probability. Formally, if FED-χ2 outputs ŝ,
whose corresponding standard centralized correlation test
output is s, the following accuracy requirement should be
satisfied with small multiplicative error bound ϵ and small
failure probability δ:

P[(1− ϵ)s ≤ ŝ ≤ (1 + ϵ)s] ≥ 1− δ (2)

Threat Model. We assume that the centralized server S is
honest but curious. It honestly follows the protocol due
to regulatory or reputational pressure but is curious to dis-
cover extra private information from clients’ legitimate up-
dates for profit or surveillance purposes. As a result, the
clients updates should contain as little sensitive informa-
tion as feasible.

On the other hand, we assume the clients (e.g. the hospi-
tals) are honest and won’t collude with the server. Specif-
ically, we do not consider client-side adversarial attacks
(e.g., data poisoning attacks (Bagdasaryan et al., 2020;
Bhagoji et al., 2019)). However, we allow a small portion
of clients to drop out during the execution. We also provide
further security analysis when collusion between the server
and the client happens in Appendix H.

More importantly, we assume that the marginal distribu-
tions of the variables are not sensitive while the joint dis-
tribution is. The above example is a natural case where
such an assumption holds. The aggregated marginal distri-
butions of the genetic defects and the races won’t leak sen-
sitive information. However, the correlation between a spe-
cific pair of race and genetic defect can be easily observed
if the joint distribution, which is the aggregated global con-
tingency table, is obtained by the server.

3.2. Secure Federated Correlation Test

In this section, we introduce the design of FED-χ2 in detail.
We also discuss how the design generalizes to other statis-
tical computations such as Shannon’s Entropy (Shannon,
1948) in Sec. 3.5.

3



Secure Federated Correlation Test and Entropy Estimation

From Federated Correlation Test to Frequency Mo-
ments Estimation. The α-th frequency moment of a key-
value stream is formally defined as below:

Definition 1 (α-th frequency moment). Given a key-value
stream {at ∈ A, bt ∈ B}t∈[T ], the α-th frequency moment
of S is defined as:

Fα(S) :=
∑
a∈A

(
∑

t∈[T ]:at=a

bt)
α (3)

We observe that the test statistics of many correlation tests
can be rewritten as frequency moments. For example, the
statistic of χ2-test can be reformatted as a second frequency
moment:

sχ2(D) =
∑
x,y

(vxy − v̄xy)
2

v̄xy
=

∑
x,y

(
vxy − v̄xy√

v̄xy
)2 (4)

In the federated setting, the ith client calculates the vec-

tor ui(x, y) :=
v(i)
xy−v̄xy/n√

v̄xy
, and the above formula can be

rewritten as a second frequency moment estimation prob-
lem:

sχ2(D) =
∑
x,y

(
vxy − v̄xy√

v̄xy
)2 =

∑
x,y

(
∑
i∈[n]

ui(x, y))
2 (5)

Federated Frequency Moments Estimation. Now that we
have reformatted the problem, the second step is to design
the messages transmitted in FED-χ2 for αth frequency mo-
ments estimation. We use stable projection (Indyk, 2006;
Vempala, 2005) to encode the client-side information and
geometric mean estimator (Li, 2008) to decode the aggre-
gated message. Before we dive into the details, let’s refresh
some preliminaries. See Appendix A for more details on
stable distribution.

Definition 2 (Symmetric α-stable distribution). A ran-
dom variable X follows a symmetric α-stable distribution
Qα,β,F if its characteristic function is as follows:

ϕX(t) = exp(−F |t|α(1−
√
−1β sgn(t) tan(

πα

2
))), (6)

where F is the scale, αth ∈ (0, 2] is the stability parameter,
and β is the skewness.

α-stable distribution is named due to its property called α-
stability. Briefly, the sum of independent α-stable variables
still follows an α-stable distribution with a different scale.

Definition 3 (α-stability). If random variables X ∼
Qα,β,1, Y ∼ Qα,β,1 and X and Y are independent, then
C1X + C2Y ∼ Qα,β,Cα

1 +Cα
2

.

Inspired by the idea of Indyk’s well-cited paper (Indyk,
2006), we encode the frequency moments in the scale pa-
rameter of a stable distribution. To encode information

contained in the local contingency table Di, the ith client
collaborates with other clients to generate a projection ma-
trix P ∈ Rℓ×m projection matrix, where ℓ is the encod-
ing size. The components of P are drawn independently
from an α-stable distribution Qα,0,1. The client then cal-
culates ui as defined in Eq. 5 and applies the projection get
ei := P× ui as the encoding (lines 1-2 in Alg. 1).

To decode, the server first sums the encodings from all the
clients e :=

∑
i∈[n] ei. According to the α-stability defined

in Definition 3, every component ek in the encoding vector
e, k ∈ [ℓ], follows this stable distribution Qα,0,s(D). Thus,
the statistic of the correlation test can be estimated with the
scale of the distribution. We estimate the scale using an
unbiased geometric mean estimator (Li, 2008) (lines 3-4 in
Alg. 1).

A significant advantage of stable projection is that the en-
codings are linearly aggregatable and thus compatible with
secure aggregation. Secure aggregation only reveals the ag-
gregated encoding to the server and greatly reduces the pri-
vacy leakage. Furthermore, in Sec. 3.4, we show that a
small encoding size suffices to accurately approximate the
frequency moments with high probability and can poten-
tially improve communication cost with certain setups.

FED-χ2 Protocol. We present the complete FED-χ2 proto-
col in Alg. 2. Firstly, the marginal statistics vx, vy and v are
collected with secure aggregation and broadcasted to all the
clients (lines 1–6 of Alg. 2). This step can be omitted if the
marginal statistics are already known. The ith client calcu-
lates ui (lines 9–10 of Alg. 2), and samples a random seed
ri and broadcasts to other clients (line 11 of Alg. 2). Then,
the clients receive the random seeds and sample the pro-
jection matrix P from the α-stable distributionQℓ×m

2,0,1 using
the common random seed r (lines 12–13 of Alg. 2). The
ith client projects ui to obtain the encoding ei (line 14 of
Alg. 2). Then, the encodings are quantized and aggregated
with secure aggregation (line 15 of Alg. 2). As we have
already known the marginal statistics in the first round, the
quantization bound can be set accordingly. Additionally,
we can use high precision for quantization, such as 64 bits,
such that the precision of the quantized float numbers is
comparable to or even better than the IEEE floating num-
bers. We validate this conjecture with empirical evaluation
and hence ignore the effect of quantization on accuracy in
the analysis. In the last step, the server gets the χ2-test
statistics using the decoding algorithm described in Alg. 1
(line 17 of Alg. 2).

Remark: Client Dropout. Attentive readers might ask what
if some clients drop out during the protocol execution? We
argue that dropouts in the first round have no effect on the
test’s accuracy as long as the secure aggregation used is
resilient to dropout, such as (Bonawitz et al., 2017; Bell
et al., 2020). On the other hand, dropouts in the second

4



Secure Federated Correlation Test and Entropy Estimation

Algorithm 1 The encoding and decoding scheme (Indyk, 2006)
for federated frequency moments estimation. Note that the encod-
ing and decoding themselves do not provide security guarantee.

1 Function ENCODE(P, ui):
2 return P × ui

3 Function DECODE(e):
4 return

∏ℓ
k=1 |ek|2/ℓ

( 2
π
Γ( 2

ℓ
)Γ(1− 1

ℓ
) sin(π

ℓ
))ℓ

// ℓ is the

encoding size.

Algorithm 2 The complete FED-χ2 protocol. SECUREAGG is a
remote procedure that receives inputs from the clients and returns
the summation to the server. INITSECUREAGG is the correspond-
ing setup protocol deciding the communication graph and other
hyper-parameters.

1 Round 1: Reveal the marginal statistics
2 INITSECUREAGG(n) // n: clients number

3 for x ∈ [mx] do vx = SECUREAGG({v(i)x }i∈[n])

4 for y ∈ [my] do vy = SECUREAGG({v(i)y }i∈[n])
5 Server
6 Calculate v =

∑
x vx and Broadcast v, {vx}, and {vy}

to all the clients
7 Round 2: Approximate the statistics
8 Client i ∈ [n]
9 Calculate v̄xy =

vxvy
v

10 Prepare ui s.t. ui(x, y) =
v
(i)
xy−v̄xy/n√

v̄xy

11 Randomly sample a random seed ri and broadcast to all
the other clients

12 Collect the random seeds from the other clients and ob-
tain the shared random seed r =

∑
i ri

13 Sample the projection matrix P from Qℓ×m
2,0,1 using the

common random seed r
14 Calculate ei = ENCODE(P, ui)
15 e = SECUREAGG(QUANTIZE({ei}i∈[n]))
16 Server
17 ŝχ2 = DECODE(e)

round will affect the accuracy of the test. However, since
the χ2 value is typically far from the decision threshold,
FED-χ2 is intrinsically robust to a small portion of clients
dropping out (see Section 4 for empirical assessment).

