
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MODEL FUSION VIA NEURON INTERPOLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Model fusion aims to combine the knowledge of multiple models by creating one
representative model that captures the strengths of all of its parents. However,
this process is non-trivial due to differences in internal representations, which
can stem from permutation invariance, random initialization, or differently dis-
tributed training data. We present a novel, neuron-centric family of model fusion
algorithms designed to integrate multiple trained neural networks into a single
network effectively regardless of training data distribution. Our algorithms group
intermediate neurons of parent models to create target representations that the fused
model approximates with its corresponding sub-network. Unlike prior approaches,
our approach incorporates neuron attribution scores into the fusion process. Fur-
thermore, our algorithms can generalize to arbitrary layer types. Experimental
results on various benchmark datasets demonstrate that our algorithms consistently
outperform previous fusion techniques, particularly in zero-shot and non-IID fusion
scenarios. We make our code publically available.

1 INTRODUCTION

As modern Deep Neural Networks (DNNs) continue to grow in scale, retraining them on new data
is often prohibitively expensive or infeasible, especially in settings where data privacy must be
preserved. Model fusion offers an appealing alternative: instead of retraining, one may combine
independently trained models directly. Two influential contributions in this area are OTFusion (Singh
and Jaggi, 2020), and Git Re-Basin (Ainsworth et al., 2022). This line of work has been motivated in
part by the Linear Mode Connectivity (LMC) conjecture, which posits that independently trained
networks can be connected by low-loss paths (Frankle et al., 2020). While the empirical evidence for
LMC is strong (Theus et al., 2025), prior studies reveal that even models trained on identical data
may learn divergent internal features (Li et al., 2015), undermining the premise of weight/activation
matching. While (Ainsworth et al., 2022) argue that barriers vanish in sufficiently large networks,
their own experiments highlight numerous failure modes, including simple architectures such as
MLPs on MNIST trained with SGD and a low learning rate.

In this work, we identify three key gaps in prior research on model fusion, which we address.
Reproducibility. Many open-source implementations re-implement the same algorithm separately
for each architecture, limiting generality and making systematic benchmarking difficult. Base model
quality. Prior studies often report results using base models with accuracies below the standard
typically achieved by the same architectures. While the aim of those works was not to train state-of-
the-art baselines, this raises the question of whether fusion methods could show similar improvements
if the base models themselves were trained more thoroughly; even with simple techniques such as
using CutMix (Yun et al., 2019). Heterogeneous data. Experiments on models trained with different
data distribution settings remain limited, with some works focusing on surrogate metrics such as
loss or calibration rather than accuracy. In Section 5, we show empirically that existing methods
struggle in zero-shot fusion under such heterogeneous conditions, which typically arise in the context
of Federated Learning (FL).

Contributions. Motivated by these shortcomings, we introduce a family of neuron-centric fusion
algorithms with the following key innovations: (a) Casting fusion as a principled representation-
matching problem, yielding a two-stage algorithm that performs well on various data settings. (b)
Incorporating neuron saliency into alignment, improving performance across our methods and
enhancing existing approaches such as Git Re-Basin and Transformer OTFusion. (c) A flexible open
source re-implementation of existing algorithms, to allow for benchmarking in the future.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Comparison of Algorithm Features

Algorithm Linear
layers

Trans-
formers

Any
differe-
entiable

arch.

Can
fuse
> 2

models

Can
fuse
diff.

widths

Can
fuse
diff.

depths

Gains
from
imp.

scores

High
zero-
shot
acc.

OTFusion ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

Git-Rebasin ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

HF (Ours) ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

KF (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

2.1 FUSION ALGORITHMS

OTFusion (Singh and Jaggi, 2020) formulates neuron alignment as a discrete optimal transport
(OT) problem. Given multiple models, OTFusion selects an initial reference model, aligns each of
the others’ layers to its layers via optimal transport on neuron activations, and averages the aligned
parameters to produce a fused model. One downside of OTFusion is that it was initially designed
to handle only linear layers. Later work (Imfeld et al., 2023) adapted OTFusion to the transformer
(Vaswani et al., 2017) architecture. However, it doesn’t work out-of-the-box with any architecture.

Git Re-Basin (Ainsworth et al., 2022) proposes three strategies to perform neuron alignment. In
this work, we focus exclusively on the “Matching Activations” approach, which is most directly
comparable to our methods. Activation-based Git Re-Basin finds a permutation matrix that minimizes
the L2 distance between neuron activations across models. This makes it equivalent to OTFusion,
when the latter is made to use an activations-based ground metric. While effective, activations-based
Git Re-Basin is limited to pairwise fusion, restricts itself to a one-to-one matching paradigm, and
does not account for neuron saliency. We discuss our extension to incorporate scores in Appendix C.
Subsequent work (Jordan et al., 2022) investigates the factors contributing to Git Re-Basin’s limited
zero-shot accuracy and proposes a remedy based on rescaling the weights of the fused model.

Federated Learning algorithms. In federated learning (FL), decentralized clients train local models
on private data and periodically send updates to a central server, which aggregates them into a global
model. Thus, model fusion on non-IID data distributions is central to FL.

Some of the most well-known methods in this domain include Federated Averaging (FedAvg)
(McMahan et al., 2017) and Federated Matching Averaging (FedMA) (Wang et al., 2020). The
former averages model weights across clients proportionally to the number of local updates or data
samples. While simple and popular, FedAvg performs poorly on independently-trained models,
as weights can diverge significantly in the presence of heterogeneous data, especially for deeper
architectures. FedMA aims to address this challenge by aligning neurons before averaging. However,
FedMA requires retraining the fused model after the alignment of every layer to ensure performance
recovery, which makes it a non-zero-shot fusion algorithm.

Lastly, we briefly mention the traditional methods of aggregating knowledge from different models.
Ensembles, which average the predictions of base models, typically, represent an upper bound on
the performance we can achieve by zero-shot fusion, however, at the expense of computational
overhead. Vanilla Averaging blindly averages the weights of two identical models without alignment.
In Knowledge Distillation (KD) (Hinton et al., 2015), a model is trained to predict soft-targets
originating another model. While KD was initially developed for model compression, later work
extended it for the multi-teacher setting (Asif et al., 2019).

2.2 NEURON ATTRIBUTION

A novel feature of our work is incorporating the optional use of neuron attribution scores, commonly
referred to as neuron importance scores, into the fusion process to bias the preservation of salient

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

features. Uniform importance distributes an equal weight of 1/n on each neuron in a layer of
n neurons. Conductance (Dhamdhere et al., 2018) extends Integrated Gradients (Sundararajan
et al., 2017), which attributes feature importance by integrating gradients along a straight-line path
from a baseline input to the actual input. Conductance applies the chain rule to propagate these
importance scores to hidden neurons, enabling internal saliency estimation. DeepLIFT (Shrikumar
et al., 2017) provides another method for attributing importance scores to neurons. It computes the
contribution of each neuron by comparing its activation to a reference activation and propagating
these differences through a modified chain rule. Unlike gradient-based methods, DeepLIFT can
assign non-zero importance scores even when gradients are zero or poorly behaved and requires only
a single backward pass, making it computationally efficient.

3 MOTIVATION

In a neural network, each layer of neurons can be interpreted as encoding a specific amount of
information which is used by future layers to produce an output (Here, a "neuron" denotes a set of
activations controlled by a common set of weights — this corresponds to a channel for a convolutional
layer or a single embedding dimension for a transformer). Consequently, for the purpose of model
fusion, a natural goal is to preserve the information contained in the neurons of the base models
by ensuring that each base model neuron is closely represented by a neuron in the fused model.
One obvious metric for neuron closeness is the squared L2 or Euclidean distance between the
(pre)activations, which has been already been used in the context of model fusion by Singh and Jaggi
(2020) and Ainsworth et al. (2022). This will motivate our definition of representation cost for a
given layer of the fused model. An extension to the raw squared L2 distance is weighing them by
neuron importance scores which intuitively penalizes misrepresenting more important neurons.

We now introduce the notation. A (Deep) Neural Network (DNN) can be viewed as a function
fw : Rd 7→ Ro parameterized by weights w where d is the number of input features and o is the
number of output features. For many model architectures, fw can be decomposed into L sequential
functions fw = fL

wL
◦ · · · ◦ f1

w1
with L corresponding to the depth of the model. Furthermore, it is

possible to arbitrarily group those functions into so-called levels. For example, we can decompose
fw = f3

w3
◦ f2

w2
◦ f1

w1
into fw = f̂2

ŵ2
◦ f̂1

ŵ1
, where f̂2

ŵ2
= f3

w3
and f̂1

ŵ1
= f2

w2
◦ f1

w1
are

individual levels. An important observation is that layers with branching (e.g. skip connections) can
be contained in a single level so that the functions may be composed sequentially. In our algorithms,
we will fix the weights of each level sequentially from the first level to the last.

