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ABSTRACT

This paper focuses on detecting complex-shaped action tubes in videos. Existing
methods assume that actor’s position changes slightly in short video clips. These
methods either oversimplify the shape of action tubes by representing them as
cuboids or conjecture that action tubes can be summarized into a set of learnable
positional patterns. However, these solutions may produce an action tube losing the
corresponding actor when the actor trajectory becomes complex. This is because
these methods rely solely on position information to determine action tubes, lacking
the ability to trace the same actor when their movement patterns are intricate. To
address this issue, we propose Actor-related Tubelet (ART), which incorporates
actor-specific information when generating action tubes. Regardless of the com-
plexity of an actor’s trajectory, ART ensures that an action tube consistently tracks
the same actor, relying on actor-specific cues rather than solely on positional infor-
mation. To evaluate the effectiveness of ART in handling complex-shaped action
tubes, we introduce a dedicated metric that quantifies tube shape complexity. We
conduct experiments on three commonly used tube detection datasets: MultiSports,
UCF101-24 and JHMDB51-21. ART presents remarkable improvements on all the
datasets.

1 INTRODUCTION

(c) intertwisted actors(b) deformable shape(a) large motion

Figure 1: Complex-shaped tubes from MultiSports (Li et al.,
2021) and UCF (Soomro et al., 2012). Action tubes are extremely
complicated in real scenarios due to large motion, deformable
shapes, or intertwisted actors.

Spatio-temporal human action detec-
tion requires simultaneously localiz-
ing an actor and recognizing the ac-
tion category in a video. Most existing
methodologies (Feichtenhofer et al.,
2019; Chen et al., 2021; Tang et al.,
2020; Pan et al., 2021; Wu et al., 2023;
Chen et al., 2023) focus on detecting
actions at the frame level, consider-
ing temporal information mainly for
action recognition rather than actor lo-
calization. In this paper, we target a
different setting, i.e action tube detec-
tion at the video level following some
earlier works (Kalogeiton et al., 2017;
Hou et al., 2017; Singh et al., 2017). An action tube is defined as a sequence of temporally successive
bounding boxes of an actor performing actions (Jain et al., 2014; Kalogeiton et al., 2017). Action tube
detection requires temporal consistency for not only action recognition but also for actor localization
to generate action tubes. Therefore, it is more challenging than the frame-level setting which only
yields independent actor bounding boxes per frame. The goal of this paper is typically designed for
action tube detection.

The shape of action tubes varies across action categories and types of videos, resulting in some of the
actions being easy to detect, while others are challenging. For example, easy actions like brushing
hair/teeth, sitting/drinking/clapping, and playing flute/guitar often occur in bounding boxes that are
spatially stationary or follow predictable patterns. In contrast, actions involving in sports, dancing,
and gymnastics typically come with unpredictable trajectories, which poses challenges to existing
action detectors. This is evidenced by the results from previous arts (Feichtenhofer et al., 2019; Chen
et al., 2021) when evaluating detection performance on individual categories. Motivated by this, we
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(b) Actor-related tubelet : The actor tubelet query ensures that each tubelet traces the same actor.

(a) Position-related tubelet : The action tubelet goes to the wrong actor when the two actors intertwine.

Figure 2: (a) The position-related tubelet fails to generate tubes with complex shapes because it relies solely
on position information without considering actor information. (b) Regardless of the complexity of an actor’s
trajectory, the actor-related tubelet is able to trace the same actor and form precise action tubes.

examine several popular action detection datasets and find that earlier datasets (Jhuang et al., 2013;
Soomro et al., 2012; Gu et al., 2018) mainly include actions with limited variation in the shape of
tubes, whereas challenging cases emerge in more recent dataset (Li et al., 2021). These challenges
are largely due to the intricate shapes of action tubes. For instance, in Fig. 1 (a), a basketball player
dribbling past opponents exhibits rapid, irregular motion in the bounding boxes. This complexity is
often compounded by camera motion. Fig. 1 (b) shows a more fine-grained action, “bent leg jump” in
gymnastics, where the body deformation results in the drastic changes in the bounding box shape.
Additionally, when multiple actors are intertwined in interactive actions, e.g. Salsa spin (Fig. 1 (c)),
their action tubes frequently overlap and cross, greatly increasing the difficulty of tube detection.

