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Abstract
This paper introduces a min-max optimization for-
mulation for the Graph Signal Denoising (GSD)
problem. In this formulation, we first maximize
the second term of GSD by introducing pertur-
bations to the graph structure based on Lapla-
cian distance and then minimize the overall loss
of the GSD. By solving the min-max optimiza-
tion problem, we derive a new variant of the
Graph Diffusion Convolution (GDC) architecture,
called Graph Adversarial Diffusion Convolution
(GADC). GADC differs from GDC by incorporat-
ing an additional term that enhances robustness
against adversarial attacks on the graph structure
and noise in node features. Moreover, GADC im-
proves the performance of GDC on heterophilic
graphs. Extensive experiments demonstrate the
effectiveness of GADC across various datasets.
Code is available at https://github.com/
SongtaoLiu0823/GADC.

1. Introduction
Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Hamilton et al., 2017; Veličković et al., 2018) have become
a popular approach for graph-based tasks due to their power-
ful ability to learn node representations. They have demon-
strated remarkable performance in various tasks, including
traffic prediction (Guo et al., 2019), drug discovery (Dai
et al., 2019), and recommendation system (Ying et al., 2018).
The core principle of GNNs is the message-passing oper-
ation, which aggregates node features from neighboring
nodes, thereby enhancing the smoothness of the learned
node representations. As a result, GNN models produce
predictions based on both the features of individual nodes
and those of their immediate neighbors.

Graph Diffusion Convolution (GDC) (Gasteiger et al., 2019),
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a specialized GNN architecture, aggregates information
from higher-order neighbors through generalized graph dif-
fusion. Various GDC architectures (Li et al., 2019; Zhu &
Koniusz, 2021; Liu et al., 2021b; Yang et al., 2021; Zhao
et al., 2021; Jia & Benson, 2022) are derived from the Graph
Signal Denoising (GSD) problem, formulated as:

argmin
F

L(F) := ∥F−X∥2F + λ tr
(
F⊤L̃F

)
, (1)

where X = X∗ +Υ is the observed noisy feature matrix,
Υ ∈ Rn×d is the noise matrix, X∗ is the clean feature
matrix, and L̃ ∈ Rn×n is the normalized graph Laplacian
matrix. A major strength of the GDC architecture is its abil-
ity to aggregate information from a larger set of neighbors,
enhancing ℓ2-based graph smoothing (Liu et al., 2021b).

Despite significant advancements in GDC architectures, they
rely heavily on the Laplacian matrix to derive the graph dif-
fusion matrix. This dependency can be problematic when
the graph structure is disrupted by adversarial attacks (Dai
et al., 2018; Zügner et al., 2018; Zügner & Günnemann,
2019a; Jin et al., 2020). Such attacks can cause GDC to
aggregate harmful information, disrupting node representa-
tions. Additionally, the limited number of neighbors restricts
GDC’s ability to effectively filter out large noise in node
features within some graphs (Liu et al., 2021a). These chal-
lenges raise a crucial question: Can we develop a versatile
GDC architecture that addresses these issues effectively?
In this work, we provide a positive solution to this ques-
tion by reformulating the GSD problem. Based on this
reformulation, we design a new GDC architecture that miti-
gates the negative impact of adversarial attacks on the graph
structure, noise in node features, and inconsistent edges on
heterophilic graphs.

Inspired by the saddle point formulation of adversarial train-
ing (Madry et al., 2018), we propose a min-max variant
of the GSD problem, called the Adversarial Graph Signal
Denoising (AGSD) problem:

argmin
F

q(F) :=
[
∥F−X∥2F + λ ·max

L′
tr
(
F⊤L′F

)]
,

(2)
where L′ is the added perturbation by the adversary. In the
inner optimization problem, we maximize the second term
of the AGSD. Then, we minimize the loss function q(F) in
the outer optimization problem.
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Unlike adversarial training, which requires projected gradi-
ent descent (PGD) to solve the inner maximization problem,
our formulation has a closed-form solution for the inner
optimization problem. Utilizing this closed-form solution,
we solve the outer minimization problem to derive a new
GDC architecture, Graph Adversarial Diffusion Convolu-
tion (GADC). This architecture introduces an additional
term compared to GDC, resulting in more adaptive GDC
variants that are resilient to adversarial perturbations in the
edges and noise in node features. Moreover, our GADC
enhances the performance of GDC on heterophilic graphs,
where nodes from different classes are linked. Extensive
experimental results across various datasets validate the ef-
fectiveness of our proposed algorithm. Additionally, our
novel AGSD problem can inspire the development of ad-
vanced and reliable GNN architectures.

2. Preliminaries
Notations. Let G = (V, E) represent a undirected graph,
where V is the set of vertices {v1, · · · , vn} with |V| = n
and E is the set of edges. The adjacency matrix is defined
as A ∈ {0, 1}n×n, and Ai,j = 1 if and only if (vi, vj) ∈ E .
Let Ni = {vj |Ai,j = 1} denote the neighborhood of node
vi and D denote the diagonal degree matrix, where Di,i =∑n

j=1 Ai,j . The normalized Laplacian matrix of a graph
is defined as L = Laplacian(A) = In −D−1/2AD−1/2,
where In is an n× n identity matrix. The feature matrix is
denoted as X ∈ Rn×d. tr (·) denotes the trace of the matrix.

Spectral Graph Convolution. Spectral convolution in-
volves multiplying a signal x by a Fourier domain filter gϕ,
parameterized by coefficients ϕ ∈ Rn. This is expressed as:

gϕ(L) ⋆ x = Ug∗ϕ(Λ)U⊤x, (3)

where gϕ can be approximated by a truncated expansion. A
common approach is to use Chebyshev polynomials up to
the K-th order, resulting in the following approximation:

g∗ϕ(Λ) ≈
K∑

k=0

ϕkTk(Λ̃). (4)

Graph Convolution Network (GCN). GCNs approxi-
mate spectral graph convolution using first-order Chebyshev
polynomials. By setting K = 1 and ϕ0 = −ϕ1, and ap-
proximating λn ≈ 2, the convolution becomes gϕ(L) ⋆ x =(
In +D−1/2AD−1/2

)
x. Introducing self-loops and renor-

malization trick modifies this to Ã = D̃−1/2ÃD̃−1/2,
where Ã = A + In and D̃ = D + In. The GCN layer
is then defined as:

H(l+1) = σ
(
ÃH(l)Θ(l)

)
. (5)

Here, σ is the activation function and Θ(l) are the trainable
parameters in the l-th layer.

Adversarial Training. Madry et al. (2018) study the ad-
versarial robustness of neural networks from the perspective
of robust optimization as follows:

argmin
Θ

ρ(Θ) := E(x,y)∼D

[
max
δ∈S

L(Θ, x+ δ, y)

]
, (6)

where Θ is the set of model parameters, x is the input sam-
ple, y is the label, D is the data distribution, δ is the perturba-
tion, S is the perturbation space, L is the loss function, and
E is the empirical risk. The inner maximization problem
attacks the neural network, while the outer minimization
problem finds model parameters to make it robust against
these adversarial attacks. In this work, we introduce a min-
max formulation for the GSD problem, known as AGSD.

Graph Diffusion Convolution (GDC). Graph diffu-
sion (Gasteiger et al., 2019) is defined via the diffusion
matrix:

S =

∞∑
k=0

θkT
k, (7)

where θk are the weighting coefficients and T is the
transition matrix. Existing GNN architectures such as
APPNP (Klicpera et al., 2019), GLP (Li et al., 2019),
S2GC (Zhu & Koniusz, 2021), and AirGNN (Liu et al.,
2021a) can be viewed as variations of GDC. In this work,
we introduce a new GDC architecture based on our proposed
AGSD.

3. Graph Adversarial Diffusion Convolution
In this section, we first introduce the min-max variant of
the graph signal denoising (GSD) problem in Section 3.1.1.
Then, we discuss the closed-form solution for the inner max-
imization problem in Section 3.1.2. In Section 3.1.3, we
propose graph adversarial diffusion convolution (GADC)
by solving the outer minimization problem. Finally, Sec-
tions 3.2, 3.3, and 3.4 introduce four adaptive GADC vari-
ants designed to enhance robustness against adversarial at-
tacks on the graph structure and noise in node features, as
well as improve performance on heterophilic graphs.