Now, for fusion, we letM = {M1,M2, . . . ,Mn} be a collection of pretrained base models. Each
model is strategically partitioned to have L levels. To keep the notation simple, we will define the
representation cost for a fixed level l, where we assume the weights of the fused model for all
previous layers have already been fixed. We let zMk be the output vector of model Mk at this level.
We denote by z = concat(zM1 , . . . , zMn) ∈ RdM

the concatenated outputs, of total size dM. For a
fused model F with weights w at level l, we write zFw ∈ RdF

for its outputs with size dF . These
outputs are in most cases the activations or preactivations at a given level. We also use sj for the
importance score of neuron j (of the concatenated outputs z). Now, we define the representation
cost of using weights w at level l of the fused model F (for a given input x):

Jw(x) =

dM∑
j=1

sj

(
min

k∈{1,...,dF}

{(
zFw

k (x)− zj (x)
)2})

(1)

Intuitively, for each neuron in the concatenated base outputs z(x), we compute the squared L2
distance to its closest neuron in the fused model output zFw(x), which can be viewed as its
representative neuron, and sum these distances. To solve for the desired weights w of the fused
model F at level l, we would in principle choose w to minimize this cost.

Popular layer-wise fusion algorithms (Singh and Jaggi, 2020; Ainsworth et al., 2022) similarly
optimize the L2 distance to obtain soft/hard permutation matrices for neuron alignment and proceed
to average the aligned weights of the base models, layer-by-layer. In Section 5 we empirically show
that these algorithms: a) fail to perform on par with base models in zero-shot fusion, i.e. they require
a fine-tuning phase; and b) fail to achieve meaningful transfer knowledge in the non-IID regime.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

We hypothesize that these shortcomings arise because: a) current algorithms ignore how the fused
model evolves as the algorithm iterates through the levels, treating each level in isolation by only
tracking past permutation or alignment matrices, without accounting for potential changes content
of previous level outputs caused by the adjustment of weights; and b) not all neurons contribute
equally to a model’s prediction on average, but are getting averaged with equal importance. This can
especially be an issue in the non-IID or sharded settings, where the activations on unseen data may
be noisy or irrelevant, or the weights learn to extract different features.

4 PROPOSED METHOD

To optimize the objective in Eq. (1), we decouple the objective by introducing an auxiliary vector T
of size dM, which we refer to as the target vector and it enables a more tractable decomposition of
the cost function. This yields the following Theorem.

Theorem 1. Let T ∈ RdM
be a vector whose components are the importance-weighted means of

clustered outputs. Then the representation cost can be decomposed as follows:

Jw(x) =

dF∑
k=1

∑
j∈Rk

sj
(
zFk (x)− Tk

)2
︸ ︷︷ ︸

approximation error

+

dF∑
k=1

∑
j∈Rk

sj (Tk − zj(x))
2

︸ ︷︷ ︸
grouping error

(2)

where Rk is the set (or cluster) of base model neurons that fused model neuron k represents in the
minimum cost assignment in Eq. (1).

Proof. See Appendix A.

We observe that the sum of Jw(x) over a batch is subdifferentiable with respect to w and that this
objective could potentially be optimized with subgradient descent in the same spirit as the weighted
K-means objective (Bottou and Bengio, 1994). However, we leave this for future work.

The resulting objective naturally decomposes into two interpretable components. The grouping error
measures how well the original neurons cluster together – specifically, how far each output zj is from
the importance-weighted cluster center Tk it was assigned to. The approximation error, on the other
hand, quantifies how closely the fused model can reproduce these cluster centers through its own
output neurons z.

For a batch of B values of x, minimizing the total grouping error by constructing an optimal T through
an effective clustering of the layer outputs zj is a critical challenge. This problem corresponds to the
K-means problem in RB which is known to be NP-hard in general (Aloise et al., 2009). Nonetheless,
practical approximation algorithms such as Lloyd’s algorithm (Lloyd, 1982) or local search-based
methods (Kanungo et al., 2002) can be employed to obtain effective solutions in practice.

After having determined T (and hence, the clusters Rk), we can solve for the weights of a level
by minimizing the approximation error, which is equivalent to a weighted mean squared error loss
function. We can choose to either keep the weights of previous level frozen (and just optimize the
current level), or optimize the whole subnetwork. In this work, we choose the former:

w∗ = argmin
w

E
x∼D

dM∑
k=1

∑
j∈Rk

sj (zk(x)− Tk(x))
2

 (3)

This decomposition offers a more interpretable and stable optimization target by isolating the chal-
lenges of clustering and function fitting, instead of trying to solve them jointly.

4.1 PROPOSED ALGORITHM

Following the derivation in Theorem 1, we propose a two-step algorithm to find weights w that
minimize Eq. (2) in expectation. The algorithm constructs the fused model in a bottom-up way,
iterating through the levels of base models, and producing the corresponding level of the fused model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Model 1

Model 2

Compute activations
and group neurons

cluster centers

Fused model F

Fit weights to minimize
distance between fused
activations and cluster centers

Figure 1: Overview of our method. Given two MLPs with two hidden layers of size 4 with each layer defined as
its own level, we compute level outputs for the base models, cluster their neurons, and train the first level of the
fused model to match the cluster centers using MSE loss. The process is repeated in subsequent levels.

At each level, the algorithm computes a matching/clustering to minimize the grouping error. It then
uses this clustering to compute cluster centers (weighted by importance score). Finally, it uses the
cluster centers as a target for the current level’s outputs. We then fit weights of the fused model to
minimize the approximation error. In practice, we use a finite batch to approximate the expected
representation cost. An intuitive illustration of our algorithm can be found in Fig. 1. High-level
pseudo-code is provided in Algorithm 1. For more implementation details, refer to Appendix F.

Algorithm 1 Neuron Interpolation Model Fusion

Require: Trained base models M = {Mk}nk=1, neuron importance scores for each base model
{sM1,l

j , . . . , sMk,l
j }Ll=1, fusion dataset X ∈ RB×d

Ensure: Fused model F with weights WF
1: for each level l = 1, 2, . . . , L do
2: Gather level l outputs: z = concat

(
zM1,l, . . . , zMK ,l

)
3: Gather level l scores: s = concat

(
sM1,l, . . . , sMK ,l

)
4: Obtain the clusters (Rk)

dF

k=1 for every output zj {Hungarian Matching or K-means}
5: for each centroid k = 1, . . . , dF do
6: Tk ←

∑
j∈Rk

sjzj∑
j∈Rk

sj
{Compute importance-weighted mean}

7: end for
8: Optimize the weights w of the current level of F using:

w← argmin
w

B∑
m=1

dM∑
k=1

∑
j∈Rk

sj
(
zFk (xm)− Tk(xm)

)2
{Fit Fused Model activations to cluster centers}

9: end for
10: return Fused Model F

4.2 MINIMIZING THE GROUPING AND APPROXIMATION ERRORS

4.2.1 GROUPING ERROR

For the grouping error, we distinguish between two cases based on the architecture of the base models
and the constraints imposed on the assignment. More details can be found in Appendix B.1.

(a) Equal-size models with level-wise one-to-one matching. This case induces a cost that can be
minimized using the Hungarian Matching algorithm (Kuhn, 1955) as discussed in Section 3. We refer
to this special case of our algorithm as Hungarian Fusion (HF).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(b) General case with arbitrary model sizes. In this setup, the grouping problem becomes a general
clustering task. As highlighted in Section 4.1, a solution can be approximated using heuristic K-means
algorithms. We refer to this general case as K-means Fusion (KF).

4.2.2 APPROXIMATION ERROR

For the approximation error, we distinguish two cases. More details can be found in Appendix B.2.

(a) Linear levels. When all trainable levels are affine transformations such as fully connected or
convolutional layers, the outputs zj are linear functions of the level weights w, and the problem
becomes weighted least squares, which has a closed-form solution. In this case, we project the base
models’ level outputs onto the image of the previous fused level’s outputs, before running HF or KF
for the level. We call these algorithms the Linear version of HF and KF respectively.

(b) General case. For arbitrary differentiable (and possibly non-linear) levels, we optimize Eq. (3)
using stochastic gradient descent (SGD). In this setting, initialization plays a critical role. A simple
strategy is to initialize with the weights of the corresponding level from one of the base models,
perturbed by noise ϵ. Note that for linear levels, the objective is convex, reducing to case (a). For this
case, we will only consider KF and refer to this algorithm as the Gradient version of KF.

4.2.3 GUARANTEES

We now present theoretical guarantees for Algorithm 1 under specific conditions.
Theorem 2. Let the parametrized levels of the base models and fused model be affine functions.
Then:

(a) For two models with equal-sized levels and a one-to-one matching constraint, the Hungarian
Fusion algorithm returns an optimal solution to the decoupled objective in Eq. (2).

(b) For an arbitrary number of models with possibly different numbers of neurons per level, the
K-means Fusion algorithm produces a solution whose representation cost is at most (9 + ϵ)
times the optimal, when using the local-search algorithm from Kanungo et al. (2002).

Proof. See Appendix A.