Remark: The Selection of Secure Aggregation. As intro-
duced in Sec. 2, there are a variety of secure aggregation
protocols for different setups (Bonawitz et al., 2017; Truex
et al., 2019; Xu et al., 2019; So et al., 2021; Bell et al.,
2020; Choi et al., 2020a). In the rest of the paper, we
choose the state-of-the-art cross-device secure aggregation
protocol by (Bell et al., 2020) due to its simple trust as-
sumption and low communication cost. We want to em-
phasize that our protocols can incorporate any secure ag-
gregation protocols as needed.

3.3. Security Analysis

We now prove the security enforced by Alg. 2 via a stan-
dard simulation proof process (Lindell, 2017) on the basis
of Theorem 1.
Theorem 1 (Security). Let Π be an instantiation of Alg. 2
with the secure aggregation protocol in Alg. 4 of Ap-
pendix B with cryprographic security parameter λ. There
exists a PPT simulator SIM such that for all clients C, the
number of clients n, all the marginal distributions vx, vy ,
and the aggregated encoding e, the output of SIM is in-
distinguishable from the view of the real server ΠC in that
execution, i.e., ΠC ≈λ SIM(e, vx, vy, n).

Intuitively, Theorem 1 illustrates that no more information
about the clients except the aggregated updates is revealed
to the centralized server. Note that this is the minimal nec-
essary information for the server to estimate the test statis-
tic. The complete proof for Theorem 1 is in Appendix D.

To further emphasize the privacy protection of our protocol,
we also provide analysis on the leakage when the server
colludes with a client in Appendix H. We show that even
the collusion happens, our protocol can still successfully
hide the information in a subspace with exponential pos-
sible distributions, which practically enforce privacy given
the considerably large size of the solution space.

3.4. Utility, Communication & Computation Analysis

We first present the utility analysis of FED-χ2 in Alg. 2.
We show that the output of FED-χ2, ŝχ2 , is a fairly accu-
rate approximation (parameterized by ϵ) to the correlation
test output sχ2 in the standard centralized setting with high
probability parameterized by δ when ℓ is appropriately cho-
sen. The proof is deferred to Appendix E.
Theorem 2 (Utility). Let Π be an instantiation of Alg. 2
with secure aggregation protocol in Alg. 4 of Appendix B.
Π is parameterized with ℓ = 1

ηα,ϵ
log(2/δ), where ηα,ϵ is a

function of α and ϵ with limϵ→0 ηα,ϵ → 0. After executing
ΠC on all clients C, the server yields ŝχ2 , whose distance
to the accurate correlation test output sχ2 is bounded with
high probability as follows:

P[ŝχ2 < (1− ϵ)sχ2 ∨ ŝχ2 > (1 + ϵ)sχ2 ] ≤ δ (7)

Then we present the communication and computation cost
of Alg. 2.
Theorem 3 (Communication Cost). Let Π be an instantia-
tion of Alg. 2 with secure aggregation protocol in Alg. 4 of
Appendix B, then (1) the client-side communication cost is
O(log n+mx+my+ℓ); (2) the server-side communication
cost is O(n log n+ nmx + nmy + nℓ).

Theorem 4 (Computation Cost). Let Π be an instantia-
tion of Alg. 2 with secure aggregation protocol in Alg. 4

5



Secure Federated Correlation Test and Entropy Estimation

of Appendix B, then (1) the client-side computation cost is
O(log2 n+(ℓ+mx+my) log n+mℓ); (2) the server-side
computation cost isO(n log2 n+n(ℓ+mx+my) log n+ℓ).

Note that compared with the original computation cost pre-
sented in (Bell et al., 2020), the client-side overhead has
an extra O(mℓ) term. This term is incurred by the encod-
ing overhead. We also give an empirical evaluation on the
client-side computation overhead in Sec. 4.1. Please re-
fer to Appendix F for the detailed proof of Theorem 3 and
Theorem 4.

3.5. Secure Federated Entropy Estimation

FED-χ2 provides a practical way to estimate the non-linear
aggregation results without first leaking the joint distribu-
tion. Specifically, FED-χ2 computes the second order fre-
quency moments of the aggregated data without leaking ad-
ditional information. We deem that our framework is not
limited to computing the second order frequency moments,
instead, by generating projection matrix P ∼ Qα,0,1, any
α-order frequency moments, α ∈ (0, 1) ∪ (1, 2], can be
efficiently and securely estimated in federated setting.

FED-H Protocol. In the following section, we will show
how to accommodate Shannon’s Entropy in FED-χ2 and
form our protocol of FED-H. Similar to the setting of feder-
ated correlation test, in federated entropy estimation, each
client i holds the observed data v

(i)
x , x ∈ X , i ∈ [n]. n

is the number of the clients and the size of X is denoted as
mx. Similarly, vx =

∑n
i=1 v

(i)
x and we assume that the data

is the frequency and normalized:
∑

x∈X vx = 1. Then, the
Shannon’s Entropy is:

H = −
∑
x∈X

vx log vx (8)

To compute H in the federated setting of our framework,
we recast Eq. 8 as two p-order frequency moments, which
is also adopted in (Zhao et al., 2007):

H = −
∑
x∈X

vx log vx = − 1

2∆
(
∑
x∈X

v1+∆
x −

∑
x∈X

v1−∆
x ), (9)

where ∆ is a small consent value. In this way, we recast
Shannon’s Entropy as two frequency moment estimation of
orders 1+∆ and 1−∆. The rest of the protocol is the same
as FED-χ2 in Alg. 2 except that we estimate two frequency
moments. The security proof and utility analysis can also
be generalized to FED-H naturally.

Utility Analysis. In the previous sections, we have shown
that using α-stable projection to estimate vαx , the following

holds w.h.p.:∑̂
x∈X

v1+∆
x ∈ (1± ϵ)

∑
x∈X

v1+∆
x ,

∑̂
x∈X

v1−∆
x ∈ (1± ϵ)

∑
x∈X

v1−∆
x

(10)
Given that the frequencies vx ≤ 1 and by union bound,
w.h.p., we have:

Ĥ = − 1

2∆
(
∑̂
x∈X

v1+∆
x −

∑̂
x∈X

v1−∆
x ) ∈ H ± Ω(ϵ) (11)

We prove Eq. 11 in Appendix G. If we use properly large
encoding size ℓ when estimating v1+∆

x and v1−∆
x to pro-

duce small ϵ, the additive error in FED-H will be negligible
as we will show in our evaluation in Sec. 4.3. The security,
communication, and computation analysis in Sec. 3.3 and
Sec. 3.4 directly applies to FED-H.

4. Evaluation
In this section, we would like to empirically answer the
following questions: (1) How much does the accuracy de-
crease due to the lossy encoding? How does the accuracy
loss change with the size of encoding l? (2) How long does
the encoding take at the client side? (3) Is the performance
overhead small enough in real-world applications? We pri-
marily evaluate the performance of FED-χ2 and then em-
pirically verify the effectiveness of FED-H.

Experiment Setup. To assess FED-χ2’s accuracy, we sim-
ulate it on four synthetic datasets and 12 real-world datasets
in Sec. 4.1. We compare the multiplicative error ϵ̂ :=
|ŝχ2 (D)−sχ2 (D)|

sχ2 (D) and power of FED-χ2 with that of the stan-

dard centralized χ2-test. The four synthetic datasets are
independent, linearly correlated, quadratically correlated,
and logistically correlated. For the real-world datasets, we
report the details in Appendix I. We also evaluate FED-χ2’s
utility in two real-world application scenarios in Sec. 4.2:
feature selection and online false discovery rate (FDR) con-
trol. For feature selection, we report the model accuracy
trained on the selected features. For online FDR control,
we report the average false discovery rate. We compare the
performance of FED-χ2 with that of the centralized χ2-test
in each of the two experiments.

Similar to FED-χ2, to verify the effectiveness of FED-H,
we simulate it on four synthetic datasets and compare the
additive error ϵ̂ := |Ĥ(D) − H(D)| in Sec. 4.3. The
four synthetic datasets are also independent, linearly corre-
lated, quadratically correlated, and logistically correlated,
and they are normalized as mentioned in Sec. 3.5.

For secure aggregation, we discretize all the real numbers
to 64-bit fix-point numbers. We provide further evaluation
on the influence of finite field size in Appendix O, which
shows that FED-χ2 is numerically stable under different fi-
nite field sizes.