3.1. Adversarial Graph Signal Denoising Problem

3.1.1. PROBLEM FORMULATION

Adversarial training has been recently explored in the ro-
bust optimization. Madry et al. (2018) use a saddle point
(min-max) formulation to incorporate protection against
adversarial attacks into neural networks. In the inner max-
imization problem, the adversary uses projected gradient
descent (PGD) to identify the worst-case adversarial per-
turbations that maximize the loss. The outer minimization
problem seeks to find model parameters that minimize the
adversarial loss generated by the inner attack problem.
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Inspired by the saddle point (min-max) formulation in adver-
sarial training, we introduce the Adversarial Graph Signal
Denoising (AGSD) problem as shown in Eq. (2). In the
AGSD problem, the first term ensures the solution is close
to the observed data, while the second term involves a graph
Laplacian matrix. Defining perturbations on the graph struc-
ture to maximize the second term in the AGSD problem
is less straightforward than traditional adversarial attacks.
Inspired by the recent work (Lin et al., 2022) that uses spec-
tral distance to deploy graph structural attacks, we leverage
Laplacian distance to introduce perturbations.

Laplacian Distance. Lin et al. (2022) define the spectral
distance as the changes in the eigenvalues of the graph
Laplacian matrix, formulated as follows:

Dspectral =
∥∥g∗ϕ(Λ)− g∗ϕ (Λ

′)
∥∥
2
, (8)

where Λ and Λ′ denote the eigenvalues of the normalized
graph Laplacian matrix for the original graph G and the
disrupted graph G′. The idea behind using the spectral
distance for graph structural attacks is that perturbing the
graph to maximize this distance induces the most harmful
perturbation to the graph filters (Chang et al., 2021) and
significantly disrupts node embeddings. To make the attack
simple and effective, we directly add perturbations to the
graph filter. This allows us to define the Laplacian distance.

DLaplacian =
∥∥∥gϕ(L̃)− gϕ (L

′)
∥∥∥
F
=

∥∥∥L′ − L̃
∥∥∥
F
, (9)

where L̃ = In − D̃−1/2ÃD̃−1/2 denotes the normalized
graph Laplacian matrix.

AGSD. Based on the Laplacian distance, we introduce our
AGSD as follows:

argmin
F

q(F) :=
[
∥F−X∥2F + λ ·max

L′
tr
(
F⊤L′F

)]
s. t.

∥∥∥L′ − L̃
∥∥∥
F
≤ ε.

(10)
In the inner optimization problem, a hypothetical adversary
generates perturbations based on the Laplacian distance
to create a modified Laplacian matrix, L′, which aims to
maximize the second term of the AGSD. Then, the outer
minimization problem seeks to find F that minimizes the
overall loss function q(F).

3.1.2. CLOSED-FORM SOLUTION OF THE INNER
MAXIMIZATION PROBLEM

The min-max formulation in Eq.(10) introduces a more
complex GSD problem. In contrast to adversarial train-
ing (Madry et al., 2018), where the inner maximization
problem is solved using PGD before solving the outer min-
imization problem at each training step, our inner maxi-
mization problem is a quadratic optimization problem. This

||𝛿||!

∇ℎ(𝛿)max
||#||!$%

⟨𝛿&, FF&⟩

𝛿& =
𝜀∇ℎ(𝛿)
||∇ℎ 𝛿 ||!

Figure 1: Illustration of the inner maximization problem.
The loss function reaches the largest value when the direc-
tion of δ⊤ is the same as ∇h(δ).

removes the need for computationally expensive adversarial
perturbations at each step. Instead, we can directly identify
the largest perturbation.

Let us denote the perturbations as δ, and the perturbed
Laplacian matrix as L′ = L̃+δ. Due to the quadratic nature
of our inner maximization problem, we can reformulate it
as follows:

max
L′

tr
(
F⊤L′F

)
= ⟨L̃⊤,FF⊤⟩+max

δ
⟨δ⊤,FF⊤⟩

s. t. ∥δ∥F ≤ ε.
(11)

We denote h(δ) = ⟨δ⊤,FF⊤⟩. h(δ) reaches the largest
value when δ⊤ has the same direction with the gradient of
h(δ), i.e. δ⊤ = ε∇h(δ)

∥∇h(δ)∥F
= εFF⊤

∥FF⊤∥F
. An illustration is

provided in Figure 1. Plugging this solution into Eq. (10),
we can rewrite the outer optimization problem as follows:

argmin
F

q(F),

q(F) =

[
∥F−X∥2F + λ tr

(
F⊤L̃F

)
+ λε tr

F⊤FF⊤F

∥FF⊤∥F

]
,

(12)
where we introduce an extra loss term λε tr F⊤FF⊤F

∥FF⊤∥F
com-

pared with the GSD.

3.1.3. MODIFIED TRANSITION MATRIX DERIVED BY
OUTER MINIMIZATION PROBLEM

In this section, we derive our graph adversarial diffusion
convolution. By taking the gradient of Eq. (12) to zero, we
get the solution of the outer optimization problem as:

F =

(
I+ λL̃+ λ

εFF⊤

∥FF⊤∥F

)−1

X. (13)

Computing Eq. (13) directly involves a matrix inverse op-
eration, resulting in a complexity of O

(
n3

)
. This high

computational cost can be prohibitively expensive for large
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graphs. Inspired by the closed-form solution of Personalized
PageRank (PPR) kernel (Brin, 1998; Gasteiger et al., 2019)
(graph diffusion), we can solve Eq. (13) via graph diffusion
(Eq. (7)) and obtain

F =
1

λ+ 1

K∑
k=0

[
λ

λ+ 1

(
Ã− εFF⊤

∥FF⊤∥F

)]k
X, (14)

where T = D̃−1/2ÃD̃−1/2 − εFF⊤

∥FF⊤∥F
= Ã − εFF⊤

∥FF⊤∥F

represents the transition matrix, and α = 1
λ+1 denotes the

coefficient.

Approximate Solution of Eq. (14). Although we approxi-
mate the inverse matrix with graph diffusion to avoid O(n3)
complexity, the matrix series Eq. (14) still involves high
powers of the matrix F. Obviously, it is impossible to get an
analytical solution of F for this equation. Current methods
exploit iterative algorithms such as Newton’s method (Moré
& Sorensen, 1982) to solve this high-order nonlinear system
of equations, but the computation is also very expensive.
Therefore, there is no suitable solution that strictly follows
the equation while also avoiding large computational com-
plexity. We need a more efficient algorithm to solve Eq. (14).
We observe that the first term of AGSD requires F to be
close to X, thus a natural idea is to replace F with X in the
right side of Eq. (14) to reduce the computational complex-
ity and improve the scalability for large graphs. Thus, we
now formally propose our GADC as follows:

S =
1

λ+ 1

K∑
k=0

[
λ

λ+ 1
T

]k
, (15)

where T = Ã − εXX⊤

∥XX⊤∥F
. Note that the additional term

εXX⊤

∥XX⊤∥F
is a unique component introduced by the closed-

form solution of the inner maximization problem of AGSD.
This term doesn’t appear in existing GDC architectures
derived from the GSD problem. We will use this term to
produce more adaptive architectures, as demonstrated in the
following sections.

Error Analysis. We plug our obtained F into Eq. (14) to
compute the error of this approximate solution for the equa-
tion on the Cora (Sen et al., 2008) dataset. The error matrix
is computed by subtracting the left side from the right side:

F − 1
λ+1

∑K
k=0

[
λ

λ+1T
]k

X, where T = Ã − εXX⊤

∥XX⊤∥F
.

The norm of the error matrix for our solution is 4.5. As
a comparison, we generate a random F from a Gaussian
distribution with mean=1, std=1. If we use this random F,
the norm of the error matrix is 2780.6. Comparing the norm
of the error matrix between our solution (4.5) and a random
solution (2780.6), we can conclude that replacing F with X
indeed achieves an accurate approximation, while greatly
reducing the computational complexity.

Scalability. To leverage the additional term across var-
ious graphs, we enhance the scalability of the transition
matrix by providing the following options: computing the
normalized or unnormalized inner product of feature vectors
(Xi,Xj | j ∈ Ni) between adjacent neighbors, or between
every pair of nodes, similar to the masked/unmasked atten-
tion mechanism in GAT. Therefore, our modified transition
matrix can be formulated as follows:

T = Ã− εΦ, where

(I): Φij :=

{
XiX

⊤
j

∥Xi∥2∥Xj∥2
, if (vi, vj) ∈ E

0, otherwise,
;

(II): Φij :=
XiX

⊤
j

∥XX⊤∥F
;

(III): Φij :=

{
XiX

⊤
j

∥XX⊤∥F
, if (vi, vj) ∈ E

0, otherwise,
.

