
000 MODEL FUSION VIA NEURON INTERPOLATION

001

002

003 **Anonymous authors**

004 Paper under double-blind review

005

006

007 **ABSTRACT**

009 Model fusion aims to combine the knowledge of multiple models by creating one
010 representative model that captures the strengths of all of its parents. However,
011 this process is non-trivial due to differences in internal representations, which
012 can stem from permutation invariance, random initialization, or differently dis-
013 tributed training data. We present a novel, neuron-centric family of model fusion
014 algorithms designed to integrate multiple trained neural networks into a single
015 network effectively regardless of training data distribution. Our algorithms group
016 intermediate neurons of parent models to create target representations that the fused
017 model approximates with its corresponding sub-network. Unlike prior approaches,
018 our approach incorporates neuron attribution scores into the fusion process. Fur-
019 thermore, our algorithms can generalize to arbitrary layer types. Experimental
020 results on various benchmark datasets demonstrate that our algorithms consistently
021 outperform previous fusion techniques, particularly in zero-shot and non-IID fusion
022 scenarios. We make our code publically available.

023

024 **1 INTRODUCTION**

025

026 As modern Deep Neural Networks (DNNs) continue to grow in scale, retraining them on new data
027 is often prohibitively expensive or infeasible, especially in settings where data privacy must be
028 preserved. Model fusion offers an appealing alternative: instead of retraining, one may combine
029 *independently trained* models directly. Two influential contributions in this area are OTFusion (Singh
030 and Jaggi, 2020), and Git Re-Basin (Ainsworth et al., 2022). This line of work has been motivated in
031 part by the Linear Mode Connectivity (LMC) conjecture, which posits that independently trained
032 networks can be connected by low-loss paths (Frankle et al., 2020). While the empirical evidence for
033 LMC is strong (Theus et al., 2025), prior studies reveal that even models trained on identical data
034 may learn divergent internal features (Li et al., 2015), undermining the premise of weight/activation
035 matching. While (Ainsworth et al., 2022) argue that barriers vanish in sufficiently large networks,
036 their own experiments highlight numerous failure modes, including simple architectures such as
037 MLPs on MNIST trained with SGD and a low learning rate.

038 In this work, we identify three key gaps in prior research on model fusion, which we address.
039 **Reproducibility.** Many open-source implementations re-implement the same algorithm separately
040 for each architecture, limiting generality and making systematic benchmarking difficult. **Base model**
041 **quality.** Prior studies often report results using base models with accuracies below the standard
042 typically achieved by the same architectures. While the aim of those works was not to train state-of-
043 the-art baselines, this raises the question of whether fusion methods could show similar improvements
044 if the base models themselves were trained more thoroughly; even with simple techniques such as
045 using CutMix (Yun et al., 2019). **Heterogeneous data.** Experiments on models trained with different
046 data distribution settings remain limited, with some works focusing on surrogate metrics such as
047 loss or calibration rather than accuracy. In Section 5, we show empirically that existing methods
048 struggle in zero-shot fusion under such heterogeneous conditions, which typically arise in the context
049 of Federated Learning (FL).

050 **Contributions.** Motivated by these shortcomings, we introduce a family of neuron-centric fusion
051 algorithms with the following key innovations: **(a) Casting fusion as a principled representation-
052 matching problem**, yielding a two-stage algorithm that performs well on various data settings. **(b)**
053 **Incorporating neuron saliency into alignment**, improving performance across our methods and
enhancing existing approaches such as Git Re-Basin and Transformer OTFusion. **(c) A flexible open
source re-implementation of existing algorithms**, to allow for benchmarking in the future.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Table 1: Comparison of Algorithm Features

Algorithm	Linear layers	Trans-formers	Any differentiable arch.	Can fuse > 2 models	Can fuse diff. widths	Can fuse diff. depths	Gains from imp. scores	High zero-shot acc.
OTFusion	✓	✓	✗	✓	✓	✗	✗	✗
Git-Rebasin	✓	✗	✗	✗	✗	✗	✓	✗
HF (Ours)	✓	✓	✓	✗	✗	✓	✓	✓
KF (Ours)	✓	✓	✓	✓	✓	✓	✓	✓

2 RELATED WORK

2.1 FUSION ALGORITHMS

OTFusion (Singh and Jaggi, 2020) formulates neuron alignment as a discrete optimal transport (OT) problem. Given multiple models, OTFusion selects an initial reference model, aligns each of the others’ layers to its layers via optimal transport on neuron activations, and averages the aligned parameters to produce a fused model. One downside of OTFusion is that it was initially designed to handle only linear layers. Later work (Imfeld et al., 2023) adapted OTFusion to the transformer (Vaswani et al., 2017) architecture. However, it doesn’t work out-of-the-box with any architecture.