6



Secure Federated Correlation Test and Entropy Estimation

Error of no dropout Error of 5% dropout ACC of no dropout ACC of 5% dropout

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(a) Synthetic Data 1.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(b) Synthetic Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(c) Synthetic Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(d) Synthetic Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(e) Data 1.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(f) Data 2.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(g) Data 3.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(h) Data 4.

Figure 1: Multiplicative error and power of FED-χ2 w.r.t. encoding size ℓ with and without dropout.

Unless otherwise specified, experiments are launched on
an Ubuntu 18.04 LTS server equipped with 32 AMD
Opteron(TM) Processor 6212 and 512GB RAM.

4.1. Performance of FED-χ2

Accuracy. We begin by evaluating the accuracy of FED-χ2,
as illustrated in Fig. 1. Each point represents the mean of
100 independent runs with 100 clients, while the error bars
indicate the standard deviation. We choose mx = my = 20
in this experiment. Note that the accuracy drop of FED-χ2

is independent of the number of clients. For the full version
of Fig. 1, please refer to Appendix J.

From Fig. 1, we observe that the larger the encoding size
ℓ, the smaller the multiplicative error. When ℓ = 50, the
multiplicative error ϵ ≈ 0.2.

We also evaluate the power (Cohen, 2013) of FED-χ2. We
set the p-value threshold as 0.05. From the dashed lines
in Fig. 1, we can tell that the power of FED-χ2 is high.
This conforms with our observation on the multiplicative
errors. Since the χ2 values are typically far from the deci-
sion threshold, a multiplicative error of 0.2 rarely flips the
final decision.

We also present the results when 5% of clients drop out
in the second round of FED-χ2 in Fig. 1, which show that
FED-χ2 is robust to a small portion of dropouts. In Ap-
pendix L, we present the results in terms of 10%, 15%, and
20% dropout rates. The results further show that FED-χ2

can tolerate a considerable portion of clients dropout.

Client-side Computation Overhead. To assess extra
computation overhead incurred by FED-χ2 on the client
side, we measure the execution time of the encoding

100 200 300 400 500
0

10

20

30

40

mx (my)

A
vg

.E
nc

od
in

g
Ti

m
e

(m
s)

Figure 2: Client-side encoding overhead.

scheme on an Android 10 mobile device equipped with
a Snapdragon865 CPU and 12GB RAM. We use Py-
Droid (Sandeep Nandal, 2020) to run the client-side com-
putation of FED-χ2 on the Android device.

As shown in Fig. 2, each point represents the average of
100 separate runs, with accompanying error bars. The over-
head is generally negligible. For example, for a 500× 500
contingency table, the encoding takes less than 30ms. The
overhead grows linearly in relation to mx (my) and conse-
quently quadratically in Fig. 2, where mx = my .

4.2. Downstream Use Case Study

Feature Selection. Our first case study explores secure fed-
erated feature selection using FED-χ2. The setting is that
each client holds data with a large feature space and wants
to collaborate with other clients to rule out unimportant fea-
tures and retain features with top-k highest χ2 scores. We
use Reuters-21578 (Hayes & Weinstein, 1990), a standard
text categorization dataset (Yang, 1999; Yang & Pedersen,
1997; Zhang & Yang, 2003), and pick the top-20 most fre-
quent categories using 17,262 training and 4,316 test doc-

7



Secure Federated Correlation Test and Entropy Estimation

0 30 60 90 120 150
40

50

60

70

80

Epoch

M
od

el
A

cc
ur

ac
y

(%
) no feature selection

FED-χ2 no dropout
FED-χ2 10% dropout
FED-χ2 20% dropout
centralized χ2-test

0 30 60 90 120 150
40

50

60

70

80

Epoch

M
od

el
A

cc
ur

ac
y

(%
) no feature selection

FED-χ2 no dropout
FED-χ2 10% dropout
FED-χ2 20% dropout
centralized χ2-test

Figure 3: Accuracy of models trained with features selected
by FED-χ2 and centralized χ2-test.

uments. These documents are distributed randomly to 100
clients, each of whom receives the same number of training
documents. After removing all numbers and stop-words,
we obtain 167,135 indexing terms.

The contingency table is of size 2×20 where 2 corresponds
to whether a term occurs in an article and 20 corresponds to
the number of different article categories. After performing
feature selection using FED-χ2, we select the top 40,000
terms with the highest χ2 scores. When compared with the
centralized χ2-test, 38,012 (95.03%) of the selected terms
are identical, indicating that FED-χ2 produces highly con-
sistent results with the standard χ2-test.

We then train logistic regression models using the terms se-
lected by FED-χ2 and the centralized χ2-test, respectively.
All hyper-parameters are the same. The details of these
models are reported in Appendix K. The training and test-
ing splits are the same for FED-χ2, centralized χ2-test, and
model without feature selection (i.e. there are 17,262 train-
ing and 4,316 test documents). We use the same learning
rate; random seed and all other settings are also the same to
make the comparison fair. We get the result of Fig. 3 and
the models are all trained on NVIDIA GeForce RTX 3090.

The results in Fig. 3 further demonstrate that FED-χ2 ex-
hibits comparable performance with the centralized χ2-
test. When 10% and 20% of clients dropout in the second
round of FED-χ2, the accuracy of the trained model using
the features selected by FED-χ2 does not drop much. We
also examine performance without feature selection, and
as expected, model accuracy is significantly greater after
feature selection. Note that the model without feature se-
lection has 2,542,700 more parameters than the model with
feature selection. Hence, feature selection effectively im-
proves model accuracy while reducing model size and com-
putational cost. We also provide further evaluation on the
influence of encoding size ℓ in Appendix N, which shows
that FED-χ2 can achieve comparable performance with the
centralized χ2-test under different ℓ.

Online False Discovery Rate Control. In the third case
study, we explore federated online false discovery rate

10 50 100 150 200 250 300
0

20

40

60

80

100

Encoding Size ℓ

FD
R

/T
D

R
(%

)

FDR of FED-χ2

TDR of FED-χ2

FDR of centralized χ2-test
TDR of centralized χ2-test

Figure 4: FDR & TDR w.r.t. ℓ for SAFFRON.

0.2 0.4 0.6 0.8 1·104
0

1

2

3

4

5

A
dd

iti
ve

E
rr

or
ϵ

(a) Synthetic Data 1.

0.2 0.4 0.6 0.8 1·104
0

1

2

3

A
dd

iti
ve

E
rr

or
ϵ

(b) Synthetic Data 2.

0.2 0.4 0.6 0.8 1·104
0

1

2

3

Encoding size ℓ

A
dd

iti
ve

E
rr

or
ϵ

(c) Synthetic Data 3.

0.2 0.4 0.6 0.8 1·104
0

2

4

6

Encoding size ℓ

A
dd

iti
ve

E
rr

or
ϵ

(d) Synthetic Data 4.

Figure 5: Additive error of FED-H w.r.t. encoding size ℓ.

(FDR) control (Foster & Stine, 2008) with FED-χ2. In
an online FDR control problem, a data analyst receives a
stream of hypotheses on the database, or equivalently, a
stream of p-values: p1, p2, · · · . At each time t, the data
analyst should pick a threshold αt to reject the hypothe-
sis when pt < αt. The error metric is the false discovery
rate, and the objective of online FDR control is to ensure
that for any time t, the FDR up to time t is smaller than
a pre-determined quantity. We use the SAFFRON proce-
dure (Ramdas et al., 2018), the state-of-the-art online FDR
control, for multiple hypothesis testing. The χ2 results
and corresponding p-values are calculated by FED-χ2. We
present the SAFFRON algorithm in Appendix C.

Each time, there are 100 independent hypotheses, with a
probability of 0.5 that each hypothesis is either indepen-
dent or correlated. The time sequence length is 100, and
the number of clients is 10. The data are synthesized from a
multivariate Gaussian distribution. For the correlated data,
the covariance matrix is randomly sampled from a uniform
distribution. For the independent data, the covariance ma-
trix is diagonal, and its entries are randomly sampled from
a uniform distribution.

At time t, we use FED-χ2 to calculate the p-values pt of all

8



Secure Federated Correlation Test and Entropy Estimation

the hypotheses, and then use the SAFFRON procedure to
estimate the reject threshold αt using pt. The relationship
between the average FDR and encoding size ℓ is shown in
Fig. 4. We observe that the variance of independent runs
is very small, so we omit the error bars. FED-χ2 achieves
good performance (FDR lower than 10%) when the encod-
ing size l is larger than 200. In Fig. 4, we also provide the
FDR result of the centralized χ2-test as well as the true dis-
covery rate (TDR, i.e., #correct reject / #should reject). In
addition, we provide statistics for each encoding size l that
was evaluated in Appendix M. The results indicate that by
increasing the encoding size ℓ, FED-χ2 can achieve com-
parable performance to the centralized χ2-test. The results
further demonstrate that FED-χ2 can be employed in prac-
tice to facilitate online FDR control.

