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ABSTRACT

Discovering reliable and informative interactions among brain regions from func-
tional magnetic resonance imaging (fMRI) signals is essential in neuroscientific
predictions of cognition. Most of the current methods fail to accurately char-
acterize those interactions because they only focus on pairwise connections and
overlook the high-order relationships of brain regions. We delve into this problem
and argue that these high-order relationships should be maximally informative and
minimally redundant (MIMR). However, identifying such high-order relationships
is challenging and highly under-explored. Methods that can be tailored to our
context are also non-existent. In response to this gap, we propose a novel method
named HYBRID that aims to extract MIMR high-order relationships from fMRI
data. HYBRID employs a CONSTRUCTOR to identify hyperedge structures, and
a WEIGHTER to compute a weight for each hyperedge. HYBRID achieves the
MIMR objective through an innovative information bottleneck framework named
multi-head drop-bottleneck with theoretical guarantees. Our comprehensive ex-
periments demonstrate the effectiveness of our model. Our model outperforms the
state-of-the-art predictive model by an average of 12.1%, regarding the quality of
hyperedges measured by CPM, a standard protocol for studying brain connections.

1 INTRODUCTION

Discovering reliable and informative relations among brain regions using fMRI signals is crucial
for predicting human cognition in and understanding brain functions (Kucian et al., 2008; 2006; Li
et al., 2015b;a; Satterthwaite et al., 2015; Wang et al., 2016).

However, despite the clear multiplexity of the brain’s involvement in cognition (Logue & Gould,
2014; Barrasso-Catanzaro & Eslinger, 2016; Knauff & Wolf, 2010; Reineberg et al., 2022), the cur-
rent imaging biomarker detection methods (Shen et al., 2017; Gao et al., 2019; Li et al., 2021) focus
only on the contributing roles of the pairwise connectivity edges. In contrast, most brain functions
involve distributed patterns of interactions among multiple regions (Semedo et al., 2019). For in-
stance, executive planning requires the appropriate communication of signals across many distinct
cortical areas (Logue & Gould, 2014). Pairwise connectivity, without considering the brain’s high-
order structure, can lead to inconsistent findings across studies with low prediction performance.
Although there are few works (Zu et al., 2016; Xiao et al., 2019; Li et al., 2022) working on dis-
covering the high-order relationships of brain regions, they cannot effectively extract meaningful
patterns in terms of cognition since 1) the discovering process of high-order relationships is not
guided by cognitive targets; 2) the weak expressiveness of traditional machine learning methods
(e.g. lasso regression) hinders the accurate understanding of brain region interactions (Cao et al.,
2022; Richards et al., 2019).

In this paper, we aim to explore the identification of high-order relationships through deep learning
fashion. Our objective is to learn high-order relationships that are maximally informative and min-
imally redundant (MIMR): maximizing the predictive performance of the high-order relationships
toward a neurological outcome while diminishing the participation of unrelated brain regions. Such
a criterion endows the model with the capacity to identify more succinct and interpretable structures
(Yu et al., 2020; Miao et al., 2022a;b), which benefits the understanding of human brains. A formal
definition of the MIMR criterion could be found in Equation 8 from an information bottleneck view.
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Figure 1: We identify high-order relationships of brain
regions, where hyperedges possess strong relevance
to cognition (maximal informativeness). Meanwhile,
they contain the least irrelevant information.

We formulate high-order relationships as
hyperedges in a hypergraph. In this con-
text, regions are treated as nodes. Un-
like a traditional graph where edges con-
nect only two nodes, a hypergraph al-
lows edges, known as hyperedges, to con-
nect any number of nodes. The hyper-
graph should be weighted, and the weights
of hyperedges are considered as strengths
of high-order relationships, which contain
the information relevant to cognition (Fig-
ure 1).

However, current methods for hypergraph
construction, which mostly are based on
neighbor distances and neighbor recon-
struction (Wang et al., 2015; Liu et al.,
2017; Jin et al., 2019; Huang et al., 2009),
are unsuitable in our context for several
reasons: 1) they are unable to learn MIMR hyperedges due to the absence of a tractable objec-
tive for learning such hyperedges. 2) they fall short of learning consistent structures across subjects,
which contradicts the belief that the cognitive function mechanism of healthy human beings should
be similar (Wang et al., 2023). 3) the number of hyperedges is restricted to the number of nodes,
which may lead to sub-optimal performance. Furthermore, although information bottleneck (IB) is
a prevailing solution to learn MIMR representations in deep learning (Kim et al., 2021; Alemi et al.,
2016; Luo et al., 2019), existing IB methods focus on extracting compressed representations of in-
puts instead of identifying underlying structures such as hypergraphs. Harnessing the IB framework
for identifying hypergraphs necessitates both architectural innovations and theoretical derivations.

Proposed work In this paper, we propose Hypergraph of Brain Regions via multi-head Drop-
bottleneck (HYBRID), a novel approach for identifying maximally informative yet minimally re-
dundant high-order relationships of brain regions. The overall pipeline of HYBRID is depicted in
Figure 2. HYBRID is equipped with a CONSTRUCTOR and a WEIGHTER. The CONSTRUCTOR
identifies the hyperedge structures of brain regions by learning sets of masks, and the WEIGHTER
computes a weight for each hyperedge. To advance the IB principle for hyperedge identification, we
further propose multi-head drop-bottleneck and derive its optimization objective.

HYBRID gets rid of searching in an exponential space through learning masks to identify hyper-
edges, which guarantees computational efficiency. Its feature-agnostic masking mechanism design
ensures HYBRID to learn consistent structures across subjects. Moreover, the model is equipped
with a number of parallel heads, and each head is dedicated to a hyperedge. Through this, HY-
BRID is able to identify any number of hyperedges, depending on how many heads it is equipped
with. Additionally, the proposed multi-head drop-bottleneck theoretically guarantees the maximal
informativeness and minimal redundancy of the identified hyperedges.

We evaluate our methods on 8 datasets of human subjects under different conditions and at dif-
ferent participation times. We quantitatively evaluate our approach by a commonly used protocol
for studying brain connections, CPM (Shen et al., 2017) (Appendix B), and show that our model
outperforms the state-of-the-art deep learning models by an average of 12.1% on a comprehensive
benchmark. Our post-hoc analysis demonstrates that hyperedges of higher degrees are considered
more significant, which indicates the significance of high-order relationships in human brains.

2 PROBLEM DEFINITION & NOTATIONS

Input We consider ABCD, which is a widely used benchmark in fMRI studies (5.1). This dataset
is a collection of instances, where each instance corresponds to an individual human subject. An
instance is represented by the pair (X,Y ). X ∈ RN×d represents the features for each subject,
where N is the number of brain regions and d is the number of feature dimensions. The features
are obtained by connectivity, consistent with previous works (5.1). Y ∈ R denotes the prediction
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target, such as fluid intelligence. Section 5 elaborates more details about datasets and preprocessing
procedures. For how to obtain features of regions from raw data, see Paragraph 5.1 for more details.