The above analysis shows that it is crucial for an action detector to cope with complex-shaped action
tubes. Unfortunately, this property is scarce from existing frameworks. Broadly, current frameworks
can be categorized into cuboid-based (Singh et al., 2017; Hou et al., 2017; Kalogeiton et al., 2017; Li
et al., 2020a) and query-based (Zhao et al., 2022; Gritsenko et al., 2024) approaches. Specifically,
cuboid-based methods rely on pre-designed cuboid anchors or duplicate a bounding box along the
time dimension to form a regular-shaped tube. The query-based methods TubeR (Zhao et al., 2022)
and STAR (Gritsenko et al., 2024) assumes any action tube can be characterized into a set of learnable
spatio-temporal positional queries. All of them are established on a position-related assumption that
an actor’s position changes very slightly in short video clips. Therefore, these methods are mainly
crafted to detect the aforementioned easy action tubes and tend to fail in detecting tubes with complex
shapes like in Fig 1. The root cause is that these methods determine action tubes solely based on
position information without considering actor information. An illustration is shown in Fig. 2. When
two actors are intertwined, the trajectories of the action tubes become complex. Existing methods
adhere to positions and still predict regular-shaped tubes even covering wrong actors (Fig. 2(a)). The
orange tubelet begins with the man but ends with the woman, while the green tubelet starts with
the woman and ends with the man. This position-related tubelet is unable to effectively distinguish
between different actors. To address this limitation, we propose the Actor-related Tubelet (ART),
which incorporates actor-specific information to generate accurate action tubes. As shown in Fig. 2(b),
ART consistently adheres to the same actor over time.

As discussed above, when the actor’s trajectory becomes complicated, the position-related assumption
underlying existing methods are prone to failure. Intuitively, regardless of how intricate the actor’s
trajectory becomes, once the tube of an actor is determined, it is much easier to determine the
evolution of actions. A natural way to achieve this is by applying a person tracker to construct actor
tubelets. However, this approach demands extra effort and data for training or fine-tuning the tracker
to adapt to the specific domain. Instead, we adopt a query-based detector and leverage its attention
mechanism to formulate tubelet queries that automatically track target actors, eliminating the need
for an additional linker or tracker. Specifically, we allow the model to briefly analyze the video
beforehand, providing it with knowledge of which actors are present. With this information, we
incorporate this prior knowledge into the tubelet queries, referred to as actor tubelet queries. These
queries enable the model to effectively determine the presence of the target actor in each frame of the
video clip, irrespective of changes in the actor’s position.

Our model named Actor-related Tubelet (ART), comprises an Actor Decoder responsible for localizing
actors within keyframes, and an Action Decoder that generates the final action tubelets. A Tubelet
Query Generator is the bridge to connect the two decoders by dynamically constructing actor tubelet
queries. Besides, to evaluate ART for complex action tubes, we propose a metric to measure tube
complexity and divide datasets into different subsets with different complexity scores. ART shows
big gains for most complicated tubes. In summary, our contributions are:
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1. Impact: We challenge position-related assumptions in existing methods for complex tubes.
We propose the first end-to-end actor-related tubelet (ART) detector for complex tubes and
a metric for tube complexity.

2. Design: ART empowers the model with the ability to precisely query an actor in every frame
to automatically form actor tubelets. This breakthrough allows us to effectively follow an
actor within a tubelet, regardless of the complexity of the action tube’s shape.

3. Performance: ART is an end-to-end system without any bells and whistles and achieves
remarkable results on MultiSports, UCF101-24 and JHMDB51-21 in terms of video mAPs.

2 RELATED WORK

Traditional action detection. Spatio-temporal human action detection in video has garnered sustained
attention, e.g (Cao et al., 2010; Tran & Yuan, 2012; Weinzaepfel et al., 2015; Peng & Schmid, 2016;
Girdhar et al., 2018; Sun et al., 2018; Pan et al., 2021). With the advancements in deep neural networks,
significant improvements have been made in the field of action detection in video. Some early
works (Peng & Schmid, 2016; Saha et al., 2016; Singh et al., 2017) applied 2D convolutional networks
to detect actions per-frame, drawing inspiration from object detection. These methods require linking
frame-wise predictions to form action tubes. To effectively leverage temporal information, action
detection at the tubelet level (Li et al., 2018; Song et al., 2019; Yang et al., 2019; Li et al., 2020a) has
gained significant popularity since it was introduced by Jain et al (Jain et al., 2014). Hou et al(Hou
et al., 2017) and Kalogeiton et al (Kalogeiton et al., 2017) employed faster-RCNN/SSD detector with
3D cuboid anchors to generate action tubelets. Subsequently, Yang et al (Yang et al., 2019) proposed
to progressively refine 3D cuboid anchors across time. Li et al (Li et al., 2020a) detected tubelet
instances by relying on center position hypotheses instead of cuboid anchors. In order to detect
large motions, Singh et al (Singh et al., 2022) employed an offline person tracker to generate actor
tubes and pooled features based on these tubes. The key distinction between ART and the method
is that ART is an end-to-end, transformer-based system that automatically generates actor tubelets,
eliminating the need for any external tracking systems.