(16)

For the first option, we normalize the weights by using the
product of the norms of the features of connected neighbors,
which measures the similarity between these neighboring
nodes’ features. We will derive the fourth option from the
first option to defend against adversarial attacks on the graph
structure. The second option improves graph connectivity,
filtering out large noise in graphs. Furthermore, we discover
that even without explicitly incorporating additional graph
connectivity (the third option), reassigning edge weights
through the additional term improves denoising performance
on large graphs. Moreover, using the first option to penalize
the weights of connected neighbors enhances performance
on heterophilic graphs. We will discuss the details of these
options in the subsequent sections.

Connection to APPNP. If we take the limit k → ∞ of
power iterations in APPNP (Klicpera et al., 2019), APPNP

converges to Z(∞) = α
(
I− (1− α)Ã

)−1

Z(0), similar
to Eq. (13). Our proposed GADC introduces an additional
term εΦ in the transition matrix. This additional term makes
GADC more adaptable compared to APPNP. As we will
demonstrate in the upcoming sections, this adaptability en-
hances resilience in various scenarios, including adversarial
attacks on the graph structure, noise in node features, and
inconsistent edges on heterophilic graphs.

3.2. Defending Against Graph Adversarial Attacks

Recent studies (Zügner et al., 2018; Zügner & Günnemann,
2019a) have shown that GNNs are vulnerable to adversarial
attacks on the graph structure. These attacks often involve
adding harmful edges or removing informative ones to ma-
nipulate the information flow, thus preventing GNNs from
aggregating valuable information and disrupting node repre-
sentations. GDC relies on the graph structure to derive the
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diffusion matrix needed for smoothing node representations.
However, when the graph structure is disrupted by adver-
sarial attacks, it becomes unreliable, and we cannot use
the graph Laplacian matrix to aggregate information from
neighbors. Inspired by GNNGuard (Zhang & Zitnik, 2020),
which assigns higher weights to edges connecting nodes
with similar features while pruning edges between unrelated
nodes, we employ the additional term to achieve a similar
effect. The rationale is that on homophily graphs, nodes
within the same class have similar features, while nodes
from different classes exhibit dissimilar features. Therefore,
we use the first option in Eq. (16) and assign a very large
value to the additional term in the modified transition matrix,
allowing this term to determine the edge weights:

T = Ã− lim
ε→∞

εΦ. (17)

However, this approach may result in a numerical explosion
problem. To address this issue, we introduce a trick in
which we compute the modified transition matrix based on
the additional term with T = − limε→∞

1
ε

(
Ã− εΦ

)
. As

such, we employ the cosine value to evaluate the similarity
among connected neighbors and recalculate the weights of
the transition matrix as follows:

(IV): Tij = (Xi ⊙Xj) /
(
∥Xi∥2 ∥Xj∥2

)
s. t. Aij = 1,

(18)
where A is the disrupted adjacency matrix by adversarial
attacks and ⊙ denotes the inner product. By implementing
this trick, we can propose the fourth option to reconstruct
the informative adjacency matrix using the additional term,
thereby restoring the beneficial information flow during the
aggregation process.

3.3. Tackling Large Noise in Node Features

In the study by Liu et al. (2021a), feature aggregation in
GNNs is suggested to function as a low-pass filter, smooth-
ing node features across neighborhoods and filtering out
node feature noise (Nt & Maehara, 2019; Zhao & Akoglu,
2019). However, on graphs with a limited number of neigh-
bors, GDC’s ability to effectively filter out large noise in
node features is constrained. To address this, we provide a
theoretical analysis to understand the effect and introduce
two simple and effective GADC (II, III) methods to handle
noisy node features in graphs.

3.3.1. CONVERGENCE ANALYSIS FOR THE
AGGREGATED NOISY MATRIX

Consider applying GDC to a noisy node feature matrix,
represented as the product of S and Υ:

SΥ, (19)

where Υ denotes the noise matrix. Intuitively, if the matrix
norm ∥SΥ∥F can converge to a small value, the denoising

effect is achieved. Consider the noise utilized in (Zhou et al.,
2021; Chen et al., 2021; Zhang et al., 2022) follows Gaus-
sian distribution, which is also covered by sub-Gaussian
variable. Therefore, the noise matrix has the following prop-
erty. Based on this property, we provide the analysis.
Proposition 1 (Noise Property). Each entry of the noise
matrix Υ, i.e., [Υ]ij is i.i.d sub-Gaussian random variable
with variance σ and mean µ = 0, i.e.,

E
[
eλ([Υ]ij−µ)

]
≤ eσ

2λ2/2 for all λ ∈ R. (20)

Higher-order Graph Connectivity Factor. Intuitively,
S captures not only the connectivity of the graph structure
(represented by Ã), but also the higher-order connectiv-

ity (represented by Ã
2
, Ã

3
, . . . , Ã

K
). As we will discuss

later, greater higher-order graph connectivity can accelerate
the convergence of the noise matrix. To formally quantify
higher-order graph connectivity, we provide the following
definition:

τ = max
i

τi, where τi = n

n∑
j=1

[S]
2
ij

/(
[S]ij

)2

. (21)

Remark 1. Here, we provide some intuition on why Eq. (21)
represents higher-order graph connectivity. Note that each
element in S is non-negative, and each row sum satisfies 1

n∑
j=1

[S]ij = 1−
(

λ

λ+ 1

)K+1

= β. (22)

Based on Eq. (22), the sum of squares of elements in each
row satisfies:

β2

/
n ≤

n∑
j=1

[S]
2
ij ≤ β2. (23)

When a graph has high connectivity, meaning the elements in
row i of S are more uniformly distributed, Eq. (23) reaches
its lower bound. Conversely, if a graph is poorly connected
and only one element in row i is greater than zero, Eq. (23)
reaches its upper bound. Therefore, the value of τ ∈ [1, n]
is determined as follows: when the higher-order graph
connectivity factor is large, τ → 1, and when the graph is
less connected, τ → n.
Theorem 1 (Upper Bound). Suppose we choose t =
2τ (4 log n+ log 2d) /n. Then, with a high probability of
1− 1/d, we have

∥SΥ∥2F ≤
2τ

(
1−

(
λ

λ+1

)K+1
)2

σ2 (4 log n+ log 2d)

n
.

(24)

1This result is obtained by using Ã = D̃−1Ã for ease of
theoretical analysis, while in experiments we use the more common
Ã = D̃− 1

2 ÃD̃− 1
2 as suggested in GCN. The proof can be found

in Appendix A.
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Proof can be found in Appendix B. Theorem 1 implies that
the norm of the aggregated noise matrix SΥ is bounded by
three terms: the number of nodes of a graph n, the expansion
order K, the higher-order graph connectivity factor τ . We
provide the intuition behind Theorem 1 by viewing SΥ as
sampling from the noise probability distribution. Each row
of S represents the weighted average of these noise samples.
According to the law of large numbers, each row of SΥ
will converge to the expected value (µ = 0) of the noise
distribution, thus reducing the non-predictive stochasticity
of the weighted average noise. The denoising effect of
SΥ depends on the number of samples (i.e., K ) and the
weights Sij , both of which are influenced by the depth of
GNNs and the graph structure. We provide an illustration in
Appendix H.

3.3.2. ARCHITECTURE

For low node-degree graphs, it is impossible to increase
the node degree; however, introducing the additional term
εXX⊤

∥XX⊤∥F
can add additional graph connectivity, thereby de-

creasing the higher-order graph connectivity factor. Thus,
we employ the second option in Eq. (16) for low node-
degree noisy graphs. Furthermore, considering the noise
comes from a Gaussian distribution, the magnitude of the
added noise values can be unpredictable. Nonetheless, the
term

∥∥XX⊤
∥∥
F

can penalize the weights when noise val-
ues are excessively large, thereby mitigating the adverse
effect of the noise. Note that the weights of edges also deter-
mine the factor as shown in Eq. (21). For high node-degree
graphs, we can reassign the weights of edges through the
additional term to decrease the factor as shown in the third
option. In the experiment section, we will demonstrate the
effectiveness of our GADC (II, III) in dealing with noise in
node features for both types of graphs.