4.3. Performance of FED-H

We present the performance of FED-H on the four synthe-
sized datasets in Fig. 5. We choose mx = 100000 in this
experiment, and other settings remain the same as Sec. 4.1.
As expected, when the encoding size ℓ is properly large,
the additive error of FED-H is small. For example, when
ℓ = 10000, the additive error is about 0.5, which is only
about 4.5% of the ground truth. Note that we need larger
ℓ in FED-H compared to FED-χ2 to ensure that the multi-
plicative error in federated frequency moments estimation
is small, which will in return give small additive error in
FED-H. Nevertheless, FED-H still saves 90% of the com-
munication than directly using secure aggregation. The re-
sults demonstrate the effectiveness and efficiency of FED-H
in practice, and show that our framework can be naturally
extended to compute other statistics that can be recast as
frequency moments estimations in federated setting.

5. Conclusion & Discussion
This paper takes an important step towards designing non-
linear secure aggregation protocols in the federated setting.
Specifically, we propose a universal secure protocol to eval-
uate frequency moments in the federated setting. We focus
on important applications of the protocol: correlation test
and entropy estimation. We give formal security proof and
utility analysis and validate them empirically.

We also discuss potential future directions. FED-χ2

and FED-H may leak the linear equation system of the
marginal information and the encodings during server-
client collusion, as discussed in Appendix H. And also
we acknowledge inference attacks on aggregated encod-
ings could be possible with prior knowledge of clients’
data. However, quantifying information leakage in such
cases remains challenging due to uncertainty about the re-
quired levels of prior information. Therefore, we deem
it promising to enhance privacy guarantees for FED-χ2

and FED-H by incorporating differential privacy techniques
such as differentially private frequency moments estima-
tion (Wang et al., 2021a) or adding calibrated discrete
Gaussian noise (Canonne et al., 2020) to the users’ local
updates.

Acknowledgements
Qi Pang and Shuai Wang were supported in part by the
HKUST 30 for 30 research initiative scheme under the the
contract Z1283. Lun Wang and Dawn Song were partially
supported by DARPA contract #N66001-15-C-4066, the
Center for LongTerm Cybersecurity, and Berkeley Deep
Drive. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors,
and do not necessarily reflect the views of the sponsors.

References
Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S.,

and McMahan, B. cpsgd: Communication-efficient and
differentially-private distributed sgd. Advances in Neu-
ral Information Processing Systems, 31, 2018.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning. In
International Conference on Artificial Intelligence and
Statistics, pp. 2938–2948. PMLR, 2020.

Bell, J. H., Bonawitz, K. A., Gascón, A., Lepoint, T.,
and Raykova, M. Secure single-server aggregation with
(poly) logarithmic overhead. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1253–1269, 2020.

Bhagoji, A. N., Chakraborty, S., Mittal, P., and Calo, S. An-
alyzing federated learning through an adversarial lens.
In International Conference on Machine Learning, pp.
634–643. PMLR, 2019.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1175–1191, 2017.

Brunetti, M. and Renato, A. Old and new proofs of
cramer’s rule. Applied Mathematical Sciences, 8(133):
6689–6697, 2014.

Canonne, C. L., Kamath, G., and Steinke, T. The discrete
gaussian for differential privacy. Advances in Neural In-
formation Processing Systems, 33:15676–15688, 2020.

Chen, W.-N., Choo, C. A. C., Kairouz, P., and Suresh, A. T.
The fundamental price of secure aggregation in differen-

9



Secure Federated Correlation Test and Entropy Estimation

tially private federated learning. In International Con-
ference on Machine Learning, pp. 3056–3089. PMLR,
2022.

Chen, Y., Luo, F., Li, T., Xiang, T., Liu, Z., and Li, J. A
training-integrity privacy-preserving federated learning
scheme with trusted execution environment. Information
Sciences, 522:69–79, 2020.

Choi, B., Sohn, J.-y., Han, D.-J., and Moon, J.
Communication-computation efficient secure ag-
gregation for federated learning. arXiv preprint
arXiv:2012.05433, 2020a.

Choi, S. G., Dachman-Soled, D., Kulkarni, M., and
Yerukhimovich, A. Differentially-private multi-party
sketching for large-scale statistics. Proceedings on Pri-
vacy Enhancing Technologies, 2020(3):153–174, 2020b.

Cohen, J. Statistical power analysis for the behavioral sci-
ences. Academic press, 2013.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Dudoit, S., Shaffer, J. P., Boldrick, J. C., et al. Multiple
hypothesis testing in microarray experiments. Statistical
Science, 18(1):71–103, 2003.

Foster, D. P. and Stine, R. A. α-investing: a procedure for
sequential control of expected false discoveries. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 70(2):429–444, 2008.

Govindaraj, Praveen. Credit Risk Classification
Dataset: Is Customer Risky or Not Risky ?
https://www.kaggle.com/praveengovi/
credit-risk-classification-dataset.
Online; accessed 22 April 2021.

Harrison, W. An entropy-based measure of software com-
plexity. IEEE Transactions on Software Engineering, 18
(11):1025–1029, 1992.

Hayes, P. J. and Weinstein, S. P. Construe/tis: A system for
content-based indexing of a database of news stories. In
IAAI, volume 90, pp. 49–64, 1990.

Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and
Igel, C. Detection of traffic signs in real-world images:
The German Traffic Sign Detection Benchmark. In Inter-
national Joint Conference on Neural Networks, number
1288, 2013.

Indyk, P. Stable distributions, pseudorandom generators,
embeddings, and data stream computation. Journal of
the ACM (JACM), 53(3):307–323, 2006.

Kairouz, P., Liu, Z., and Steinke, T. The distributed discrete
gaussian mechanism for federated learning with secure
aggregation. In International Conference on Machine
Learning, pp. 5201–5212. PMLR, 2021.

Kassirer, J. P. Teaching clinical medicine by iterative hy-
pothesis testing: let’s preach what we practice, 1983.

Kim, J. H. and Ji, P. I. Significance testing in empirical
finance: A critical review and assessment. Journal of
Empirical Finance, 34:1–14, 2015.

Kohavi, R. Scaling up the accuracy of naive-bayes clas-
sifiers: A decision-tree hybrid. In Kdd, volume 96, pp.
202–207, 1996.

Kohavi, Ronny and Becker, Barry. UCI Machine Learn-
ing Repository: Adult Data Set. https://archive.
ics.uci.edu/ml/datasets/adult. Online; ac-
cessed 22 April 2021.

Kononenko, Igor and Cestnik, Bojan. UCI Ma-
chine Learning Repository: Lymphography Data
Set. https://archive.ics.uci.edu/ml/
datasets/Lymphography. Online; accessed 22
April 2021.

Ledoit, O. and Wolf, M. Robust performance hypothesis
testing with the sharpe ratio. Journal of Empirical Fi-
nance, 15(5):850–859, 2008.

Lévy, P. and Lévy, P. Calcul des probabilités. Gauthier-
Villars, 1925.

Li, P. Estimators and tail bounds for dimension reduction
in lα (0 < α ≤ 2) using stable random projections. In
Proceedings of the nineteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 10–19, 2008.

Lindell, Y. How to Simulate It – A Tutorial on the Simu-
lation Proof Technique, pp. 277–346. Springer Interna-
tional Publishing, Cham, 2017. ISBN 978-3-319-57048-
8. doi: 10.1007/978-3-319-57048-8_6. URL https:
//doi.org/10.1007/978-3-319-57048-8_
6.

Nyberg, K. Correlation theorems in cryptanalysis. Discrete
Applied Mathematics, 111(1-2):177–188, 2001.

Nychis, G., Sekar, V., Andersen, D. G., Kim, H., and
Zhang, H. An empirical evaluation of entropy-based
traffic anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement,
pp. 151–156, 2008.

Park, E., Ahn, J., and Yoo, S. Weighted-entropy-based
quantization for deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5456–5464, 2017.

10

http://archive.ics.uci.edu/ml
https://www.kaggle.com/praveengovi/credit-risk-classification-dataset
https://www.kaggle.com/praveengovi/credit-risk-classification-dataset
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/Lymphography
https://archive.ics.uci.edu/ml/datasets/Lymphography
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6


Secure Federated Correlation Test and Entropy Estimation

Ramdas, A., Zrnic, T., Wainwright, M., and Jordan, M. Saf-
fron: an adaptive algorithm for online control of the false
discovery rate. In International conference on machine
learning, pp. 4286–4294. PMLR, 2018.