5 EXPERIMENTS

We evaluate our fusion algorithms across three distinct training regimes, each characterized by a
different data distribution used to train the base models. This setup is designed to test the robustness
and generality of our method. We benchmark our algorithms against previous baselines, ensembles,
vanilla averaging, KD and Linear Probing (LP). We note that both KD and LP are special cases of
our algorithm, where in the former we treat the whole model as a single level, and in the latter we
skip all layers except the classifier head.

5.1 ON THE PERFORMANCE OF BASE MODELS IN NON-IID SETUPS

Before presenting our results, we emphasize an important consideration in evaluating base model
performance under non-IID conditions. In these settings, each model has access to only a small and
often imbalanced portion of the dataset, which naturally limits its accuracy. For example, in 6-way or
8-way splits, each model sees only 10-20% of the full data, leading to lower performance compared
to centralized training.

Despite these constraints, gains in this setup are meaningful. Improving over weak, heterogeneous
base models in a zero-shot setting is a challenging task, and our method demonstrates robustness
where baseline methods fail.

5.2 SHARDED SETUP

We train base models on “sharded” data splits, which represent an extreme non-IID case where
each model sees all the samples from different classes. This leads the base models to class-specific
overfitting and learning diverse representations. This setup is typically considered in FL research,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

where it serves as a stress test due to it’s extremity. We further assume that the fusion dataset is
skewed and drawn from one of the base models, mimicking the FL constraint that data cannot be
shared across servers due to privacy and communication costs. If models had access to the entire
dataset, training directly on it would be more effective than model fusion. Details of the partitioning
procedure are provided in Appendix D.

We evaluate all fusion algorithms in a zero-shot setting, where models are fused without further
retraining. This reflects the above assumption that the fusion dataset is skewed, and therefore,
retraining on it would not result in improved performance compared to the corresponding base model.
We present some results for ViTs on CIFAR-100 in Table 2. Results for Tiny-ImageNet can be found
in Appendix G.2, and results for VGGs on CIFAR-10 can be found in Appendix G.1.

Table 2: Test accuracy comparison when fusing ViT networks on CIFAR-100 for Sharded splits. For the table
with full details, please refer to Table 15.

Method 2-WAY SPLIT 4-WAY SPLIT 6-WAY SPLIT

Individual Models 38.6±0.5
37.2±0.6

20.4±0.2 19.9±0.1
19.5±0.2 19.2±0.3

14.3±0.2, 13.7±0.3 13.5±0.2
13.2±0.2 12.8±0.3 12.2±0.6

Ensemble 63.7±0.4 53.4±1.8 45.4±2.0

Vanilla Averaging 2.2±0.6 1.4±0.2 1.1±0.3
KD 50.4±1.4 40.3±0.9 34.3±1.1
LP 51.8±0.6 37.1±0.8 28.0±0.8

Transf. OTF acts 2.3±0.6 1.0±0.0 1.0±0.0
Transf. OTF wts 4.4±1.3 1.5±0.3 1.2±0.3
HF Gradient (Ours) 55.5±0.8 - -
KF Gradient (Ours) 54.7±1.2 43.5±0.5 37.4±0.8

We additionally present an experiment motivated by a potential real-world scenario performed on the
BloodMNIST dataset (Yang et al., 2023). BloodMNIST contains 17,092 images of blood cells divided
into 8 classes. 6 of the classes are white blood cells, while the remaining classes are erythroblasts and
platelets. In this experiment, the dataset was sharded into one set containing the white blood cells
and the other containing the erythroblasts and platelets. VGGs were trained on each set separately
to distinguish the cell types within each set (i.e. one model to distinguish white blood cell types,
and the other to distinguish between erythroblasts and platelets). The results of fusing these models
are shown in Table 3. We can see that our model achieves meaningful transfer knowledge without
requiring the sharing of data private data.

5.3 NON-IID SETUP Table 3: Test accuracy comparison for
VGGs fused on sharded splits of BloodM-
NIST. For each algorithm, we show the result
with the importance scores that result in the
best accuracy.

Method 2-WAY SPLIT

Individual Models 76.0±0.2
22.8±0.0

Ensemble 86.7±4.8

Vanilla Averaging 13.3±7.2
KD 54.8±10.4
LP 75.6±11.6

OTFusion 16.7±5.3
Git Re-Basin 46.2±9.6
HF Linear (Ours) 84.2±6.1

Similar to the “sharded” setup, the data is split disjointly
between models. In this case, however, multiple models
may receive samples from the same class, but with skewed
class distributions. We again evaluate all algorithms in
zero-shot fusion. Experiments are conducted on VGG11
with CIFAR-10, with results averaged over five random
seeds. Since VGG models are no longer state-of-the-art,
the main results have been moved to Appendix G.1.

5.4 FULL DATASET SETUP

Previous work on model fusion has predominantly consid-
ered the case where models are trained on the full dataset,
followed by a fine-tuning phase aimed at achieving perfor-
mance gains over the individual base models. We refer to
this setting as the full-dataset setup, and we include it in
our evaluation for completeness. For Transformer architectures, to the best of our knowledge, the
only existing baseline is Transformer OTFusion (Imfeld et al., 2023), which our approach consistently

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Test accuracy comparison for ViTs trained and fine-tuned on CIFAR-100 in the Full-Dataset setup.
For the table with full details, please refer to Table 16.

Zero-shot Fine-tuning

Base Models
Transformer
OTFusion

K-means Gradient
Fusion (Ours) Ensemble

Transformer
OTFusion

K-means Gradient
Fusion (Ours)

2-way fusion: 73.9, 73.4 4.3±0.2 -69.6 63.0±1.2 -10.9 75.7±0.3 +1.8 74.0±0.4 +0.1 75.4±0.1 +1.5
Inference Cost: ×1 ×1 ×1 ×2 ×1 ×1

4-way fusion: 74.1, 73.6, 73.0, 72.9 1.0 -73.1 57.5 -16.6 76.6 +2.5 72.6 -1.5 75.6 +1.5
Inference Cost: ×1 ×1 ×1 ×4 ×1 ×1

Table 5: Test accuracy comparison for ViTs trained and fine-tuned on Tiny-ImageNet in the Full-Dataset setup.
For the table with full details, please refer to Table 18.

Zero-shot Fine-tuning

Base Models
Transformer
OTFusion

K-means Gradient
Fusion (Ours) Ensemble

Transformer
OTFusion

K-means Gradient
Fusion (Ours)

52.7, 51.7 3.1±0.2 -49.6 42.9±0.3 -9.8 54.9±0.4 +2.2 53.8±0.1 +1.1 54.2±0.4 +1.5
Inference Cost: ×1 ×1 ×1 ×2 ×1 ×1

outperforms (see Table 4 and Table 5). Further details regarding both the fine-tuning and pre-training
procedures are provided in Appendix F.3.

5.5 ROBUSTNESS STUDIES

In this subsection, we present several experiments designed to probe the performance of our algorithms
under various scenarios.

5.5.1 VARYING FUSION DATASET SIZE

Gradient-based fusion algorithms typically require a substantial amount of data, which makes them
sensitive to the size of the available fusion set. This limitation can be mitigated through the use of
data augmentation. As shown in our ablation study on Table 6, augmenting a smaller fusion dataset
(1k samples) substantially narrows the performance gap relative to using a larger dataset (5k samples).

Table 6: Zero-shot accuracy for two Non-IID VGG-11, when the fusion dataset size for KF Gradient is varied.

Fusion Dataset Size Model 1 Model 2 Uniform Conductance DeepLIFT

5K samples 76.1±0.5 76.2±0.2 76.3±0.4

1K samples 73.2±1.2 71.3±1.1 73.2±0.5 71.7±0.8 71.4±0.7

1K samples + Augmentations 74.5±0.8 75.3±0.6 75.2±0.5

5.5.2 RESNET COMPRESSION

Our fusion algorithm can be thought of as a compression algorithm, by fusing a model into a smaller
version of itself. In this experiment, we train a ResNet34 on the full CIFAR-100 dataset and compress
it into a ResNet18, using only 1/3 of the CIFAR-100 classes. The ResNet18 was initially trained
on 1/3 of the classes, and the fusion was performed with KF using 5k samples from the same set of
classes. Here, we only use the activations of the ResNet34 to form the target neurons. This can be
seen as a form of stage-wise distillation of the larger ResNet into the smaller version. We compare
our algorithm with Knowledge Distillation using the same fusion dataset in Table 7. Strikingly, our
methods achieve an accuracy around 70% while only using 1/3 of the classes.

5.5.3 FUSED MODEL ANALYSIS AND INSIGHTS

In Fig. 2, we visualize the loss and accuracy landscapes of ViT base models trained on CIFAR-10,
along with one of our fused models, using linear interpolation between model weights. The contour

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 7: Zero-shot accuracy for ResNet18, obtained by compressing a ResNet34 with KF Gradient.

ResNet18 ResNet34 Uniform Conductance DeepLIFT Knowledge Distillation

29.49 82.35 70.04 70.44 69.82 31.46

plot reveals flatter basins around the fused model, which, as noted by Hochreiter and Schmidhuber
(1997), is often indicative of improved generalization.

