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Abstract

Minimum Bayes Risk (MBR) decoding opti-001
mizes output selection by maximizing the ex-002
pected utility value of an underlying human003
distribution. While prior work has shown the004
effectiveness of MBR decoding through empir-005
ical evaluation, few studies have analytically006
investigated why the method is effective. As a007
result of our analysis, we show that, given the008
size n of the reference hypothesis set used in009
computation, MBR decoding approaches the010
optimal solution with high probability at a rate011

of O
(
n− 1

2

)
, under certain assumptions, even012

though the language space Y is significantly013
larger Y ≫ n. This result helps to theoretically014
explain the strong performance observed in sev-015
eral prior empirical studies on MBR decoding.016
In addition, we provide the performance gap for017
maximum-a-posteriori (MAP) decoding and018
compare it to MBR decoding. The result of019
this paper indicates that MBR decoding tends020
to converge to the optimal solution faster than021
MAP decoding in several cases.022

1 Introduction023

Minimum Bayes Risk (MBR) decoding (Kumar024

and Byrne, 2002, 2004) is a decision rule used to025

generate sequences from autoregressive probabil-026

ity models (e.g., LLMs). MBR decoding has been027

shown to produce high-quality texts in various di-028

rected text generation tasks, such as machine trans-029

lation (Tromble et al., 2008; de Gispert et al., 2009;030

Stahlberg et al., 2017), text summarization (Rush031

et al., 2015; Narayan et al., 2018), text simplifi-032

cation (Heineman et al., 2024), image captioning033

(Borgeaud and Emerson, 2020), and instruction-034

following (Wu et al., 2025). Numerous experi-035

ments have reported the advantages of MBR decod-036

ing over maximum-a-posteriori (MAP) decoding037

(e.g., beam search) (Ehling et al., 2007; Eikema and038

Aziz, 2020; Müller and Sennrich, 2021; Eikema039

and Aziz, 2022; Bertsch et al., 2023).040

Experimental results confirm that the larger the 041

number of candidates and hypothesis sets collected, 042

the better performance (Eikema and Aziz, 2022; 043

Freitag et al., 2022). However, there is no the- 044

oretical explanation for the convergence rate of 045

approaching optimal output. The answers to this 046

question are the number of elements in the can- 047

didate and the hypothesis set in this paper. Our 048

results show the following theorem. 049

Theorem. (Convergence Rate of MBR De-
coding; Informal) Under certain assump-
tions, MBR decoding approaches the opti-
mal solution with high probability at a rate
of O

(
n− 1

2

)
for the size n of the reference

hypothesis set.

This theoretical result is consistent with the empir- 050

ical results of previous studies (Eikema and Aziz, 051

2022; Freitag et al., 2022). We also confirm that if 052

the human distribution is similar to the model dis- 053

tribution, the performance of MBR decoding can 054

be improved, as indicated by Ohashi et al. (2024). 055

In addition, we derive the convergence rate of the 056

optimal output for MAP decoding and compare it 057

to MBR decoding. Our results show that MBR de- 058

coding tends to converge faster than MAP decoding 059

in several cases. 060

Specifically, our main contributions are that we 061

provide high probability and expected regret’s up- 062

per bounds by MBR decoding in several cases (The- 063

orem 1, Theorem 2, and Corollary 1) and we com- 064

pare the performance gap and convergence rate 065

of MBR decoding and MAP decoding within the 066

same framework of the upper bound we derived in 067

Section 5. 068

In summary, there are few theoretical analyses 069

of MBR decoding, and thus a comprehensive the- 070

oretical framework has yet to be fully established. 071

Through these contributions, we believe that this 072
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study offers new perspectives that advance the un-073

derstanding of MBR decoding.074

2 Background and Notations075

Text generation involves producing an output se-076

quence based on an input sequence, the set of input077

sequences is defined by X . Probabilistic text gen-078

erators define a probability distribution over the079

output space of hypotheses Y . The set of complete080

hypotheses Y is:081

Y := {BOS ◦ v ◦ EOS|v ∈ V∗}.082

where ◦ is a string concatenation and V∗ is the083

Kleene closure of a set of vocabulary V . The goal084

of decoding is to find the best hypothesis for a given085

input. For simplicity we write MX
Y to denote a set086

of conditional probability distributions over a finite087

set Y , given X as context sets. and O(n) is Big O088

notation.089

2.1 MBR Decoding090

Let X denote the input space and Y the output091

space. Given an input x ∈ X , a probabilistic model092

defines a distribution p ∈ MX
Y over possible out-093

puts y′ ∈ Y . The goal of Bayes Risk minimization094

in structured prediction and sequence generation095

tasks is to select an output that minimizes the ex-096

pected loss relative to the true distribution (Bach,097

2024).098

For a loss function ℓ : Y × Y → R, the Bayes099

Risk is defined as:100

R(y | x) = Ep

[
ℓ(y′, y)

]
.101

102
y∗ = argmin

y∈Y
R(y | x)103

If the goal is to maximize some utility function104

u rather than to minimize a loss, it can also be105

interpreted as a performance metric ℓ = −u.106

The objective of MBR decoding is similar to107

the Bayes Risk, finding the output that maximizes108

the expected utility, thereby effectively minimizing109

risk (Kumar and Byrne, 2002, 2004).110

The procedure consists of two key components:111

the human distribution Phuman ∈ MX
Y given input112

x ∈ X and a utility function. For simplicity, let113

P (y | x) = P (y), since x is fixed in this paper.114

The utility function evaluates the quality of a can-115

didate output H ⊆ Y with respect to a reference116

output Y . In this paper, we assume that the can-117

didate hypotheses H are identical to the reference118

outputs Y . Ideally, MBR decoding selects the opti- 119

mal hypothesis by maximizing its expected utility 120

over the distribution of human references: 121

uh(y) =
∑
y′∈Y

u(y, y′) · Phuman(y
′). (1) 122

y∗ = argmax
y∈Y

uh(y). (2) 123

where utility function u: Y × Y → [0, Umax], 124

Umax ∈ [0, 1] denotes the maximum utility value. 125

Since Phuman is unknown, MBR decoding in- 126

stead uses Pmodel ∈ MX
Y to approximate Phuman. 127

um(y) =
∑
y′∈Y

u(y, y′) · Pmodel(y
′). (3) 128

ym = argmax
y∈Y

um(y). (4) 129

However, summation over Y is computationally 130

intractable, so Eq. (4) is approximated by a Monte 131

Carlo estimation (Eikema and Aziz, 2022; Farin- 132

has et al., 2023) using a collection of reference 133

hypotheses Yn
ref sampled from the model Pmodel. 134

ûm(y) =
1

|Yn
ref |

∑
y′∈Yn

ref

u(y, y′). (5) 135

ŷm = argmax
y∈Yn

ref

ûm(y). (6) 136

We denote the number of samples used for the 137

Monte Carlo estimate of the MBR decoding as 138

n := |Yn
ref |. 139

Therefore, to derive a practical application equa- 140

tion (Eq. 6), two approximation operations are per- 141

formed from the objective equation for true MBR 142

decoding (Eq. 2). 143

2.2 MAP Decoding 144

The most intuitive decoding method is MAP decod- 145

ing, which selects a mode based on the human dis- 146

tribution Phuman. MAP decoding is also a special 147

case in which the utility function of MBR decod- 148

ing is used as the indicator function. The objective 149

function of MAP decoding is defined by: 150

y∗MAP = argmax
y∈Y

Phuman(y). (7) 151

The objective equation using the model probability 152

Pmodel is similar to the MBR decoding: 153

ymMAP = argmax
y∈Y

Pmodel(y). (8) 154
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In addition, the objective equation for the Monte155