Git Re-Basin (Ainsworth et al., 2022) proposes three strategies to perform neuron alignment. In this work, we focus exclusively on the “Matching Activations” approach, which is most directly comparable to our methods. Activation-based Git Re-Basin finds a permutation matrix that minimizes the L2 distance between neuron activations across models. This makes it equivalent to OTFusion, when the latter is made to use an activations-based ground metric. While effective, activations-based Git Re-Basin is limited to pairwise fusion, restricts itself to a one-to-one matching paradigm, and does not account for neuron saliency. We discuss our extension to incorporate scores in Appendix C. Subsequent work (Jordan et al., 2022) investigates the factors contributing to Git Re-Basin’s limited zero-shot accuracy and proposes a remedy based on rescaling the weights of the fused model.

Federated Learning algorithms. In federated learning (FL), decentralized clients train local models on private data and periodically send updates to a central server, which aggregates them into a global model. Thus, model fusion on non-IID data distributions is central to FL.

Some of the most well-known methods in this domain include **Federated Averaging (FedAvg)** (McMahan et al., 2017) and **Federated Matching Averaging (FedMA)** (Wang et al., 2020). The former averages model weights across clients proportionally to the number of local updates or data samples. While simple and popular, FedAvg performs poorly on independently-trained models, as weights can diverge significantly in the presence of heterogeneous data, especially for deeper architectures. FedMA aims to address this challenge by aligning neurons before averaging. However, FedMA requires retraining the fused model after the alignment of every layer to ensure performance recovery, which makes it a *non-zero-shot* fusion algorithm.

Lastly, we briefly mention the traditional methods of aggregating knowledge from different models. **Ensembles**, which average the predictions of base models, typically, represent an upper bound on the performance we can achieve by zero-shot fusion, however, *at the expense of computational overhead*. **Vanilla Averaging** blindly averages the weights of two identical models without alignment. In **Knowledge Distillation (KD)** (Hinton et al., 2015), a model is trained to predict soft-targets originating another model. While KD was initially developed for model compression, later work extended it for the multi-teacher setting (Asif et al., 2019).

2.2 NEURON ATTRIBUTION

A novel feature of our work is incorporating the optional use of neuron attribution scores, commonly referred to as *neuron importance scores*, into the fusion process to bias the preservation of salient

108 features. **Uniform** importance distributes an equal weight of $1/n$ on each neuron in a layer of
 109 n neurons. **Conductance** (Dhamdhere et al., 2018) extends *Integrated Gradients* (Sundararajan
 110 et al., 2017), which attributes feature importance by integrating gradients along a straight-line path
 111 from a baseline input to the actual input. Conductance applies the chain rule to propagate these
 112 importance scores to hidden neurons, enabling internal saliency estimation. **DeepLIFT** (Shrikumar
 113 et al., 2017) provides another method for attributing importance scores to neurons. It computes the
 114 contribution of each neuron by comparing its activation to a reference activation and propagating
 115 these differences through a modified chain rule. Unlike gradient-based methods, DeepLIFT can
 116 assign non-zero importance scores even when gradients are zero or poorly behaved and requires only
 117 a single backward pass, making it computationally efficient.

118

119 3 MOTIVATION

120

121 In a neural network, each layer of neurons can be interpreted as encoding a specific amount of
 122 information which is used by future layers to produce an output (Here, a "neuron" denotes a set of
 123 activations controlled by a common set of weights — this corresponds to a channel for a convolutional
 124 layer or a single embedding dimension for a transformer). Consequently, for the purpose of model
 125 fusion, a natural goal is to preserve the information contained in the neurons of the base models
 126 by ensuring that each base model neuron is closely represented by a neuron in the fused model.
 127 One obvious metric for neuron closeness is the squared L2 or Euclidean distance between the
 128 (pre)activations, which has been already been used in the context of model fusion by Singh and Jaggi
 129 (2020) and Ainsworth et al. (2022). This will motivate our definition of **representation cost** for a
 130 given layer of the fused model. An extension to the raw squared L2 distance is weighing them by
 131 *neuron importance scores* which intuitively penalizes misrepresenting more important neurons.