6 LIMITATIONS

Figure 2: ViT Landscapes for CIFAR10,
showing fused model from K-means Gradi-
ent Fusion using DeepLIFT scores

Despite the strong performance of our proposed algorithms
– often surpassing baselines and approaching that of ensem-
bles – there remain areas for improvement.

First, the gradient-based variant of our approach is sensitive
to hyperparameters and requires non-trivial tuning. While
we were experimentally able to verify a set of hyperpa-
rameters that generalize well across our setups, this is not
sufficient to claim universality.

Second, the effectiveness of our gradient-based fusion al-
gorithm appears to scale with the size of the fusion dataset.
While this dependency is encouraging in that more data
yields better performance, it also highlights a shortcoming
in the amount of data required. However using techniques
such as data augmentation can close this gap, as shown in
Table 6. Furthermore, recent work (Nasery et al., 2025) has
explored doing fusion using open-source datasets, which
could be an interesting direction for future work, to make
our algorithms data-free.

7 FUTURE WORK

While our approach demonstrates strong empirical perfor-
mance across a variety of fusion scenarios, several avenues remain open for further exploration and
refinement.

Experiments with LLMs. With the rise of LLMs, it would be interesting to see if our algorithms
can yield improvements on such large-scale models, both in the context of fusion and compression.

Automating fusion hyperparameter selection and level partitioning. Future work could explore
principled methods for automatically tuning fusion hyperparameters, including the choice of level
granularity and whether to end levels at before or after activation functions.

Other grouping methods. Besides k-means clustering and matching, other methods to extract a
layer-wise target could be explored. A simple idea would be to use the activations of neurons with
the highest importance scores.

8 CONCLUSION

In this work, we introduced a novel neuron-aware approach to model fusion that supports fusing
generic model architectures. Our algorithms, to our knowledge, are the first to successfully incorporate
neuron importance scores in model fusion. Furthermore, our empirical results across diverse setups-
including non-IID, sharded, and full-dataset regimes-consistently show that our fusion algorithms are
competitive with or outperform existing baselines, especially in the zero-shot scenario, and in some
cases approach ensemble-level performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-of-squares
clustering. Machine learning, 75:245–248, 2009.

Umar Asif, Jianbin Tang, and Stefan Harrer. Ensemble knowledge distillation for learning improved and efficient
networks. arXiv preprint arXiv:1909.08097, 2019.

Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. Advances in neural
information processing systems, 7, 1994.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? arXiv preprint
arXiv:1805.12233, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and
the lottery ticket hypothesis. In International Conference on Machine Learning, pages 3259–3269. PMLR,
2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas Hofmann, Sotiris Anagnostidis, and Sidak Pal Singh.
Transformer fusion with optimal transport. arXiv preprint arXiv:2310.05719, 2023.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing
permuted activations for interpolation repair. arXiv preprint arXiv:2211.08403, 2022.

Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu.
A local search approximation algorithm for k-means clustering. In Proceedings of the eighteenth annual
symposium on Computational geometry, pages 10–18, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander
Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. Captum: A unified
and generic model interpretability library for pytorch, 2020. URL https://arxiv.org/abs/2009.
07896.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly, 2(1-2):
83–97, 1955.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do different neural
networks learn the same representations? arXiv preprint arXiv:1511.07543, 2015.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages
1273–1282. PMLR, 2017.

Anshul Nasery, Jonathan Hayase, Pang Wei Koh, and Sewoong Oh. Pleas-merging models with permutations
and least squares. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages
30493–30502, 2025.

omihub777. Vit-cifar. https://github.com/omihub777/ViT-CIFAR. Accessed: 2025-05-16.

10

https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://github.com/omihub777/ViT-CIFAR

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating
activation differences. In International conference on machine learning, pages 3145–3153. PMlR, 2017.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045–22055, 2020.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International
conference on machine learning, pages 3319–3328. PMLR, 2017.

Alexander Theus, Alessandro Cabodi, Sotiris Anagnostidis, Antonio Orvieto, Sidak Pal Singh, and Valentina
Boeva. Generalized linear mode connectivity for transformers. arXiv preprint arXiv:2506.22712, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
learning with matched averaging. arXiv preprint arXiv:2002.06440, 2020.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni.
Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. Scientific
Data, 10(1):41, 2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6023–6032, 2019.

A PROOFS

We first present the proof for Theorem 1.

Proof. We proceed to decompose the cost of Eq. (1) as follows, omitting the input x for notational
clarity:

Jw =

dM∑
j=1

sj min
k

{(
zFk − zj

)2}

=

dM∑
j=1

sj

(
zFkj
− zj

)2
where kj = argmin

k

(
zFk − zj

)2
=⇒ j ∈ Rkj

=

dM∑
j=1

sj

[(
zFkj
− Tkj

)2
+ 2

(
zFkj
− Tkj

) (
Tkj
− zj

)
+
(
Tkj
− zj

)2] (
±Tkj

)
(4)

Here, when we set kj = argmink
(
zFk − zj

)2
, we break ties arbitrarily such that the sets (Rk)

dF

k
are non-overlapping and cover all base model neurons.

Since no constraints are imposed on the target vector T, we retain the flexibility to define it in a
manner that simplifies the optimization. Specifically, if we rearrange the summation in Eq. (4) into
two nested summations – first over neurons in the fused model (i.e., k = 1, . . . , dF,i), and then
over original neurons j assigned to each k (i.e., kj = argmink

(
zFk − zj

)2
) and define Tk as the

importance-weighted mean of the assigned level outputs, i.e., Tk =
∑

j∈Rk
sjzj∑

j∈Rk
sj

, then the cross-term

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

in Eq. (4) vanishes:

dM∑
j=1

2sj

(
zFkj
− Tkj

) (
Tkj − zj

)
= 2

dM∑
k=1

∑
j∈Rk

sj
(
zFk − Tk

)
(Tk − zj)

= 2

dM∑
k=1

(
zFk − Tk

) ∑
j∈Rk

sj (Tk − zj)

= 2

dM∑
k=1

(
zFk − Tk

) ∑
j∈Rk

sj

(∑
i∈Rk

sizi∑
i∈Rk

si
− zj

)

= 2

dM∑
k=1

(
zFk − Tk

)∑
i∈Rk

sizi −
∑
j∈Rk

sjzj


= 0

Therefore, Eq. (4) becomes:

Jw =

dM∑
j=1

sj

[(
zFkj
− Tkj

)2
+
(
Tkj
− zj

)2]

=

dM∑
k=1

∑
j∈Rk

sj

[(
zFk − Tk

)2
+ sj (Tk − zj)

2
]

(re-express sum over output neurons)

We now present the proof for Theorem 2.

Proof. We analyze Hungarian Fusion and K-means Fusion separately.

(a) Optimality of Hungarian Fusion: As established in Section 4.1, the decoupled objective Eq. (2)
separates into two terms: the grouping error and the approximation error. For linear levels, the
layer outputs zk are affine functions of the weights w, and thus the approximation error reduces to a
weighted least squares problem, which admits a closed-form solution.

Consequently, minimizing the total cost reduces to minimizing the grouping error. In the special case
of two models with equal-sized layers and one-to-one neuron matching, this corresponds to a Linear
Sum Assignment Problem (LSAP) with importance-weighted squared error as the cost matrix. The
Hungarian algorithm solves this problem exactly in polynomial time (Kuhn, 1955), hence the HF
algorithm returns the optimal solution.

(b) Approximation Bound for K-means Fusion: We consider a fixed assignment of neurons, where
we assign the jth base model neuron to the fused neuron kj . Consider the total representation cost
associated with all the base model neurons assigned to the kth fused neuron for the layer l. That is,
the total representation cost of all base neurons j that have kj = k =⇒ j ∈ Rk. For a single sample,
this is

∑
j∈Rk

sj(z
F
k − zj)

2. If we stack this over the samples, we get
∑

j∈Rk
sj ||zFk − zj ||2, where

zFk , zk ∈ Rn are column vectors with each entry corresponding to the preactivation for one input
sample. We let the previous layer’s activations be X ∈ Rn×dM

. Now, since it is a linear function of
the previous layer’s activations, we have zFk = Xwk, with wk being the weights associated with the
kth fused neuron (here we append a column of 1s to X if we also have a bias term). Consider the
projection matrix P = X(XTX)+XT that projects vectors to the column space of X. Then I−P
projects to the orthogonal complement of the image of X. Recall that PX = X and (I−P)X = 0.
We then have

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

∑
j∈Rk

sj ||zFk − zj ||2 =
∑
j∈Rk

sj ||Xwk − zj ||2

=
∑
j∈Rk

sj ||P(Xwk − zj) + (I−P)(Xwk − zj)||2

=
∑
j∈Rk

sj(||P(Xwk − zj)||2 + ||(I−P)(Xwk − zj)||2)

(due to orthogonality)