Rosenberg, A. and Hirschberg, J. V-measure: A condi-
tional entropy-based external cluster evaluation measure.
In Proceedings of the 2007 joint conference on empirical
methods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL), pp.
410–420, 2007.

Rothchild, D., Panda, A., Ullah, E., Ivkin, N., Stoica, I.,
Braverman, V., Gonzalez, J., and Arora, R. Fetchsgd:
Communication-efficient federated learning with sketch-
ing. In International Conference on Machine Learning,
pp. 8253–8265. PMLR, 2020.

Sandeep Nandal. PyDroid. https://pypi.org/
project/pydroid/, 2020. Online; accessed 24
April 2021.

Schlimmer, Jeff. UCI Machine Learning Repository:
Mushroom Data Set. https://archive.ics.
uci.edu/ml/datasets/Mushroom. Online; ac-
cessed 22 April 2021.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.

So, J., Güler, B., and Avestimehr, A. S. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure fed-
erated learning. IEEE Journal on Selected Areas in In-
formation Theory, 2021.

Spirtes, P., Glymour, C., Scheines, R., Kauffman, S.,
Aimale, V., and Wimberly, F. Constructing bayesian net-
work models of gene expression networks from microar-
ray data. 2000.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Lud-
wig, H., Zhang, R., and Zhou, Y. A hybrid approach
to privacy-preserving federated learning. In Proceedings
of the 12th ACM Workshop on Artificial Intelligence and
Security, pp. 1–11, 2019.

Vempala, S. S. The random projection method, volume 65.
American Mathematical Soc., 2005.

Wang, L., Jia, R., and Song, D. D2p-fed: Differentially
private federated learning with efficient communication.
arxiv. org/pdf/2006.13039, 2020.

Wang, L., Pinelis, I., and Song, D. Differentially private
fractional frequency moments estimation with polyloga-
rithmic space. arXiv preprint arXiv:2105.12363, 2021a.

Wang, L., Xu, S., Wang, X., and Zhu, Q. Addressing class
imbalance in federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 10165–10173, 2021b.

Wikipedia. Contingency table — Wikipedia,
the free encyclopedia, 2021. URL https:
//en.wikipedia.org/w/index.php?title=
Contingency_table&oldid=1055319221.
[Online; accessed 27-September-2022].

Wilson, R. B., Davis, D., and Mitchell, A. P. Rapid hy-
pothesis testing with candida albicans through gene dis-
ruption with short homology regions. Journal of bacte-
riology, 181(6):1868–1874, 1999.

Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., and Lud-
wig, H. Hybridalpha: An efficient approach for privacy-
preserving federated learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security,
pp. 13–23, 2019.

Yang, Y. An evaluation of statistical approaches to text
categorization. Information retrieval, 1(1):69–90, 1999.

Yang, Y. and Pedersen, J. O. A comparative study on fea-
ture selection in text categorization. In Icml, volume 97,
pp. 35. Nashville, TN, USA, 1997.

Zhang, J. and Yang, Y. Robustness of regularized linear
classification methods in text categorization. In Pro-
ceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion
retrieval, pp. 190–197, 2003.

Zhao, H., Lall, A., Ogihara, M., Spatscheck, O., Wang, J.,
and Xu, J. A data streaming algorithm for estimating en-
tropies of od flows. In Proceedings of the 7th ACM SIG-
COMM conference on Internet measurement, pp. 279–
290, 2007.

Zheng, Z., Wu, X., and Srihari, R. Feature selection for
text categorization on imbalanced data. ACM Sigkdd Ex-
plorations Newsletter, 6(1):80–89, 2004.

Zhu, B., Wang, L., Pang, Q., Wang, S., Jiao, J., Song, D.,
and Jordan, M. I. Byzantine-robust federated learning
with optimal statistical rates. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 3151–
3178. PMLR, 2023.

11

https://pypi.org/project/pydroid/
https://pypi.org/project/pydroid/
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://archive.ics.uci.edu/ml/datasets/Mushroom
https://en.wikipedia.org/w/index.php?title=Contingency_table&oldid=1055319221
https://en.wikipedia.org/w/index.php?title=Contingency_table&oldid=1055319221
https://en.wikipedia.org/w/index.php?title=Contingency_table&oldid=1055319221


Secure Federated Correlation Test and Entropy Estimation

Appendix

A. Stable Distribution Refresher
A non-degenerate distribution is said to be stable if for X and Y sampled from the distribution, aX + bY for some
constants a, b > 0 has the same distribution up to location and scale parameters. Paul Léby first systematically study
the stable distribution family in his master piece: Calcul des probabilités (Lévy & Lévy, 1925) so stable distribution is
also referred to as Léby α-stable distribution. Stable distributions are parameterized by location µ, scale F , the stability
parameter α and the skewness β. When α ̸= 1, the characteristic function is as below:

ϕX(t) = exp(itµ− F |t|α(1−
√
−1β sgn(t) tan(

πα

2
))) (12)

When α = 1, the characteristic function is given by:

ϕX(t) = exp(itµ− F |t|α(1 + 2

π

√
−1β sgn(t) log |t|)) (13)

In the main text, we only consider a subset of stable distributions where µ = 0 and α ̸= 1.

Stable distribution family contains many familiar distributions. For example, 1-stable distribution is Cauchy distribution,
2-stable distribution is Gaussian distribution, and 1/2-stable distribution is known as Lev́y distribution.

Stable distributions also have discrete analogues defined by their probability generating function

G(t) = exp(−Ftα), (14)

where F is the scale and α is the stability parameter. However, for discrete stable distribution, the support domain of α is
(0, 1] instead of (0, 2].

B. Secure Aggregation Refresher
The secure aggregation protocol from (Bell et al., 2020) is presented in Alg. 4. The first step of the protocol is to generate
a k-regular graph G, where the n vertices are the clients participating in the protocol. The server runs a randomized graph
generation algorithm INITSECUREAGG presented in Alg. 3 that takes the number of clients n and samples output (G, t, k)
from a distributionD. In Alg. 3, we uniformly rename the nodes of a graph known as a Harary graph defined in Definition 4
with n nodes and k degrees. The graph G is constructed by sampling k neighbours uniformly and without replacement
from the set of remaining n − 1 clients. We choose k = O(log(n)), which is large enough to hide the updates inside the
masks. t is the threshold of the Shamir’s Secret Sharing.

In the second step, the edges of the graph determine pairs of clients, each of which runs key agreement protocols to share
random keys. The random keys will be used by each party to derive a mask for her input and enable dropouts.

In the third step, each client ci, i ∈ A1 sends secret share to its neighbors. In the fourth step, the server checks whether the
clients dropout exceeds the threshold δ, and lets the clients know their neighbors who didn’t dropout.

In the fifth step, each pair (i, j) of connected clients in G runs a λ-secure key agreement protocol si,j =
KA.Agree(sk1i , pk1j ) which uses the key exchange in the previous step to derive a shared random key si,j . The pair-
wise masks mi,j = F (si,j) can be computed, where F is the pseudorandom generator (PRG). If the semi-honest server
announces dropouts and later some masked inputs of the claimed dropouts arrive, the server can recover the inputs. To
prevent this happening, another level of masks, called self masks, ri is added to the input. Thus, the input of client ci is:
yi = ei + ri −

∑
j∈NG(i),j<i mi,j +

∑
j∈NG(i),j>i mi,j .

Steps 6–8 deal with the clients dropout by recovering the self masks ri of clients who are still active and pairwise masks
mi,j of the clients who have dropped out. Finally, the server can cancel out the pairwise masks and subtract the self masks
in the final sum:

∑
i∈A′

2
(yi − ri +

∑
j∈NG(i)∩(A′

1\A′
2),0<j<i mi,j −

∑
j∈NG(i)∩(A′

1\A′
2),i<j≤n mi,j).

Definition 4 (HARARY(n, k) Graph). Let HARARY(n, k) denotes a graph with n nodes and degree k. This graph has
vertices V = [n] and an edge between two distinct vertices i and j if and only if j − i (mod n) ≤ (k + 1)/2 or j − i
(mod n) ≥ n− k/2.

12



Secure Federated Correlation Test and Entropy Estimation

C. SAFFRON Procedure Refresher
In Sec. 4.2, we adopt the SAFFRON procedure (Ramdas et al., 2018) to perform online FDR control. SAFFRON procedure
is currently the state of the arts for multiple hypothesis testing. In Alg. 5, we formally present the SAFFRON algorithm.