132 We now introduce the notation. A (Deep) Neural Network (DNN) can be viewed as a function
 133 $f_w : \mathbb{R}^d \mapsto \mathbb{R}^o$ parameterized by weights w where d is the number of input features and o is the
 134 number of output features. For many model architectures, f_w can be decomposed into L sequential
 135 functions $f_w = f_{w_L}^L \circ \dots \circ f_{w_1}^1$ with L corresponding to the depth of the model. Furthermore, it is
 136 possible to *arbitrarily* group those functions into so-called **levels**. For example, we can decompose
 137 $f_w = f_{w_3}^3 \circ f_{w_2}^2 \circ f_{w_1}^1$ into $f_w = \widehat{f}_{\widehat{w}_2}^2 \circ \widehat{f}_{\widehat{w}_1}^1$, where $\widehat{f}_{\widehat{w}_2}^2 = f_{w_3}^3$ and $\widehat{f}_{\widehat{w}_1}^1 = f_{w_2}^2 \circ f_{w_1}^1$ are
 138 individual **levels**. An important observation is that layers with branching (e.g. skip connections) can
 139 be contained in a single level so that the functions may be composed sequentially. In our algorithms,
 140 we will fix the weights of each level sequentially from the first level to the last.

141 Now, for fusion, we let $\mathcal{M} = \{M_1, M_2, \dots, M_n\}$ be a collection of pretrained base models. Each
 142 model is strategically partitioned to have L levels. To keep the notation simple, we will define the
 143 **representation cost** for a fixed level l , where we assume the weights of the fused model for all
 144 previous layers have already been fixed. We let z^{M_k} be the output vector of model M_k at this level.
 145 We denote by $z = \text{concat}(z^{M_1}, \dots, z^{M_n}) \in \mathbb{R}^{d^{\mathcal{M}}}$ the concatenated outputs, of total size $d^{\mathcal{M}}$. For a
 146 fused model \mathcal{F} with weights w at level l , we write $z^{\mathcal{F}w} \in \mathbb{R}^{d^{\mathcal{F}}}$ for its outputs with size $d^{\mathcal{F}}$. These
 147 outputs are in most cases the **activations** or **preactivations** at a given level. We also use s_j for the
 148 importance score of neuron j (of the concatenated outputs z). Now, we define the **representation**
 149 **cost** of using weights w at level l of the fused model \mathcal{F} (for a given input x):

150

$$J_w(x) = \sum_{j=1}^{d^{\mathcal{M}}} s_j \left(\min_{k \in \{1, \dots, d^{\mathcal{F}}\}} \left\{ (z_k^{\mathcal{F}w}(x) - z_j(x))^2 \right\} \right) \quad (1)$$

151

152 Intuitively, for each neuron in the concatenated base outputs $z(x)$, we compute the squared L2
 153 distance to **its closest neuron in the fused model output** $z^{\mathcal{F}w}(x)$, which can be viewed as its
 154 **representative neuron**, and sum these distances. To solve for the desired weights w of the fused
 155 model \mathcal{F} at level l , we would in principle choose w to minimize this cost.

156 Popular layer-wise fusion algorithms (Singh and Jaggi, 2020; Ainsworth et al., 2022) similarly
 157 optimize the L2 distance to obtain soft/hard permutation matrices for neuron alignment and proceed
 158 to average the aligned weights of the base models, layer-by-layer. In Section 5 we empirically show
 159 that these algorithms: **a**) fail to perform on par with base models in zero-shot fusion, i.e. they require
 160 a fine-tuning phase; and **b**) fail to achieve meaningful transfer knowledge in the non-IID regime.

162 We hypothesize that these shortcomings arise because: **a**) current algorithms ignore how the fused
 163 model evolves as the algorithm iterates through the levels, treating each level in isolation by only
 164 tracking past permutation or alignment matrices, without accounting for potential changes content
 165 of previous level outputs caused by the adjustment of weights; and **b**) not all neurons contribute
 166 equally to a model’s prediction on average, but are getting averaged with equal importance. This can
 167 especially be an issue in the non-IID or sharded settings, where the activations on unseen data may
 168 be noisy or irrelevant, or the weights learn to extract different features.

170 4 PROPOSED METHOD

172 To optimize the objective in Eq. (1), we decouple the objective by introducing an auxiliary vector \mathbf{T}
 173 of size $d^{\mathcal{M}}$, which we refer to as the **target vector** and it enables a more tractable decomposition of
 174 the cost function. This yields the following Theorem.