Carlo estimation of the MAP decoding is defined156

as:157

P̂ (y) =

∑
y′∈Yn

ref
I (y = y′)∣∣Yn
ref

∣∣ . (9)158

where Yn
ref collected n samples from Pmodel.159

We reformulate the practical objective function160

of MAP decoding using Eq. (9):161

ŷmMAP = argmax
y∈Yn

ref

P̂ (y). (10)162

Eq. (10) shows the computationally feasible ap-163

proximation of the MAP decoding. While beam164

search is the most common sampling strategy to165

approximate MAP decoding.166

We focus on the analysis of MAP decoding and167

MBR decoding with random sampling in this paper,168

the case of considering temperature sampling for169

MBR decoding in Appendix G. The goal of the170

study is to investigate the statistics of the MBR and171

MAP objectives.172

3 Analysis of MBR decoding173

In this section, we evaluate the performance of174

MBR decoding (Eq. 6) compared to the ideal MBR175

solution (Eq. 2) under various assumptions.176

3.1 Problem Setting177

The optimal MBR decoding output is y∗ (Eq. 2).178

However, as mentioned earlier, due to practical lim-179

itations, only a Monte Carlo solution ŷm (Eq. 6)180

can be obtained in practice. On the other hand,181

since this ŷm is ultimately evaluated under the182

human distribution Phuman, the following perfor-183

mance difference arises:184

Regretn := uh(y
∗)− uh(ŷ

m). (11)185

We refer to this quantity Regretn as regret. The186

goal of this study is to obtain an upper bound of re-187

gret theoretically. Suppose we can show this upper188

bound on the order of the number of elements in189

candidate and hypothesis sets. In that case, we can190

provide a theoretical guarantee for the performance191

of MBR decoding using the Monte Carlo method.192

3.2 The Analysis of Regretn193

We define the following notation:194

∆(up, uq, y) := up(y)− uq(y). (12)195

This expresses the residual of the utility of y as-196

suming q as the probability distribution when the197

target probability distribution is p. Using Eq. (12), 198

we divide the regret Regretn into four terms: 199

Regretn ≤ ∆(uh, um, y∗) + ∆(um, ûm, y∗) 200

+∆(ûm, um, ŷm) + ∆(um, uh, ŷ
m).
(13)

201

In the following analysis, we first derive an upper 202

bound for each ∆ in Eq. (13). Then, using the 203

upper bounds derived for each ∆, we derive an 204

upper bound for Regretn. 205

Analysis of um and ûm. First, we derive an up- 206

per bound for the terms involving um, ûm. We 207

consider the following assumption about the utility 208

function. 209

Assumption 1 (Inner Product Representa-
tion of the Utility Function). Let α(y) ∈
Rd be an embedding for each y ∈ Y . We
assume that the utility function u(y, y′) is
given by the inner product of the embed-
dings, i.e.,

u(y, y′) = α(y)⊤α(y′).
210

There are examples of utility functions that sat- 211

isfy these properties such as the F1 measure of 212

the BERTScore and the inner product of the em- 213

bedding functions (Zhang et al., 2020; Reimers 214

and Gurevych, 2019; Meng et al., 2024). Note 215

that several state-of-the-art utility functions for ma- 216

chine translation do not satisfy this assumption 217

(e.g., COMET and Metric-X; Rei et al. 2020; Guer- 218

reiro et al. 2024; Juraska et al. 2024), since they 219

are trained to do the computation of the utility and 220

the quality estimation at the same time. 221

By applying Hoeffding’s Inequality (Lemma 4) 222

and Uniform Concentration Inequality (Lemma 5), 223

see Appendix B, along with Assumption 1, the 224

following lemma about the terms involving um, ûm 225

is established. 226

Lemma 1 (Upper Bound for the terms in-
volving um, ûm). Under Assumption 1 and
assuming d ≥ 4, the following bound holds
for any δ ∈ (0, 1), with probability at least
1− δ:

∆(um, ûm, y∗) + ∆(ûm, um, ŷm)

≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d.

227

3



The proof can be found in Appendix C. Since the228

dimensions of the embedding models are usually229

larger than 4, we assume them in this study and230

proceed with our analysis under this assumption.1231

Lemma 1 shows that the upper bound of regret232

with um, ûm terms depends only on the number of233

samples n and decreases at a rate of O
(
n− 1

2

)
. No-234

tably, this result can also be interpreted as a regret235

bound, specifically Regretn, under the condition236

that Phuman and Pmodel are identical (Appendix D).237

Analysis of uh and um. Next, we analyze the238

uh, um terms involved, but before doing so, we239

consider the following assumptions.240

Assumption 2 (Utility Function Smooth-
ness). For all y, y′, y′′ ∈ Y , we assume
the utility function satisfies the following
inequality:

|u(y, y′)− u(y, y′′)| ≤ C(y′, y′′)

where C ∈ RY×Y is a cost function.
241

The assumption is not a restrictive assumption.242

For any utility functions bounded by [0, Umax],243

C(y′, y′′) = Umax satisfies the assumption. Note244

also that Assumption 1 entails Assumption 2. The245

assumption is known as the Lipschitz condition246

(Jeffreys and Jeffreys, 1988). It claims that the247

value of the utility function is smooth under the248

cost function C: the difference in the utility be-249

tween an output y and other outputs y′ and y′′ can250

be bounded by some “distance” C between the y′251

and y′′. Intuitively, if y′ and y′′ are similar, then252

C wants to be small, and otherwise large. Many253

of the utility functions are designed to be so by254

minimizing the prediction error from the human255

evaluation (e.g., MQM score) (Rei et al., 2020;256

Juraska et al., 2024). Under the Assumption 2, the257

following lemma holds:258

Lemma 2 (Upper Bound for the terms in-
volving uh, um). Under Assumption 2, the
following bound can be derived:

∆(uh, um, y∗) + ∆(um, uh, ŷ
m)

≤ 2WD(Phuman, Pmodel),

where WD is Wasseratein distance with C
259

1For readers interested in the case d < 4, see Appendix C.

being the cost function.
260

The definition of Wasserstein distance (Wang, 261

2012) is described in Appendix B. The proof can 262

be found in Appendix E. Lemma 2 implies that 263

minimizing the terms involving uh, um requires 264

choosing Pmodel that closely approximates Phuman. 265

Upper bound of Regretn. Using Lemma 1 and 266

Lemma 2, we can derive an upper bound for 267

Regretn. 268

Theorem 1 (Regret Bound for MBR decod-
ing). Under Assumption 1, Assumption 2,
and assuming d ≥ 4, the regret upper
bound of the MBR decoding holds for any
δ ∈ (0, 1), with probability at least 1− δ:

Regretn ≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d

+ 2WD(Phuman, Pmodel).