Recently, 3D convolutional networks are widely used for video understanding due to its superior
ability to capture temporal information. Gu et al (Gu et al., 2018) integrated a 3D convolutional
network into a Faster R-CNN detector to enhance the understanding of action categories by learning
spatio-temporal features. Derived from this regime, two-stage methods aimed at improving action
recognition by using offline person detectors to localize actors were introduced. Feichtenhofer et
al (Feichtenhofer et al., 2019) designed a slowfast network for this purpose. Tang et al (Tang et al.,
2020) and Pan et al (Pan et al., 2021) explicitly models relations between actors and objects, which
favors for action understanding. Singh et al (Singh et al., 2022) and Faure et al (Faure et al., 2022)
employed ensemble models, incorporating either a tracker or pose estimation, respectively. Beyond
two-stage methods, Chen et al (Chen et al., 2021) proposed an end-to-end single model capable of
jointly training actor localization and action classification. These mentioned methods detected actions
per-frame, whereas ART is designed for detecting action tubelets at video level.

Transformer-based video understanding. Girdhar et al(Girdhar et al., 2019) proposed a video
action transformer network to improve action recognition by aggregating features from the spatio-
temporal context around actors. Fan et al (Fan et al., 2021) and Li et al (Li et al., 2022) proposed
to learn multiscale feature hierarchies with transformer models for video recognition. Additionally,
MeMViT (Wu et al., 2022) processed long videos in an online manner by maintaining prior memory
to capture long-term context. Recently, a hierarchical Vision Transformer without the bells-and-
whistles (Ryali et al., 2023) presents superior performance on multiple vision tasks, including video
recognition. In the realm of action detection, Zhao et al (Zhao et al., 2022) proposed TubeR for
detecting action tubelets in video clips with 3D convolutional backbone and a transformer encoder-
decoder. Subsequently, STAR (Gritsenko et al., 2024) presented a purely-transformer based model.
Although ART and TubeR/STAR are all query-based detector, ART exhibits fundamental differences.
Specifically, TubeR and STAR learned action tubelet queries from randomly initialized positions,
which poses limitations when dealing with complex action tubes, as discussed earlier. In contrast,
ART constructs tubelet queries that focus on target actors and remain unaffected by actor positioning,
allowing ART to effectively manage more intricate action tubes. Other query-based action detection
methods including STMixer (Wu et al., 2023) and EVAD(Chen et al., 2023) generated action boxes
only at the frame level. ART, however, is designed for the more challenging task of video-level tube
detection.
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Figure 3: Cumulative density function of intra-tube IoU, inter-tube IoU and tube complexity. The intra-
tube IoU measures the complexity within a tube and inter-tube IoU measures the complexity of pairs of tube
interactions. Tube complexity is calculated from the intra-tube IoU and inter-tube IoU as introduced in Sec. 3.1.
The ratios of complex tubes are significant on MultiSports and UCF.

3 METHODOLOGY

3.1 SHAPE COMPLEXITY OF TUBE

We first introduce a metric designed to quantify the complexity of action tube shapes, enabling us to
assess the effectiveness of our method in handling complex scenarios. Designing such a metric is
challenging, as it must account for various factors, including camera motion, actor shape deformation,
and fast motion. Additionally, interactions between tubes further complicate detection. To address
this, we utilize intra-tube IoU (Intersection over Union) to measure the complexity within a tube and
inter-tube IoU to assess interactions between tubes within a video.

Given a video containing M tubes T1, T2, ..., TM , a tube Tj = {B1
j , B

2
j , ..., B

l
j}, j ∈ 1, 2, ...,M , Bi

j
(i ∈ 1, 2, ..., l) is a bounding box at time i. The intra-tube IoU for a tube Tm is the average of IoUs
for box pairs in the tube:

Intra IoU m =

l−1∑
i=1

IoU(Bi
m, Bi+1

m )/(l − 1) (1)

The lower the Intra IoU m, the higher the shape complexity of the tube. Thus, we define the inner
complexity of the tube Tm as Intra C m:

Intra C m = 1− Intra IoU m (2)
To measure the complexity of Tm due to its interaction with other tubes in the video, we first calculate
the inter-tube IoU for Tm and each other tube Tj in the video:

Inter IoU mj = TIoU(Tm, Tj), j ∈ 1, 2, ...,M&j ̸= m (3)
TIoU means the tube IoU (Zhao et al., 2022). Tubes that overlap with Tm increase its complexity.
To quantify the effect of these overlapping tubes on Tm, we normalize all TIoUs between the tubes
overlapping with Tm and define the normalized value as an interaction coefficient (Icoe) between Tm

and an overlapping tube Tj :

Icoe mj = Inter IoU mj/
∑
j

Inter IoU mj, j ∈ 1, 2, ...,M&j ̸= m (4)

The interaction complexity of Tm is defined as the weighted sum of inner complexity of the tubes
overlapping with Tm:

Inter C m =
∑
j ̸=m

(Icoe mj ∗ Intra C j) (5)

The final complexity of tube Tm is the sum of inner complexity and interaction complexity:

C m = Intra C m + Inter C m (6)

With the defined tube complexity score, we are able to analyze action tube complexity distribution on
the datasets to support our motivation. Fig. 3 (a) shows the cumulative density function of intra-tube
IoU is plotted for the training sets of MultiSports, UCF and JHMDB. Notably, 30% of the tubes in
MultiSports exhibit an IoU of 0.0, indicating significant variation in the bounding boxes within these
tubes. JHMDB, which consists of simple actions characterized by short tubes and samll motion, has
only 22% of tubes with an IoU lower than 0.5, compared to 50% in UCF and 73% in MultiSports.
Fig. 3 (b) shows the cumulative density function of IoU for pairs of tubes (inter-tube) within a video.
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A higher overlap between tubes indicates increased complexity in tube interactions. JHMDB is
excluded from this plot as it features only a single actor per video. The results demonstrate that 85%
of tubes in MultiSports overlap with other tubes, compared to only 18% in UCF. Figure 3 (c) further
illustrates tube complexity defined in Eq. 6. In MultiSports, 60% of the tubes have a complexity score
greater than 0.8, compared to 30% in UCF and only 7% in JHMDB. In conclusion, both MultiSports
and UCF contain a substantial number of complex-shaped action tubes.
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Figure 4: Structure of ART. ART takes as input a video
clip and extracts video features using Encoder (3.2). It
adopts Actor Decoder to detect actors on keyframes and
then dynamically builds actor tubelet queries through
a Tubelet Query Generator (3.3). Finally, it decodes
action tubelets from actor tubelet queries through Action
Decoder (3.4).

In the following sections, we introduce how our
ART detects complex-shaped action tubes in a
video clip. Fig 4 depicts the whole system of the
method.

3.2 ENCODER

Given a video clip It ∈ RT×H×W×3 where
T,H,W, 3 denote the number of frames, height,
width, and colour channels, ART first builds
an Encoder to extract spatio-temporal video
features F ∈ RC×T×H′×W ′

, C its latent di-
mension. Specifically, for a pure transformer
system, the Encoder adopts a video Trans-
former network (Ryali et al., 2023) as its back-
bone to get low-resolution feature maps F ′ ∈
RC′×T ′×H′×W ′

. For action tubelet detection, if
T ′ ̸= T , an interpolation layer will be applied to
the temporal dimension and make the new fea-
ture maps F ′ ∈ RC′×T×H′×W ′

. A liner layer
is further utilized to reduce feature dimension
from C ′ to C and get the encoded video feature
F ∈ RC×T×H′×W ′

.

3.3 ACTOR-RELATED TUBELET

3.3.1 PRELIMINARY

A query-based action detection framework learns a set of spatio-temporal positional queries
Q={Q1, ..., Qn, ..., QN} ∈ RN×T×C to model action tubelet patterns. Here N is the number
of queries, T the temporal duration of the tubelet and C the feature dimension. Each query
Qi = {Qi

1, . . . , Q
i
j , . . . , Q

i
T } contains T spatial positional queries (i.e. Qi

j ∈ RC) correspond-
ing to T frames, respectively. These queries are intended to represent an action tubelet across T
frames. Given that the average number of spatial positional queries are K per frame, the learning
complexity of the tubelet query grows exponentially to the power of K w.r.t the temporal duration
of video clip T . To alleviate such an issue, TubeR (Zhao et al., 2022) assumes actor’s position
changes very slowly over time, thus significantly reducing the complexity (from O(KT ) to O(KT )).
However, this simplification constrains TubeR’s ability to effectively learn complex action tubelets,
as discussed in the Introduction.

Our work targets complex action tubes. We build actor tubelet query, each of which is supposed to
trace a specific actor along time in the input video clip. It applies an Actor Decoder to detect actors
on the keyframe (i.e the center frame of the input video clip). Subsequently, we generate actor tubelet
queries that leverage the distinctive features of each actor.

3.3.2 ACTOR DECODER

To generate actor tubelet query, we first design an Actor Decoder to detect actors based on the
keyframe features Fky ∈ RC×H′×W ′

. Following DETR (Carion et al., 2020), Actor Decoder learns
a set of spatial embeddings Qs={Q1

s, ..., Q
n
s , ..., Q

N
s } ∈ RN×C to query persons on the 2D-spatial

feature maps Fky . With Transformer backbone in Encoder (3.2), the Actor Decoder is structured with
n vanilla transformer-decoder blocks (Vaswani et al., 2017). As general, each transformer-decoder
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block consists of a self-attention layer (SA), a cross-attention layer (CA), three normalization layers
and a feed forward network (FFN). We only illustrate the core attention layers below. The self-
attention layer is applied to spatial embeddings Qs to model the relationships between these spatial
queries and generate the spatial queries features Fs ∈ RN×C :

Fs = SA(Qs) = softmax(
σq(Qs)× σk(Qs)

T

√
C

)× σv(Qs) (7)

Then, the cross-attention layer decodes the spatial queries features Fs ∈ RN×C from the keyframe
features Fky and yields the final features Fa ∈ RN×C for actor detection.