175 **Theorem 1.** *Let $\mathbf{T} \in \mathbb{R}^{d^{\mathcal{M}}}$ be a vector whose components are the importance-weighted means of
 176 clustered outputs. Then the representation cost can be decomposed as follows:*

$$178 \quad J_{\mathbf{w}}(\mathbf{x}) = \underbrace{\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j (z_k^{\mathcal{F}}(\mathbf{x}) - T_k)^2}_{\text{approximation error}} + \underbrace{\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j (T_k - z_j(\mathbf{x}))^2}_{\text{grouping error}} \quad (2)$$

183 where R_k is the set (or cluster) of base model neurons that fused model neuron k represents in the
 184 minimum cost assignment in Eq. (1).

185 *Proof.* See Appendix A. □

187 We observe that the sum of $J_{\mathbf{w}}(\mathbf{x})$ over a batch is subdifferentiable with respect to \mathbf{w} and that this
 188 objective could potentially be optimized with subgradient descent in the same spirit as the weighted
 189 K-means objective (Bottou and Bengio, 1994). However, we leave this for future work.

191 The resulting objective naturally decomposes into two interpretable components. The **grouping error**
 192 measures how well the original neurons cluster together – specifically, how far each output z_j is from
 193 the importance-weighted cluster center T_k it was assigned to. The **approximation error**, on the other
 194 hand, quantifies how closely the fused model can reproduce these cluster centers through its own
 195 output neurons \mathbf{z} .

196 For a batch of B values of \mathbf{x} , minimizing the total grouping error by constructing an optimal \mathbf{T} through
 197 an effective clustering of the layer outputs z_j is a critical challenge. This problem corresponds to the
 198 K-means problem in \mathbb{R}^B which is known to be NP-hard in general (Aloise et al., 2009). Nonetheless,
 199 practical approximation algorithms such as Lloyd’s algorithm (Lloyd, 1982) or local search-based
 200 methods (Kanungo et al., 2002) can be employed to obtain effective solutions in practice.

201 After having determined \mathbf{T} (and hence, the clusters R_k), we can solve for the weights of a level
 202 by minimizing the approximation error, which is equivalent to a weighted mean squared error loss
 203 function. We can choose to either keep the weights of previous level frozen (and just optimize the
 204 current level), or optimize the whole subnetwork. In this work, we choose the former:

$$205 \quad \mathbf{w}^* = \arg \min_{\mathbf{w}} \mathbb{E}_{\mathbf{x} \sim D} \left[\sum_{k=1}^{d^{\mathcal{M}}} \sum_{j \in R_k} s_j (z_k(\mathbf{x}) - T_k(\mathbf{x}))^2 \right] \quad (3)$$

209 This decomposition offers a more interpretable and stable optimization target by isolating the chal-
 210 lenges of clustering and function fitting, instead of trying to solve them jointly.

212 4.1 PROPOSED ALGORITHM

214 Following the derivation in Theorem 1, we propose a two-step algorithm to find weights \mathbf{w} that
 215 minimize Eq. (2) in expectation. The algorithm constructs the fused model in a bottom-up way,
 iterating through the levels of base models, and producing the corresponding level of the fused model.

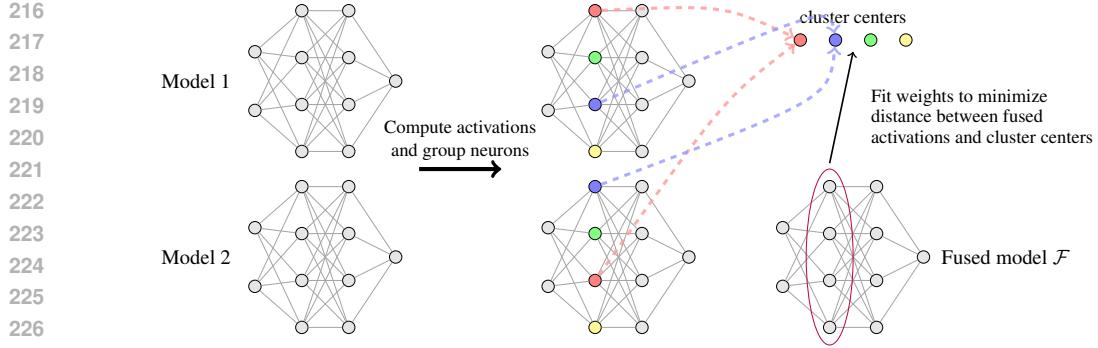


Figure 1: Overview of our method. Given two MLPs with two hidden layers of size 4 with each layer defined as its own level, we compute level outputs for the base models, cluster their neurons, and train the first level of the fused model to match the cluster centers using MSE loss. The process is repeated in subsequent levels.