=
∑
j∈Rk

sj ||Xwk −Pzj ||2 +
∑
j∈Rk

sj ||(I−P)zj ||2

We consider the term
∑

j∈Rk
sj ||Xwk − Pzj ||2. Letting z̄k =

∑
j∈Rk

sjzj∑
j∈Rk

sj
(such that∑

j∈Rk
sj(Pz̄k −Pzj) = 0), we have

∑
j∈Rk

sj ||Xwk −Pzj ||2 =
∑
j∈Rk

sj ||(Xwk −Pz̄k) + (Pz̄k −Pzj)||2

=
∑
j∈Rk

sj ||Xwk −Pz̄k||2 + 2
∑
j∈Rk

sj(Xwk −Pz̄k)
T (Pz̄k −Pzj)

+
∑
j∈Rk

sj ||Pz̄k −Pzj ||2

=
∑
j∈Rk

sj ||Xwk −Pz̄k||2 + 2(Xwk −Pz̄k)
T

����������:0∑
j∈Rk

sj(Pz̄k −Pzj)

+
∑
j∈Rk

sj ||Pz̄k −Pzj ||2

=
∑
j∈Rk

sj ||Xwk −Pz̄k||2 +
∑
j∈Rk

sj ||Pz̄k −Pzj ||2

Thus, substituting this back, and summing over k to get the whole layer’s representation cost, we get

dF∑
k=1

∑
j∈Rk

sj ||zFk − zj ||2 =

dF∑
k=1

∑
j∈Rk

sj ||Xwk −Pz̄k||2

+

dF∑
k=1

∑
j∈Rk

sj ||Pz̄k −Pzj ||2 +
dM∑
j=1

sj ||(I−P)zj ||2

Note first that the last term in the sum on the right is always incurred independently of the assignment
kj or the chosen weights wk.

Assume we have a solution that obtains the optimal representation cost OPT . Then, since the first
term in the sum is nonnegative, the representative cost of the optimal solution is at least the optimal
value of

∑dF

k=1

∑
j∈Rk

sj ||Pz̄k −Pzj ||2 +
∑dM

j=1 sj ||(I −P)zj ||2. If we let OPTgrouping be the

minimum possible value of
∑dF

k=1

∑
j∈Rk

sj ||Pz̄k −Pzj ||2, then we get OPT ≥ OPTgrouping +∑dM

j=1 sj ||(I−P)zj ||2

We now consider the sum on the right for KF. Recall that KF first projects the activations to the
image of X and then finds the K-means clusters. That is, it finds the K-means clustering of (Pzj)

dM

j=1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

to find the clusters Rk, aiming to minimize
∑dF

k=1

∑
j∈Rk

sj ||Pz̄k −Pzj ||2. Then, it fits wk such
that ||Xwk − Pz̄k||2 is minimized by solving a weighted least squares problem as elaborated in
Appendix B.2. Notice that this achieves ||Xwk −Pz̄k||2 = 0, since, as Pz̄k is in the image of X
by virtue of being a projection to that image, there is a wk satisfying Xwk = Pz̄k. Thus, the total
representation cost for KF for any layer will be

∑dF

k=1

∑
j∈Rk

sj ||Pz̄k −Pzj ||2 +
∑dM

j=1 sj ||(I−
P)zj ||2, where the first term is the the weighted K-means cost with respect to clustering the projected
preactivations, and the second term is always incurred regardless of assignment or chosen weights.

The K-means problem is NP-hard in general (Aloise et al., 2009). However, the local-search algorithm
introduced by Kanungo et al. (2002), provides a (9 + ϵ)-approximation guarantee for the weighted
K-means cost under squared Euclidean distance. By using this algorithm to construct the cluster
assignments in KF, we obtain a solution where the term

∑dF

k=1

∑
j∈Rk

sj ||Pz̄k −Pzj ||2 is within a
constant factor of the optimal cost OPTgrouping.

Thus, the cost for this layer attained by KF is at most (9+ϵ)OPTgrouping+
∑dM

j=1 sj ||(I−P)zj ||2 ≤
(9 + ϵ)(OPTgrouping +

∑dM

j=1 sj ||(I − P)zj ||2) ≤ (9 + ϵ)OPT , showing that it is a (9 + ϵ)-
approximation for the layer representation cost.

B EFFICIENTLY MINIMIZING THE FUSION ERRORS

B.1 MINIMIZING THE GROUPING ERROR

For the special case (a), we can re-express Eq. (1) as a sum over the two base models:

Jw =

dM1∑
j=1

sM1
j min

k

{(
zFk − zM1

j

)2}
+

dM2∑
j=1

sM2
j min

k

{(
zFk − zM2

j

)2}
(5)

This cost can also be decomposed analogously to Eq. (2). We can now define the cost of matching
neuron j1 of M1 to neuron j2 of M2, as the cost of trying to approximate the resulting cluster center
Tj1,j2 , from any neuron of the fused model F . A simpler alternative/heuristic is to just compute the
distances between the level outputs. After defining this cost matrix, we can then run the Hungarian
Matching algorithm (Kuhn, 1955) to find a one-to-one matching that minimizes Eq. (5).

For the general case (b), we can run Lloyd’s (Lloyd, 1982) algorithm for K-means, since it usually
offers a good tradeoff between simplicity and effectiveness. By making use of the K-means++
initialization, we usually get better clusterings. Note that for this task, we treat neurons “as data
points”, in the sense that we want to cluster neurons together. Therefore, the features of a neuron
are the values (e.g. activations) it takes for different samples x in the dataset. Clustering is then
performed over these vectors using importance-weighted K-means, where the number of clusters “k”
is set to the desired number of neurons in the fused layer. Once clusters are formed, we compute the
corresponding importance-weighted centroids, giving us the target matrix T ∈ RB×dF

, where B is
the batch dimension.

B.2 MINIMIZING THE APPROXIMATION ERROR

For the special case where a level is a linear function of its weights w, i.e. z = Xw for some X, then
the approximation error in Eq. (3) admits to a closed-form weighted-MSE solution:

w∗ =
(
X⊤SX

)+
X⊤ST

where S = diag(s1, . . . , sdM), and ()+ denotes the Moore-Penrose pseudoinverse.

For the general case, where a level is a non-linear differentiable function of its weights, we can
obtain a local minima by optimizing with SGD. In practice we often use Adam (Kingma and Ba,
2014) or AdamW (Loshchilov and Hutter, 2017). Furthermore, in practice, we do not minimize the
weighted MSE, but rather the plain MSE. This is due to the fact that neurons with low importance

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

(a) Conductance (b) DeepLIFT

Figure 3: Histogram of Conductance and DeepLIFT Importance Scores

scores will barely change if we use the weighted MSE. While this could only minimally affect the
representation loss for the current level, it could lead to noisy inputs in later levels, or just poor
intermediate representations. In our experiments we noticed that, especially in non-IID cases, many
neurons tend to be attributed scores that are virtually zero as seen in Fig. 3.

C COMPARISON OF HUNGARIAN FUSION WITH EXISTING ALGORITHMS

We note that Hungarian Fusion is in spirit very similar to both OTFusion (Singh and Jaggi, 2020)
and the activations-based version of Git Re-Basin (Ainsworth et al., 2022). In the case of Equal-size
models with level-wise one-to-one matching that we restrict HF to, they all construct a matching
between neurons (or equivalent a transport map or permutation matrix to align the second model to
the first) by solving a minimum cost matching problem.

However, a key difference is that HF accounts for the effect of refitting the previous layers and
correspondingly refits the weights of the current layer being considered to minimize the effect of the
accumulated error. Empirically, this significantly improves the zero-shot performance significantly as
shown in our experimental results.

With regards to the incorporation of neuron importance scores, for OTFusion, Singh and Jaggi (2020)
proposed using the neuron importance as the probability measure assigned to a neuron in the optimal
transport problem setup, while Ainsworth et al. (2022) did not discuss applying importance scores
in Git Re-Basin. In our experiments, we follow the recommendation of Singh and Jaggi (2020) for
OTFusion and for Git Re-Basin we weigh the neuron weights according to the neuron’s score when
averaging, in the same manner as we do for HF.

D DATA PARTITIONING REGIMES

D.1 NON-IID SPLITS

To simulate non-IID splits, we utilize a Dirichlet distribution to create unbalanced class distributions
across models. Let Nc represent the number of data points in class c, and αk denote the concentration
parameter for model k. The data for each class c is distributed across models as:

splitk ∼ Dir(α1, . . . , αk)

where Dir(·) represents the Dirichlet distribution. The concentration parameters αk are arranged in
an ordered sequence, determined by the parameter min_max_ratio:

alpha_min = 1.0
min_max_ratio = 0.2
alpha_max = alpha_min / min_max_ratio
alphas = linspace(alpha_min, alpha_max, min_max_ratio)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A smaller ratio results in a wider disparity between splits, amplifying the heterogeneity. The Dirichlet-
distributed probabilities dictate the number of samples assigned to each model for class c, ensuring
that splits exhibit diverse and non-uniform class distributions. Random shuffling of class indices and
concentration parameters for each class c introduces additional randomness in the resulting splits.