269

Theorem 1 can be interpreted as follows. First, 270

the upper bound decreases with a larger number of 271

samples from Pmodel with the convergence speed 272

of O
(
n− 1

2

)
. This implies that you can reduce 273

the upper bound by 30% by doubling the number 274

of samples 2n, you are probably to need at least 275

four times more samples 4n to reduce the initial 276

error by 50%. The other insight is that the error 277

is inherently limited by the Wasserstein distance 278

between Phuman and Pmodel, which means that, 279

as expected, the accuracy of Pmodel is desirable. 280

This observation is consistent with the finding that 281

Ohashi et al. (2024) indicates that MBR decoding 282

performance is improved when Phuman and Pmodel 283

are similar. 284

3.3 On the Effect of the Training Dataset Size 285

In practice, we cannot compute the exact value of 286

the Wasserstein distance as it requires enumera- 287

tion over all possible sentences. To derive a more 288

digestible bound, we consider the simplest exam- 289

ple where Pmodel is an empirical distribution of 290

Phuman. Formally, we consider the following as- 291

sumption: 292

Assumption 3 (Pmodel as an Empirical
Distribution Sampled the Size of Training

293
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Dataset |D| from Phuman.). Let Pmodel be
the empirical distribution of |D| samples
obtained from Phuman. Pmodel has the fol-
lowing expression:

Pmodel(y) =
1

|D|
∑
y′∈D

I(y = y′).

D ∼ Phuman(·)

where I is an indicator function.
294

Assumption 3 is not intended to be an assump-295

tion that is directly applicable to real-world scenar-296

ios. In a real-world scenario, Pmodel is almost al-297

ways represented by function approximation mod-298

els (e.g., neural networks) for text generation tasks.299

They are often pretrained by unsupervised learn-300

ing using a language model objective, then fine-301

tuned by supervised learning and preference learn-302

ing (Radford et al., 2018; Stiennon et al., 2020;303

Ouyang et al., 2022).304

Given the diversity and complexity of models305

used in practice, we instead analyze a simple model306

where it has no function approximation, pertaining,307

or post-training processes. Such a simple model308

is likely to be worse than models used in practice.309

Therefore, the bounds we derive from this simple310

model serve as informal worst-case bounds for the311

state-of-the-art models.312

The size of the training dataset is usually much313

larger than the number of samples for MBR decod-314

ing: |D| ≫ n.315

Analysis of um and ûm with the training dataset316

size |D|. Under Assumption 3, we derive the anal-317

ysis on the terms in uh, um, using the Hoeffding’s318

Inequality (Lemma 4, see Appendix B), we can get319

the following the upper bound.320

Lemma 3 (Upper Bound for the terms in-
volving uh, um with the Size of Training
Dataset |D|). Under Assumption 3, the fol-
lowing bound holds for any δ ∈ (0, 1), with
probability at least 1− δ:

∆(uh, um, y∗) + ∆(um, uh, ŷ
m)

≤ 3

√
1

|D|
log

1

δ
.

321

The proof can be found in Appendix F. This322

shows that the upper bounds for the uh, um terms 323

vary only with the size of the training dataset 324

|D| and that the upper bound decays at a rate of 325

O
(
|D|−

1
2

)
with its size. 326

Under Assumption 3, regret depends on both 327

samples n and |D|. For clarity, we define a regret 328

under Assumption 3 as follows: 329

Regretn,D := uh(y
∗)− uh(ŷ

m). (14) 330

Upper bound of Regretn,D. We can immedi- 331

ately derive the upper bound for Regretn,D from 332

Lemma 1 and Lemma 3 as follows: 333

Theorem 2 (Regret Bound for MBR decod-
ing with the Size of Training Dataset |D|).
Under Assumption 1, Assumption 3, and as-
suming d ≥ 4, the regret upper bound of
the MBR decoding holds for any δ ∈ (0, 1),
with probability at least 1− δ:

Regretn,D ≤ 4

√
1

n
log

1

δ
+ 4

√
1

|D|
log

1

δ

+
36

n

√
d log d.

334

Theorem 2 shows that MBR decoding ap- 335

proaches the optimal output with a convergence 336

rate related to the size of the reference hypothesis 337

set n and the size of the training dataset |D|, sug- 338

gesting why MBR decoding has good experimental 339

performance. This implies that sample and dataset 340

sizes are significant for MBR decoding. 341

3.4 Extended Analysis of MBR Decoding 342

Expected regret bounds. So far, we have found 343

that we can obtain upper bounds that occur with 344

high probability, and from these upper bounds, we 345

can immediately determine the expected regret up- 346

per bound for Theorem 1 and Theorem 2. 347

Corollary 1 (Expected Regret Upper Bound
of MBR decoding). The expected re-
gret upper bounds Regretn,Regretn,D are
bounded as follows for any δ ∈ (0, 1) under
assuming d ≥ 4:

E [Regretn] ≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d

+ 2WD(Phuman, Pmodel) + δ

348
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E
[
Regretn,D

]
≤ 4

√
1

n
log

1

δ
+

36

n

√
d log d

+ 4

√
1

|D|
log

1

δ
+ δ

349

The proof is in Appendix H. Corollary 1 can be350

used to estimate how large the regret will be, on351

average.352

On the effect of errors in the utility function.353

In the real world, we cannot always have access to354

the true utility function u, instead, we assume that355

the proxy utility function is only available u′, and356

we explain the bound of the difference in the utility357

function. We focus exclusively on the conditions358

outlined in Theorem 2.359

We define the following expression:360

u′(y) =
1

|Yn
ref |

∑
y′∈Yn

ref

u′(y, y′).361

y′ = argmax
y∈Yn

ref

u′(y).362

We want to find the upper bound of uh(y∗)−uh(y
′).363

Our new objective function in this paragraph is364

defined as:365

Regretun,D := uh(y
∗)− uh(y

′). (15)366

Under Assumption 1 and Assumption 3, an up-367

per bound of Regretun,D is derived using the Ho-368

effding’s inequality (Lemma 4). Let αerr :=369

maxy,y′∈Yn
ref

||α(y)−α′(y′)||.370

Corollary 2 (Regret Bound for MBR de-
coding with utility function error). Under
Assumption 1 and Assumption 3, the regret
upper bound of the MBR decoding with util-
ity function error holds for any δ ∈ (0, 1),
with probability at least 1− δ:

Regretun,D ≤ 4

√
1

|D|
log

1

δ
+ 4

√
1

n
log

1

δ

+ 2dαerr.

371

The proof can be found in Appendix I. In Corol-372

lary 2, the upper bound decreases as the number373

of samples n and the size of training dataset |D|374

increases. However, it does not ultimately converge375

to zero, as the term αerr remains.376

4 Analysis of MAP Decoding 377

In this section, we derive the regret of MAP decod- 378

ing between the optimal value and the Monte Carlo 379

estimated value, expressed as Phuman(y
∗
MAP) − 380

Phuman(ŷ
m
MAP). 381

We define the regret of the MAP decoding as 382

follows: 383

RegretMAP
n = Phuman(y

∗
MAP)− Phuman(ŷ

m
MAP).

(16) 384

We refer to RegretMAP
n as MAP regret. Under 385

the conditions of Theorem 1, the upper bound 386

of RegretMAP
n is given by the following re- 387

sult using Dvoretzky–Kiefer–Wolfowitz inequality 388

(Lemma 6, see in Appendix B). 389

Theorem 3 (Regret Bound for MAP decod-
ing). Under the conditions of Theorem 1,
the MAP regret upper bound of the MAP de-
coding holds for any δ ∈ (0, 1), with proba-
bility at least 1− δ:

RegretMAP
n ≤ 6

√
1

n
log

1

δ

+ 2WD(Phuman, Pmodel).