At each level, the algorithm computes a matching/clustering to minimize the grouping error. It then uses this clustering to compute cluster centers (weighted by importance score). Finally, it uses the cluster centers as a target for the current level’s outputs. We then fit weights of the fused model to minimize the approximation error. In practice, we use a finite batch to approximate the expected representation cost. An intuitive illustration of our algorithm can be found in Fig. 1. High-level pseudo-code is provided in Algorithm 1. For more implementation details, refer to Appendix F.

Algorithm 1 Neuron Interpolation Model Fusion

Require: Trained base models $\mathcal{M} = \{M_k\}_{k=1}^n$, neuron importance scores for each base model $\{s_j^{M_1, l}, \dots, s_j^{M_k, l}\}_{l=1}^L$, fusion dataset $\mathbf{X} \in \mathbb{R}^{B \times d}$

Ensure: Fused model \mathcal{F} with weights $W_{\mathcal{F}}$

1: **for** each level $l = 1, 2, \dots, L$ **do**

2: Gather level l outputs: $\mathbf{z} = \text{concat}(\mathbf{z}^{M_1, l}, \dots, \mathbf{z}^{M_K, l})$
 3: Gather level l scores: $\mathbf{s} = \text{concat}(\mathbf{s}^{M_1, l}, \dots, \mathbf{s}^{M_K, l})$

4: Obtain the clusters $(R_k)_{k=1}^{d^F}$ for every output z_j

5: **for** each centroid $k = 1, \dots, d^{\mathcal{F}}$ **do**

7: **end for**
8: **Optimise**

8: Optimize the weights w of the current level of \mathcal{F} using:

$$\mathbf{w} \leftarrow \arg \min_{\mathbf{w}} \sum_{m=1}^B \left[\sum_{k=1}^{d^M} \sum_{j \in R_k} s_j \left(z_k^{\mathcal{F}}(\mathbf{x}_m) - T_k(\mathbf{x}_m) \right)^2 \right]$$

{Fit Fused Model activations to cluster centers}

9: end for

10: **return** Fused Model \mathcal{F}

4.2 MINIMIZING THE GROUPING AND APPROXIMATION ERRORS

4.2.1 GROUPING ERROR

For the grouping error, we distinguish between two cases based on the architecture of the base models and the constraints imposed on the assignment. More details can be found in Appendix B.1.

(a) *Equal-size models with level-wise one-to-one matching.* This case induces a cost that can be minimized using the Hungarian Matching algorithm (Kuhn, 1955) as discussed in Section 3. We refer to this special case of our algorithm as **Hungarian Fusion (HF)**.

270 (b) *General case with arbitrary model sizes.* In this setup, the grouping problem becomes a general
271 clustering task. As highlighted in Section 4.1, a solution can be approximated using heuristic K-means
272 algorithms. We refer to this general case as **K-means Fusion (KF)**.
273

274 4.2.2 APPROXIMATION ERROR

275 For the approximation error, we distinguish two cases. More details can be found in Appendix B.2.

276 (a) *Linear levels.* When all trainable levels are affine transformations such as fully connected or
277 convolutional layers, the outputs z_j are linear functions of the level weights \mathbf{w} , and the problem
278 becomes weighted least squares, which has a closed-form solution. In this case, we project the base
279 models’ level outputs onto the image of the previous fused level’s outputs, before running HF or KF
280 for the level. We call these algorithms the **Linear** version of HF and KF respectively.
281

282 (b) *General case.* For arbitrary differentiable (and possibly non-linear) levels, we optimize Eq. (3)
283 using stochastic gradient descent (SGD). In this setting, initialization plays a critical role. A simple
284 strategy is to initialize with the weights of the corresponding level from one of the base models,
285 perturbed by noise ϵ . Note that for linear levels, the objective is convex, reducing to case (a). For this
286 case, we will only consider KF and refer to this algorithm as the **Gradient** version of KF.
287

288 4.2.3 GUARANTEES

289 We now present theoretical guarantees for Algorithm 1 under specific conditions.

290 **Theorem 2.** *Let the parametrized levels of the base models and fused model be affine functions.
291 Then:*

- 293 (a) *For two models with equal-sized levels and a one-to-one matching constraint, the **Hungarian**
294 **Fusion** algorithm returns an optimal solution to the decoupled objective in Eq. (2).*
- 295 (b) *For an arbitrary number of models with possibly different numbers of neurons per level, the
296 **K-means Fusion** algorithm produces a solution whose representation cost is at most $(9 + \epsilon)$
297 times the optimal, when using the local-search algorithm from [Kanungo et al. \(2002\)](#).*