Fa = CA(Fs, Fky) = softmax(
Fs × σk(Fky)

T

√
C

)× σv(Fky) (8)

σ(∗) is a linear transformation. Two FC layers are respectively applied for actor bounding box
regression and classification, to yield actor bounding boxes Ba ∈ RN×4 and actor scores Sa ∈ RN×2.

3.3.3 TUBELET QUERY GENERATOR

The Actor Decoder supplies actor location information, which is used to generate actor tubelet queries.
Fig 5 delivers a detailed illustration of the Tubelet Query Generator.
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Figure 5: Details of Tubelet Query Generator. It in-
cludes the actor tubelet query and the temporal compen-
sation.

Actor tubelet query. The final feature Fa from
the Actor Decoder is designed for actor de-
tection, but it does not differentiate between
individual actors. To distinguish between dif-
ferent individuals, we employ ROI Align (He
et al., 2017) to pool actor features Factor from
the keyframe feature Fky ∈ RC×H′×W ′

us-
ing actor boxes Ba detected from the keyframe.
Compared to Fa, the lower-level actor feature
Factor ∈ RN×C×ps×ps (ps is the spatial size
of the pooled feature) is supposed to capture
the specific appearance of an actor within the
video clip. A linear layer further transforms
Factor into actor queries Aq ∈ RN×C . These
actor queries are then expanded along the tempo-
ral dimension to construct actor tubelet queries
Qa ∈ RN×T×C . Each tubelet query is designed
to represent an actor across multiple frames, en-
suring consistent identification of the same actor
throughout the video clip.

Temporal compensation. The above actor
tubelet queries Qa miss temporal informa-
tion, such as, actors’ pose and shape changing
along time. Thus, we introduce another concept
termed temporal embeddings Qt ∈ RT×C which is expected to encode the temporal changes to
actors. We use same temporal embeddings for N actor tubelet queries Qa. Thus, Qt is expanded to a
temporal compensation features Tc ∈ RN×T×C and is then added to the actor tubelet queries Qa

when decoding actions.

3.3.4 DISCUSSION

There are three key distinctions between ART and TubeR. 1) Impact: ART learns actor-related
tubelets for complex-shaped action tubes; TubeR, constrained by the position assumption, learns
position-related tubelets and struggles to detect complex-shaped tubes. 2) Computation: ART learns
a set of spatial embeddings Qs ∈ RN×C and temporal embeddings Qt ∈ RT×C . Again, consider
that the average number of actor queries are K per frame, the learning complexity is only O(K + T ),
which offers a significant reduction compared O(KT ) in TubeR. 3) Structure: ART is more concise
whereas TubeR requires short-term context module and the memory bank (Wu et al., 2019).
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3.4 ACTION DECODER

Similar to Actor Decoder, Action Decoder consists of m transformer-decoder blocks, each of which
contains a self-attention layer (SA) and a cross-attention layer (CA). It decodes action tubelet features
Faction ∈ RN×T×C through the encoded video features F and actor tubelet queries Qa. To capture
temporal information, the temporal compensation features Tc ∈ RN×T×C is added to Qa in each
decoder layer. At last, two FC layers are respectively utilized for regressing bounding boxes on
each frame in the tubelet and recognizing actions for each tubelet. We get action tubelet boxes
Bt ∈ RN×T×4 and action probabilities St ∈ RN×L. L is the number of action categories.

3.5 LOSSES

We train the whole system in an end-to-end fashion. We adopt tubelet matching (Zhao et al., 2022)
and the total loss is a linear combination of actor detection losses and action detection losses:

L = λ1Lactor
class + λ2Lactor

box + λ3Lactor
iou

+λ1Laction
class + λ2Laction

box + λ3Laction
iou ,

(9)

The classification loss for actor Lactor
class is a cross entropy loss and that for action is a focal loss (Lin

et al., 2017) . The L*
box and L*

iou denote the per-frame bounding box matching error following TubeR.
λ1, λ2 and λ3 are weights for classification losses, box regression losses and IoU losses. Empirically,
we set λ1 = 1, λ2 = 5 and λ3 = 2.