390

Furthermore, under the conditions of Theorem 2, 391

MAP regret depends on the number of samples n 392

and the size of the training dataset |D|. 393

Our new objective formulation is defined as: 394

RegretMAP
n,D = Phuman(y

∗
MAP)− Phuman(ŷ

m
MAP)

(17) 395

The upper bound of RegretMAP
n,D is also immedi- 396

ately obtained by Lemma 6 as follows. 397

Theorem 4 (Regret Bound for MAP de-
coding with the Size of Training Dataset
|D|). Under the conditions of Theorem 2,
the MAP regret upper bound of the MAP de-
coding holds for any δ ∈ (0, 1), with proba-
bility at least 1− δ:

RegretMAP
n,D ≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D|
log

1

δ
.

398

The proof is in Appendix J. Note that Theorem 3 399

and Theorem 4 decrease in the same order Theo- 400

rem 1 and Theorem 2 respectively. In other words, 401

if we compare the difference between these bounds 402

more clearly, we focus on the constant term. 403
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5 Performance Comparison404

So far, we have analyzed MBR decoding and MAP405

decoding independently. In this section, we com-406

pare the performance of MBR decoding and MAP407

decoding within the same framework, in terms of408

the upper bound and we focus exclusively on the409

conditions outlined in Theorem 2, Theorem 4.410

Difference between MBR and MAP Decoding411

target values. First, we aim to analyze the differ-412

ence uh(y
∗)− uh(ŷ

m
MAP), where y∗ is the optimal413

output and ŷmMAP is a suboptimal output. We can414

analyze this error bound to see how the optimal so-415

lution in MAP decoding behaves in an ideal MBR416

decoding environment.417

Observation 1 (Error between y∗ and
ŷmMAP with uh). Error bound between y∗

and ŷmMAP with uh satisfies for any δ ∈(
0, 25
)
, with probability at least 1− 5

2δ:

uh(y
∗)− uh(ŷ

m
MAP) ≤ um(ŷm)− um(ŷmMAP)

+O
(
max

(
n− 1

2 , |D|−
1
2

))
.

418

The detail is in Appendix K.1. This observation419

confirms that MAP decoding and MBR decoding420

theoretically have different objectives under certain421

conditions. We provide the analysis of the MAP422

regret RegretMAP
n,D of the two decoding algorithms423

in Appendix K.1.424

Convergence speed of upper bound of Regretn,D425

and RegretMAP
n,D . Next, we compare the upper426

bounds of the convergence rate between MBR de-427

coding and MAP decoding presented in this study.428

Observation 2 (Comparison of the Con-
vergence Speed). We compare the upper
bounds of Regretn,D and RegretMAP

n,D un-
der three different scenarios:

1. n → ∞ and |D| is finite. The upper
bound of Regretn,D is strictly smaller than
the upper bound of RegretMAP

n,D .

2. D → ∞ and n is finite. For number
of samples n and utility d such that the fol-
lowing inequality holds, the upper bound of
Regretn,D is smaller than the upper bound

429

0 n
Size of Samples n

0

|D|

Tr
ai

ni
ng

 D
at

as
et

 S
iz

e 
|D

|

MAP Regret is better.

MBR Regret is better.

Figure 1: Conceptual visualization of Observation 2.
The convergence rates of the upper bound of Regretn,D
and RegretMAP

n,D with the number of samples n and train-
ing dataset size |D| are compared. For n and |D| on the
right side of this line plot, it means that the upper bound
of Regretn,D is smaller.

of RegretMAP
n,D .

1

9

√
n log

1

δ
≥
√
d log d.

3. Both D and n are finite. For the num-
ber of samples n, utility d, and the size of
training dataset |D| such that the follow-
ing inequality holds, the upper bound of
Regretn,D is smaller than the upper bound
of RegretMAP

n,D .

n

9

(√
1

n
log

1

δ
+

√
1

|D|
log

1

δ

)
≥
√
d log d.

430

The proofs are given in Appendix K.2 and the 431

result of numerical experiments comparing the 432

rate of convergence of these upper bounds depend- 433

ing on the number of samples n is shown in Ap- 434

pendix L. As can be seen by comparing Regretn,D 435

and RegretMAP
n,D in cases 2 and 3 of Observation 2, 436

as the number of samples n increases, the up- 437

per bound on Regretn,D converges more faster 438

(Fig. 1). 439

The analysis shows that, for any model, there 440

exists a large enough n such that the upper bound of 441

the regret of MBR decoding is smaller than that of 442

MAP decoding. This observation may help explain 443

why the empirical performance of MBR decoding 444

can exceed that of MAP decoding. 445
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the Regretn derived by Theorem 1 and the value of
Regretnin the simulation. The number of samples n
is fixed to 500 and the training dataset size is |D| =
[0, 1000]

6 Numerical Simulation446

In this section, we computationally evaluate the up-447

per bounds of Regretn and Regretn,D. It is impor-448

tant to emphasize that the experiments conducted449

in this paper are not intended to show the tightness450

of the results in the practical NLP tasks. Rather,451

they are intended to provide a visual representation452

of the theoretical results presented in this paper.453

For the performance of MBR decoding in real-454

world NLP tasks, we refer to previous work (Fre-455

itag et al., 2023; Bertsch et al., 2023; Heineman456

et al., 2024; Wu et al., 2025).457

We consider Y = 10,000 hypotheses yi (i =458

1, . . . ,H) with the dataset size of |D| and the num-459

ber of samples n model samples to study regret and460

bound behavior. We test δ ∈ {0.01, 0.1}, and set461

d = 4. The details of the experimental setup are462

given in Appendix M.463

6.1 Results464

Fig. 2 clearly demonstrates that our theoretical up-465

per bound on Regretn is tight when compared to466

the actual regret observed. This close correspon-467

dence indicates that the assumptions and inequal-468

ities used in deriving the bound are well-justified,469

providing evidence in the numerical experiment.470

The results of Fig. 3 and Fig. 4 show that the471

obtained upper bound converges to Regretn,D as472

the number of samples increases. This behavior473

suggests the theoretical validity of the bound in-474

dicating that the looseness of the upper bound is475

gradually eliminated as the number of samples in-476

creases, improving the ability to accurately capture477
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Figure 3: The upper bound (δ = {0.01, 0.1}) of the
Regretn,D derived by Theorem 2 and the value of
Regretn,Din the simulation. The training dataset size
|D| is fixed to 5000 and the number of samples for MBR
decoding is n = [0, 500].
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Figure 4: The upper bound (δ = {0.01, 0.1}) of the
Regretn,D derived by Theorem 2 and the value of
Regretn,D in simulation. The number of samples n
is fixed to 500 and the training dataset size is |D| =
[0, 10000]

the true performance difference accurately. 478

7 Conclusions 479

This paper presents a theoretical analysis of MBR 480

decoding and shows that, under reasonable assump- 481

tions, it converges with high probability to the opti- 482

mal solution at a rate of O
(
n− 1

2

)
, even when the 483

total language space Y is large. In addition, we 484

compare MBR and MAP decoding about the per- 485

formance difference and the convergence speed to 486

the optimal solution. As a result, we confirm MAP 487

decoding and MBR decoding theoretically have dif- 488

ferent objectives, and from the upper bound, MBR 489

decoding is more efficient than MAP decoding in 490

approaching the optimal output under certain con- 491

ditions. 492
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8 Limitations493