The initial error budget for SAFFRON is (1 − λ1W0) < (1 − λ1α), and this will be allocated to different tests over
time. The sequence {λj}∞j=1 is defined by gt and λj serves as a weak estimation of αj . gt can be any coordinate wise
non-decreasing function (line 8 in Alg. 5). Rj := I(pj < αj) is the indicator for rejection, while Cj := I(pj < λj) is
the indicator for candidacy. τj is the jth rejection time. For each pt, if pt < λt, SAFFRON adds it to the candidate set
Ct and sets the candidates after the jth rejection (lines 9-10 in Alg. 5). Further, the αt is updated by several parameters
like current wealth, current total rejection numbers, the current size of the candidate set, and so on (lines 11-14 in Alg. 5).
Then, the decision Rt is made according to the updated αt (line 15 in Alg. 5).

The hyper-parameters for the SAFFRON procedure in online false discovery rate control of Sec. 4 are aligned with the
setting in (Ramdas et al., 2018). The target FDR level is α = 0.05, the initial wealth is W0 = 0.0125, and γj is calculated
in the following way: γj =

1/(j+1)1.6∑10000
j=0 1/(j+1)1.6

.

D. Proof for Theorem 1
Proof for Theorem 1. To prove Theorem 1, we need the following lemma.

Lemma 1 (Security of secure aggregation protocol). Let SECUREAGG be the secure aggregation protocol in Alg. 4 of

Algorithm 3 INITSECUREAGG: Generate Initial Graph for SECUREAGG.
Function INITSECUREAGG(n):

▷ n: Number of nodes.
▷ t: Threshold of Shamir’s Secret Sharing.
k = O(log(n)).
Let H = HARARY(n, k).
Sample a random permutation π : [n]→ [n].
Let G be the set of edges {(π(i), π(j))|(i, j) ∈ H}.
return (G, t, k)

Algorithm 5 SAFFRON Procedure.
Function SAFFRONPROCEDURE({p1, p2, · · · }, α, W0, {γj}∞j=0):

▷ {p1, p2, · · · }: Stream of p-values computed by FED-χ2.
▷ α: Target FDR level.
▷ W0: Initial wealth.
▷ {γj}∞j=0: Positive non-increasing sequence summing to one.
i← 0 // Set rejection number.
for each p-value pt ∈ {p1, p2, · · · } do

λt ← gt(R1:t−1, C1:t−1)
Ct ← I(pt < λt) // Set the indicator for candidacy Ct.

Cj+ ←
∑t−1

i=τj+1 Ci // Set the candidates after the jth rejection.

if t = 1 then
α1 ← (1− λ1)γ1W0

else
αt ← (1− λt)(W0γt−C0+

+ (α−W0)γt−τ1−C1+
+

∑
j≥2 αγt−τj−Cj+

)

Rt ← I(pt ≤ αt) // Output Rt.
if Rt = 1 then

i← i+ 1 // Update rejection number.
τi ← t // Set the ith rejection time.

return {R0, R1, · · · }

13



Secure Federated Correlation Test and Entropy Estimation

Algorithm 4 SECUREAGG: Secure Aggregation Protocol. (Algorithm 2 from Bell et al. (2020))
Function SECUREAGG({ei}i∈[n]):

▷ Parties: Clients c1, · · · , cn, and Server.
▷ l: Vector length.
▷ Xl: Input domain, ei ∈ Xl.
▷ F : {0, 1}λ → Xl: PRG.
▷ We denote by A1, A2, A3 the sets of clients that reach certain points without dropping out. Specifically
A1 consists of the clients who finish step (3), A2 those who finish step (5), and A3 those who finish step
(7). For each Ai, A′

i is the set of clients for which the server sees they have completed that step on time.
(1) The server runs (G, t, k) = INITSECUREAGG(n), where G is a regular degree-k undirected graph
with n nodes. By NG(i) we denote the set of k nodes adjacent to ci (its neighbors).
(2) Client ci, i ∈ [n], generates key pairs (sk1i , pk

1
i ), (sk

2
i , pk

2
i ) and sends (pk1i , pk

2
i ) to the server who

forwards the message to NG(i).
(3) for each Client ci, i ∈ A1 do

• Generates a random PRG seed bi.

• Computes two sets of shares:

Hb
i = {hb

i,1, · · · , hb
i,k} = ShamirSS(t, k, bi)

Hs
i = {hs

i,1, · · · , hs
i,k} = ShamirSS(t, k, sk1i )

• Sends to the server a message m = (j, ci,j), where ci,j = Eauth.Enc(ki,j , (i||j||hb
i,j ||hs

i,j)), and ki,j =

KA.Agree(sk2i , pk
2
j ), for each j ∈ NG(i).

(4) The server aborts if |A′
1| < (1 − δ)n and otherwise forwards (j, ci,j) to client cj who deduces A′

1 ∩
NG(j).
(5) for each Client ci, i ∈ A2 do

• Computes a shared random PRG seed si,j as si,j = KA.Agree(sk1i , pk
1
j ).

• Computes masks mi,j = F (si,j) and ri = F (bi).

• Sends to the server their masked input

yi = ei + ri −
∑

j∈[n],j<i

mi,j +
∑

j∈[n],j>i

mi,j

(6) The server collects masked inputs. It aborts if |A′
2| < (1 − δ)n and otherwise sends (A′

2 ∪
NG(i), (A1\A′

2) ∪NG(i)) to every client ci, i ∈ A′
2.

(7) Client cj , j ∈ A3 receives (R1, R2) from the server and sends {(i, hb
i,j)}i∈R1∪{(i, hs

i,j)}i∈R2 obtained
by decrypting the ci,j received in Step (3).
(8) The server aborts if |A′

3| < (1− δ)n and otherwise:

• Collects, for each client ci, i ∈ A′
2, the set Bi of all shares in Hb

i sent by clients in A3. Then aborts if
|Bi| < t and otherwise recovers bi and ri using the t shares received which came from the lowest client
IDs.

• Collects, for each client ci, i ∈ (A1\A′
2), the set Si of all shares in Hs

i sent by clients in A3. Then aborts
if |Si| < t and otherwise recovers sk1i and mi,j .

• return
∑

i∈A′
2
(yi − ri +

∑
j∈NG(i)∩(A′

1\A′
2),0<j<i mi,j −

∑
j∈NG(i)∩(A′

1\A′
2),i<j≤n mi,j).

14



Secure Federated Correlation Test and Entropy Estimation

Appendix B instantiated with cryprographic security parameter λ. There exists a probabilistic polynomial-time (PPT)
simulator SIMSA such that for all clients C, the number of clients n, and the aggregated encoding e, the output of SIMSA
is perfectly indistinguishable from the view of the real server, i.e., SECUREAGGC ≈λ SIMSA(e, n).

Lemma 1 is derived from the security analysis of our employed secure aggregation protocol (Theorem 3.6 in Bell et al.
(2020)), which establishes that the secure aggregation protocol securely conceals the individual information in the aggre-
gated result. With this lemma, we are able to prove the theorem for federated correlation test by presenting a sequence of
hybrids that begin with real protocol execution and end with simulated protocol execution. We demonstrate that every two
consecutive hybrids are indistinguishable, illustrating that the hybrids are indistinguishable according to transitivity.

HYB1 This is the view of the server in the real protocol execution, REALC .
HYB2 In this hybrid, we replace the view during the execution of each SECUREAGG({v(i)

x }i∈[n]) in line 3 of Alg. 2 with
the output of SIMSA(vx, n) one by one correspondingly. According to Lemma 1, each replacement does not change
the indistinguishability. Hence, HYB2 is indistinguishable from HYB1.

HYB3 Similar to HYB2, we replace the view during the execution of each SECUREAGG({v(i)y }i∈[n]) in line 4 of Alg. 2
with the output of SIMSA(vy, n) one by one. According to Lemma 1, HYB3 is indistinguishable from HYB2.

HYB4 In this hybrid, we replace the view during the execution of SECUREAGG({ei}i∈[n]) in line 15 of Alg. 2 with the
SIMSA(e, n). This hybrid is the output of SIM. According to Lemma 1, HYB4 is indistinguishable from HYB3.

E. Proof for Utility
Proof for Theorem 2. First, we introduce the following lemma from Li (2008).

Lemma 2 (Tail bounds of geometric mean estimator (Li, 2008)). The right tail bound of geometric mean estimator is:

P(ŝχ2 − sχ2 > ϵsχ2) ≤ exp(−ℓηRα,ϵ), (15)

where ηRα,ϵ = C1 log(1 + ϵ) − C1γe(α − 1) − log( 2πΓ(αC1)Γ(1 − C1) sin(
παC1

2 )), α is a constant in our setting, C1 =
2
π tan−1( log(1+ϵ)

(2+α2)π/6 ), and γe is the Euler’s constant.