4 EXPERIMENTS

Datasets. Our experiments are conducted on three video datasets with tube-level annotations.
JHMDB51-21 (Jhuang et al., 2013) consists of 21 action categories presented in 928 trimmed
videos. We report the average results over all three splits. Although action tubes on JHMDB exhibit
less variety, it remains a widely-used benchmark for tube-level action detection. UCF101-24 (Soomro
et al., 2012) features 24 sport-related classes distributed across 3,207 untrimmed videos. It contains
20% high complex action tubes as analyzed in Fig 3. We use the revised annotations following
(Singh et al., 2017) and report performance on “split-1”. MultiSports (Li et al., 2021) is a large-scale
multi-person dataset for sports actions. It is built on 4 sports classes, collects 3200 video clips, and
annotates 37701 action tube instances with 902k bounding boxes. It has well-defined tube-level anno-
tations. And most of the action tubes are complicated. Thus, it is a suitable datasets for validating our
method. MultiSports contains 66 fine-grained classes. Following the official evaluation protocol (Li
et al., 2021), we only do evaluation on 60 classes.

Evaluation criteria. ART is specifically designed for action tube detection. Thus, we primarily
report video-mAPs. Frame-mAPs are not reported, as they do not directly reflect the effectiveness of
ART. For those interested in frame-mAPs on AVA, please refer to the supplementary material.

Implementation details. We apply a Transformer backbone Hiera (Ryali et al., 2023) with ViT (Doso-
vitskiy et al., 2021) in Encoder for a pure transformer system. For fair comparisons to existing methods,
we also conduct experiments with ConvNets backbones, including I3D (Carreira & Zisserman, 2017)
with VGG (Simonyan & Zisserman, 2015), CSN (Tran et al., 2019) with ResNets (He et al., 2016),
which further verify the universality of our design. All backbones are pre-trained on Kinetics-400 (Kay
et al., 2017). We set the number of query N = 10 on UCF and JHMDB and N = 20 on MultiSports.
Video clip length is compatible with the used video backbone if not specified. During training, we
use the bipartite matching (Georgiev & Lió, 2020) based on the Hungarian algorithm (Kuhn, 1955)
between predictions and the ground truth. For data augmentation, each video is resized to 256 pixels
and randomly cropped 224 on the short edge, if not specified. We use the AdamW (Loshchilov &
Hutter, 2017) optimizer with an initial learning rate 5e− 6 for the backbone and 1e− 4 for others.
We decrease the learning rate 10 when the validation loss saturates. The weight decay is set to 1e− 8.

4.1 ABLATIONS

We carry on ablation study on UCF, focusing exclusively on RGB input, to highlight the effectiveness
of our design using video-mAP@IoU=0.5. We implement a baseline based on position-related tubelet
queries, which are utilized in DETR-style detector like TubeR.
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UCF101-24 MultiSports

High Low High Low

Position-related 51.1 60.8 28.5 31.3
Actor-related 56.8 63.3 35.1 34.8

∆ ↑ +5.7 +2.5 +6.6 +3.5

Table 1: Effective for complex action tubes.
Actor-related tubelet performs better than position-
related tubelet on all subsets with different levels
of complexity, especially biggest gains on high
complexity subset.

s-rate video-mAP@0.5

Position-related 2 59.6
Actor-related 2 60.4

Position-related 4 56.5
Actor-related 4 58.5

Table 2: Effective for large motion. s-rate
means sampling rate. Actor-related tubelet
performs better than position-related tubelet
at all settings.

+10.16

+6.20

+1.05

+5.66

+8.78

+9.32

+22.25

Figure 6: Effective for scenario with multiple actors. The actor-related tubelet achieves higher video-mAP on
categories with crowded persons.

Effective for complex-shaped action tubes. To demonstrate the effectiveness of ART in handling
complex action tubes, we divide the UCF and MultiSports datasets into subsets based on high and
low complexity scores. Since action tubes in JHMDB exhibit relatively low complexity, we use it
as a baseline to establish a threshold for subset division. Seen in Fig 3 (c), we select the complexity
score 0.75 as a threshold for dividing subsets, which almost excludes JHMDB from high complexity
subset. And we report video-mAP@0.5 on each subset for UCF and MultiSports in Tab 1. Notably,
actor-related tubelets show improvements across all settings, with the most significant gains observed
on the high-complexity subsets of UCF and MultiSports, achieving increases of +5.7 and +6.6,
respectively. This improvement is attributed to actor-related tubelets’ ability to track specific actors in
complex trajectories. These findings strongly validate our design.

Effective for large motion. In Tab 2, we further conduct experiments to assess how well our actor
tubelet queries perform in scenarios involving significant motion between frames. We sampled videos
at varying rates to simulate different levels of motion. It’s important to note that as the sampling rate
increases, so does the motion between frames. Actor-related tubelet has +2% gains compared to the
position-related tubelet at sampling rate 4, while +0.8% for sample rate 2. These findings suggest
that actor-related tubelets are particularly advantageous in cases involving large motions, whereas
position-related tubelets perform under the assumption of smaller actor displacements.

video-mAP@0.5

w/o tc 63.7
tc 64.2

Table 3: Temporal compensation (tc) helps
improve video-mAP@0.5.