298 *Proof.* See Appendix A. □

300 5 EXPERIMENTS

301 We evaluate our fusion algorithms across three distinct training regimes, each characterized by a
302 different data distribution used to train the base models. This setup is designed to test the robustness
303 and generality of our method. We benchmark our algorithms against previous baselines, ensembles,
304 vanilla averaging, KD and Linear Probing (LP). We note that both KD and LP are special cases of
305 our algorithm, where in the former we treat the whole model as a single level, and in the latter we
306 skip all layers except the classifier head.
307

309 5.1 ON THE PERFORMANCE OF BASE MODELS IN NON-IID SETUPS

310 Before presenting our results, we emphasize an important consideration in evaluating base model
311 performance under non-IID conditions. In these settings, each model has access to only a small and
312 often imbalanced portion of the dataset, which naturally limits its accuracy. For example, in 6-way or
313 8-way splits, each model sees only 10-20% of the full data, leading to lower performance compared
314 to centralized training.
315

316 Despite these constraints, gains in this setup are meaningful. Improving over weak, heterogeneous
317 base models in a zero-shot setting is a challenging task, and our method demonstrates robustness
318 where baseline methods fail.
319

320 5.2 SHARDED SETUP

321 We train base models on “sharded” data splits, which represent an extreme non-IID case where
322 each model sees all the samples from different classes. This leads the base models to class-specific
323 overfitting and learning diverse representations. This setup is typically considered in FL research,

324 where it serves as a stress test due to its extremity. We further assume that the fusion dataset is
 325 skewed and drawn from one of the base models, mimicking the FL constraint that data cannot be
 326 shared across servers due to privacy and communication costs. If models had access to the entire
 327 dataset, training directly on it would be more effective than model fusion. Details of the partitioning
 328 procedure are provided in Appendix D.

329 We evaluate all fusion algorithms in a *zero-shot* setting, where models are fused without further
 330 retraining. This reflects the above assumption that the fusion dataset is skewed, and therefore,
 331 retraining on it would not result in improved performance compared to the corresponding base model.
 332 We present some results for ViTs on CIFAR-100 in Table 2. Results for Tiny-ImageNet can be found
 333 in Appendix G.2, and results for VGGs on CIFAR-10 can be found in Appendix G.1.

335 Table 2: **Test accuracy** comparison when fusing ViT networks on CIFAR-100 for **Sharded** splits. For the table
 336 with full details, please refer to Table 15.

Method	2-WAY SPLIT	4-WAY SPLIT	6-WAY SPLIT		
Individual Models	38.6 \pm 0.5 37.2 \pm 0.6	20.4 \pm 0.2 19.5 \pm 0.2	19.9 \pm 0.1 19.2 \pm 0.3	14.3 \pm 0.2, 13.2 \pm 0.2	13.7 \pm 0.3 12.8 \pm 0.3
Ensemble	63.7 \pm 0.4		53.4 \pm 1.8		45.4 \pm 2.0
Vanilla Averaging	2.2 \pm 0.6		1.4 \pm 0.2		1.1 \pm 0.3
KD	50.4 \pm 1.4		40.3 \pm 0.9		34.3 \pm 1.1
LP	51.8 \pm 0.6		37.1 \pm 0.8		28.0 \pm 0.8
Transf. OTF acts	2.3 \pm 0.6		1.0 \pm 0.0		1.0 \pm 0.0
Transf. OTF wts	4.4 \pm 1.3		1.5 \pm 0.3		1.2 \pm 0.3
HF Gradient (Ours)	55.5 \pm 0.8		-		-
KF Gradient (Ours)	54.7 \pm 1.2		43.5 \pm 0.5		37.4 \pm 0.8

350 We additionally present an experiment motivated by a potential real-world scenario performed on the
 351 BloodMNIST dataset (Yang et al., 2023). BloodMNIST contains 17,092 images of blood cells divided
 352 into 8 classes. 6 of the classes are white blood cells, while the remaining classes are erythroblasts and
 353 platelets. In this experiment, the dataset was sharded into one set containing the white blood cells
 354 and the other containing the erythroblasts and platelets. VGGs were trained on each set separately
 355 to distinguish the cell types within each set (i.e. one model to distinguish white blood cell types,
 356 and the other to distinguish between erythroblasts and platelets). The results of fusing these models
 357 are shown in Table 3. We can see that our model achieves meaningful transfer knowledge without
 358 requiring the sharing of data private data.