3.4. Improving Performance on Heterophilic Graphs

The aggregation scheme in message-passing-based GNNs
is generally considered harmful for learning node represen-
tations on heterophilic graphs. To alleviate the negative
impact of inconsistent edges on heterophilic graphs, we
employ the first option in Eq. (16) to reduce the weights
of the Laplacian matrix coefficients. Thus, the additional
term, εΦ, can obstruct the graph smoothing process. In our
subsequent ablation study, we will demonstrate our GADC
(I) can improve performance on heterophilic graphs.

3.5. Decoupling Feature Aggregation from Downstream
Training

GADC is formulated as Eq. (15), with four options pre-
sented in Eq. (16) and Eq. (18). Depending on the scenario,
we first select the appropriate option and then calculate Φij

using the feature matrix X. This allows us to obtain the

Algorithm 1 Graph Adversarial Diffusion Convolution

1: Input: Adjacency matrix A, feature matrix X
2: Output: Prediction Z
3: Compute the transition matrix T using Eq. (16) based

on the selected option.
4: Compute the graph adversarial diffusion matrix S via

Eq. (15).
5: Compute the aggregated feature matrix F = SX.
6: while not convergence do
7: Compute the output of the forward model (Linear or

MLP) based on the input F: Z = fΘ(F).
8: Compute the supervised loss function Ls.
9: Update the parameters Θ via gradient descent: Θ =

Θ− η∇Θ(Ls).
10: end while
11: Predict via Z = fΘ(F).

graph diffusion matrix S. We then multiply the graph diffu-
sion matrix by the feature matrix X to get the aggregated
features SX. Finally, we use the aggregated features as
input to train a linear model or an MLP. This approach ef-
fectively decouples feature aggregation from downstream
training. The overall process is illustrated in Algorithm 1.

Differences from APPNP and GNNGuard. For the
fourth option, our algorithm is a pre-computation method
that uses the additional term to reconstruct the graph struc-
ture once. After reconstructing the adjacency matrix, we use
it directly to aggregate node features. GNNGuard evaluates
the importance of neighbors using the cosine similarity of
node embeddings for each layer and normalizes the similar-
ity. Therefore, the features used for computing similarity
differ between GADC (I) and the higher layers (≥ 2) of
GNNGuard. Additionally, our GADC differs from APPNP.
APPNP performs a nonlinear transformation on the feature
matrix and then uses the graph diffusion matrix to aggregate
node features. In contrast, we introduce an additional term
to create more adaptable GADC architectures.

4. Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of our proposed GADC architectures
in various scenarios.

4.1. Evaluation of Defense against Adversarial Attacks
on the Graph Structure

In this section, we demonstrate the defense performance
of our proposed GADC (IV) against adversarial attacks on
the graph structure, including non-adaptive and adaptive
attacks (Mujkanovic et al., 2022), by utilizing the additional
term in the modified transition matrix. We conduct experi-
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Table 1: Summary of test accuracy (%) results from 100 runs under non-adaptive adversarial attacks.

Ptb Rate (%) Cora Citeseer Pubmed

25 50 75 25 50 75 25 50 75

GCN 54.09 ± 1.48 33.55 ± 2.63 22.94 ± 3.06 56.21 ± 1.26 42.41 ± 2.82 32.00 ± 3.08 43.29 ± 4.75 35.91 ± 3.91 35.33 ± 4.31
GAT 57.70 ± 1.30 37.76 ± 3.21 20.01 ± 3.45 59.15 ± 1.03 46.74 ± 3.06 37.25 ± 1.32 30.37 ± 2.15 28.08 ± 3.80 26.09 ± 4.53

APPNP 56.08 ± 1.06 33.23 ± 1.48 15.61 ± 0.72 60.15 ± 1.07 50.95 ± 1.91 40.15 ± 1.14 38.36 ± 3.73 39.94 ± 0.00 39.94 ± 0.00
S2GC 56.02 ± 0.03 31.61 ± 0.03 20.89 ± 0.57 50.18 ± 0.00 34.12 ± 0.00 25.49 ± 0.03 31.59 ± 2.44 39.93 ± 0.02 39.94 ± 0.00

NAGphormer 62.11 ± 1.95 41.31 ± 2.41 28.84 ± 1.36 64.19 ± 1.01 56.29 ± 1.00 46.58 ± 1.15 71.49 ± 1.43 45.26 ± 2.58 36.76 ± 5.64
Robust-GCN 56.23 ± 0.70 36.87 ± 1.33 27.25 ± 2.23 56.67 ± 0.59 41.95 ± 0.94 30.69 ± 1.45 32.43 ± 1.40 33.42 ± 2.36 33.44 ± 2.58
GCN-Jaccard 65.70 ± 1.03 46.31 ± 2.25 32.62 ± 1.31 60.28 ± 1.09 47.73 ± 1.66 38.68 ± 2.66 43.79 ± 4.75 35.89 ± 3.92 35.31 ± 4.31
GCN-SVD 58.27 ± 0.97 36.49 ± 1.86 25.13 ± 3.23 66.97 ± 0.84 59.21 ± 0.91 40.69 ± 1.10 78.69 ± 0.50 55.05 ± 0.93 36.31 ± 2.44
Pro-GNN 72.21 ± 1.89 38.86 ± 0.78 24.34 ± 3.06 67.18 ± 1.36 50.80 ± 2.05 31.60 ± 2.19 - - -

GNNGuard 54.43 ± 1.45 34.48 ± 2.45 25.98 ± 3.31 55.84 ± 1.68 41.23 ± 1.85 31.80 ± 1.62 44.56 ± 2.91 37.56 ± 4.28 37.45 ± 4.92
Elastic GNN 57.95 ± 3.28 45.18 ± 1.90 30.30 ± 2.91 64.24 ± 1.03 53.19 ± 2.74 42.96 ± 1.97 54.45 ± 0.60 39.94 ± 0.00 39.94 ± 0.00

STABLE 78.69 ± 0.50 71.94 ± 0.69 62.98 ± 1.03 70.49 ± 0.95 64.04 ± 2.07 52.03 ± 3.16 33.68 ± 5.38 36.57 ± 5.54 35.98 ± 6.37
EvenNet 76.30 ± 0.39 71.11 ± 0.46 67.07 ± 0.60 70.89 ± 0.71 66.20 ± 0.87 63.60 ± 1.71 83.98 ± 0.00 81.52 ± 0.55 81.27 ± 0.46

GCN-GARNET 74.80 ± 1.19 70.90 ± 1.19 67.49 ± 1.06 70.01 ± 0.96 63.76 ± 1.99 56.64 ± 2.88 85.14 ± 0.34 84.82 ± 0.47 84.74 ± 0.42
HANG-quad 67.54 ± 1.03 65.22 ± 1.07 61.88 ± 1.50 66.37 ± 0.95 65.31 ± 0.93 63.68 ± 1.32 85.03 ± 0.20 85.06 ± 0.20 84.89 ± 0.17

GADC (IV) 76.00 ± 0.61 70.29 ± 0.82 66.06 ± 0.66 71.55 ± 0.89 66.47 ± 0.99 65.25 ± 0.69 86.74 ± 0.21 85.92 ± 0.14 85.29 ± 0.06

Table 2: Summary of test accuracy (%) results from one run
under adaptive adversarial attacks.

Dataset Evasion Test Accuracy Poisoned Test Accuracy

Cora Citeseer Cora Citeseer

GCN 59.71 62.78 48.99 46.98
SVD-GCN 57.44 58.25 45.79 49.41
GNNGuard 66.35 66.50 51.07 49.70

Soft-Median-GDC 67.05 63.88 56.81 58.18

GADC (IV) 72.03 72.94 70.73 68.36

ments on three citation network datasets (Sen et al., 2008):
Cora, Citeseer, and Pubmed. The statistics for all datasets
used in this paper can be found in Appendix D. For non-
adaptive attacks, we use Mettack (Zügner & Günnemann,
2019a), and for adaptive attacks, we use Aux-Attack.