Goal Based on the input X , HYBRID aims to learn a weighted hypergraph of the brain,
where regions are nodes. To achieve this, HYBRID identifies a collection of hyperedges H =
(h1,h2, · · · ,hK), and assigns weights w = [w1, w2, · · · , wK ]T for all hyperedges. These hy-
peredges and their weights, which represent strengths of hyperedges, are expected to be the most
informative (i.e. relevant to the target Y ) yet the least redundant.

Representation of hyperedges As mentioned before, we use H to denote the collection of hy-
peredge structures and hk to denote the k-th hyperedge. We use the following representation for a
hyperedge:

hk = mk ⊙X ∈ RN×d (1)

where mk ∈ {0, 1}N is a mask vector and ⊙ denotes broadcasting element-wise multiplication. In
other words, each hk is a random row-zeroed version of X .

3 RELATED WORK

Hypergraph construction Existing hypergraph construction methods are mostly based on neigh-
bor reconstruction and neighbor distances. For example, the k nearest neighbor-based method
(Huang et al., 2009) connects a centroid node and its k nearest neighbors in the feature space to form
a hyperedge. Wang et al. (2015); Liu et al. (2017); Jin et al. (2019); Xiao et al. (2019) further refine
these neighbor connections through various regularization. However, the number of hyperedges of
these methods is restricted to the number of nodes, and hyperedges obtained by these methods are
inconsistent across instances. Zhang et al. (2022; 2018) proposed to iteratively refine a noisy hyper-
graph, which is obtained by the aforementioned methods. Therefore, they share the same limitations
as the aforementioned methods. In addition, these methods are unable to learn MIMR hyperedges
due to the absence of a tractable objective. Other methods such as attributed-based methods (Huang
et al., 2015; Joslyn et al., 2019) are ill-adapted to our context since they require discrete labels or
a prior graph topology. Different from these methods, we provide a way to learn a consistent hy-
pergraph through a deep-learning model without any prior topology. Furthermore, thanks to the
proposed multi-head drop-bottleneck, these hyperedges are theoretically ensured MIMR.

High-order relationships in fMRI Although some methods are working on high-order relation-
ships in fMRI, they are limited or inconsistent with our MIMR objective. Xiao et al. (2019); Li et al.
(2022) used the existing non-learning-based hypergraph construction methods, which may lead to
noisy and inexpressive hypergraphs. Zu et al. (2016); Santoro et al. (2023) enumerated all hyper-
edges with degrees lower than 3, which can only discover a tiny portion of all possible hyperedges in
exponential space and is not scalable to a large degree. Rosas et al. (2019) proposed O-information,
which reflects the balance between redundancy and synergy. The O-information metric is utilized
by Varley et al. (2023) to study fMRI data. However, the objective of these methods is not consistent
with ours: although both of us are quantifying the redundancy of high-order relations, our method
is to learn those that are most informative toward a cognition score, while theirs is to depict the
synergy and redundancy within a system.

Information bottleneck Information bottleneck (IB) (Tishby et al., 2000) is originally a technique
in data compression. The key idea is to extract a summary of data, which contains the most relevant
information to the objective. Alemi et al. (2016) first employed an IB view of deep learning. After
that, IB has been widely used in deep learning. The applications span areas such as computer vision
(Luo et al., 2019; Peng et al., 2018), reinforcement learning (Goyal et al., 2019; Igl et al., 2019),
natural language processing (Wang et al., 2020) and graph learning (Yu et al., 2020; 2022; Xu et al.,
2021; Wu et al., 2020). Unlike these studies that use IB to extract a compressed representation or a
select set of features, our approach focuses on identifying the underlying structures of the data.

Connectivity-based cognition prediction Recently, deep learning techniques have been increas-
ingly employed in predicting cognition based on the connectivity of brain regions. A substantial
portion of these studies (Ahmedt-Aristizabal et al., 2021; Li et al., 2019; Cui et al., 2022b; Kan
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Figure 2: Overview of the HYBRID pipeline when the total number of hyperedges K = 3. hyper-
edge are in distinct colors for clarity. The CONSTRUCTOR identifies hyperedges in the hypergraph,
where regions are nodes. The WEIGHTER computes a weight for each hyperedge. These weights,
representing strengths of hyperedges, are expected to be informative in terms of our target Y . There
are two separate phases after obtaining weights of hyperedges: 1) Training. The model’s parame-
ters are trained under the supervision of Y ; 2) Evaluation. The output weights, as well as pairwise
weights, are fed into the CPM (see Appendix B).

et al., 2022a; Cui et al., 2022a; Said et al., 2023) model the brain network as a graph, in which
regions act as nodes and pairwise correlations form the edges. These methods predominantly utilize
Graph Neural Networks (GNNs) to capture the connectivity information for predictions. In addition
to GNNs, Kan et al. (2022b) proposed to use transformers with a specially designed readout module,
leveraging multi-head attention mechanisms to capture pairwise connectivity. However, these meth-
ods heavily rely on pairwise connectivity and neglect more intricate higher-order relationships. This
oversight, on the one hand, leads to sub-optimal prediction performances; and on the other hand,
prevents domain experts from acquiring insightful neuroscience interpretations, given that human
cognition often involves multiple regions.

4 METHOD

Method Overview HYBRID consists of a CONSTRUCTOR Fc, a WEIGHTER Fw, and a LINEAR-
HEAD Fl. At a high level, the CONSTRUCTOR Fc is responsible for identifying hyperedges H from
the data to construct the hypergraph. After that, the WEIGHTER Fw calculates a weight for each
hyperedge. Finally, based on all the weights w, the LINEARHEAD Fl predicts the label Y . An
illustration of this pipeline is shown in Figure 2. The pipeline can be formulated as

X −−→
Fc

H −−→
Fw

w −→
Fl

Y (2)

We will elaborate on all of the details of the architecture below.

4.1 LEARNING THE HYPERGRAPH BY MULTI-HEAD MASKING

Given an instance, represented by X = [X1, X2, · · · , XN ]T ∈ RN×d, where Xi ∈ R is a column
vector representing the features of region i. These regions are nodes in the hypergraph we are
going to construct. Hyperedges in the hypergraph can be beneficial in the learning task because it is
essential to model the interactions between more than two regions.

Hyperedges construction In this paragraph, we elaborate how the CONSTRUCTOR identifies the
hyperedges, i.e. H = Fc(X).

Suppose the number of hyperedges is K, which is a predefined hyperparameter. We assign a head to
each hyperedge. Each head is responsible for constructing a hyperedge by selecting nodes belonging
to that hyperedge.

Specifically, to construct the k-th hyperedge, the CONSTRUCTOR’s k-th head outputs a column
vector mk ∈ {0, 1}N , where each element in the vector corresponds to a region.
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mk = [1(pkθ,1),1(p
k
θ,2), · · · ,1(pkθ,N )]T ∈ {0, 1}N (3)

where pkθ,i, i = 1, 2, · · · , N are learnable parameters. 1 : [0, 1] 7→ {0, 1} is an indicator func-
tion, which is defined as 1(x) = 1 if x > 0.5 and 1(x) = 0 if x ≤ 0.5. And mk is a column
vector corresponding to the k-th hyperedge. Note that since there is no gradient defined for the
indicator operation, we employ the stopgradient technique (Oord et al., 2017; Bengio et al., 2013)
to approximate the gradient.