360 5.3 NON-IID SETUP

361 Similar to the “sharded” setup, the data is split disjointly
 362 between models. In this case, however, multiple models
 363 may receive samples from the same class, but with skewed
 364 class distributions. We again evaluate all algorithms in
 365 *zero-shot* fusion. Experiments are conducted on VGG11
 366 with CIFAR-10, with results averaged over five random
 367 seeds. Since VGG models are no longer state-of-the-art,
 368 the main results have been moved to Appendix G.1.

370 5.4 FULL DATASET SETUP

371 Previous work on model fusion has predominantly considered
 372 the case where models are trained on the full dataset,
 373 followed by a fine-tuning phase aimed at achieving performance
 374 gains over the individual base models. We refer to this setting as the *full-dataset* setup, and we include it in
 375 our evaluation for completeness. For Transformer architectures, to the best of our knowledge, the
 376 only existing baseline is Transformer OTFusion (Imfeld et al., 2023), which our approach consistently

377 Table 3: **Test accuracy** comparison for
 378 VGGs fused on sharded splits of BloodMNIST. For each algorithm, we show the result
 379 with the importance scores that result in the
 380 best accuracy.

Method	2-WAY SPLIT
Individual Models	76.0 \pm 0.2 22.8 \pm 0.0
Ensemble	86.7 \pm 4.8
Vanilla Averaging	13.3 \pm 7.2
KD	54.8 \pm 10.4
LP	75.6 \pm 11.6
OTFusion	16.7 \pm 5.3
Git Re-Basin	46.2 \pm 9.6
HF Linear (Ours)	84.2 \pm 6.1

378 Table 4: **Test accuracy** comparison for ViTs trained and fine-tuned on CIFAR-100 in the **Full-Dataset** setup.
 379 For the table with full details, please refer to Table 16.

	Base Models	Zero-shot			Fine-tuning	
		Transformer OTFusion	K-means Gradient Fusion (Ours)	Ensemble	Transformer OTFusion	K-means Gradient Fusion (Ours)
2-way fusion:	73.9, 73.4	4.3 ± 0.2 -69.6	63.0 ± 1.2 -10.9	75.7 ± 0.3 +1.8	74.0 ± 0.4 +0.1	75.4 ± 0.1 +1.5
Inference Cost:	$\times 1$	$\times 1$	$\times 1$	$\times 2$	$\times 1$	$\times 1$
4-way fusion:	74.1, 73.6, 73.0, 72.9	1.0 -73.1	57.5 -16.6	76.6 +2.5	72.6 -1.5	75.6 +1.5
Inference Cost:	$\times 1$	$\times 1$	$\times 1$	$\times 4$	$\times 1$	$\times 1$

388 Table 5: **Test accuracy** comparison for ViTs trained and fine-tuned on Tiny-ImageNet in the **Full-Dataset** setup.
 389 For the table with full details, please refer to Table 18.

	Base Models	Zero-shot			Fine-tuning	
		Transformer OTFusion	K-means Gradient Fusion (Ours)	Ensemble	Transformer OTFusion	K-means Gradient Fusion (Ours)
	52.7, 51.7	3.1 ± 0.2 -49.6	42.9 ± 0.3 -9.8	54.9 ± 0.4 +2.2	53.8 ± 0.1 +1.1	54.2 ± 0.4 +1.5
Inference Cost:	$\times 1$	$\times 1$	$\times 1$	$\times 2$	$\times 1$	$\times 1$

397 outperforms (see Table 4 and Table 5). Further details regarding both the fine-tuning and pre-training
 398 procedures are provided in Appendix F.3.

400 5.5 ROBUSTNESS STUDIES

402 In this subsection, we present several experiments designed to probe the performance of our algorithms
 403 under various scenarios.

405 5.5.1 VARYING FUSION DATASET SIZE

407 Gradient-based fusion algorithms typically require a substantial amount of data, which makes them
 408 sensitive to the size of the available fusion set. This limitation can be mitigated through the use of
 409 data augmentation. As shown in our ablation study on Table 6, augmenting a smaller fusion dataset
 410 (1k samples) substantially narrows the performance gap relative to using a larger dataset (5k samples).