This study provides the first theoretical bounds on494

MBR decoding. As it is one of the first analy-495

ses on MBR decoding, it has several limitations,496

particularly regarding its alignment with practical497

implementations.498

Assumptions. Our analysis assumes that the set499

of candidate hypotheses H is identical to the set of500

reference outputs Y . However, in practice, using a501

small number of high-quality but biased candidates502

alongside a larger set of unbiased references has503

been found to be more effective.504

We have considered three assumptions for the505

analysis. The assumptions do not cover all the situ-506

ations of text generation applications. For example,507

the state-of-the-art utility functions for machine508

translation (COMET and Metric-X; Rei et al. 2020;509

Guerreiro et al. 2024; Juraska et al. 2024) are not510

linear function (Assumption 1).511

In practice, the models are represented by a neu-512

ral network, and they are often pretrained using un-513

supervised learning before supervised fine-tuning.514

This point is not considered in Assumption 3.515

Aspects not considered. The analysis does not516

account for the role of neural networks. In particu-517

lar, it is known that solutions corresponding to flat518

minima tend to generalize better than those with519

sharp minima (Dinh et al., 2017). Understanding520

the role of neural networks for MBR decoding is521

future work.522

We analyze a model that predicts sequences, but523

practical implementations typically use autoregres-524

sive language models (Lin et al., 2021). Incorpo-525

rating the autoregressive assumption may lead to526

improved theoretical bounds.527

The study considers only random sampling and528

temperature sampling. However, other strategies,529

such as epsilon sampling (Hewitt et al., 2022) and530

beam search (which is commonly used for MAP531

decoding), are not analyzed.532

Our analysis does not frame the problem as an533

NLP task. Incorporating domain-specific charac-534

teristics could lead to tighter bounds. This study is535

purely theoretical and does not include empirical536

experiments to validate the results on real-world537

NLP tasks. Instead, we rely on prior experimental538

findings (Freitag et al., 2023; Bertsch et al., 2023;539

Suzgun et al., 2023) for providing empirical sup-540

port for our theoretical conclusions.541

Another key limitation is that the bounds derived542

in this study are not proven to be tight, leaving 543

room for refinement. Furthermore, to measure how 544

tight the upper bounds is, we also need to derive 545

the lower bound in MBR decoding. 546

Lastly, while our study focuses on sample com- 547

plexity, practical implementations of MBR decod- 548

ing are often constrained by computational com- 549

plexity (Cheng and Vlachos, 2023; Vamvas and 550

Sennrich, 2024). Combining our sampling com- 551

plexity result with the existing computational com- 552

plexity bounds (Jinnai and Ariu, 2024) is future 553

work. 554

Summary. This work provides fundamental the- 555

oretical bounds for MBR decoding. However, there 556

remain avenues for improvement, including empir- 557

ical validation, refinement of theoretical bounds, 558

and comparative analysis with alternative decoding 559

algorithms. 560

9 Ethics Statements 561

We do not foresee any ethical concerns regarding 562

the analysis of the paper. 563
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A Related Works 824

Experimental findings in MBR decoding. Many studies have reported that the performance of MBR 825

decoding increases with a larger number of samples (Eikema and Aziz, 2022; Freitag et al., 2022). Prior 826

works (Freitag et al., 2022; Fernandes et al., 2022) show that the performance of the MBR decoding 827

depends on the selection of the utility function. Experiments combining MBR decoding with neural 828

reference-based metrics, such as BLEURT, demonstrate significant improvements in human evaluations. 829

In recent work, Yan et al. (2024) propose Distributional Cooling MBR, this approach bridges the gap 830

between label smoothing and MBR decoding, with extensive experimental validation demonstrating its 831

effectiveness on various NMT benchmarks and Wu et al. (2025) shows that leveraging reference-based 832

LLM judges with MBR decoding improves the output quality of instruction-following LLMs compared to 833

greedy decoding, best-of-N approaches. 834

Analysis of MBR decoding. Kamigaito et al. (2024) conduct on the intricate relationship between bias 835

and diversity in MBR decoding. Their bias-diversity decomposition framework theoretically explains the 836

trade-offs observed in empirical studies. 837

B Useful Lemmas and Definition 838

In this section, we present the concentration inequality used in the paper. The following inequalities 839

represent a uniform concentration inequality. 840

Lemma 4 (Hoeffding’s inequality; Corollary 1.1 in Bach 2024). {Xi}ni=1 ∈ [0, b] being i.i.d. samples 841

drawn from same distribution. 842

Pr

(∣∣∣∣∣E [X]− 1

n

n∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−2nϵ2

b2

)
. 843

The following inequalities represent a uniform concentration inequality. 844

Lemma 5 (Uniform Concentration Inequality; Theorem 4.10 in Wainwright 2019). F is a class of 845

functions f : X → [0, b]. 846

Pr (∥Pn − P∥F ≥ 2Rn(F) + ϵ) ≤ exp

(
−2nϵ2

b2

)
. 847

where ∥Pn − P∥F = supf∈F |Pnf − Pf |, Pnf = 1
n

∑n
i=1 f(Xi) and Pf = E[f(X)], with X and 848

{Xi}ni=1 being i.i.d. samples drawn from P, Rn : (F , {Xi}ni=1) → R. 849

Rn(F) represents the Rademacher complexity of the function class F (Definition 3.1 (Mohri, 2018)). 850

Rademacher complexity is a measure of model complexity, indicating how well a function class can fit 851

random noise. It provides a uniform bound on the deviation between the empirical and true expectations 852

across all functions in F , serving as a key tool for analyzing generalization error in statistical learning 853

theory. 854

Lemma 6 (Dvoretzky–Kiefer–Wolfowitz inequality; Massart 1990).

Pr

(
sup
x∈R

|Fn(x)− F (x)| > ε

)
≤ 2 exp(−2nε2). 855

Given a natural number n, let X1, X2, · · · , Xn be real-valued independent and identically distributed 856

random variables with cumulative distribution function F (·). Let Fn denote the associated empirical 857

distribution function defined by Fn(x) =
1
n

∑n
i=1 1{Xi≤x} 858

Definition 1 (Wassertstein Distance). The Wassertstein Distance (WD) (Wang, 2012) is defined as: 859

WD(ν, µ) = inf
γ∈Γ(ν,µ)

∑
(i,j)∈N×N

γij Cij , (18) 860
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where N : the total number of samples, consisting of the set {y1, y2, . . . , yN}, ν, µ ∈ ∆N : probability861

measure on the aforementioned sets (νi, µi refer to the probability value ν(yi), µ(yi)), C: N ×N → R a862

cost function measuring the distance between two outputs (e.g. Cij refers to the amount to be transported863

from place yi to palace yj), and Γ(ν, µ) denotes the set of all joint distributions γ whose marginals are ν864

and µ. The constraints on γ are given by:865 ∑
j∈n

γij = νi, ∀i ∈ n,

∑
i∈n

γij = µj , ∀j ∈ n,

γij ≥ 0, ∀i, j ∈ n.