Temporal compensation. Tab 3 reflects the effective-
ness of the temporal compensation module. Incorporating
temporal information into actor-related tubelet queries ac-
counts for changes in actors’ poses and shapes over time,
resulting in a 0.5 improvement in video-mAP.

Effective for scenario with multiple actors. From an-
other perspective, we further show per-category video-
AP@IoU=0.5 comparisons between the actor-related tubelet and the position-related tubelet in Fig 6.
We observe that the actor-related tubelet achieves higher AP scores in categories involving multiple
persons, such as an improvement of +10.16 AP for “Basketball” and +22.25 for “VolleyballSpiking”.
This is because the actor-related tubelet is able to discriminate between actors and form precise tubes.

Actor decoder vs. Offline person detector. In Tab 4, we compare our Actor Decoder to an offline
person detector, commonly used in most two-stage methods (Feichtenhofer et al., 2019; Ryali et al.,
2023). We use Faster RCNN-R50-FPN as the offline person detector. We finetune it for person

8
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Actor Action

train test actor-AP@0.5 strategy video-mAP@0.5

Two-stage gt-boxes faster-rcnn 73.4 fixed-pos roi 18.0
Two-stage gt-boxes faster-rcnn 73.4 action decoder 35.7
ART (ours) actor decoder actor decoder 75.0 fixed-pos roi 53.2
ART (ours) actor decoder actor decoder 75.0 action decoder 64.2
Oracle gt-boxes gt-boxes - action decoder 75.3

Table 4: Ablation on Actor Decoder and Action Decoder. Two-stage models use an offline person detector to
localize persons on a keyframe. ARTs apply Actor Decoder. We compare two varieties respectively for two-stage
and ART with regard to the strategies for action detection. Oracle represents adopting ground-truth (gt) boxes on
a keyframe to obtain actor-related features. Oracle is a reference to show the upper bound of Actor Decoder and
should not be directly compared with other results. ‘fixed-pos roi’ means fixing actor’s positions in a video clip
and forming a cuboid roi pooling. It shows utilizing both Actor Decoder and Action Decoder achieves the best.

UCF101-24 JHMDB51-21

0.20 0.50 0.50:0.95 0.50 0.50:0.95

ACT (Kalogeiton et al., 2017) * 77.2 51.4 25.0 73.7 44.8
TacNet (Song et al., 2019) * 77.5 52.9 24.1 73.4 44.8
TwoinOne (Zhao & Snoek, 2019) * 78.5 50.3 24.5 74.7 45.0
MOC-DLA34 (Li et al., 2020a) * 82.8 53.8 28.3 77.2 59.1
CFAD-I3D (Li et al., 2020b) * 81.6 64.6 26.7 85.3 53.0
TubeR-I3D (Zhao et al., 2022) * 85.3 60.2 29.7 80.7 -

MOC-DLA34 (Li et al., 2020a) 78.2 50.7 26.2 - -
T-CNN-C3D (Hou et al., 2017) 47.1 - - - -
TAAD-R50 (Singh et al., 2022) 79.6 52.0 23.0 - -
TubeR-I3D (Zhao et al., 2022) 82.8 57.7 28.6 78.3 -
ART-I3D (ours) 86.1 61.1 29.3 79.0 54.2
TubeR-CSN152 (Zhao et al., 2022) 83.3 58.4 28.9 82.3 -
ART-CSN152 (ours) 85.6 59.4 29.1 82.8 56.4

ART-ViT-B (ours) 89.2 64.2 32.3 87.1 61.7
ART-ViT-L (ours) 89.5 66.3 34.2 92.0 67.7

Table 5: Comparison on UCF and JHMDB with video-mAPs. ART achieves better results compared to most
state-of-arts. * means the method uses both RGB frames and optical flow.

detection on UCF with action box annotations (Notably, an action box must contains an actor). It
achieves 73.4 for actor-AP@IoU=0.5. And our Actor Decoder delivers 75.0 for actor-AP@IoU=0.5.

We further analyze the impact of our Actor Decoder on action detection performance. Applying the
offline person detector is the so-called Two-stage method (Feichtenhofer et al., 2019). For training
Two-stage models, we use ground-truth box annotations like in (Feichtenhofer et al., 2019). And
offline person detected boxes are used in test. As seen in Tab 4, comparing Row 2 and Row 4, our
Actor Decoder performs much better than the offline person detector for action detection, with the
same strategy used for action. Same conclusion is drawn by comparing Row 1 and Row 3. The reason
is that the offline person detector may detects persons who are not performing any action, which
introduces false alarms. However, our Actor Decoder is trained for actor (persons who are performing
actions) detection based on video features. Moreover, we show an Oracle model which replaces our
Actor Decoder to ground-truth box annotations for constructing actor tubelet queries. As a reference,
the Oracle model supplies an upper bound for our Actor Decoder.