Baselines. For the baselines on non-adaptive attacks,
we use two popular GNNs: GCN (Kipf & Welling,
2017) and GAT (Veličković et al., 2018); two GDCs:
APPNP (Klicpera et al., 2019) and S2GC (Zhu & Ko-
niusz, 2021); a graph transformer: NAGphormer (Chen
et al., 2023); and various defense methods against Meta-
attack (Zügner & Günnemann, 2019a), including Robust-
GCN (Zügner & Günnemann, 2019b), GCN-Jaccard (Wu
et al., 2019b), GCN-SVD (Entezari et al., 2020), Pro-
GNN (Jin et al., 2020), GNNGuard (Zhang & Zitnik, 2020),
Elastic GNN (Liu et al., 2021b), STABLE (Li et al., 2022),
EvenNet (Lei et al., 2022), GCN-GARNET (Deng et al.,
2022), and HANG-quad (Zhao et al., 2023). For the base-
lines on adaptive attacks, we consider GCN, GCN-SVD,
GNNGuard, and Soft-Median-GDC (Geisler et al., 2021).

Setting. For non-adaptive attacks, we use DeepRobust (Li
et al., 2020) to generate disrupted graph structures on Cora,
Citeseer, and Pubmed datasets with perturbation rates of

0.25, 0.5, and 0.75. We follow dataset splits used in Jin
et al. (2020). Each experiment is repeated 10 times, and
we report the mean test accuracy and its standard deviation
on the node classification task. For our GADC (IV) model,
we add a 2-layer MLP with 32 hidden units after feature
aggregation. We tune hyper-parameters with the validation
dataset. We also tune some baselines such as HANG-quad,
GCN-GARNET, and EvenNet. All hyper-parameter details
of our methods can be found in Appendix E. For adaptive
attacks, we set the attack budget to 1000 for the Cora and
Citeseer datasets and use dataset splits from Mujkanovic
et al. (2022). The experiment is repeated once. For our
model, we set K = 2 and discard the terms for k = 0/1,
similar to SGC (Wu et al., 2019a).

Results. Table 1 reports the results of non-adaptive attacks
for our method and other baselines. Our method outper-
forms other baselines on Citeseer and Pubmed and achieves
performance relatively close to the best baseline on Cora.
Additionally, our GADC (IV) significantly outperforms both
APPNP and S2GC. As the perturbation rate increases, the
adjacency matrix becomes increasingly unreliable. How-
ever, our additional term leverages the inherent homophily
properties of these graphs to reconstruct the clean adjacency
matrix, thereby restoring effective information flow within
the aggregation scheme. GNNGuard and NAGphormer also
evaluate the importance of neighbors using the attention
mechanism on node embeddings at each layer to mitigate
the disruption of the graph structure caused by adversar-
ial attacks. In contrast, our algorithm is a pre-computation
method that uses the additional term to reconstruct the graph
structure directly in one step. After reconstructing the adja-
cency matrix, we use it directly to aggregate features. We
think that smoothing node features makes the recalculated
weights less accurate. Therefore, our method performs
much better than GNNGuard and NAGphormer.
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Table 3: Summary of test accuracy (%) results from 100 runs on citation network datasets with Gaussian noise.

Cora MLP GCN GAT APPNP GLP S2GC IRLS AirGNN GADC (II)

0.1 41.0 ± 9.1 53.5 ± 25.1 73.9 ± 8.7 78.1 ± 8.7 65.5 ± 13.9 74.0 ± 10.5 65.8 ± 12.9 78.8 ± 6.9 77.4 ± 2.5
0.2 21.6 ± 6.5 41.3 ± 20.7 62.8 ± 12.7 72.1 ± 10.3 55.4 ± 12.4 65.4 ± 12.1 47.8 ± 8.9 73.6 ± 9.4 72.6 ± 2.8
0.3 17.5 ± 6.4 32.8 ± 13.6 51.2 ± 14.1 66.3 ± 12.4 49.9 ± 11.1 60.8 ± 10.9 42.3 ± 7.7 68.5 ± 11.5 69.1 ± 3.2
0.4 15.9 ± 6.0 30.0 ± 10.0 45.4 ± 12.3 62.3 ± 12.9 49.4 ± 10.0 55.9 ± 11.8 40.9 ± 7.3 65.6 ± 11.3 68.0 ± 3.6
0.5 14.9 ± 5.2 28.1 ± 9.1 41.9 ± 13.3 63.0 ± 11.8 47.3 ± 11.7 53.4 ± 11.4 41.4 ± 7.3 67.6 ± 8.0 67.6 ± 3.3
100 15.0 ± 4.6 28.4 ± 7.5 31.9 ± 12.9 61.8 ± 11.2 47.6 ± 10.3 52.0 ± 13.1 43.7 ± 6.6 65.4 ± 11.4 66.9 ± 5.3

Citeseer MLP GCN GAT APPNP GLP S2GC IRLS AirGNN GADC (II)

0.1 46.3 ± 3.1 52.4 ± 21.9 69.5 ± 1.1 70.3 ± 1.0 65.3 ± 3.0 71.7 ± 1.1 70.8 ± 3.3 70.9 ± 1.3 69.6 ± 1.2
0.2 25.0 ± 5.2 37.3 ± 15.9 55.1 ± 10.4 59.6 ± 9.6 47.2 ± 8.4 59.5 ± 7.3 56.0 ± 7.2 58.9 ± 13.9 59.5 ± 3.5
0.3 17.9 ± 3.2 24.4 ± 4.4 36.2 ± 9.8 45.9 ± 11.7 36.4 ± 7.1 46.6 ± 8.9 37.2 ± 7.0 44.2 ± 14.9 50.5 ± 3.1
0.4 17.4 ± 3.0 23.3 ± 4.4 30.9 ± 7.1 40.8 ± 10.4 36.7 ± 4.7 42.7 ± 6.7 36.3 ± 4.9 39.8 ± 12.3 48.3 ± 2.3
0.5 17.4 ± 2.4 22.7 ± 4.0 28.7 ± 6.2 39.5 ± 8.8 36.4 ± 4.8 41.3 ± 6.8 36.7 ± 5.0 36.9 ± 12.1 47.8 ± 2.4
100 16.8 ± 2.5 23.7 ± 3.7 25.0 ± 6.5 36.6 ± 9.4 38.0 ± 4.0 41.4 ± 5.3 37.3 ± 4.8 33.4 ± 11.4 46.9 ± 2.4

Pubmed MLP GCN GAT APPNP GLP S2GC IRLS AirGNN GADC (II)

0.01 67.9 ± 1.4 61.1 ± 18.2 77.7 ± 0.9 80.0 ± 0.7 78.6 ± 0.9 79.2 ± 0.5 81.2 ± 0.8 79.9 ± 0.4 77.4 ± 0.8
0.02 58.3 ± 2.0 61.0 ± 17.4 75.8 ± 1.3 78.3 ± 1.1 76.5 ± 1.1 78.0 ± 0.8 78.4 ± 1.1 79.3 ± 0.7 76.4 ± 1.0
0.03 47.9 ± 4.1 54.0 ± 14.2 60.7 ± 13.6 74.4 ± 4.9 70.3 ± 5.7 74.4 ± 2.5 69.4 ± 6.9 76.2 ± 4.8 73.9 ± 1.6
0.04 39.4 ± 4.8 41.7 ± 9.7 40.0 ± 7.2 64.1 ± 14.4 60.8 ± 8.4 62.7 ± 11.2 58.1 ± 8.7 65.9 ± 13.3 69.0 ± 2.3
0.05 36.5 ± 6.6 36.9 ± 6.7 38.4 ± 6.3 55.3 ± 15.9 56.9 ± 7.6 55.8 ± 10.9 55.9 ± 9.7 58.9 ± 14.3 66.3 ± 2.9
100 35.0 ± 5.3 36.6 ± 5.3 38.2 ± 3.7 52.3 ± 11.3 55.1 ± 5.6 54.0 ± 10.3 50.1 ± 10.6 55.6 ± 13.6 62.5 ± 3.6

Table 4: Summary of test accuracy (%) results from 10
runs on the Coauthor-CS and Coauthor-Phy datasets with
Gaussian noise.