866

The WD, also known as the Earth Mover’s Distance (EMD), is a metric used to quantify the dissimilarity867

between two probability distributions. Unfortunately, computing WD between two probability distri-868

butions over Y exactly is generally intractable, as it requires an enumeration over Y . Still, WD can be869

approximated by using empirical distributions with a finite number of samples with the convergence rate870

of O(n− 1
d ) (Peyré and Cuturi, 2020).871

C Proof of Lemma 1872

We start by analyzing the um(y∗)− um(ŷm).873

We decompose it as follows:874

um(y∗)− ûm(y∗) + ûm(ŷm)− um(ŷm) + ûm(y∗)− ûm(ŷm)︸ ︷︷ ︸
≤0

875

≤ ∆(um, ûm, y∗) + ∆(ûm, um, ŷm)876

We can express ∆(um, ûm, y∗) using the following formulation, derived from Lemma 4.877

Pr (|∆(um, ûm, y∗)| ≤ ϵ) ≤ 1− 2 exp

(
− 2nϵ2

U2
max

)
= 1− δ

2
.878

∆(um, ûm, y∗) holds the following inequality with probability at least 1− δ
2 .879

∆(um, ûm, y∗) ≤ Umax

√
1

2n
log

(
4

δ

)
.880

Next, we analyze ∆(ûm, um, ŷm), however, Lemma 4 cannot be directly applied because ŷm depends881

on ûm. To address this dependency, we instead utilize Lemma 5, and we can get the following formulation.882

Pr

(
max
y

|∆(ûm, um, y)| ≤ 2Rn(F) + ϵ

)
≤ 1− exp

(
− 2nϵ2

U2
max

)
= 1− δ

2
.883

We can thus express ∆(ûm, um, ŷm) with probability at least 1− δ
2 .884

∆(ûm, um, ŷm) ≤ max
y

|∆(ûm, um, y)| ≤ 2Rn(F) + Umax

√
1

2n
log

(
2

δ

)
.885

From Section 27.2 (Shalev-Shwartz and Ben-David, 2014), the following upper bound on the886

Rademacher complexity Rn(F) is obtained under Assumption 1:887

2Rn(F) ≤ 12Umax

n

(√
d log(2

√
d) + 2

√
d

)
888
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From above inequality, we can get the following the bound: 889

∆(ûm, um, ŷm) ≤ max
y

|∆(ûm, um, y)| 890

≤ 12Umax

n

(√
d log(2

√
d) + 2

√
d

)
+ Umax

√
1

2n
log

(
2

δ

)
891

≤ 12Umax

n

(√
d log(2

√
d) + 2

√
d

)
+ Umax

√
1

2n
log

(
4

δ

)
. 892

893

If d ≥ 4, 894

∆(ûm, um, ŷm) ≤ 36Umax

n

√
d log(

√
d) + Umax

√
1

2n
log

(
4

δ

)
. 895

≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d. 896

Otherwise, if d < 4, 897

∆(ûm, um, ŷm) ≤ 36Umax

n

√
d log(

√
d) + Umax

√
1

2n
log

(
4

δ

)
. 898

≤ 3

√
1

n
log

1

δ
+

72
√
d

n
. 899

D The Case of Phuman and Pmodel are identical. 900

If Phuman and Pmodel are equal, the upper bound of Regretn corresponds to Lemma 1: 901

Regretn ≤ 2Umax

√
1

2n
log

8

δ
+

12Umax

n

(√
d log(2

√
d) + 2

√
d

)
. 902

≤ 3

√
1

n
log

1

δ
+

36

n

(√
d log d

)
. 903

In most studies, the primary goal of MBR decoding studies is to derive ym, given that Phuman is 904

inaccessible. These studies implicitly assume Pmodel = Phuman, highlighting the significance of the 905

results. This finding is for understanding and improving the practical application of MBR decoding 906

methods. 907
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E Proof of Lemma 2908

We can derive the following inequality under Assumption 2 for any y ∈ Y:909

∆(uh, um, y) ≤ |∆(uh, um, y)|910

=

∣∣∣∣∣∣
∑
y′∈Y

Phuman(y
′)u(y, y′)−

∑
y′′∈Y

Pmodel(y
′′)u(y, y′′)

∣∣∣∣∣∣911

=

∣∣∣∣∣∣
∑
y′,y′′

(u(y, y′)− u(y, y′′))γ(y′, y′′)

∣∣∣∣∣∣912

where
∑
y′

γ(y′, y′′) = Pmodel(y
′′),

∑
y′′

γ(y, y′′) = Phuman(y
′), γ(y′, y′′) ≥ 0913

≤ min
γ

∑
y′,y′′

|u(y, y′)− u(y, y′′)|γ(y′, y′′)914

≤ min
γ

∑
y′,y′′

C(y′, y′′)γ(y′, y′′)915

= WD(Phuman, Pmodel)916

F Proof of Lemma 3917

Under the Assumption 3, with using the Lemma 4, the ∆(uh, um, y∗) term is expressed as follows:918

Pr (|∆(uh, um, y∗)| ≤ ϵ) ≤ 1− 2 exp

(
−2|D|ϵ2

U2
max

)
= 1− δ

2
.919

We rearrange ϵ as follows:920

ϵ = Umax

√
1

2|D|
log

(
4

δ

)
.921

In other words, the upper bound of ∆(uh, um, y∗) has a probability of at least 1− δ
2 .922

∆(uh, um, y∗) ≤ Umax

√
1

2|D|
log

(
4

δ

)
.923

For the ∆(uh, um, ŷm) term, the upper bound can be obtained by the same operation, and the complement924

Lemma 3 is proved.925

∆(uh, um, y∗) + ∆(um, uh, ŷ
m) ≤ 3

√
1

|D|
log

1

δ
.926

G Regret Bound for MBR decoding with temperature sampling927

We have been considering random sampling so far, but we also analyze what the bounds would be if we928

did temperature sampling, considering practical aspects.929

P t
model(y) =

exp
(
t−1Pmodel(y)

)∑
y′∈Y exp (t−1Pmodel(y′))

930
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where t ∈ R+. The objective equation for MBR decoding of the Monte Carlo estimates using a collection 931

of reference hypotheses Yn
ref sampled from the model P t

model is as follows: 932

ûtm(y) =
1

|Yn
ref |

∑
y′∈Yn

ref

u(y, y′). 933

ŷmt = argmax
y∈Yn

ref

ûtm(y). 934

Our new objective formulation is defined as: 935

Regrettn,D := uh(y
∗)− uh(ŷ

m
t ). (19) 936

We can derive the upper bound of Regrettn,D as follows under the condition Theorem 2 for any t ∈ R+. 937

Corollary 3 (Regret Bound for MBR decoding with temperature sampling). Under Assumption 1,
Assumption 2, Assumption 3 and assuming d ≥ 4, the regret upper bound of the MBR decoding
holds for any δ ∈ (0, 1), with probability at least 1− δ:

Regrettn,D ≤ 4

√
1

n
log

1

δ
+ 4

√
1

|D|
log

1

δ

+
36

n

√
d log d+WD(Pmodel, P

t
model).