Model Tracker mAP@0.2 mAP@0.5

SlowFast-R50+Tracks (Singh et al., 2022) YOLOv5 (Redmon et al., 2016) 56.3 33.0
TAAD-R50+TCN (Singh et al., 2022) YOLOv5 (Redmon et al., 2016) 60.6 37.0

YOWO (Köpüklü et al., 2019) ✗ 12.9 9.7
MOC (Li et al., 2020a) ✗ 12.9 9.7
SlowFast-R50 (Li et al., 2020a) ✗ 24.2 9.7
SlowFast-R101 (Li et al., 2020a) ✗ 28.1 8.4
TubeR-R50 (Zhao et al., 2022) ✗ 59.4 31.7
ART-R50 (ours) ✗ 62.8 36.0

Table 6: Comparisons on MultiSports. ART perfoms best on MultiSports without an offline tracker.

Action Decoder vs. Fixed position ROI pooling. Besides, Tab 4 also presents the effectiveness of our
Action Decoder. Comparing Row 1 with Row 2, or Row 3 with Row 4, Action Decoder significantly
outperforms fixed-position ROI pooling (expanding detected person boxes on a keyframe along
time dimension to form a cuboid to do ROI pooling) (Feichtenhofer et al., 2019) for both two-stage
models and ART. Fixed-position ROI pooling works well for action recognition, but largely destroys
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tubelet-level box regression. Action Decoder with the help of actor tubelet queries, is able to inquire
a specific actor on each frame within a video clip.

4.2 MAIN RESULTS

In Table 5, we conduct a comprehensive comparison of ART with state-of-the-art models, focusing on
video-mAPs. ART consistently outperforms recent single-stream models on both UCF and JHMDB.
In particular, the ART-I3D model achieves higher mAPs than TubeR-I3D across all metrics for UCF,
showcasing gains of +3.3 and +3.4 for video-mAP at IoU 0.2 and 0.5, respectively. These equitable
comparisons strongly emphasize that the superior performance of our model is attributed to our
innovative design, rather than relying on strong backbones. It’s worth noting that ART demonstrates
moderate improvements (+0.7 and +0.5 respectively for I3D and CSN152) when compared to TubeR
on JHMDB for video-mAP at IoU 0.5. This is because action tubes on JHMDB are less complex. They
are generally short (no more than 40 frames), featuring a single actor per video, and minimal actor
motion over time. ART targets on high complicated tubes. Additionally, our ART model, featuring a
Transformer backbone (VIT-L) pre-trained on Kinetics-400, achieves new state-of-the-arts on both
datasets, surpassing even performance of two-stream methods.

(b) intertwisted actors

(a) camera motion

(c) drastic deformation

Figure 7: Visualization of complex action tubelets on MultiSports
and UCF101-24. We use different colors to label different detected
tubelets. ART is able to (a) handle camera motion, (b) works well for
intertwisted actors and (c) generate tubes with deformable shapes.

In Table 6, we compare ART
with existing methods on Multi-
Sports. For fair comparisons, with-
out an additional tracker, ART demon-
strates substantial improvements over
YOWO (Köpüklü et al., 2019) and
MOC (Li et al., 2020a). It exhibits
gains of +3.4 and +4.3, respec-
tively, for video-mAP@0.2 and video-
mAP@0.5 compared to TubeR. It is
noted that (Singh et al., 2022) utilized
a well-built tracker, which definitely
helps to localize actors. However, our
ART without any bells and whis-
tles even outperforms (Singh et al.,
2022) for video-mAP@0.2 and pro-
duces comparable result for video-
mAP@0.5. This proves the effective-
ness of actor-related tubelet design.

Model and parameter efficiency. We
conduct a fair comparison between ART-I3D and TubeR-I3D in terms of model and parameter
efficiency. Using the same input size of 7 × 224 × 224, ART-I3D has 70.8 GFLOPs and 28.3M
parameters, whereas TubeR-I3D has 90.1 GFLOPs and 30.3M parameters. Notably, ART requires
fewer computations.

4.3 VISUALIZATION

We visualize detected complex action tubelets on MultiSports and UFC in Fig. 7. Different colors
label different detected action tubelets. (a) well illustrates actor tubelet query is able to handle camera
motion. (b) shows a case for intertwisted actors in a video. (c) present tubes with deformable shapes.
ART is capable to trace an actor in a tubelet. More visualizations and failure case analysis are in the
supplementary material.

5 CONCLUSION

We propose Actor-related Tubelets (ART) as an end-to-end solution for complex action tube detection.
Unlike existing methods that rely on positional assumptions, ART integrates actor-specific information
to generate action tubes, enabling the consistent tracking of the same actor over time. ART not
only effectively handles large shifts in actor position but also reduces the complexity of learning.
Furthermore, ART demonstrates significant improvements in action detection across multiple datasets,
particularly on the complex dataset MultiSports.
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