Input Masks Attributed
Hyperedges

Hyperedges
Weights

Weighter

Readout

Readout

Readout

Constructor

Figure 3: Architecture details of the CONSTRUC-
TOR and the WEIGHTER when the number of
nodes N = 6 and the number of hyperedges K =
3. The CONSTRUCTOR learns the hyperedge
structure by masking nodes. The WEIGHTER
computes the weight of each hyperedge based on
the remaining nodes and their features.

In the vector mk, 0 indicates nodes being
masked out, and 1 indicates nodes not being
masked. Nodes that are not masked are con-
sidered to form a hyperedge together. We use
hk to represent the masked version of X

hk = mk ⊙X

= [mk
1X1,m

k
2X2, · · · ,mk

NXN ] ∈ RN×d

(4)
where ⊙ is the broadcast element-wise multi-
plication. mk

j is the j-th element of the vector
mk.

We obtain K hyperedges for K sets of masks.
We use H to denote the collection of all hyper-
edges.

H = (h1,h2, · · · ,hK) (5)

Hyperedge weighting After obtaining the
structure (i.e. member nodes) of each hyper-
edge, the WEIGHTER will calculate each hyper-
edge’s weight, which is supposed to indicate the importance of that hyperedge, based on the member
nodes and their features, i.e. w = Fw(H).

These weights are obtained by a Readout module, which is composed of: 1) summing over all the
non-masked nodes feature-wisely; 2) dim reduction operation.

wk = Readout(hk) = DimReduction(mkThk) ∈ R (6)

where wk is the weight of the k-th hyperedge and DimReduction is an MLP with ReLU acti-
vations, where the output dimension is 1. For all hyperedges, we obtain K hyperedges in total,
w = [w1, w2, · · · , wK ]T ∈ RK . Finally, these weights will be fed into the final linear head to
predict the label of the instance,

Ŷ = Fl(w) ∈ R (7)

In contrast to previous hypergraph construction methods (Jin et al., 2019; Xiao et al., 2019), which
identify hyperedges by refining neighbors and assign weights by aggregating node features, HY-
BRID makes these procedures learnable and thus is able to identify MIMR hyperedges in a data-
driven way through expressive neural networks. We decide the number of hyperedges K according
to the study in Appendix E.2.

4.2 OPTIMIZATION FRAMEWORK

We propose a new IB framework named multi-head drop-bottleneck to optimize HYBRID. To adopt
an information bottleneck view of HYBRID, we consider X , Y and H are random variables in the
Markovian chain X ↔ Y ↔ H . According to our MIMR objective, we optimize

argmax I(H;Y )− βI(H;X) (8)

where β is a coefficient trading off informativeness and redundancy. Since optimizing the mutual
information for high-dimensional continuous variables is intractable, we instead optimize the lower
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bound of Equation 8. Specifically, for the first term (informativeness), it is easy to show
I(H;Y ) = H[Y ]−H[Y |H]

= H[Y ] + Ep(Y,H)[log p(Y |H)]

= H[Y ] + Ep(Y,H)[log qϕ(Y |H)] + Ep(H)[KL(p(Y |H)|qϕ(Y |H))]

≥ H[Y ] + Ep(Y,H)[log qϕ(Y |H)]

(9)

where H[·] is the entropy computation. Since there is no learnable component in the entropy of Y ,
we only need to optimize the second term Ep(Y,H)[log qϕ(Y |H)]. qϕ can be considered as a model
that predicts Y based on H , which essentially corresponds to Fl ◦ Fw, where ◦ is the function
composition. In practice, we set qϕ as a Gaussian model with variance 1 as most probabilistic
machine learning models for continuous data modeling. (Alemi et al., 2016; Luo et al., 2019; Peng
et al., 2018; Kingma & Welling, 2013).

For the second term (redundancy) in Equation 8, we have
Proposition 1. (Upper bound of I(H;X) in multi-head drop-bottleneck)

I(H;X) ≤
K∑

k=1

I(hk;X) ≤
K∑

k=1

N∑
i=1

I(hk
i ;Xi) =

K∑
k=1

N∑
i=1

H[Xi](1− pkθ,i) (10)

where hi
j and Xj is the j-th row of hi and X respectively. pkθ,i is the mask probability in Equation

3. H is the entropy computation. The equality holds if and only if nodes are independent and
hyperedges do not overlap. The second inequality is inspired by Kim et al. (2021). The proof of the
proposition can be found in Appendix A.

Therefore, instead of optimizing the intractable objective 8, we optimize its upper bound (i.e. loss
function) according to Equation 9 and 10.

L = ∥Y −Fl ◦ Fw ◦ Fc(X)∥22 + β

K∑
k=1

N∑
i=1

H[Xi](1− pkθ,i) ≥ −I(H,Y ) + βI(H,X) (11)

The learnable components are the shallow embeddings in Equation 3, the DimReduction MLP in
Equation 6 and the LINEARHEAD Fl in Equation 7. For how do we choose the trade-off coefficient
β, see Appendix E.3 for more discussions.

4.3 COMPUTATIONAL COMPLEXITY

Suppose we have N regions as N nodes and K hyperedges. For the CONSTRUCTOR, the unignor-
able computation is from the mask operation. The computational complexity of this step for each
hyperedge is O(Nd) since it does a pairwise multiplication operation of a matrix of size N × d.
Given that there are K hyperedges, the total complexity is O(NKd). For the WEIGHTER, the
computation is from the dim reduction operation and the linear head. The dim reduction operation
is an MLP. In this work, the hidden dimensions are a fraction of the original feature dimension.
Therefore, the complexity of the dim-reduction MLP is O(d2). The linear head only contributes
O(d), which is neglectable. As a result, the computational complexity of the whole model is
O(NKd + d2) = O(N2K) since the feature dimension is equal to the number of regions (5.1).
This complexity is just at the same scale as that of MLPs even though we are addressing a more
challenging task: identifying high-order relationships in an exponential space.

5 EXPERIMENTS

In this section, we conducted experiments to validate the quality of the learned hyperedges regarding
the cognition phenotype outcome. Furthermore, we conducted ablation studies to validate the key
components in our model. We also analyzed our results both quantitatively and qualitatively.

5.1 EXPERIMENT SETTINGS

Metric To evaluate the quality of hyperedges obtained by HYBRID, we use CPM (Shen et al.,
2017), a standard model that could evaluate the correlation between connectivity and the prediction
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target, due to its high impact in the community. In the original implementation of CPM, weights
of pairwise edges are obtained by Pearson correlation between nodes. These weights, as pairwise
connectivity, are fed into the CPM. CPM will output a metric that measures the overall correlation
between edges and the prediction target, which can be considered as a measure of edge qualities.
This process is formulated as

r′ = CPM(wp, Y ) (12)

where wp ∈ RKp denotes the pairwise edge weights and Kp is the total number of pairwise edges.
r′ is a metric that measures the quality of weights based on positive and negative correlations to
the cognition score. To evaluate the quality of the learned weights for our model and baselines, we
concatenate the learned weights wh ∈ RKh with the pairwise ones together into the CPM, and thus
adjust Equation 12 to

r = CPM([wp∥wh], Y ) (13)

where [·∥·] denotes the concatenation of two vectors. The r value reflects the quality of learned
weights in terms of the prediction performance since it measures the overall correlation between
weights and the prediction target. In our model, wh = w, which is the learned hyperedge weights.