D.2 SHARDED SPLITS

In the sharded partitioning regime, the dataset is split such that each model receives examples from a
disjoint subset of classes. That is, no two models share any classes in their local datasets, simulating
a strongly divergently distributed base model training datasets scenario based on class exclusivity
rather than distributional imbalance.

Let C denote the set of all classes in the dataset. The class set is first randomly permuted and then
evenly partitioned into K disjoint subsets, where K is the number of models. Each subset Ck is
assigned to model k, and all examples belonging to classes in Ck are included in that model’s local
dataset:

K⋃
k=1

Ck = C, Ci ∩ Cj = ∅ ∀i ̸= j

E MODEL TRAINING DETAILS

We trained VGGs on CIFAR-10 and ViTs on CIFAR100. All models were trained on NVIDIA RTX
A5000 GPUs.

The VGGs followed the VGG11 architecture and the implementation is based on the open source
implementation provided by 1Singh and Jaggi (2020).

The ViTs implementation is based on 2omihub777, and we used the following model hyperparameters:

Model Hyperparameter Value

Patch Size 8
Attention Heads 12
Encoder Blocks 7
Feed Forward Network Hidden Size 384
Encoder Hidden Size 384

To train the models, we use the non-exhaustive list of hyperparameters listed in Table 8

Splits VGG Epochs ViT Epochs

Full Dataset 300 350
Split By 2 200 250
Split By 4 150 225
Split By 6 – 200
Split By 8 125 –

(a) Number of training epochs

Training Hyperparameter Value

Warmup Epochs 5
Minimum Learning Rate 10−5

Learning Rate 10−3

Label Smoothing 0.1
Batch Size 128

(b) Training hyperparameters

Table 8: Training configurations and schedules for VGG and ViT models.

The following torch augmentations were used for training: RandomCrop, RandomHorizonalFlip,
Normalize, and other augmentations as in omihub777 based on Cubuk et al. (2018).

The model was trained using torch’s Gradual Warmup Scheduler with torch’s CosineAnnealingLR
scheduler.

1https://github.com/sidak/otfusion
2https://github.com/omihub777/ViT-CIFAR

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

We believe that these are sufficient to reproduce the main claims of our work. Additional information
about hyperparameters can be found in our open-source code repository.

F FUSION IMPLEMENTATION DETAILS

F.1 FUSION HYPERPARAMETERS

Our proposed fusion algorithms include both linear and gradient-based variants, each with distinct
hyperparameter considerations.

Linear Variants. The linear fusion algorithms (e.g., plain Hungarian Fusion and K-means Fusion)
require minimal hyperparameter tuning. The primary decisions involve whether to normalize (i)
neuron outputs and/or (ii) neuron importance scores. In our experiments, we found that omitting
normalization typically yielded better results across both all data partitioning settings. This is likely
because normalization can distort relative differences in neuron output magnitude that are informative
for matching or clustering.

Gradient-based Variants. In contrast, the gradient-based fusion variant introduces a broader set of
hyperparameters. These include:

1. Optimization Parameters: learning rate, weight decay, number of gradient steps per level,
and batch size, validation split, validation patience.

2. Initialization Scheme: initialization of the fused model weights at each level (e.g., weights
from a randomly selected base model with added noise ϵ).

3. Clustering Settings: number of clusters (typically matched to the fused model’s layer
width), use of K-means++ initialization, early stopping criteria and whether to normalize
neuron outputs just for the clustering stage.

4. Importance Weighting: whether and how to incorporate neuron importance scores into
both clustering and loss weighting.

While this added complexity increases flexibility and modeling capacity, it also requires careful
tuning for stable and effective optimization. To mitigate this, we conducted extensive experiments and
identified two sets of hyperparameter configurations that generalized well across datasets (CIFAR-
10, CIFAR-100), model architectures (VGG11, ViT), and fusion regimes (Full Dataset, Non-IID,
Sharded). Specifically, we found the hyperparameters in Table 9.

Table 9: Sets of hyperparameters used for K-means Gradient Fusion

Hyperparameter Setting 1 Setting 2

Optimizer (n− 1 first levels) AdamW SGD
Learning Rate (n− 1 first levels) 10−3 10−4

Epochs (n− 1 first levels) 100 50
Weight Decay (All levels) 10−4 10−4

Perturbation ϵ 1.0 0.1
Optimizer (Last level) AdamW Adam
Learning Rate (Last level) 10−3 10−3

Epochs (Last level) 100 100
Epochs (n− 1 first levels) 100 100
Normalize Activations False False
Train Batch Size 32 32
Val Split 0.1 0.1
Head Weights False False

We note that “Head Weights” refers to weighing the final logits of the models by the proportion of
samples seen per class, for every model. In practice, this heuristic improves accuracy by a small
margin, but this comes at a cost of calibration, as the test loss increases, which in some cases might
not be a good tradeoff.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Each setting of hyperparameters induces a different behavior in the gradient-based variant of our
algorithm. By using Setting 1, we essentially take larger gradient steps that move us far away from
initialization. The resulting model is quite different from base models, in terms of plain weight L2
norm. On the other hand, Setting 2 relies on the initialization of the model to be already decent
(e.g. any base model), and takes small gradient steps. Empirically, we found that with the second
setting, the majority of performance gain occurs at the classification head, where the targets become
the raw average logits of all base models. This is similar to Linear Probing (LP), with the only
difference that LP typically minimizes some sort of KL-divergence loss between softmaxed logits
and average-softmaxed ensemble-logits, instead of minimizing the L2 distance between averaged
raw logits. Nevertheless, most interesting models are produced with the first setting, which finds new
solutions far away from initialization, and within a much richer context.

For the gradient variants of our algorithms, in our experiments:

• All Full-dataset models were fused using Setting 1.

• All sharded models were fused using Setting 1.

• All Non-IID models, except for VGG11s with n = 2 models for CIFAR-10 (which used
Setting 1), were fused using Setting 2.

F.2 MODEL PARTITIONING SCHEMES

Due to the flexibility of our algorithm, we had the freedom to develop our own partition. In practice
we as we primarily tested on like models, there were obvious answers that we used.

For VGG11s, each level contained only a single convolutional or linear layer to be aligned or an
activation function, which did not need to be aligned.

For ViTs, each level corresponded to an encoder block except for the last one which corresponded to
the classifier head.

F.3 POST FUSION FINETUNING HYPERPARAMETERS

For fusing full dataset models, a finetuning phase is shown to improve fused model performance
above base model performance. For this finetuning phase we used the same optimizer that was used
to train the corresponding base models, and torch’s CosineAnnealingWarmRestarts scheduler. The
whole process had the following hyperparameters:

Hyperparameter CIFAR 10/100 Tiny-ImageNet

Learning Rate 3 · 10−4 10−5

Minimum Learning Rate 10−6 10−6

Label Smoothing 0.1 0.1

Epochs 200 200

The augmentation was the same generic suite as we used to train VGGs and ViTs initially. See
Appendix E for more details. Once again, all code for reproduction is present in our open source
repository.

F.4 NEURON IMPORTANCE SCORE DETAILS

F.4.1 IMPLEMENTATION

For the computation of neuron importance scores, we used the LayerConductance (Dhamdhere
et al., 2018) and LayerDeepLIFT (Shrikumar et al., 2017) implementations of Kokhlikyan et al.
(2020). However, our fusion framework allows for the usage of any importance score, possibly
computed by other means.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

F.4.2 COMPUTATION

Neuron importance scores can be estimated either (i) independently by each model using its own
training or validation data, or (ii) jointly using the designated fusion dataset prior to fusion. The
first approach typically yields more reliable estimates and, in our experiments, resulted in higher
zero-shot accuracy. Moreover, it aligns naturally with the federated learning setting, where clients
could compute scores locally and transmit them together with their models for fusion.

For our benchmarks, however, we adopt the second approach, as it is more computationally efficient:
the fusion dataset is usually much smaller than the private datasets of the individual models.

F.4.3 SCORE SELECTION

The choice of importance score can be regarded as a hyperparameter, akin to learning rate or weight
decay, and can in principle be optimized using standard procedures such as cross-validation. In our
experiments, uniform scores rarely outperformed other measures such as Conductance or DeepLIFT.
The latter two usually performed on par, with Conductance showing a slight advantage in some cases.

F.5 ALGORITHM RUNTIME COMPARISON

As our methods are technically specific implementations of our general framework, it is difficult to
definitively give an evaluation of the overall framework. However, we did quantify the performance
of our realizations, both on VGGs and ViTs. We only used importance scores for VGGs as they just
add a constant startup time and usually do not interfere with the performance of the algorithm. For the
same reason, we only use conductance when when testing for importance score times. Interestingly,
KF Linear speeds up significantly when we use importance scores, suggesting that the K-means
portion of the algorithm resolves faster in this case because of the weights. All experiments were ran
on NVIDIA RTX A5000 GPUs.