Noise Level Coauthor-CS Coauthor-Phy

0.1 1 0.1 1

MLP 82.5±1.8 22.3±0.1 81.6±8.1 47.0±10.0
GCN 87.3±0.5 61.3±14.3 94.2±0.4 78.6±10.6
GAT 86.8±3.6 57.9±20.2 94.0±0.4 63.7±16.7

APPNP 94.5±0.4 81.7±2.0 95.4±0.3 89.2±1.6
GLP 91.3±0.4 52.4±17.3 93.3±2.5 81.3±10.6

S2GC 86.1±0.2 79.6±10.2 92.6±1.3 89.4±4.3
IRLS 78.8±5.1 62.1±17.8 89.2±3.4 87.0±4.5

GADC (II) 95.4±0.2 87.8±1.5 95.7±0.2 93.6±0.8

Table 2 reports the experimental results of our method and
the baselines under adaptive attacks. The results demon-
strate that our method significantly outperforms the base-
lines. This indicates that even when adaptive attacks modify
the graph structure during inference, our additional terms
can still effectively reconstruct the adjacency matrix and
provide a robust defense.

4.2. Evaluation of Denoising against Noise in Node
Features

In this section, we compare the denoising performance of
our proposed GADC (II, III) with various baselines by eval-
uating their test accuracy when models are trained on noisy
feature matrices.

Datasets. For our experiments, we use three small-scale
graph datasets: Cora, Citeseer, and Pubmed, and three large-
scale graph datasets: Coauthor-CS, Coauthor-Phy (Shchur

Table 5: Summary of test accuracy (%) results from 10 runs
on the ogbn-products dataset with Gaussian noise.

Noise Level ogbn-products

0.1 1

MLP 59.68±0.16 38.08±0.10
GCN 75.60±0.19 72.76±0.20
S2GC 74.95±0.13 63.17±0.12

GADC (III) 77.54±0.15 73.66±0.13

et al., 2018), and ogbn-products (Hu et al., 2020). We follow
dataset splits used in (Yang et al., 2016) for the citation
network datasets. For the Coauthor datasets, we split the
nodes into 60% for training, 20% for validation, and 20%
for testing. For the ogbn-products dataset, we follow dataset
splits provided by OGB (Hu et al., 2020).

Baselines. For the baselines, we consider several vari-
ants of GDC, including APPNP (Klicpera et al., 2019),
GLP (Li et al., 2019), S2GC (Zhu & Koniusz, 2021), and
AirGNN (Liu et al., 2021a). Additionally, we include
popular GNNs such as GCN (Kipf & Welling, 2017) and
GAT (Veličković et al., 2018). We also consider IRLS (Yang
et al., 2021), a GNN architecture derived from GSD, and an
MLP, which does not employ any aggregation scheme.

Setting. We assume that the original feature matrix is
clean and devoid of noise. To introduce noise, we synthe-
size it from a standard Gaussian distribution and add it to
the original feature matrix, as suggested in AirGNN (Liu
et al., 2021a). After adding Gaussian noise, we apply
row normalization to node features and train all models
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Table 6: Summary of ablation study results in terms of test accuracy (%).

Dataset Cora Coauthor-CS Coauthor-Phy ogbn-products

Noise Level 0.1 0.5 0.1 1.0 0.1 1.0 0.1 1.0

GADC (II/III, ε = 0) 76.4 ± 3.2 66.5 ± 5.1 95.3 ± 0.2 87.1 ± 3.1 95.7 ± 0.2 93.1 ± 1.4 77.5 ± 0.2 73.4 ± 0.1
GADC (II/III, ε ̸= 0) 77.4 ± 2.5 67.6 ± 3.3 95.4 ± 0.2 87.8 ± 1.5 95.7 ± 0.2 93.6 ± 0.8 77.5 ± 0.2 73.7 ± 0.1

using these noisy feature matrices. The noise level ξ
controls the magnitude of the noise added to the feature
matrix: X + ξΥ, where Υ is sampled from a standard
i.i.d. Gaussian distribution. For Cora and Citeseer, we test
ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 100}, and for Pubmed, we test
ξ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 100}. For Coauthor-CS,
Coauthor-Phy, and ogbn-products, we test ξ ∈ {0.1, 1.0}.
For each model’s hyperparameters, we follow the settings
reported in their original papers. To reduce randomness,
we repeat the experiment 100 or 10 times and report the
mean test accuracy. In each repeated run, different Gaussian
noises are added; however, within the same run, the same
noisy feature matrix is used to train all models. For the
citation network datasets, we employ the second option in
Eq. (16), and we set K = 16 and λ = 32 by default. We
select K for other datasets based on the best performance
on the validation dataset. For coauthor datasets, we use the
second option. For ogbn-products, we use the third option
and don’t add additional graph connectivity since it is a
very large graph. Therefore, we only compute Φij based on
connected neighbors in the original graph.

Results. Table 3, 4, and 5 report test accuracy results
across various noise levels for node classification tasks. As
demonstrated in Table 3, 4, and 5, under high noise levels,
the performance of MLP approximates random guessing, as
the test accuracy is close to the inverse of the total number
of labels. This implies that the added noise has effectively
obscured the original features. Compared to GDC variants,
our proposed GADC (II, III) demonstrates superior denois-
ing performance at high noise levels. This demonstrates
the effectiveness of the additional term in our modified tran-
sition matrix for tracking large noise. We also synthesize
noise by flipping individual features with a small Bernoulli
probability on three citation network datasets. We report the
results in Appendix F.

Computational Complexity. Introducing additional
edges in GADC (II) does increase the time complexity of
the aggregation process. However, we mitigate this issue
by decoupling the aggregation process from downstream
training, ensuring that aggregation occurs only once. This
differs from APPNP, which repeats the aggregation process
during each training iteration (i.e., aggregation occurs n
times for n iterations). As a result, completing 100 runs
(one experiment) of GADC (II) on the Pubmed dataset

takes only 58 seconds, and completing 10 runs on the
Coauthor-CS dataset takes 22 seconds. Without introducing
additional edges (ε = 0), 100 runs on the Pubmed dataset
take only 41 seconds. In contrast, APPNP requires 232
seconds to complete 100 runs on the Pubmed dataset. This
demonstrates the computational efficiency of our method.
For the ogbn-products dataset, we maintain only the
one-hop connections and adjust the edge weights, without
introducing additional edges, resulting in a time complexity
similar to that of GDC.

4.3. Ablation Study on the Effectiveness of the
Additional Term

We conduct an ablation study by setting ε to zero to ob-
serve its impact. As shown in Table 6, for the low node-
degree graph (Cora), our additional term effectively en-
hances denoising performance under both small and large
noise. However, for high node-degree graphs (Coauthor and
ogbn-products), performance improvement is noticeable
only under large noise. This is because low node-degree
graphs have relatively fewer neighboring nodes, so intro-
ducing the additional term increases graph connectivity,
effectively filtering out noise. In high node-degree graphs,
the inherent connectivity is already strong enough under
small noise, reducing the need for additional connectivity
to filter out noise. However, under large noise, enhanced
connectivity still improves denoising for Co-author. In the
ogbn-products graph, although GADC (III, ε ̸= 0) doesn’t
introduce new connections, it reassigns the weights of exist-
ing edges, successfully reducing the value of τ and thereby
improving denoising performance.

4.4. Improving Performance on Heterophilic Graphs

We conduct an ablation study to show that our GADC (I)
can improve performance on heterophilic graphs. Due to
the space limit, we provide the experimental results in Ap-
pendix G and discuss related work in Appendix C.

5. Conclusion
We introduce a min-max formulation of the graph signal
denoising problem and develop various GADC variants.
Extensive results demonstrate that our GADC effectively
addresses noisy features in graphs, graph structure attacks,
and inconsistent edges on heterophilic graphs.
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then propagate: Graph neural networks meet personal-
ized pagerank. In International Conference on Learning
Representations, 2019.

Lei, R., Wang, Z., Li, Y., Ding, B., and Wei, Z. Evennet:
Ignoring odd-hop neighbors improves robustness of graph
neural networks. In Advances in Neural Information
Processing Systems, 2022.

Li, K., Liu, Y., Ao, X., Chi, J., Feng, J., Yang, H., and He,
Q. Reliable representations make a stronger defender:
Unsupervised structure refinement for robust gnn. In
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022.

Li, Q., Wu, X.-M., Liu, H., Zhang, X., and Guan, Z. Label
efficient semi-supervised learning via graph filtering. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

Li, Y., Jin, W., Xu, H., and Tang, J. Deeprobust: A py-
torch library for adversarial attacks and defenses. arXiv
preprint arXiv:2005.06149, 2020.

Lin, L., Blaser, E., and Wang, H. Graph structural attack by
perturbing spectral distance. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2022.