Dataset We use functional brain imaging data from the first release of the Adolescent Brain Cog-
nitive Development (ABCD) study, collected from 11, 875 children aged between 9 to 10 years old
(Casey et al., 2018). The functional MRI (fMRI) data is collected from children when they were
resting and when they performed three emotional and cognitive tasks. The fMRI data is processed
using BioImage Suite (Joshi et al., 2011) with the standard preprocessing procedures, such as slice
time and motion correction, registration to the MNI template (see details in Greene et al. (2018)
and Horien et al. (2019)). We delete scans with more than 0.10 mm mean frame-to-frame displace-
ment. We use the ABCD imaging data collected from the baseline (release 2.0) as well as the 2-year
follow-up (release 3.0). For each time point, we included children subjected to four conditions: the
resting state where the brain is not engaged in any activity (Rest), the emotional n-back task (EN-
back), the Stop Signal task (SST), and the Monetary Incentive Delay (MID) task. In conclusion, we
obtain 8 datasets from 2 timepoints and 4 conditions (Rest, SST, EN-back, MID). Statistics of each
dataset are summarized in Appendix C.

For the prediction target, we consider fluid intelligence as our label. Fluid intelligence reflects the
general mental ability and plays a fundamental role in various cognitive functions. Recent literature
has seen success in predicting intelligence based on pairwise predictive modeling (Dubois et al.,
2018a;b), and we aim to improve the prediction accuracy of the current methods.

Data preprocessing The raw fMRI data of an instance is represented in four dimensions (3 spatial
dimensions + 1 temporal dimension), which can be imagined as a temporal sequence of 3D images.
First, brain images are parceled into regions (or nodes) using the AAL3v1 atlas (Rolls et al., 2020).
Following previous works (Kan et al., 2022b; Li et al., 2021; Thomas et al., 2022), each region’s
time series is obtained by averaging all voxels in that region. Consistent with previous connectivity-
based methods (Li et al., 2021; Kan et al., 2022b; Ktena et al., 2018; Said et al., 2023), for each
region, we use its Pearson correlation coefficients to all regions as its features. We randomly split
the data into train, validation, and test sets in a stratified fashion. The split ratio is 8:1:1.

Baselines We compare our method with 3 classes of baselines: 1) standard method, which is
exactly the classical method that predicts outcomes based on pairwise edges (Shen et al., 2017;
Dadi et al., 2019; Wang et al., 2021). The comparison with standard methods shows whether the
high-order connectivity has its advantage over the classical pairwise one or not. 2) hypergraph con-
struction methods. We consider kNN (Huang et al., 2009), l1 hypergraph (Wang et al., 2015), and l2
hypergraph (Jin et al., 2019). 3) Connectivity-based cognition prediction methods, which are state-
of-the-art predictive models based on brain connectivity. We consider BrainNetGNN (Mahmood
et al., 2021), BrainGNN (Li et al., 2021), and BrainNetTF (Kan et al., 2022b). BrainGB (Cui et al.,
2022a) is a study of different brain graph neural network designs and we include its best design as a
baseline. Note that since these models are unable to identify hyperedge structures of brain regions,
we input their last layer embeddings (each entry as a weight) into the CPM model. Note that our
weights w are also last layer embeddings in HYBRID.
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Type Model SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

Standard pairwise 0.113 0.218 0.099 0.164 0.201 0.322 0.299 0.289

Hypergraph
Construction

kNN 0.115 0.268 0.168 0.127 0.257 0.266 0.238 0.315
l1 hypergraph 0.099 0.223 0.125 0.126 0.145 0.295 0.242 0.259
l2 hypergraph 0.096±0.002 0.197±0.003 0.118±0.003 0.157±0.016 0.203±0.005 0.272±0.004 0.289±0.011 0.307±0.006

Connectivity
based

Prediction

BrainNetGNN 0.227±0.060 0.287±0.043 0.266±0.046 0.221±0.040 0.468±0.058 0.480±0.068 0.506±0.057 0.453±0.028

BrainGB 0.190±0.073 0.214±0.051 0.265±0.048 0.176±0.066 0.447±0.089 0.483±0.077 0.458±0.064 0.432±0.076

BrainGNN 0.262±0.030 0.235±0.032 0.260±0.049 0.185±0.058 0.455±0.028 0.391±0.077 0.445±0.078 0.368±0.041

BrainNetTF 0.327±0.084 0.338±0.056 0.370±0.098 0.334±0.084 0.633±0.178 0.631±0.142 0.629±0.123 0.588±0.138

Ours HYBRID 0.361±0.058 0.348±0.061 0.386±0.060 0.223±0.056 0.738±0.054 0.714±0.037 0.816±0.053 0.730±0.049

Table 1: r values of our hyperedges compared to baselines. Results are averaged over 10 runs.
Deterministic methods do not have standard deviations.

Model SST 1 EN-back 1 MID 1 Rest 1 SST 2 EN-back 2 MID 2 Rest 2

HYBRID 0.361±0.058 0.348±0.061 0.386±0.060 0.223±0.056 0.738±0.054 0.714±0.037 0.816±0.053 0.730±0.049

HYBRIDNoMask 0.297±0.035 0.274±0.057 0.323±0.059 0.221±0.034 0.653±0.036 0.599±0.059 0.757±0.021 0.543±0.038

HYBRIDRndMask 0.256±0.069 0.191±0.046 0.255±0.080 0.190±0.051 0.541±0.069 0.514±0.038 0.598±0.064 0.482±0.083

HYBRIDSoftMask 0.343±0.042 0.314±0.040 0.320±0.055 0.245±0.061 0.707±0.042 0.662±0.058 0.796±0.031 0.655±0.030

Table 2: Ablation studies on the masking mechanism. Results are averaged over 10 runs.

Implementation & Training Details Due to the data scarcity, training on individual datasets
would result in serious overfitting. To mitigate this, we train our model as well as baselines us-
ing all eight datasets together. Details of the overfitting issue and our parameter-sharing strategy are
further discussed in Appendix E.1. See Appendix D for other implementation and training details
such as hyperparameter choices and software/hardware specifications.

5.2 QUALITY OF HYPEREDGES

We report r values by CPM in Table 1. As we can see, HYBRID outperforms the state-of-the-
art predictive models on 7 datasets, with an average improvement of 12.1%. Moreover, HYBRID
outperforms all other deep learning baselines in efficiency, with 87% faster than the next fastest one
(BrainNetTF). Refer to Appendix F for more runtime details.