938

The case of the little samples n might lead to better performance with using the temperature sampling 939

rather than using Pmodel if t is large. However, the above bound has an extra term WD when performing 940

temperature sampling compared to Theorem 2, so the upper bound of Regrettn,D might be improved 941

tighter than Corollary 3’s derived from. We discuss this later in this section. 942

Proof. From the definition of Regrettn,D: 943

Regrettn,D := uh(y
∗)− uh(ŷ

m
t ). 944

The objective equation for MBR decoding using temperature model distribution can be redefined as: 945

utm(y) =
∑
y′∈Y

u(y, y′) · P t
model(y

′). 946

ymt = argmax
y∈H

um(y). 947

We can decompose the following terms: 948

Regrettn,D ≤ ∆(uh, um, y∗) + ∆(um, uh, ŷ
m
t ) + um(y∗)− utm(y∗) + utm(y∗)− ûtm(y∗) 949

+ ûtm(ŷmt )− utm(ŷmt ) + utm(ŷmt )− um(ŷmt ) 950

= ∆(uh, um, y∗) + ∆(um, uh, ŷ
m
t ) + ∆(um, utm, y∗) + ∆(utm, ûtm, y∗) 951

+∆(ûtm, utm, ŷmt ) + ∆(utm, um, ŷmt ) 952

First, the involving the terms uh, um is immediately bounded by Lemma 3 with probability at least 953

1− δ
2 under Assumption 3. 954

∆(uh, um, y∗) + ∆(um, uh, ŷ
m
t ) ≤ 2Umax

√
1

2|D|
log

(
8

δ

)
955

≤ 4

√
1

|D|
log

1

δ
. 956
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Next we derive ∆(um, utm, y∗) + ∆(utm, ûtm, y∗)’s upper bound. Under Assummption 2, we can get957

the following the bound.958

∆(um, utm, y∗) + ∆(utm, um, ŷmt ) ≤ 2WD(Pmodel, P
t
model)959

Finally, we derive the upper bound for the terms involving um and ûtm. We conduct the sample operation960

he proof of Lemma 1. We can get the following bound with probability at least 1− δ
2 under Assumption 1961

and assuming d ≥ 4:962

∆(utm, ûtm, y∗) + ∆(ûtm, utm, ŷmt ) ≤ 2Umax

√
1

2n
log

(
8

δ

)
+

12Umax

n

(√
d log(2

√
d) + 2

√
d

)
963

≤ 4

√
1

n
log

1

δ
+

36

n

√
d log d.964

965

966

The upper bound of Regrettn,D might be improved We focus on ∆(um, utm, y∗). In this paper, we can967

derive the upper bound with Wasserstein Distance. However, if Pmodel capture Phuman, um(y∗) < uh(y
∗),968

but we consider P t
model, it is possible to be ytm = y∗ with little samples, so ∆(um, utm, y∗) can be negative969

value. In summary, rather than simply deriving an upper bound on the Wasserstein Distance, this bound970

could be improved by taking into account a more detailed analysis of the temperature sampling.971

H Proof of the Corollary 1972

We drive the expected upper bound from high probability upper bound. If we have the regret value R with973

probability at least 1− δ, we can get the expected upper bound the following the equation with worst-case974

value U (e.g. when considering the MBR decoding in this paper, worst-case value can be 1.)975

Expected Upper Bound for Regret = (1− δ) ·R+ δ · U976

By applying the above equation to Theorem 1 and Theorem 2, the following upper bound is derived.977

E [Regretn] ≤ 3

√
1

n
log

1

δ
+

36

n

√
d log d+ 2WD(Phuman, Pmodel) + δ978

979

E
[
Regretn,D

]
≤ 4

√
1

n
log

1

δ
+

36

n

√
d log d+ 4

√
1

|D|
log

1

δ
+ δ980

I Proof of Corollary 2981

Before the proof, we derive the upper bound of the utility function difference.982

The expectation difference is:983

E
[
u(y, y′)

]
− E

[
u′(y, y′)

]
984

= E
[
α(y)⊤v(y′)

]
− E

[
α′(y)⊤v(y′)

]
985

= E
[
(α(y)−α′(y) )⊤v(y′)

]
.986

By applying the Cauchy–Schwarz inequality, we obtain:987

E[u(y∗, y′)]− E[u′(y∗, y′)]988

≤ ∥α(y∗)−α′(y∗)∥ · ∥E[v(y′)]∥989

≤ ∥α(y∗)−α′(y∗)∥.990
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Next, we prove the corollary 2. 991

uh(y
∗)− uh(y

′) = ∆(uh, um, y∗) + um(y∗)− um(y′) + ∆(um, uh, y
′). 992

From Appendix F, we can get the following bound with probability at least 1− δ
2 : 993

∆(uh, um, y∗) + ∆(um, uh, y
′) ≤ 4

√
1

|D|
log

1

δ
. 994

The next step is to prove the remaining conditions. 995

um(y∗)− um(y′) = ∆(um, u′, y∗) + ∆(u′, um, y′)− u′(y′) + u′(y∗) 996

≤ ∆(um, u′, y∗) + ∆(u′, um, y′) 997

= ∆(um, ûm, y∗) + ∆(ûm, u′, y∗) + ∆(ûm, um, y′) + ∆(u′, ûm, y′) 998

≤ 4

√
1

n
log

1

δ
+ ∥α(y∗)−α′(y∗)∥+ ∥α(y′)−α′(y′)∥. 999

Finally, we can get the following the bound under Assumption 1 and Assumption 3 with probability at 1000

least 1− δ: 1001

Regretun,D ≤ 4

√
1

|D|
log

1

δ
+ 4

√
1

n
log

1

δ
+ ∥α(y∗)−α′(y∗)∥+ ∥α(y′)−α′(y′)∥. 1002

J MAP Decoding Upper Bound 1003

In MAP decoding, our objective is to analyze the difference Phuman(y
∗
MAP)− Phuman(ŷ

m
MAP). To obtain 1004

an upper bound, we decompose Phuman(y
∗
MAP)− Phuman(ŷ

m
MAP) as follows. 1005

Phuman(y
∗
MAP)− Phuman(ŷ

m
MAP) = Phuman(y

∗
MAP)− Pmodel(y

∗
MAP) + Pmodel(y

∗
MAP)− Pmodel(ŷ

m
MAP) 1006

+ Pmodel(ŷ
m
MAP)− Phuman(ŷ

m
MAP). 1007

We solve the upper bound with Lemma 6, so we bound the difference of distributions with the difference 1008

of empirical distributions. We also denote y− as the value immediately before y. 1009

The following equation holds for all y with probability at least 1− 2
δ : 1010

|P̂ (y)− Pmodel(y)| =
∣∣∣(F̂ (y)− F̂

(
y−
))

−
(
Fmodel(y)− Fmodel

(
y−
))∣∣∣ . 1011

≤
(
|F̂ (y)− Fmodel(y)|+

∣∣∣F̂ (y−)− Fmodel

(
y−
)∣∣∣) . 1012

max
y

|P̂ (y)− Pmodel(y)| ≤ max
y

(
|F̂ (y)− Fmodel(y)|+

∣∣∣F̂ (y−)− Fmodel

(
y−
)∣∣∣) ≤ 2ϵ1. 1013

1014

We apply Lemma 6 to the above formulation: 1015

Pr

(
max
y∈Y

∣∣∣F̂ (y)− Fmodel(y)
∣∣∣ > ϵ1

)
≤ 2 exp

(
−2nϵ21

)
. 1016

Finally, we get the bound with probability at least 1− δ
2 : 1017

max
y∈Y

|P̂ (y)− Pmodel(y)| ≤ 2

√
1

2n
log

8

δ
. 1018

The following inequality holds for ŷmMAP: 1019

Pmodel(ŷ
m
MAP) ≥ P̂ (ŷmMAP)− 2ϵ1. 1020

19



This also applies to y∗MAP:1021

Pmodel (y
∗
MAP) ≤ P̂ (y∗MAP) + 2ϵ1.1022

From the definition, it is clear that P̂ (ŷmMAP) ≥ P̂ (y∗MAP).1023

Pmodel(ŷ
m
MAP) ≥ P̂ (ŷmMAP)− 2ϵ11024

≥ P̂ (y∗MAP)− 2ϵ11025

≥ Pmodel (y
∗
MAP)− 4ϵ1.1026

Therefore, we can get the upper bound at least 1− δ
2 :1027

Pmodel (y
∗
MAP)− Pmodel(ŷ

m
MAP) ≤ 4

√
1

2n
log

8

δ
.1028

1029

Pr

(
max
y∈Y

|Fmodel(h)− Fhuman(h)| > ϵ2

)
≤ 2 exp

(
−2|D|ϵ22

)
.1030

We also use Lemma 6. It satisfies with probability at least 1− δ
2 :1031

Phuman(y
∗
MAP)− Pmodel(y

∗
MAP) + Pmodel(ŷ

m
MAP)− Phuman(ŷ

m
MAP) ≤ 4

√
1

2|D|
log

8

δ
.1032

Finally, we get the following upper bound with probability at least 1− δ:1033

RegretMAP
n,D ≤ 4

√
1

2n
log

8

δ
+ 4

√
1

2|D|
log

8

δ
1034

≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D|
log

1

δ
.1035

K Observation1036

We describe the derivations of the Observation 1 and 2.1037

K.1 Proof of Observation 11038

Assuming the MBR decoding goal is the true value, we aim to know Phuman(h
∗)− Phuman(ŷ