Liu, S., Ying, R., Dong, H., Lin, L., Chen, J., and Wu,
D. How powerful is implicit denoising in graph neural
networks. arXiv preprint arXiv:2209.14514, 2022.

Liu, X., Ding, J., Jin, W., Xu, H., Ma, Y., Liu, Z., and
Tang, J. Graph neural networks with adaptive residual.
In Advances in Neural Information Processing Systems,
2021a.

Liu, X., Jin, W., Ma, Y., Li, Y., Liu, H., Wang, Y., Yan, M.,
and Tang, J. Elastic graph neural networks. In Interna-
tional Conference on Machine Learning, 2021b.

Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., and Shah, N. A
unified view on graph neural networks as graph signal
denoising. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management,
2021.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to

adversarial attacks. In International Conference on Learn-
ing Representations, 2018.
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A. The Row Summation of the Graph Diffusion Convolution Matrix

We provide the derivations of the row sum of S = 1
λ+1

∑K
k=0

[
λ

λ+1Ã
]k

in this section. Before we derive the row summation

of S, we first derive the row summation of Ã
k
. Note we consider Ã = D̃−1Ã for the simplicity of the proof.

Lemma 1. Consider a probability matrix P ∈ Rn×n, where Pij ≥ 0. Besides, for all i, we have
∑n

j=1 Pij = 1. Then for
any k ∈ Z+, we have

∑n
j=1 P

k
ij = 1,

Proof. We give a proof by induction on k.
Base case: When k = 1, the case is true.
Inductive step: Assume the induction hypothesis that for a particular k, the single case n = k holds, meaning Pk is true:

∀i,
n∑

j=1

Pk
ij = 1.

As Pk+1 = PkP, so we have
n∑

j=1

Pk+1
ij =

n∑
j=1

n∑
k=1

Pk
ikPkj

=

n∑
k=1

n∑
j=1

Pk
ikPkj

=

n∑
k=1

Pk
ik

 n∑
j=1

Pkj


=

n∑
k=1

Pk
ik = 1,

which finishes the proof.

Lemma 1 describes the row summation of Ã
k

is 1. Now we can obtain the row summation for S.

Then for any i, we have

n∑
j=1

[S]ij =
1

λ+ 1

K∑
k=0

(
λ

λ+ 1

[
Ã
]
ij

)k

=
1

λ+ 1

K∑
k=0

(
λ

λ+ 1

)k

= 1−
(

λ

λ+ 1

)K+1

.

(25)

B. Proof of Theorem 1
We first introduce the General Hoeffding Inequality (Hoeffding, 1994), which is essential for bounding ∥SΥ∥2F .

Lemma 2. (General Hoeffding Inequality (Hoeffding, 1994)) Suppose that the variables X1, · · · , Xn are independent,
and Xi has mean µi and sub-Gaussian parameter σi. Then for all t ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
. (26)

Now, we prove Theorem 1.
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Proof of Theorem 1. For any entry [SΥ]ij =
∑n

p=1 (S)ip Υpj , where Υpj is a sub-Gaussian variable with parameter σ2.
By the General Hoeffding inequality 2, we have

P

∣∣∣∣∣∣
[

1

λ+ 1

K∑
k=0

(
λ

λ+ 1
Ã
)k

Υ

]
ij

∣∣∣∣∣∣ ≥ t



≤ 2 exp

− nt2

2τ

(
1−

(
λ

λ+1

)K+1
)2

σ2

 ,

(27)

where τ = maxi τi and τi = n
∑n

j=1 [S]
2
ij

/(
1−

(
λ

λ+1

)K+1
)2

.

Applying union bound (Vershynin, 2010) to all possible pairs of i ∈ [n], j ∈ [n], we get

P
(
∥SΥ∥∞,∞ ≥ t

)
≤

∑
i,j

P
(
[SΥ]ij ≥ t

)

≤ 2n2 exp

− nt2

2τ

(
1−

(
λ

λ+1

)K+1
)2

σ2

 .

(28)

Applying union bound again, we have

P
(
∥SΥ∥2F ≥ t

)
≤
∑
i,j

P
(
∥SΥ∥∞,∞ ≥

√
t
)

≤2n4 exp

− nt

2τ

(
1−

(
λ

λ+1

)K+1
)2

σ2

 .

(29)

Choose t = 2τ

(
1−

(
λ

λ+1

)K+1
)2

(4 log n+ log 2d) /n and with probability 1− 1/d, we have

∥SΥ∥2F ≤
2τ

(
1−

(
λ

λ+1

)K+1
)2

σ2 (4 log n+ log 2d)

n
, (30)

which completes the proof.

C. Related Work
Adversarial Attacks on Graph Structure. Several defense methods have recently been proposed to counter graph
structural attacks (Zhu et al., 2019; Wang et al., 2022; Chang et al., 2022; Xie et al., 2023; Gosch et al., 2023). Wu et al.
(2019b) introduce GNN-Jaccard, which works with the graph’s adjacency matrix to identify fake edges. RobustGCN (Zügner
& Günnemann, 2019b) employs Gaussian distributions in hidden layers to mitigate the effects of attacks. GNN-SVD (Entezari
et al., 2020) reduces the rank of the adjacency matrix to counteract NETTACK, which targets high-rank singular components
in graph data. Lastly, Pro-GNN (Jin et al., 2020) presents an approach that jointly generates a new structural graph and
a robust GNN model from the perturbed graph. By utilizing the additional term in our proposed GADC (IV), we can
reconstruct the informative adjacency matrix, thus restoring efficient information flow and defending against adversarial
structure attacks.
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Implicit Denoising in GNNs. Existing graph denoising works primarily focus on graph smoothing techniques (Chen et al.,
2014; Wang et al., 2021; Zhou et al., 2021; Chen et al., 2022). It is well-established that GNNs can increase node feature
smoothness through neighbor information aggregation, counteracting the influence of noisy features in the GNN’s output.
Some recent GNN models, such as GLP (Li et al., 2019), S2GC (Zhu & Koniusz, 2021), and IRLS (Yang et al., 2021),
are derived from the perspective of signal denoising. Additionally, Ma et al. (Ma et al., 2021) connect signal denoising to
popular GNNs by considering the message passing scheme as a process of solving the GSD problem.

D. Datasets Details

Table 7: Datasets statistics

Dataset # Nodes # Edges # Features # Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3
Cornell 183 295 1703 5
Texas 183 309 1703 5
Wisconsin 251 499 1703 5
Actor 7600 33544 931 5
Coauthor-CS 18333 81894 6805 15
Coauthor-Phy 34493 247962 8415 5
ogbn-products 2449029 61859140 100 42

E. Hyperparameter Details
We provide details about the hyparatemeters of GADC in Table 8, 9, 10, 11, and 12.

Table 8: The hyper-parameters for GADC (IV) on three citation datasets for defense evaluation against non-adaptive graph
structure attacks.

Model dataset runs lr epochs wight decay hidden dropout K λ perturbation rate

GADC (IV) Cora 10 0.02 100 1e-5 32 0.5 6 1 0.25
GADC (IV) Cora 10 0.02 100 1e-5 32 0.5 3 1 0.5
GADC (IV) Cora 10 0.02 100 1e-5 32 0.5 1 1 0.75
GADC (IV) Citeseer 10 0.02 100 1e-5 32 0.5 6 1 0.25
GADC (IV) Citeseer 10 0.02 100 1e-5 32 0.5 3 1 0.5
GADC (IV) Citeseer 10 0.02 100 1e-5 32 0.5 1 1 0.75
GADC (IV) Pubmed 10 0.02 200 1e-5 32 0.5 2 1 0.25
GADC (IV) Pubmed 10 0.02 200 1e-5 32 0.5 1 1 0.5
GADC (IV) Pubmed 10 0.02 200 1e-4 32 0.5 1 1 0.75

Table 9: The hyper-parameters for GADC (II) on three citation datasets for denoising evaluation against feature Gaussian
noise.

Model dataset runs lr epochs wight decay hidden dropout K λ ε

GADC (II) Cora 100 0.2 100 1e-5 0 0 16 32 1
GADC (II) Citeseer 100 0.2 100 1e-5 0 0 16 32 1
GADC (II) Pubmed 100 0.2 100 1e-5 0 0 16 32 1
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Table 10: The hyper-parameters for GADC (II) on two co-author datasets for denoising evaluation against feature Gaussian
noise.