Ablation Studies We conduct an ablation study on the effect of our masking mechanism. Specif-
ically, we compare our model with 3 variants: 1) HYBRIDRndMask: Replace the learnable masks
with randomized masks with the same sparsity at the beginning of training. 2) HYBRIDNoMask:
Do not mask at all, which means all nodes and their features are visible to each head. 3) HY-
BRIDSoftMask: Remove the indicator function and use pkθ,i directly in Equation 3. Ablation results
are shown in Table 2. We find the original HYBRID and the HYBRIDSoftMask outperform all other
variants, which demonstrates the effect of learnable masks. Moreover, the original HYBRID is
better than its soft version HYBRIDSoftMask, which demonstrates our sparse and succinct repre-
sentations reserve more relevant information than smooth ones. Other ablation studies such as the
choices of the number of hyperedges and choices of β can be found in Appendix E.

5.3 FURTHER ANALYSIS

Hyperedge degree distribution We plot the hyperedge degree distribution in Fig.4a. We find
there are two distinct clusters in the figure. The first cluster is hyperedges with degree ≤ 5. 1-degree
and 2-degree hyperedges are special cases of our method: 1-degree hyperedges are individual nodes,
which imply the contribution of individual regions to the cognition. 2-degree hyperedges reveal the
importance of traditional pairwise connectivity. The other cluster concentrates around degree 25,
which implies the importance of relationships of multiple regions.

Hyperedges with higher degree are more significant CPM conducts a significance test on pair-
wise edges and hyperedges internally based on a linear regression model, and thus we can obtain a
P-value for each hyperedge from the significance test. We define the significance of a hyperedge as
1− Pv ∈ [0, 1] where Pv is the P-value of that hyperedge.

The relationship between hyperedge degree and its significance is shown in Fig 4b. In this figure, we
find a strong positive correlation between a hyperedge’s degree and its significance, which indicates
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Figure 4: Hyperedge profiles. (a) Hyperedge degree distribution of learned hyperedges. (b) Corre-
lation between hyperedge degree and significance. (c) Comparison between the number hyperedges
and pairwise edges under different significance thresholds. The total number of hyperedges is 32.
And the total number of pairwise edges is 26, 896.

that interactions of multiple brain regions play more important roles in cognition than pairwise or
individual ones. It is also worth mentioning that there is a turning point around degree 5, which
corresponds to the valley around 5 in Figure 4a.

Comparison with pairwise edges To compare the significance in cognition between pairwise
edges and learned hyperedges, we plot the number of remaining edges under different thresholds in
Figure 4c. We find out that the learned hyperedges are much more significant than pairwise ones.
Also note that even if we set the threshold to an extremely strict value (1×10−8), there are still 60%
hyperedges considered significant. This evidence shows that our high-order relationships are much
more significant than the traditional pairwise connectivity, which implies relationships involving
multiple brain regions could be much more essential in cognition.

Figure 5: Visualization of the frequency of each
region under different conditions.

Region importance To better understand the
roles of each brain region in cognition under
different conditions, we studied the frequency
at which each region appears in a hyperedge
out of all identified hyperedges. The frequency,
which can be considered as a measure of re-
gion importance, is visualized in Figure 5. Vi-
sual regions (Fusiform, Cuneus, Calcarine) are
especially active due to the intensive visual de-
mands in all three conditions. We found that the
Frontal Inf Oper and ACC pre, recognized for
their participation in response inhibition (Porn-
pattananangkul et al., 2016), frequently appear in the SST task. This aligns with what the SST
task was designed to test. Interestingly, of the three conditions (SST, EN-back, MID), only EN-
back prominently involves the Amygdala, a key region for emotion processing. This makes sense
as EN-back is the only condition related to emotion. More visualizations and interpretations on the
resting-state region importance and individual hyperedges can be found in Appendix G.

6 CONCLUSION

In this work, we propose HYBRID for identifying maximally informative yet minimally redundant
(MIMR) high-order relationships of brain regions. To effectively optimize our model, we further
proposed a novel information bottleneck framework with theoretical guarantees. Our method out-
performs state-of-the-art models of hypergraph construction and connectivity-based prediction. The
result analysis shows the effectiveness of our model. We expect such advancements could bene-
fit clinical studies, providing insights into neurological disorders, and offering improved diagnostic
tools in neurology.

Limitations HYBRID only considers static high-order relations. Given that ABCD tasks are dy-
namic, including temporal changes and interactions, it will be interesting to study the evolution of
these high-order relationships.
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Thirion, and Gaël Varoquaux. Benchmarking functional connectome-based predictive models for
resting-state fMRI. NeuroImage, 192:115–134, 2019. ISSN 1053-8119. doi: https://doi.org/10.
1016/j.neuroimage.2019.02.062. URL https://www.sciencedirect.com/science/
article/pii/S1053811919301594.

Julien Dubois, Paola Galdi, Yanting Han, Lynn K Paul, and Ralph Adolphs. Resting-state functional
brain connectivity best predicts the personality dimension of openness to experience. Personality
neuroscience, 1:e6, 2018a.

Julien Dubois, Paola Galdi, Lynn K Paul, and Ralph Adolphs. A distributed brain network predicts
general intelligence from resting-state human neuroimaging data. Philosophical Transactions of
the Royal Society B: Biological Sciences, 373(1756):20170284, 2018b.

Emily S Finn, Xilin Shen, Dustin Scheinost, Monica D Rosenberg, Jessica Huang, Marvin M Chun,
Xenophon Papademetris, and R Todd Constable. Functional connectome fingerprinting: Identi-
fying individuals using patterns of brain connectivity. Nature neuroscience, 18(11):1664–1671,
2015.

Siyuan Gao, Abigail S Greene, R Todd Constable, and Dustin Scheinost. Combining multiple
connectomes improves predictive modeling of phenotypic measures. Neuroimage, 201:116038,
2019.

10

https://www.sciencedirect.com/science/article/pii/S1053811919301594
https://www.sciencedirect.com/science/article/pii/S1053811919301594


Under review as a conference paper at ICLR 2024

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the in-
formation bottleneck. arXiv preprint arXiv:1901.10902, 2019.

Abigail S Greene, Siyuan Gao, Dustin Scheinost, and R Todd Constable. Task-induced brain state
manipulation improves prediction of individual traits. Nature communications, 9(1):2807, 2018.

Corey Horien, Xilin Shen, Dustin Scheinost, and R Todd Constable. The individual functional
connectome is unique and stable over months to years. Neuroimage, 189:676–687, 2019.

Sheng Huang, Mohamed Elhoseiny, Ahmed Elgammal, and Dan Yang. Learning hypergraph-
regularized attribute predictors, 2015.

Yuchi Huang, Qingshan Liu, and Dimitris Metaxas. Video object segmentation by hypergraph cut.
In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1738–1745, 2009.
doi: 10.1109/CVPR.2009.5206795.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. Advances in neural information processing systems, 32, 2019.

Taisong Jin, Zhengtao Yu, Yue Gao, Shengxiang Gao, Xiaoshuai Sun, and Cuihua Li. Robust l2-
hypergraph and its applications. Information Sciences, 501:708–723, 2019.

Alark Joshi, Dustin Scheinost, Hirohito Okuda, Dominique Belhachemi, Isabella Murphy,
Lawrence H Staib, and Xenophon Papademetris. Unified framework for development, deploy-
ment and robust testing of neuroimaging algorithms. Neuroinformatics, 9:69–84, 2011.