The left tail bound of the geometric mean estimator is:

P(ŝχ2 − sχ2 < −ϵsχ2) ≤ exp(−ℓηLα,ϵ), (16)

where ℓ > ℓ0, ηLα,ϵ = −C2 log(1− ϵ)− log(− 2
πΓ(−αC2)Γ(1+C2) sin(

παC2

2 ))− ℓ0C2 log(
2
πΓ(

α
ℓ0
)Γ(1− 1

ℓ0
) sin(π2

α
ℓ0
)),

and C2 = 12
π2

ϵ
(2+α2) .

With Lemma 2, taking ηα,ϵ ≤ min(ηLα,ϵ, η
R
α,ϵ) and δ = 2 exp(−ℓηα,ϵ), we are able to prove P[ŝχ2 < (1 − ϵ)sχ2 ∨ ŝχ2 >

(1 + ϵ)sχ2 ] ≤ δ with union bound, which is achieved when ℓ = 1
ηα,ϵ

log(2/δ).

F. Proof for Communication & Computation Cost
In this section, we prove Theorem 3 and Theorem 4.

Theorem 3 (Communication Cost). Let Π be an instantiation of Alg. 2 with secure aggregation protocol from (Bell et al.,
2020), then (1) the client-side communication cost is O(log n + mx + my + ℓ); (2) the server-side communication cost
O(n log n+ nmx + nmy + nℓ).

Proof sketch for Theorem 3. Each client performs k key agreements (O(k) messages, line 9 in Alg. 4) and sends 3 masked
inputs (O(mx +my + ℓ) complexity, lines 3, 4, 15 in Alg. 2 and line 10 in Alg. 4). Thus, the client communication cost is
O(log n+mx +my + ℓ).

The server receives or sends O(log n + mx + my + ℓ) messages to each client, so the server communication cost is
O(n log n+ nmx + nmy + nℓ).

Theorem 4 (Computation Cost). Let Π be an instantiation of Alg. 2 with secure aggregation protocol from (Bell et al.,
2020), then (1) the client-side computation cost isO(mx log n+my log n+ ℓ log n+mℓ); (2) the server-side computation
cost is O(mx +my + ℓ).

15



Secure Federated Correlation Test and Entropy Estimation

Proof sketch for Theorem 4. Each client computation can be broken up as k key agreements (O(k) complexity, line 9 in
Alg. 4), generating masks mi,j for all neighbors cj (O(k(mx +my + ℓ)) complexity, lines 3, 4, 15 in Alg. 2 and line 10
in Alg. 4), sampling encoding matrix P cost O(mℓ), line 13 in Alg. 2, and encoding computation cost O(mℓ) (line 14 in
Alg. 2). Thus, the client computation cost is O(mx log n+my log n+ ℓ log n+mℓ).

The server-side follows directly from the semi-honest computation analysis in Bell et al. (2020). The extra O(ℓ) term is
the complexity of the geometric mean estimator.

G. Proof for Utility of FED-H
In this section, we prove the utility of FED-H presented in Eq. 11.

Proof for Eq. 11. Given a proper set of ϵ, ℓ, and ∆, we have ̂∑
x∈X v1+∆

x ∈ (1 ± ϵ)
∑

x∈X v1+∆
x and ̂∑

x∈X v1−∆
x ∈

(1± ϵ)
∑

x∈X v1−∆
x .

Thus: Ĥ = − 1
2∆ ( ̂∑

x∈X v1+∆
x − ̂∑

x∈X v1−∆
x ) ∈ H̃ ± (m∆

x +1)
2∆ ϵ, where H̃ is the approximated entropy using finite

difference approximation.

Now we calculate the bound of |H̃ −H|.

Consider f(t) = vtx, then f ′(t) = ln(vx)v
t
x, f ′(1) = ln(vx)vx is the result we are interested in.

So we estimate f ′(t) near t = 1 using finite difference approximations, and the error is derived as follows:

According to Taylor series: f(t+ h) = f(t) + hf ′(t) + h2

2 f ′′(t) + h3

6 f ′′′(t+ h1), where h1 ∈ [0, h], h > 0.

f(t− h) = f(t)− hf ′(t) + h2

2 f ′′(t)− h3

6 f ′′′(t− h2), where h2 ∈ [0, h], h > 0.

Taking t = 1, h = ∆, and we subtract the above equations: f(1 + ∆) − f(1 − ∆) = 2∆f ′(1) + ∆3

6 f ′′′(1 + h0),
h0 ∈ [−∆,∆].

Thus, the additive error of the finite difference approximation is: ϵFD = | f(1+∆)−f(1−∆)
2∆ − f ′(1)| = |∆

2

6 f ′′′(1 + h0)|.

Since f ′′′(t) = ln3(vx)v
t
x, ϵFD = −∆2

6 ln3(vx)v
1+h0
x . Given that vx ∈ (0, 1), −ln3(vx) > 0, and h0 ∈ [−∆,∆], we

have: ϵFD ≤ −∆2

6 ln3(vx)v
1−∆
x . Given that vx ∈ (0, 1), we have ϵFD ≤ 9∆2

2(1−∆)3e3 . So the additive error of the finite
difference approximation in entropy estimation is bounded, and we do not have additional assumptions on the frequency
vx.

Thus, |Ĥ −H| ∈ H ± (
(m∆

x +1)
2∆ ϵ+ 9∆2

2(1−∆)3e3 ).

H. Further Security Analysis when Collusion Happens
We have shown that Alg. 2 provides strong security guarantee when there is no collusion between the clients and the server.
That is, the server only knows the non-private marginal distribution of the contingency table and the final aggregated results.
In the following section, we will analyze the leakage of Alg. 2 when the collusion happens to demonstrate that FED-χ2

provides strong privacy guarantee and also help the readers better understand our protocol.

Remark: what does Alg. 2 leak when collusion between the server and the client happens? If the server colludes with one
client, then it knows the random seed r (line 12 of Alg. 2) used to generate the projection matrix P. In the following, we
will analyze the leakage of client private data when the server knows P.

By Theorem 1, we show that individual updates of clients are perfectly hidden in the aggregated results and FED-χ2 leaks

16



Secure Federated Correlation Test and Entropy Estimation

no more than a linear equation system if the server knows P:
P× v = eT

J1,my
× VT = vTx

J1,mx
× V = vTy

, (17)

where J1,mx
and J1,my

are 1×mx and 1×my unit matrices, V is an mx ×my matrix whose elements are {vxy}, and v
is the flattened vector of V.

To understand (17), v (or V) is sensitive and all the other matrices and vectors are already known to the server. Also note
that due to the requirement of secure aggregation, all the values in (17) are discretized into a finite field. Thus, the server
can solve the system of equations (17) on a finite field to get information about v. The following theorem establishes an
important fact: the above equation system has a large solution space, which conceals the real joint distribution.

Proposition 1. Given a projection matrix P ∈ Zℓ×m
q , vx ∈ Zmx

q , vy ∈ Zmy
q and e ∈ Zℓ

q , if m > ℓ +mx +my , there are
at least qm−ℓ−mx−my solutions to the system of equations (17).

Proof sketch for Proposition 1. The system of linear equations on Zq contains mx + my + ℓ equations and m variables.
Given m > mx+my+ℓ, the rank of the coefficient matrix is no more than mx+my+ℓ. According to the Rouché–Capelli
theorem (Brunetti & Renato, 2014) on finite fields, the solution forms a at least m−mx −my − ℓ-dimensional traslation
of subspace of Zm

q . As a result, we know that the solution space contains at least qm−ℓ−mx−my solution vectors.

Theorem 1 shows an important fact that the joint distribution is hidden in a subspace with exponential possible distributions.
Although the collusion between the client and the server is not likely to happen in the cross-silo federated settings (consider
our example in Sec. 3.1) and thus not considered in our threat model, we still show that Alg. 2 practically enforce privacy
given the considerably large size of the solution space.

I. Details of Datasets
The details for the real-world datasets used in Sec. 4.1 are provided in Table 1. The license of Credit Risk Classifica-
tion (Govindaraj, Praveen) is CC BY-SA 4.0, the license of German Traffic Sign (Houben et al., 2013) is CC0: Public
Domain. Other datasets without a license are from UCI Machine Learning Repository (Dua & Graff, 2017).