Table 10: Algorithm runtime comparison when fusing VGG networks on CIFAR-10. We fused the same
two models 10 times and averaged the run times. All algorithms were run with the same 400 samples in each
iteration. All times are in seconds.

Algorithm Runtime (Uniform) Runtime (Conductance)

OT Fusion 0.7 3.0

Git Re-Basin 1.0 3.2

HF Linear (Ours) 14.2 16.5

KF Linear (Ours) 78.3 83.7

KF Gradient Uniform (Ours) 16.5 18.8

Table 11: Algorithm runtime comparison when fusing ViT networks on CIFAR-100. We fused the same two
models 5 times using our KF Gradient method with uniform importance scores and averaged the run times.

Fusion Samples Runtime (s)

400 38.1

6000 632.5

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

G ADDITIONAL RESULTS

In this section, besides complimentary tables, we will also present the full tables for results shown
earlier. These full tables include the standard deviation for base models, as well as the performance
of each fusion algorithm for each neuron importance score.

G.1 VGGS ON CIFAR-10

Table 12: Test accuracy comparison when fusing VGG11 networks on CIFAR-10 for Non-IID splits. Fusion
was performed using 400 data points sampled from the dataset seen by the first model. The same fusion data
was used for all algorithms.

Method 2-WAY SPLIT 4-WAY SPLIT 8-WAY SPLIT

Individual Models 83.8±2.7,
77.3±2.1

79.8±3.2, 77.5±2.9,
74.7±3.3, 69.7±4.6

72.3±1.8, 70.6±2.4, 67.7±1.1, 66.1±1.9
65.4±1.6, 63.4±1.2, 58.6±3.5, 55.6±3.0

Ensemble 89.1±0.4 85.7±0.2 78.9±0.8

Vanilla Averaging 11.5±1.5 10.0±0.0 10.0±0.0
KD 83.3±1.5 79.2±1.8 71.4±1.4
LP 85.8±1.7 81.7±1.7 74.2±1.0

OTF Uniform 50.0±6.2 14.7±5.5 12.3±3.1
OTF Conductance 40.6±2.7 11.3±2.5 10.9±1.0
OTF DeepLIFT 41.2±3.1 12.7±2.8 14.0±2.0

Git Re-Basin1 Uniform 58.0±3.3 N/A N/A
Git Re-Basin Conductance 73.1±3.2 N/A N/A
Git Re-Basin DeepLIFT 75.8±2.9 N/A N/A

HF Linear Uniform (Ours) 78.0±2.6 N/A N/A
HF Linear Conductance (Ours) 86.6±0.5 N/A N/A
HF Linear DeepLIFT (Ours) 86.5±0.5 N/A N/A

KF Linear Uniform (Ours) 85.3±1.2 78.7±0.5 69.1±1.5
KF Linear Conductance (Ours) 86.5±0.6 79.5±0.8 71.3±1.4
KF Linear DeepLIFT (Ours) 86.5±0.3 79.6±0.8 71.3±1.2

HF Gradient Uniform (Ours) 85.4±1.9 N/A N/A
HF Gradient Conductance (Ours) 85.5±2.0 N/A N/A
HF Gradient DeepLIFT (Ours) 85.5±2.0 N/A N/A

KF Gradient Uniform (Ours) 85.5±1.9 81.3±1.8 73.7±1.1
KF Gradient Conductance (Ours) 85.4±2.0 81.4±1.8 73.7±1.1
KF Gradient DeepLIFT (Ours) 85.4±2.0 81.3±2.0 73.8±1.1

1Git Re-Basin reduces to OTFusion when solving the OT problem exactly with uniform importance scores. In
practice, OTFusion uses preactivations (Singh and Jaggi, 2020), while Git Re-Basin uses activations (Ainsworth
et al., 2022); we follow these defaults. Empirically, both yield the same fused model when using preactivations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 13: Test accuracy comparison when fusing VGG11 networks on CIFAR-10 for Sharded splits. Fusion
was performed using 400 data points sampled from the dataset seen by the first model. The same fusion data
was used for all algorithms.

Method 2-WAY SPLIT 4-WAY SPLIT 6-WAY SPLIT

Individual Models 47.8±0.5,
46.7±0.8

29.1±0.1, 28.8±0.2,
19.7±0.2, 19.1±0.6

19.9±0.0, 19.8±0.1, 19.5±0.2, 15.2±3.7
10.0±0.0, 10.0±0.0

Ensemble 80.2±2.3 58.3±1.7 41.3±1.7

Vanilla Averaging 12.1±2.2 10.0±0.0 10.0±0.0
KD 58.5±1.9 42.8±2.3 33.4±1.4
LP 49.8±1.2 32.0±1.7 22.0±1.0

OTF Uniform 28.3±5.9 11.5±2.1 10.4±0.8
OTF Conductance 24.9±6.3 10.8±1.4 10.0±0.0
OTF DeepLIFT 24.9±5.0 10.0±0.0 10.0±0.0

Git Re-Basin Uniform 30.6±4.2 N/A N/A
Git Re-Basin Conductance 58.2±3.9 N/A N/A
Git Re-Basin DeepLIFT 62.3±5.3 N/A N/A

HF Linear Uniform (Ours) 60.5±2.9 N/A N/A
HF Linear Conductance (Ours) 76.7±4.2 N/A N/A
HF Linear DeepLIFT (Ours) 76.6±4.0 N/A N/A

KF Linear Uniform (Ours) 77.1±1.3 52.4±2.7 35.5±3.2
KF Linear Conductance (Ours) 76.4±4.4 44.0±2.7 29.9±2.2
KF Linear DeepLIFT (Ours) 76.4±4.1 44.4±2.2 30.4±2.0

HF Gradient Uniform (Ours) 59.0±3.1 N/A N/A
HF Gradient Conductance (Ours) 70.8±2.5 N/A N/A
HF Gradient DeepLIFT (Ours) 70.3±1.5 N/A N/A

KF Gradient Uniform (Ours) 69.7±1.9 45.9±2.6 34.7±3.4
KF Gradient Conductance (Ours) 71.3±1.1 44.1±2.7 34.7±1.8
KF Gradient DeepLIFT (Ours) 71.5±1.9 44.8±3.2 34.2±1.0

Table 14: Test accuracy comparison when fusing VGG11 networks pairwise on CIFAR-10 trained on the full
dataset. Results are averaged across 3 seeds. Fusion was performed using 400 samples from the full dataset.
The same fusion data was used for all algorithms. Fine-tuning was performed for 200 epochs with a learning
rate of 3 · 10−4 and a cosine annealing with warm restarts scheduler with a minimum learning rate of 10−6.

Method ZERO-SHOT FINETUNED

Individual Models 93.2±0.1
93.0±0.1

93.2±0.1
93.2±0.1

Vanilla Averaging 9.3±1.4 −
Ensemble 94.1±0.1 94.2±0.1

OTF Uniform 72.6±5.2 93.2±0.2
OTF Conductance 46.7±11.1 93.5±0.3
OTF DeepLIFT 49.8±4.0 93.4±0.1

Git Re-Basin Uniform 77.1±3.6 93.5±0.1
Git Re-Basin Conductance 61.8±2.8 93.3±0.1
Git Re-Basin DeepLIFT 65.3±5.9 93.6±0.0

HF Linear Uniform (Ours) 87.0±0.2 93.3±0.1
HF Linear Conductance (Ours) 74.3±1.8 93.3±0.1
HF Linear DeepLIFT (Ours) 73.4±1.7 93.4±0.2

KF Linear Uniform (Ours) 74.2±0.8 93.2±0.2
KF Linear Conductance (Ours) 74.9±1.4 93.4±0.1
KF Linear DeepLIFT (Ours) 75.3±0.5 93.4±0.2

HF Gradient Uniform (Ours) 88.1±0.2 93.4±0.1
HF Gradient Conductance (Ours) 87.9±0.2 93.4±0.1
HF Gradient DeepLIFT (Ours) 88.1±0.1 93.3±0.3

KF Gradient Uniform (Ours) 85.0±0.2 93.0±0.2
KF Gradient Conductance (Ours) 85.9±0.7 93.2±0.1
KF Gradient DeepLIFT (Ours) 86.2±1.3 93.0±0.1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

G.2 VITS ON CIFAR-100 AND TINY-IMAGENET

G.2.1 CIFAR-100

Table 15: Test accuracy comparison when fusing ViT networks on CIFAR-100 for Sharded splits. Fusion was
performed using 5000 data points sampled from the dataset seen by the first model. For “activations-based”
(i.e. acts) Transformer OTFusion, following (Imfeld et al., 2023), we used a subset of 200 samples. The
weights-based variant (wts) does not use data. This table is complimentary to Table 2.