Cliff Joslyn, Sinan Aksoy, Dustin Arendt, Louis Jenkins, Brenda Praggastis, Emilie Purvine, and
Marcin Zalewski. High performance hypergraph analytics of domain name system relationships.
In HICSS 2019 symposium on cybersecurity big data analytics, 2019.

Xuan Kan, Hejie Cui, Joshua Lukemire, Ying Guo, and Carl Yang. Fbnetgen: Task-aware GNN-
based fMRI analysis via functional brain network generation. In International Conference on
Medical Imaging with Deep Learning, pp. 618–637. PMLR, 2022a.

Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer.
Advances in Neural Information Processing Systems, 35:25586–25599, 2022b.

Jaekyeom Kim, Minjung Kim, Dongyeon Woo, and Gunhee Kim. Drop-bottleneck: Learning dis-
crete compressed representation for noise-robust exploration. arXiv preprint arXiv:2103.12300,
2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Markus Knauff and Ann G Wolf. Complex cognition: the science of human reasoning, problem-
solving, and decision-making, 2010.

Sofia Ira Ktena, Sarah Parisot, Enzo Ferrante, Martin Rajchl, Matthew Lee, Ben Glocker, and Daniel
Rueckert. Metric learning with spectral graph convolutions on brain connectivity networks. Neu-
roImage, 169:431–442, 2018.

Karin Kucian, Thomas Loenneker, Thomas Dietrich, Mengia Dosch, Ernst Martin, and Michael
Von Aster. Impaired neural networks for approximate calculation in dyscalculic children: a func-
tional MRI study. Behavioral and Brain Functions, 2(1):1–17, 2006.

Karin Kucian, Michael von Aster, Thomas Loenneker, Thomas Dietrich, and Ernst Martin. Devel-
opment of neural networks for exact and approximate calculation: A fMRI study. Developmental
neuropsychology, 33(4):447–473, 2008.

Hui-Jie Li, Xiao-Hui Hou, Han-Hui Liu, Chun-Lin Yue, Yong He, and Xi-Nian Zuo. Toward systems
neuroscience in mild cognitive impairment and Alzheimer’s disease: A meta-analysis of 75 fMRI
studies. Human brain mapping, 36(3):1217–1232, 2015a.

11



Under review as a conference paper at ICLR 2024

Hui-Jie Li, Xiao-Hui Hou, Han-Hui Liu, Chun-Lin Yue, Guang-Ming Lu, and Xi-Nian Zuo. Putting
age-related task activation into large-scale brain networks: a meta-analysis of 114 fMRI studies
on healthy aging. Neuroscience & Biobehavioral Reviews, 57:156–174, 2015b.

Xiaoxiao Li, Nicha C Dvornek, Yuan Zhou, Juntang Zhuang, Pamela Ventola, and James S Dun-
can. Graph neural network for interpreting task-fMRI biomarkers. In Medical Image Computing
and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen,
China, October 13–17, 2019, Proceedings, Part V 22, pp. 485–493. Springer, 2019.

Xiaoxiao Li, Yuan Zhou, Nicha Dvornek, Muhan Zhang, Siyuan Gao, Juntang Zhuang, Dustin
Scheinost, Lawrence H Staib, Pamela Ventola, and James S Duncan. Braingnn: Interpretable
brain graph neural network for fMRI analysis. Medical Image Analysis, 74:102233, 2021.

Yao Li, Qifan Li, Tao Li, Zijing Zhou, Yong Xu, Yanli Yang, Junjie Chen, and Hao Guo. Construc-
tion and multiple feature classification based on a high-order functional hypernetwork on fMRI
data. Frontiers in Neuroscience, 16:848363, 2022.

Qingshan Liu, Yubao Sun, Cantian Wang, Tongliang Liu, and Dacheng Tao. Elastic net hypergraph
learning for image clustering and semi-supervised classification. IEEE Transactions on Image
Processing, 26(1):452–463, 2017. doi: 10.1109/TIP.2016.2621671.

Sheree F Logue and Thomas J Gould. The neural and genetic basis of executive function: attention,
cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123:
45–54, 2014.

Yawei Luo, Ping Liu, Tao Guan, Junqing Yu, and Yi Yang. Significance-aware information bottle-
neck for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 6778–6787, 2019.

Usman Mahmood, Zening Fu, Vince D Calhoun, and Sergey Plis. A deep learning model for data-
driven discovery of functional connectivity. Algorithms, 14(3):75, 2021.

Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic atten-
tion mechanism. In International Conference on Machine Learning, pp. 15524–15543. PMLR,
2022a.

Siqi Miao, Yunan Luo, Mia Liu, and Pan Li. Interpretable geometric deep learning via learnable
randomness injection. arXiv preprint arXiv:2210.16966, 2022b.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. arXiv preprint arXiv:1711.00937, 2017.

Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. Variational dis-
criminator bottleneck: Improving imitation learning, inverse RL, and GANs by constraining in-
formation flow. arXiv preprint arXiv:1810.00821, 2018.

Narun Pornpattananangkul, Ahmad R Hariri, Tokiko Harada, Yoko Mano, Hidetsugu Komeda,
Todd B Parrish, Norihiro Sadato, Tetsuya Iidaka, and Joan Y Chiao. Cultural influences on neural
basis of inhibitory control. NeuroImage, 139:114–126, 2016.

Andrew E Reineberg, Marie T Banich, Tor D Wager, and Naomi P Friedman. Context-specific acti-
vations are a hallmark of the neural basis of individual differences in general executive function.
NeuroImage, 249:118845, 2022.

Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz, Amelia
Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al. A deep
learning framework for neuroscience. Nature neuroscience, 22(11):1761–1770, 2019.

Edmund T Rolls, Chu-Chung Huang, Ching-Po Lin, Jianfeng Feng, and Marc Joliot. Automated
anatomical labelling atlas 3. Neuroimage, 206:116189, 2020.

Fernando E Rosas, Pedro AM Mediano, Michael Gastpar, and Henrik J Jensen. Quantifying high-
order interdependencies via multivariate extensions of the mutual information. Physical Review
E, 100(3):032305, 2019.

12



Under review as a conference paper at ICLR 2024

Monica D Rosenberg, Emily S Finn, R Todd Constable, and Marvin M Chun. Predicting moment-
to-moment attentional state. Neuroimage, 114:249–256, 2015.

Monica D Rosenberg, Emily S Finn, Dustin Scheinost, Xenophon Papademetris, Xilin Shen, R Todd
Constable, and Marvin M Chun. A neuromarker of sustained attention from whole-brain func-
tional connectivity. Nature neuroscience, 19(1):165–171, 2016.

Monica D Rosenberg, Dustin Scheinost, Abigail S Greene, Emily W Avery, Young Hye Kwon,
Emily S Finn, Ramachandran Ramani, Maolin Qiu, R Todd Constable, and Marvin M Chun.
Functional connectivity predicts changes in attention observed across minutes, days, and months.
Proceedings of the National Academy of Sciences, 117(7):3797–3807, 2020.