Table 1: Dataset details.
ID Data Attr #1 A#1 Cat Attr #2 A#2 Cat
1 Adult Income (Kohavi, 1996; Kohavi, Ronny and Becker, Barry) Occupation 14 Native Country 41
2 Credit Risk Classification (Govindaraj, Praveen) Feature 6 14 Feature 7 11
3 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type I 35
4 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type II 35
5 Credit Risk Classification (Govindaraj, Praveen) Credit Product Type 28 Overdue Type III 36
6 German Traffic Sign (Houben et al., 2013) Image Width 219 Traffic Sign 43
7 German Traffic Sign (Houben et al., 2013) Image Height 201 Traffic Sign 43
8 German Traffic Sign (Houben et al., 2013) Upper left X coordinate 21 Traffic Sign 43
9 German Traffic Sign (Houben et al., 2013) Upper left Y coordinate 16 Traffic Sign 43

10 German Traffic Sign (Houben et al., 2013) Lower right X coordinate 204 Traffic Sign 43
11 German Traffic Sign (Houben et al., 2013) Lower right Y coordinate 186 Traffic Sign 43
12 Mushroom (Schlimmer, Jeff) Cap color 10 Odor 9
13 Mushroom (Schlimmer, Jeff) Gill color 12 Stalk color above ring 9
14 Mushroom (Schlimmer, Jeff) Stalk color below ring 9 Ring Type 8
15 Mushroom (Schlimmer, Jeff) Spore print color 9 Habitat 7
16 Lymphography (Kononenko, Igor and Cestnik, Bojan) Structure Change 8 No. of nodes 8

J. Full Version of Fig. 1
In this section, we present the full version of Fig. 1 on all the 20 datasets we evaluate in Fig. 6.

17



Secure Federated Correlation Test and Entropy Estimation

Error of no dropout Error of 5% dropout ACC of no dropout ACC of 5% dropout

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(a) Synthetic Data 1.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(b) Synthetic Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(c) Synthetic Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/P

ow
er

(d) Synthetic Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(e) Data 1.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(f) Data 2.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(g) Data 3.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(h) Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(i) Data 5.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(j) Data 6.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(k) Data 7.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(l) Data 8.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(m) Data 9.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(n) Data 10.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(o) Data 11.
10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(p) Data 12.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(q) Data 13.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(r) Data 14.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(s) Data 15.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

(t) Data 16.

Figure 6: Multiplicative error and power of FED-χ2 w.r.t. encoding size ℓ with and without dropout.

K. Details of Regression Models
The details of the regression models trained in feature selection in Sec. 4.2 is reported in Table 2. The training and testing
splits are the same for FED-χ2, centralized χ2-test and model without feature selection (i.e. there are 17,262 training and
4,316 test documents). We use the same learning rate; random seed and all other settings are also the same to make the
comparison fair. We get the result of Fig. 3 and the models are all trained on NVIDIA GeForce RTX 3090.

18



Secure Federated Correlation Test and Entropy Estimation

Table 2: Model details.
Task Model Size Learning Rate Random Seed

FED-χ2 40000× 20 0.1 0
Centralized χ2-test 40000× 20 0.1 0

Without Feature Selection 167135× 20 0.1 0

L. Further Results on FED-χ2 with Dropouts
We present the results of 10%, 15%, and 20% clients dropout in Fig. 7. The results further show that FED-χ2 can tolerate
a considerable portion of clients dropout in Round 2 of Alg. 2.

M. Further Results for Online FDR Control

Table 3: Detailed results for online FDR control.
#should reject #should accept #correct reject #false reject

FED-χ2, l = 10 5,900 4,100 5,144 1,392
FED-χ2, l = 25 5,900 4,100 5,328 1,356
FED-χ2, l = 50 5,900 4,100 5,325 1,143
FED-χ2, l = 100 5,900 4,100 5,398 943
FED-χ2, l = 150 5,900 4,100 5,393 765
FED-χ2, l = 200 5,900 4,100 5,377 687
FED-χ2, l = 250 5,900 4,100 5,328 615
FED-χ2, l = 300 5,900 4,100 5,361 556
centralized χ2-test 5,900 4,100 5,294 408

In this section, we provide further results for online FDR control. As we have shown in Fig. 4, FED-χ2 achieves good
performance when the encoding size l is larger than 200. In addition, we provide statistics for each encoding size l that was
evaluated in Table 3. These results demonstrate that FED-χ2 performs well and is comparable to the centralized χ2-test
when the encoding size l is increased.

N. Further Results for Feature Selection
Our results in Sec. 4.2, paragraph Feature Selection, demonstrate that FED-χ2 performs well when encoding size l = 50.
We conduct experiments with different encoding sizes l to further assess their effect on FED-χ2’s performance. In Fig. 8,
we present the effect of encoding size l on the ratio of the commonly-selected features between the original centralized χ2-
test and FED-χ2. A larger ratio of commonly-selected features means that FED-χ2 performs more closely to the original
centralized χ2-test. And if the ratio is 1, these two algorithms select the identical features. The results in Fig. 8 show that
when the encoding size l increases, the performance of FED-χ2 approaches that of the original centralized χ2-test.

Similar to Sec. 4.2, we evaluate FED-χ2’s performance under different encoding sizes l by training the model with the
features selected by FED-χ2. Fig. 9 shows the results. When trained with FED-χ2-selected features, the model can achieve
comparable accuracy to the model trained with features selected by the original centralized χ2-test. Also, consistent
with the results in Fig. 3 in Sec. 4.2, we see that when the encoding size l ≥ 25, models trained by FED-χ2-selected
features achieve higher accuracy than that of the models without feature selection. These results further demonstrate the
effectiveness of FED-χ2.

O. Influence of Finite Field Size
As shown in Fig. 10, we test the performance of FED-χ2 under different finite field size q. We observe that when q ∈
{216, 232, 264}, there is almost no difference in the performance. The result shows that FED-χ2 is numerically stable.

19



Secure Federated Correlation Test and Entropy Estimation

Error of 10% dropout Error of 15% dropout Error of 20% dropout
ACC of 10% dropout ACC of 15% dropout ACC of 20% dropout

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(a) Synthetic Data 1.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(b) Synthetic Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(c) Synthetic Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ
/A

C
C

(d) Synthetic Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(e) Data 1.
20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(f) Data 2.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(g) Data 3.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(h) Data 4.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(i) Data 5.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(j) Data 6.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(k) Data 7.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(l) Data 8.

50 100 150 200
0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(m) Data 9.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(n) Data 10.
50 100 150 200

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(o) Data 11.
10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(p) Data 12.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(q) Data 13.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(r) Data 14.

10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(s) Data 15.

10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/A

C
C

(t) Data 16.

Figure 7: Multiplicative error and accuracy of FED-χ2 w.r.t. encoding size ℓ with and without dropout.

20



Secure Federated Correlation Test and Entropy Estimation

10 25 35 50
75

80

85

90

95

100

Encoding Size ℓ

C
om

m
on

Fe
at

ur
e

R
at

io
(%

)

Figure 8: Ratio of commonly-selected features between
FED-χ2 and original centralized χ2-test.

0 30 60 90 120 150
40

50

60

70

80

Epoch

M
od

el
A

cc
ur

ac
y

(%
) no feature selection

FED-χ2, l = 50
FED-χ2, l = 35
FED-χ2, l = 25
FED-χ2, l = 10
centralized χ2-test

0 30 60 90 120 150
40

50

60

70

80

Epoch

M
od

el
A

cc
ur

ac
y

(%
) no feature selection

FED-χ2, l = 50
FED-χ2, l = 35
FED-χ2, l = 25
FED-χ2, l = 10
centralized χ2-test

Figure 9: Accuracy of model trained w/ FED-χ2-select fea-
tures under different encoding size l.

Error of FED-χ2 64 bit Error of FED-χ2 32 bit Error of FED-χ2 16 bit
ACC of FED-χ2 64 bit Acc of FED-χ2 32 bit ACC of FED-χ2 16 bit

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Encoding size ℓ

M
ul

tip
lic

at
iv

e
E

rr
or

ϵ̂
/P

ow
er

Figure 10: Performance of FED-χ2 with different finite field size on synthetic data 3.

21


	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Setup
	3.2 Secure Federated Correlation Test
	3.3 Security Analysis
	3.4 Utility, Communication & Computation Analysis
	3.5 Secure Federated Entropy Estimation

	4 Evaluation
	4.1 Performance of Fed-2
	4.2 Downstream Use Case Study
	4.3 Performance of Fed-H

	5 Conclusion & Discussion
	A Stable Distribution Refresher
	B Secure Aggregation Refresher
	C SAFFRON Procedure Refresher
	D Proof for Theorem 1
	E Proof for Utility
	F Proof for Communication & Computation Cost
	G Proof for Utility of Fed-H
	H Further Security Analysis when Collusion Happens
	I Details of Datasets
	J Full Version of Fig. 1
	K Details of Regression Models
	L Further Results on Fed-2 with Dropouts
	M Further Results for Online FDR Control
	N Further Results for Feature Selection
	O Influence of Finite Field Size