m), where1039

ŷm is the optimal probability based on the empirical distribution of Pmodel, uh(h) =
∑

Phuman(y)u(h, y).1040

Remind of uh(y∗)− uh(ŷ
m) ≤ 4

√
1
n log 1

δ + 4
√

1
|D| log

1
δ +

36
n

√
d log d = σ11041

Phuman(ŷ
m
MAP)uh(y

∗)− Phuman(ŷ
m
MAP)uh(ŷ

m) ≤ Phuman(ŷ
m
MAP) · σ1.1042

Remind of Phuman(h
∗)− Phuman(ŷ

m
MAP) ≤ 4

(√
1
n +

√
1
|D|

)(√
1
2 log

8
δ

)
.1043

Phuman(h
∗)uh(ŷ

m
MAP)− Phuman(ŷ

m
MAP)uh(ŷ

m
MAP) ≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D|
log

1

δ︸ ︷︷ ︸
σ2

.1044

Combined above formulation:1045

Phuman(ŷ
m
MAP)uh(y

∗)− Phuman(ŷ
m
MAP)uh(ŷ

m) + Phuman(h
∗)uh(ŷ

m
MAP)− Phuman(ŷ

m
MAP)uh(ŷ

m
MAP)1046

≤ Phuman(ŷ
m
MAP)σ1 + σ2,1047

Phuman(ŷ
m
MAP)uh(y

∗)− Phuman(ŷ
m
MAP)uh(ŷ

m
MAP)1048

≤ Phuman(ŷ
m
MAP)uh(ŷ

m)− Phuman(h
∗)uh(ŷ

m
MAP) + Phuman(ŷ

m
MAP)σ1 + σ2,1049
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1050

uh(y
∗)− uh(ŷ

m
MAP) ≤ uh(ŷ

m)− uh(ŷ
m
MAP) + σ1 +

σ2
Phuman(ŷ

m
MAP)

, 1051

≤ uh(ŷ
m)− um(ŷm) + um(ŷm)− um(ŷmMAP) + um(ŷmMAP)− uh(ŷ

m
MAP) 1052

+ σ1 +
σ2

Phuman(ŷ
m
MAP)

, 1053

≤ um(ŷm)− um(ŷmMAP) + 2

√
1

2|D|
log

8

δ
+ σ1 +

σ2
Phuman(ŷ

m
MAP)

, 1054

≤ um(ŷm)− um(ŷmMAP) +O

(
max

(
1√
n
,

1√
D

))
. 1055

From this, we assume that the MAP decoding target is the true value.

Phuman(ŷ
m)uh(y

∗)− Phuman(ŷ
m)uh(ŷ

m) ≤ Phuman(ŷ
m) · σ1. 1056

1057

Phuman(y
∗
MAP)uh(ŷ

m)− Phuman(ŷ
m
MAP)uh(ŷ

m) ≤ uh(ŷ
m) · σ2. 1058

Combined above formulation: 1059

Phuman(y
∗
MAP)uh(ŷ

m)− Phuman(ŷ
m)uh(ŷ

m) ≤ Phuman(ŷ
m)σ1 + uh(ŷ

m)σ2 + Phuman(ŷ
m
MAP)uh(ŷ

m) 1060

− Phuman(ŷ
m)uh(y

∗) 1061

1062

Phuman(y
∗
MAP)− Phuman(ŷ

m) ≤ Phuman(ŷ
m
MAP)− Phuman(ŷ

m)
uh(y

∗)

uh(ŷm)
+

Phuman(ŷ
m)

uh(ŷm)
σ1 + σ2 1063

≤ Phuman(ŷ
m
MAP)− Pmodel(ŷ

m
MAP) + Pmodel(ŷ

m
MAP)− Pmodel(ŷ

m) 1064

+ Pmodel(ŷ
m)− Phuman(ŷ

m) +
σ1

uh(ŷm)
+ σ2 1065

≤ 4

√
1

2|D|
log

8

δ
+

σ1
uh(ŷm)

+ σ2 + Pmodel(ŷ
m
MAP)− Pmodel(ŷ

m) 1066

≤ O

(
max

(
1√
n
,

1√
D

))
+ Pmodel(ŷ

m
MAP)− Pmodel(ŷ

m). 1067

1068

K.2 Proof of Observation 2 1069

Remid of RegretMAP
n,D and Regretn,D ’s upper bound: 1070

RegretMAP
n,D ≤ 8

√
1

n
log

1

δ
+ 8

√
1

|D|
log

1

δ︸ ︷︷ ︸
ϕ1

. 1071

Regretn,D ≤ 4

√
1

n
log

1

δ
+ 4

√
1

|D|
log

1

δ
+

36

n

√
d log d︸ ︷︷ ︸

ϕ2

. 1072

ϕ1 − ϕ2 = 4

√
1

n
log

1

δ
+ 4

√
1

|D|
log

1

δ
− 36

n

√
d log d. 1073

From the above inequality, we can derive this observation. 1074
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Figure 5: Numerical Experiment for Observation 2’s 3

• n → ∞ and D is finite, Regretn,D < RegretMAP
n,D .1075

• D is infinite, n is finite, Regretn,D < RegretMAP
n,D .1076

1

9

√
n log

1

δ
≥
√
d log d.1077

• D is finite and n is finite, the upper bound of Regretn,D remains less than or equal to the upper1078

bound of RegretMAP
n,D , provided the following condition holds:1079

n

9

(√
1

n
log

1

δ
+

√
1

|D|
log

1

δ

)
≥
√

d log d.1080

L Observation 2 Experiment1081

This result shows that the upper bound of MBR decoding is less than the upper bound of MAP decoding1082

at the number of samples described in Observation 2’s 3).1083

M Experimental Details of Numerical Simulation (Section 6)1084

Phuman is non-uniform distribution (reflecting real-world biases), for each seed, we generate Phuman via1085

i.i.d. sampling, then form the empirical model distribution Pmodel by drawing D times from Phuman (i.e,1086

P̂ represents hypothesis frequencies). In the experiment setting of Fig. 2, we applied the utility function1087

according to Assumption 1, and in Fig. 3 and Fig. 4, we assume a symmetric utility matrix u ∈ RY×Y1088

with u(i, i) = 1 and u(i, j) ∈ [0, 1] for i ̸= j, assigning slightly higher utilities to outcomes with higher1089

Phuman probabilities.1090
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