Method 2-WAY SPLIT 4-WAY SPLIT 6-WAY SPLIT

Individual Models 38.6±0.5
37.2±0.6

20.4±0.2 19.9±0.1
19.5±0.2 19.2±0.3

14.3±0.2, 13.7±0.3 13.5±0.2
13.2±0.2 12.8±0.3 12.2±0.6

Ensemble 63.7±0.4 53.4±1.8 45.4±2.0

Vanilla Averaging 2.2±0.6 1.4±0.2 1.1±0.3
KD 50.4±1.4 40.3±0.9 34.3±1.1
LP 51.8±0.6 37.1±0.8 28.0±0.8

Transformer OTFusion acts Uniform 2.2±0.4 1.2±0.1 1.0±0.0
Transformer OTFusion acts Conductance 2.3±0.4 1.0±0.1 1.0±0.0
Transformer OTFusion acts DeepLIFT 2.3±0.6 1.0±0.0 1.0±0.0

Transformer OTFusion wts Uniform 3.9±0.8 1.5±0.4 1.2±0.3
Transformer OTFusion wts Conductance 4.4±1.3 1.3±0.3 1.2±0.3
Transformer OTFusion wts DeepLIFT 4.1±1.3 1.2±0.2 1.1±0.3

HF Gradient Uniform (Ours) 49.9±1.1 N/A N/A
HF Gradient Conductance (Ours) 55.5±1.3 N/A N/A
HF Gradient DeepLIFT (Ours) 55.5±0.8 N/A N/A

KF Gradient Uniform (Ours) 54.1±1.1 43.1±0.7 36.9±0.8
KF Gradient Conductance (Ours) 54.7±1.2 43.5±0.5 37.4±0.8
KF Gradient DeepLIFT (Ours) 54.6±1.2 43.4±0.5 37.3±1.1

Table 16: Test accuracy comparison when fusing ViT networks on CIFAR-100 trained on the full dataset.
Results for 2-way fusion are averaged over 3 seeds, while results for 4-way fusion are shown only for a single
seed. Fusion was performed with 5000 samples from the full dataset, except for activations-based Transformer
OTFusion, where a subset of 200 samples was chosen, following (Imfeld et al., 2023). Fine-tuning was
performed for 200 epochs with a learning rate of 3 · 10−4 and a cosine annealing with warm restarts scheduler
with a minimum learning rate of 10−6. During fine-tuning, the base models failed to improve. This table is
complimentary to Table 4.

Method 2-WAY ZERO-SHOT 2-WAY FINETUNED 4-WAY ZERO-SHOT 4-WAY FINETUNED

Individual Models 73.9±0.2

73.4±0.3

73.5±0.3

73.0±0.3

74.1, 73.6,
73.0, 72.9

73.7, 73.2,
72.7, 72.7

Ensemble 75.7±0.3 75.5±0.4 76.6 76.4
Vanilla Averaging 1.9±0.2 − 1.1 −
Transf. OTF acts Uniform 2.7±0.2 73.8±0.4 1.0 63.7
Transf. OTF acts Conductance 2.4±0.8 73.7±0.4 1.0 63.0
Transf. OTF acts DeepLIFT 2.3±0.9 74.0±0.4 1.0 62.6

Transf. OTF wts Uniform 4.3±0.2 74.0±0.4 1.0 72.6
Transf. OTF wts Conductance 3.2±1.1 73.8±0.3 1.0 68.6
Transf. OTF wts DeepLIFT 3.2±1.5 73.9±0.3 1.0 68.8

HF Gradient Uniform (Ours) 57.0±1.1 74.8±0.4 N/A N/A
HF Gradient Conductance (Ours) 58.6±1.1 75.0±0.5 N/A N/A
HF Gradient DeepLIFT (Ours) 58.6±1.3 75.2±0.6 N/A N/A

KF Gradient Uniform (Ours) 63.0±1.2 75.2±0.5 57.5 75.2
KF Gradient Conductance (Ours) 62.8±0.9 75.4±0.1 57.5 75.2
KF Gradient DeepLIFT (Ours) 62.4±1.9 75.2±0.1 57.1 75.6

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

G.2.2 TINY-IMAGENET

Table 17: Test accuracy comparison when fusing ViT networks on Tiny-ImageNet for Sharded 2-way splits.
Fusion was performed using 5000 data points sampled from the dataset seen by the first model. For “activations-
based” (i.e. acts) Transformer OTFusion, following (Imfeld et al., 2023), we used a subset of 200 samples. The
weights-based variant (wts) does not use data.

Method 2-WAY SPLIT

Individual Model 0 28.3±0.2
Individual Model 1 27.5±0.5

Ensemble 43.9±0.4

Vanilla Averaging 0.9±0.4
KD 31.0±0.6
LP 33.2±0.6

Transformer OTFusion acts Uniform 2.6±1.2
Transformer OTFusion acts Conductance 2.7±1.5
Transformer OTFusion acts DeepLIFT 2.6±1.4

Transformer OTFusion wts Uniform 4.0±0.9
Transformer OTFusion wts Conductance 2.3±0.8
Transformer OTFusion wts DeepLIFT 1.9±0.5

HF Gradient Uniform (Ours) 30.1±2.1
HF Gradient Conductance (Ours) 32.9±1.6
HF Gradient DeepLIFT (Ours) 33.5±1.3

KF Gradient Uniform (Ours) 32.3±1.6
KF Gradient Conductance (Ours) 32.1±1.4
KF Gradient DeepLIFT (Ours) 32.6±2.0

Table 18: Test accuracy comparison when fusing ViT networks on Tiny-ImageNet trained on the full dataset.
Results for 2-way fusion are averaged over 2 seeds. Fusion was performed with 5000 samples from the
full dataset, except for activations-based Transformer OTFusion, where a subset of 200 samples was chosen,
following (Imfeld et al., 2023). Fine-tuning was performed for 200 epochs with a learning rate of 10−5

and a cosine annealing with warm restarts scheduler with a minimum learning rate of 10−6. This table is
complimentary to Table 5.

Method 2-WAY ZERO-SHOT 2-WAY FINETUNED

Individual Models 52.7±0.2

51.7±0.0

53.2±0.5

51.7±0.0

Ensemble 54.9±0.4 55.7±0.4

Vanilla Averaging 1.1±0.1 −
Transf. OTF acts Uniform 1.4±0.1 53.6±0.1

Transf. OTF acts Conductance 1.4±0.3 53.7±0.2

Transf. OTF acts DeepLIFT 1.2±0.3 53.7±0.2

Transf. OTF wts Uniform 3.1±0.2 53.8±0.1

Transf. OTF wts Conductance 2.2±0.8 53.6±0.1

Transf. OTF wts DeepLIFT 2.1±0.9 53.7±0.3

HF Gradient Uniform (Ours) 40.5±1.5 53.0±0.3

HF Gradient Conductance (Ours) 42.1±4.9 53.6±0.2

HF Gradient DeepLIFT (Ours) 41.9±3.2 53.7±0.1

KF Gradient Uniform (Ours) 42.5±0.5 53.9±0.1

KF Gradient Conductance (Ours) 42.6±0.8 54.2±0.4

KF Gradient DeepLIFT (Ours) 42.9±0.3 53.8±0.8

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

H EXISTING ASSETS AND LICENSES

We make use of code from the following sources:

1. OTFusion Singh and Jaggi (2020), Open Source, https://github.com/sidak/otfusion.
2. ViT-CIFAR omihub777, MIT License, https://github.com/omihub777/ViT-

CIFAR/blob/main/LICENSE.
3. Captum Kokhlikyan et al. (2020), BSD 3-Clause License,

https://github.com/pytorch/captum/blob/master/LICENSE.

I BROADER IMPACT

This work concerns foundational research on model fusion algorithms. We do not foresee any negative
applications beyond those broadly applicable to model fusion algorithms.

As with other fusion methods, negative societal impacts may follow from using biased or harmful
models as a base model to perform fusion as the fused model may contain the biases / harmful
potential of the base model.

24

	Introduction
	Related Work
	Fusion Algorithms
	Neuron Attribution

	Motivation
	Proposed Method
	Proposed Algorithm
	Minimizing the Grouping and Approximation Errors
	Grouping Error
	Approximation Error
	Guarantees

	Experiments
	On the Performance of Base Models in Non-IID Setups
	Sharded Setup
	Non-IID Setup
	Full Dataset Setup
	Robustness Studies
	Varying Fusion Dataset Size
	ResNet Compression
	Fused Model Analysis and Insights

	Limitations
	Future Work
	Conclusion
	Proofs
	Efficiently Minimizing the Fusion Errors
	Minimizing the Grouping Error
	Minimizing the Approximation Error

	Comparison of Hungarian Fusion with Existing Algorithms
	Data Partitioning Regimes
	Non-IID Splits
	Sharded Splits

	Model Training Details
	Fusion Implementation Details
	Fusion Hyperparameters
	Model Partitioning Schemes
	Post Fusion Finetuning Hyperparameters
	Neuron Importance Score Details
	Implementation
	Computation
	Score Selection

	Algorithm Runtime Comparison

	Additional Results
	VGGs on CIFAR-10
	ViTs on CIFAR-100 and Tiny-ImageNet
	CIFAR-100
	Tiny-ImageNet

	Existing Assets and Licenses
	Broader Impact