Anwar Said, Roza G Bayrak, Tyler Derr, Mudassir Shabbir, Daniel Moyer, Catie Chang, and Xeno-
fon Koutsoukos. Neurograph: Benchmarks for graph machine learning in brain connectomics.
arXiv preprint arXiv:2306.06202, 2023.

Andrea Santoro, Federico Battiston, Giovanni Petri, and Enrico Amico. Higher-order organization
of multivariate time series. Nature Physics, 19(2):221–229, 2023.

Theodore D Satterthwaite, Daniel H Wolf, David R Roalf, Kosha Ruparel, Guray Erus, Simon
Vandekar, Efstathios D Gennatas, Mark A Elliott, Alex Smith, Hakon Hakonarson, et al. Linked
sex differences in cognition and functional connectivity in youth. Cerebral cortex, 25(9):2383–
2394, 2015.

João D Semedo, Amin Zandvakili, Christian K Machens, M Yu Byron, and Adam Kohn. Cortical
areas interact through a communication subspace. Neuron, 102(1):249–259, 2019.

Xilin Shen, Emily S Finn, Dustin Scheinost, Monica D Rosenberg, Marvin M Chun, Xenophon
Papademetris, and R Todd Constable. Using connectome-based predictive modeling to predict
individual behavior from brain connectivity. nature protocols, 12(3):506–518, 2017.
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A PROOF OF THE UPPER BOUND

In this section, we prove the upper bound of I(H;X) in multi-head drop-bottleneck in Equation 10.

y

x z

Figure 6: The graphical model of random variables X , Y and Z.

Lemma 1. Given random variables X , Y and Z. Their relationships are described in the graphical
model illustrated in Figure 6. We have

I(X;Y |Z) ≤ I(X;Y ) (14)

Proof.

I(X;Y |Z)− I(X;Y ) =

∫
p(x, y, z) log

p(z)p(x, y, z)

p(x, z)p(y, z)
dxdzdy

−
∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

=

∫
p(x, y, z) log

p(z)p(x, y, z)

p(x, z)p(y, z)
dxdzdy

−
∫

p(x, y, z) log
p(x, y)

p(x)p(y)
dxdydz

=

∫
p(x, y, z) log

p(z)p(x, y, z)p(x)p(y)

p(x, z)p(y, z)p(x, y)
dxdzdy

=

∫
p(x, y, z) log

p(z)p(x, z|y)p(y)p(x)p(y)
p(x, z)p(y, z)p(x, y)

dxdzdy

=

∫
p(x, y, z) log

p(z)p(x|y)p(z|y)p(y)p(x)p(y)
p(x, z)p(y, z)p(x, y)

dxdzdy

=

∫
p(x, y, z) log

p(x)p(z)

p(x, z)
dxdzdy

=

∫
p(x, z) log

p(x)p(z)

p(x, z)
dxdz

= −I(X;Z) ≤ 0

(15)

which finishes the proof.

Corollary 1.1. Given the same graphical model 6, we have

I(X,Z;Y ) ≤ I(X;Y ) + I(Z;Y ) (16)

Proof. Using the chain rule of mutual information, we obtain

I(X,Z;Y ) = I(X;Y |Z) + I(Z;Y ) (17)

According to Lemma 1, we have I(X;Y |Z) ≤ I(X;Y ), which finishes the proof.
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Theorem 2. For random variables in Equation 10, we have

I(H;X) ≤
K∑

k=1

I(hk;X) (18)

x

hk

K

Figure 7: The graphical model of random variables hk and X

Proof. According to the definitions of X and H , which are described in Section 4, we can
draw a graphical model of them in Figure 7. Define a new random variable hk1:k2 =
[hk1 ,hk1+1, · · · ,hk2−1,hk2 ], which is a concatenation from hk1 to hk2 . According to Corol-
lary 1.1 we have

I(H;X) ≤ I(h1, X) + I(h2:K , X)

≤ I(h1, X) + I(h2, X) + I(h3:K , X)

≤ I(h1, X) + I(h2, X) + I(h3, X) + · · ·

≤
K∑

k=1

I(hk;X)

(19)

Theorem 3. (proposition 1)

I(H;X) ≤
K∑

k=1

N∑
i=1

I(hk
i ;Xi) =

K∑
k=1

N∑
i=1

H[Xi](1− pkθ,i) (20)

Proof. Given Theorem 2. It suffices to prove

I(hk;X) ≤
N∑
i=1

I(hk
i ;Xi) =

N∑
i=1

H[Xi](1− pkθ,i), ∀1 ≤ k ≤ K (21)

And this is exactly the conclusion in Kim et al. (2021) if we consider hk and X as X and Z
respectively in their paper.

B CONNECTOME-BASED PREDICTIVE MODELING

Shen et al. (2017); Finn et al. (2015)) has shown tremendous promise in recent years in detecting
imaging biomarkers. (Rosenberg et al., 2015; Dubois et al., 2018a; Rosenberg et al., 2020; 2016).
Such a model, based chiefly on functional MRI data, can measure the significance of the input edge
weights, which is revealed by a correlation coefficient that reflects the correlation between the edge
weights and the neurological outcomes. One could expect a large correlation coefficient to indicate
the high quality of edge weights. We utilize the CPM as an evaluation model to evaluate the quality
of our learned hyperedges. Here is a pipeline overview of the CPM process:

1. Connectivity Calculation: For each subject, compute the Pearson correlation coefficients
for each possible pair of brain regions. This is based on the fMRI data collected for those
regions.
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Dataset Rest 1 SST 1 EN-back 1 MID 1 Rest 2 SST 2 EN-back 2 MID 2

#(instances) 1676 1673 1678 1678 1949 1053 1044 1062
length of time series 375 437 362 403 375 437 362 403

Table 3: Statistics of 8 datasets.

2. Edge Significance: Calculate the correlation between each brain connectivity edge and the
outcome of interest (e.g., cognition scores) across all subjects. The correlation of an edge
indicates its significance.

3. Edge Selection: Identify significant connectivity edges. These are the edges where the
correlation values are greater than a predetermined significance threshold.

4. Weight Summation: For each subject, sum the weights of the significant edges identified
in the previous step to derive a single summary score (scalar).

5. Model Fitting: Fit a linear model that predicts the neurological outcomes based on the
summed weights, where each subject is a sample.

6. Model Evaluation: Across all subjects, calculate the correlation of predicted values and
the neurological outcomes. Note that it is equivalent to the correlation between the summed
weights and the outcomes, and is exactly the metric r we use to evaluate our hyperedges in
Equation 13.

Since positive edges and negative edges will cancel out with each other when being summed, we
adopt the combining strategy in Boyle et al. (2023).

CPM measures the quality of edge weights According to step 6, the evaluation of the predictive
model could be measured by the correlation between predicted and ground-truth outcomes Shen
et al. (2017). Since CPM is a linear model that predicts the outcome based on the sum of significant
edge weights, the correlation is equal to the correlation between the sum and ground-truth outcomes
(which is exactly the r in Eq. 13). Hence, one can expect a larger correlation if the edge weights are
more correlated (and thus are more predictive).