Model dataset noise level runs lr epochs wight decay hidden dropout K λ ε

GADC (II) Coauthor-CS 0.1 10 0.2 1000 1e-7 0 0 16 1 1
GADC (II) Coauthor-CS 1 10 0.2 1000 1e-7 0 0 16 128 1
GADC (II) Coauthor-Phy 0.1 10 0.2 1000 1e-7 0 0 16 1 1
GADC (II) Coauthor-Phy 1 10 0.2 1000 1e-7 0 0 16 128 1

Table 11: The hyper-parameters for GADC (III) on ogbn-products dataset for denoising evaluation against feature Gaussian
noise.

Model noise level runs lr epochs hidden dropout K λ ε layers +MLP

GADC (III) 0.1 10 0.01 300 256 0.5 128 32 1e-2 3 True
GADC (III) 1 10 0.01 300 256 0.5 128 256 1e-2 3 True

F. Denoising Performance against Flipping Perturbations
We provide results in Table 13.

G. Ablation Study on Heterophilic Graphs
In this section, we show the improvement of our proposed GADC (I) on heterophilic graphs with the additional term in the
modified transition matrix through a series of ablation studies.

Table 12: The hyper-parameters for GADC (II) on three citation datasets for denoising evaluation against feature flip noise.

Model dataset flip probability runs lr epochs wight decay hidden dropout K λ ε

GADC (II) Cora 0.1 100 0.2 100 1e-5 0 0 32 64 1e-5
GADC (II) Cora 0.2 100 0.2 100 1e-5 0 0 32 64 1e-5
GADC (II) Cora 0.4 100 0.2 100 1e-5 0 0 32 64 1e-1
GADC (II) Citeseer 0.1 100 0.2 100 1e-5 0 0 32 64 1e-5
GADC (II) Citeseer 0.2 100 0.2 100 1e-5 0 0 32 64 1e-5
GADC (II) Citeseer 0.4 100 0.2 100 1e-5 0 0 32 64 1e-5
GADC (II) Pubmed 0.1 100 0.2 100 1e-5 0 0 32 64 1e-1
GADC (II) Pubmed 0.2 100 0.2 100 1e-5 0 0 32 64 1e-1
GADC (II) Pubmed 0.4 100 0.2 100 1e-5 0 0 32 64 1e-1

Table 13: Denoising performance over 100 runs against flipping perturbation

Flipping probability Cora Citeseer Pubmed

0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

MLP 21.2±7.3 21.1±8.0 23.3±8.0 19.3±3.3 18.9±2.8 18.9±2.7 38.0±6.3 39.0±4.7 40.6±2.8

GCN 22.9±13.6 19.0±9.4 19.0±9.3 18.6±3.4 18.6±3.1 18.5±3.2 37.8±6.6 38.1±7.1 37.6±8.0

GAT 70.1±1.5 65.6±1.5 60.0±3.2 45.3±2.9 39.3±3.4 26.0±5.1 43.3±2.7 49.5±3.2 60.0±4.1

APPNP 75.6±1.2 69.8±1.5 65.3±1.6 56.5±2.2 49.1±1.8 42.8±3.0 43.4±2.7 52.3±1.8 64.4±1.7

GLP 32.3±0.8 30.8±4.0 29.0±6.4 19.7±2.7 18.9±2.4 18.8±2.3 42.1±2.0 41.5±1.8 40.7±0.1

S2GC 75.0±1.6 71.5±2.0 63.8±4.4 49.9±3.9 46.4±3.2 43.4±2.9 50.4±2.2 60.2±1.9 69.3±1.6

IRLS 66.4±2.0 61.0±1.9 54.7±2.5 50.3±2.7 45.9±2.1 43.8±1.7 51.4±4.1 60.0±3.8 69.0±2.4

GADC (II) 77.6±1.2 75.2±1.4 72.8±1.4 55.0±3.0 51.8±2.4 48.7±2.4 54.3±2.0 63.9±1.6 71.6±1.1
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Datasets. We use four datasets for fully supervised node classification on heterophilic graphs: Cornell, Texas, Wisconsin,
and Actor. For each dataset, we randomly split nodes into 60%, 20%, and 20% for training, validation, and testing, as
suggested in Pei et al. (2020).

Setting and Results. We evaluate the performance of the additional term on heterophilic graphs by setting ε to a series
of values. We also add a 2-layer MLP with 64 hidden units after the feature aggregation of GADC (I). For GADC (I), we
set λ to 1 and K to 16. We conduct experiments 100 times and report the mean test accuracy for the node classification
task. Note that in each repeated run, we use a different dataset split. From the results summarized in Table 14, it is evident
that incorporating the additional term (ε ∈ {1.0, 2.0}) can lead to improved performance compared to the scenario where it
is disabled (ε = 0). Furthermore, we notice that when ε is set to 1.0, the performance improvement is maximized. This
observation suggests that these specific perturbation levels could be optimal for the context of our study.

Table 14: Test accuracy with 100 runs of GADC (I) on heterophilic graphs. For these datasets, we use ε of 0, 1.0, 2.0, 3.0,
and 4.0, respectively.

ε 0 1.0 2.0 3.0 4.0

Cornell 74.8 ± 7.0 76.9 ± 7.6 76.4 ± 7.6 69.0 ± 7.9 57.5 ± 8.6
Texas 74.9 ± 6.1 77.8 ± 6.9 76.7 ± 7.5 64.6 ± 7.9 60.8 ± 8.0
Wisconsin 73.2 ± 5.9 78.2 ± 6.5 78.0 ± 6.7 64.8 ± 6.5 53.1 ± 8.2
Actor 34.35 ± 1.35 34.51 ± 1.41 25.42 ± 1.07 25.30 ± 1.06 25.16 ± 1.05

H. Illustration of Higher-order Graph Connectivity Factor on Various Graphs

𝑣!𝑣" 𝑣#

𝑣$

Graph

Metric 𝒢! 𝒢$ 𝒢" 𝒢#
#Nodes 4 4 4 8
𝜏 4 1.14 1 1.03

𝜏 log𝑛 /𝑛 1.39 0.39 0.35 0.27

Figure 2: An illustration of τ on various graph structures. G1: nodes are isolated; G2: a star graph with 4 nodes; G3:
a complete graph with 4 nodes. For computing τ , we set λ and K as 32. τ has a smaller value if the graph has good
connectivity.

In this case study, we present four illustrative samples in Figure 2: G1, G2, G3, and G4.

Graphs G1, G2, and G3 have the same number of nodes. However, the nodes in G1 are isolated, G2 consists of a single
connected component with a central node v1, and G3 is a complete graph where each node is connected to every other node.
Additionally, we include a larger graph, G4, to analyze the influence of graph size on the denoising effect. From Figure 2,
we can derive the following insights:

• No Denoising on Isolated Graph (G1): Since the nodes in G1 are isolated, there is no denoising effect, as indicated by
the large value of τ log n/n.

• Best Denoising on Complete Graph (G3): The complete graph G3 exhibits the best denoising effect among the graphs
of the same size. This is because the elements in each row are uniformly distributed, leading to the lowest possible
value of τ .

• Central Node Impact on Connected Graph (G2): Although G2 has only one connected component, the presence of a
central node v1 creates an imbalance in the value of elements in each row. Consequently, τ tends to be larger compared
to G3.
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• Denoising on Decentralized Larger Graph (G4): The decentralized structure of G4 also results in a smaller value of τ ,
indicating a good denoising effect.

• Influence of Graph Size: Larger graphs, such as G4, tend to have a better denoising effect due to their size.

By analyzing these graphs, we get a deeper understanding of how graph structure and size influence the denoising effect.

I. Reproducibility
We use Pytorch (Paszke et al., 2019) and PyG (Fey & Lenssen, 2019) to implement GADC. All the experiments in this work
are conducted on a single NVIDIA Tesla A100 with 80GB memory size. The software that we use for experiments are
Python 3.6.8, pytorch 1.9.0, pytorch-scatter 2.0.9, pytorch-sparse 0.6.12, pyg 2.0.3, ogb 1.3.4, numpy 1.19.5, torchvision
0.10.0, and CUDA 11.1.

J. Work Statement
This is an extended work based on our manuscript (Liu et al., 2022) that appeared in 2022 NeurIPS GFrontiers. Songtao Liu
independently extends Liu et al. (2022) and rewrites the initial versions of this work.
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