Significance of edges in CPM In step 2, CPM obtains a correlation coefficient rk for each edge
weight wk and the cognition score Y across all subjects. Consider a classical hypothesis test
H0 : rk = 0, H1 : rk ̸= 0. Assume wk and Y are drawn from independent normal distribution
(corresponds to H0), the probability density function of correlation coefficient rk is

f(rk) =

(
1− rk

2
)n/2−2

B
(
1
2 ,

n
2 − 1

) ,

where n is the number of samples and B is the beta function. Based on the distribution, we obtain a
P -value for the k-th edge, which is used to measure the significance of the edge.

C DATASET DETAILS

The statistics of the number of instances and the time series length are summarized in Table 3.

D TRAINING DETAILS

Hardware We train our model on a machine with a Intel Xeon Gold 6326 CPU and RTX A5000
GPUs.

Software See Table 4 for software we used and the versions.
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notation meaning value

lr learning rate 1× 10−3

K number of hyperedges 32
β trade-off coefficients information bottleneck 0.2

[h1, h2, h3] hidden sizes of the dim reduction MLP [32, 8, 1]
B batch size 64

Table 5: Hyperparameter Choices

Strategy ID ShallowEmbeddings DimReduction LinearHead Average Score

1 ✓ ✓ ✓ 0.337
2 ✓ ✓ 0.335
3 ✓ ✓ 0.508
4 ✓ 0.539
5 ✓ ✓ 0.351
6 ✓ 0.384
7 ✓ 0.506
8 0.558

Table 6: The table summaries the model’s average performance under various parameter-sharing
strategies. The symbol ✓ indicates a component being condition-specific, while an empty cell im-
plies a component being shared across conditions.

software version

python 3.8.13
pytorch 1.11.0

cudatoolkit 11.3
numpy 1.23.3

ai2-tango 1.2.0
nibabel 4.0.2

Table 4: Software versions

Hyperparameter choices The hyperparameters selection is shown in Table 5. Some crucial hy-
perparameters ablation experiments can be found in Appendix E.

E MORE ABLATION STUDIES

E.1 PARAMETERS SHARING

As previously discussed, the scarcity of fMRI data can result in serious over-fitting. In our ex-
periments, we observed that when the model is trained on each dataset individually, the validation
set loss remains stagnant. To address this, we examined the model’s performance under various
parameter-sharing strategies. Specifically, we have three learnable components: the shallow embed-
dings in Equation 3, the dim reduction MLP in 6 and the LINEARHEAD Fl. These components can
be either shared or condition-specific. Results of different parameter-sharing strategy is shown in
Table 6.

Note that strategy 1 is equivalent to training models separately for each condition. From the table,
we find that the DimReduction component plays the most significant role. Making DimReduction
condition-specific enhances the average performance by 10%−20%. Strategy 8 is the best. However,
domain experts may expect different structures under different conditions. Therefore, we still adopt
condition-specific ShallowEmbeddings (i.e. strategy 4), given that their scores are really close.
We argue that the fact that strategy 4 is not better than 8 is because our prediction target is fluid
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intelligence, which is a general measurement of cognition and tends to be condition-agnostic. We
anticipate a potential shift in results if we switch to a more condition-specific cognition phenotype
outcome.

E.2 CHOICES OF NUMBER OF HYPEREDGES K

As explained in Section 4, we use K heads for K hyperedges. We study the correlation between the
r value and the number of hyperedges on three datasets:

0 10 20 30 40 50 60
No. of hyperedges K

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

r

dataset
SST 1
SST 2
Rest 2

(a) The performance with increasing the number
of hyperedges through 2, 7, 12, 17, 22, 27, 32,
37, 52, 57, 62 on three datasets.

0.0 0.2 0.4 0.6 0.8 1.0
0.2
0.3
0.4
0.5
0.6
0.7
0.8

r

dataset
Rest 1
SST 1
nBack 1
MID 1
Rest 2
SST 2
nBack 2
MID 2

(b) Performance with increasing β from 0.1 to 1.0
with step 0.1 on all datasets.

From Figure 8a, we find that the overall performance increases dramatically before K = 17, but
becomes stable and close to saturation after K = 32. To improve the efficiency while ensuring the
performance, we choose K = 32.

E.3 CHOICES OF THE TRADE-OFF COEFFICIENT β

In our optimization objective 8, β acts as a trade-off parameter, which is a non-negative scalar that
determines the weight given to the second term relative to the first. To study its fluence to the
performance, we plot the model performances on all datasets under different β in Figure 8b. We can
see performances on 3 datasets (Rest 1, SST 2) consistently decrease when β increases. However,
on other 5 datasets (SST 1, MID 1, Rest 2, nBack 2, MID 2), we can observe a peak at β = 0.2.
Accordingly, we adopt β = 0.2.

F RUNTIME COMPARISON

Figure 9 summarizes the per-batch training time of all deep learning models. We find that HYBRID
is the most efficient one, with 87% faster than the second one (BrainNetTF) and at least 1255%
faster than the GNN-based ones.
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Figure 9: Training time per batch of all deep learning models.
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Figure 10: Visualization of the most significant hyperedge in EN-back condition

G MORE VISUALIZATIONS

Hyperedge case study We visualize the most significant hyperedge under the EN-back condi-
tion. We observe a coordinated interaction of numerous brain regions, each fulfilling specific roles.
Notably, some of these regions serve multi-functional purposes:

• Memory Processing ParaHippocampal L, Temporal Mid: Essential for memory encod-
ing and retrieval, these regions are integral to the EN-back task, facilitating the recall of
previously viewed images.

• Emotional processing Amygdala R: The amygdala is crucial for the processing of emo-
tions, such as fear and pleasure. Since the EN-back task involves emotional stimuli, it is
reasonable that the region is connected by the hyperedge.

• Visual Processing: Calcarine R, Lingual L, Fusiform L. These regions are responsible for
visual perception and some of them are related to complex visual contents like symbols and
human faces, which were presented during the task.

• Sensory SupraMarginal L: It is responsible for interpreting tactile sensors and perceiving
limbs location. Its involvement is likely due to the requirement for participants to engage
in specific physical actions, such as pressing buttons, during the task. Temporal Mid: It
functions in multi-modal sensory integration.

• Motor Control Cerebellum: It is primarily responsible for muscle control. Caudate: It
plays a crucial role in motor processes. Its involvement is likely attributed to participants
engaging in physical actions, like pressing buttons.

• Cognitive Control ACC pre L: In the EN-back task, this region is likely crucial for main-
taining focus, error detection and correction, conflict management in working memory, and
modulating emotional responses to the task’s demands.

Resting-state brain region importance We visualize the region importance of the resting state
in Figure 11. Different from task states, where specific brain regions are activated in response to
particular tasks, brain activities during resting states, are not driven by external tasks, leading to
more diffuse and less predictable patterns of activation. This makes it harder to pinpoint specific
interactions or functions.

Putamen Insula_R

Amygdala_R Precentral_R

Calcarine_R

Temporal_Sup_R

Figure 11: Region importance of resting state.
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