411 Table 6: Zero-shot accuracy for two Non-IID VGG-11, when the fusion dataset size for KF Gradient is varied.

Fusion Dataset Size	Model 1	Model 2	Uniform	Conductance	DeepLIFT
5K samples			76.1 ± 0.5	76.2 ± 0.2	76.3 ± 0.4
1K samples	73.2 ± 1.2	71.3 ± 1.1	73.2 ± 0.5	71.7 ± 0.8	71.4 ± 0.7
1K samples + Augmentations			74.5 ± 0.8	75.3 ± 0.6	75.2 ± 0.5

419 5.5.2 RESNET COMPRESSION

421 Our fusion algorithm can be thought of as a compression algorithm, by *fusing a model into a smaller*
 422 *version of itself*. In this experiment, we train a ResNet34 on the full CIFAR-100 dataset and compress
 423 it into a ResNet18, using only 1/3 of the CIFAR-100 classes. The ResNet18 was initially trained
 424 on 1/3 of the classes, and the fusion was performed with KF using 5k samples from the same set of
 425 classes. Here, we only use the activations of the ResNet34 to form the target neurons. This can be
 426 seen as a form of stage-wise distillation of the larger ResNet into the smaller version. We compare
 427 our algorithm with Knowledge Distillation using the same fusion dataset in Table 7. Strikingly, our
 428 methods achieve an accuracy around 70% while only using 1/3 of the classes.

429 5.5.3 FUSED MODEL ANALYSIS AND INSIGHTS

431 In Fig. 2, we visualize the loss and accuracy landscapes of ViT base models trained on CIFAR-10,
 432 along with one of our fused models, using linear interpolation between model weights. The contour

432 Table 7: Zero-shot accuracy for ResNet18, obtained by compressing a ResNet34 with KF Gradient.
 433
 434

	ResNet18	ResNet34	Uniform	Conductance	DeepLIFT	Knowledge Distillation
	29.49	82.35	70.04	70.44	69.82	31.46

438
 439 plot reveals flatter basins around the fused model, which, as noted by [Hochreiter and Schmidhuber](#)
 440 (1997), is often indicative of improved generalization.
 441

442 6 LIMITATIONS

443
 444 Despite the strong performance of our proposed algorithms
 445 – often surpassing baselines and approaching that of ensem-
 446 bles – there remain areas for improvement.
 447

448 First, the gradient-based variant of our approach is sensitive
 449 to hyperparameters and requires non-trivial tuning. While
 450 we were experimentally able to verify a set of hyperpar-
 451 ameters that generalize well across our setups, this is not
 452 sufficient to claim universality.
 453

454 Second, the effectiveness of our gradient-based fusion al-
 455 gorithm appears to scale with the size of the fusion dataset.
 456 While this dependency is encouraging in that more data
 457 yields better performance, it also highlights a shortcoming
 458 in the amount of data required. However using techniques
 459 such as data augmentation can close this gap, as shown in
 460 Table 6. Furthermore, recent work ([Nasery et al., 2025](#)) has
 461 explored doing fusion using open-source datasets, which
 462 could be an interesting direction for future work, to make
 463 our algorithms data-free.
 464

465 7 FUTURE WORK

466 While our approach demonstrates strong empirical perfor-
 467 mance across a variety of fusion scenarios, several avenues remain open for further exploration and
 468 refinement.
 469

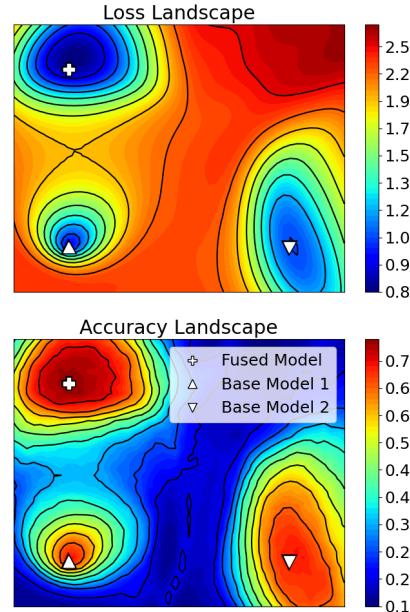
470 **Experiments with LLMs.** With the rise of LLMs, it would be interesting to see if our algorithms
 471 can yield improvements on such large-scale models, both in the context of fusion and compression.
 472

473 **Automating fusion hyperparameter selection and level partitioning.** Future work could explore
 474 principled methods for automatically tuning fusion hyperparameters, including the choice of level
 475 granularity and whether to end levels at before or after activation functions.
 476

477 **Other grouping methods.** Besides k-means clustering and matching, other methods to extract a
 478 layer-wise target could be explored. A simple idea would be to use the activations of neurons with
 479 the highest importance scores.
 480

481 8 CONCLUSION

482 In this work, we introduced a novel neuron-aware approach to model fusion that supports fusing
 483 generic model architectures. Our algorithms, to our knowledge, are the first to successfully incorporate
 484 neuron importance scores in model fusion. Furthermore, our empirical results across diverse setups-
 485 including non-IID, sharded, and full-dataset regimes-consistently show that our fusion algorithms are
 486 competitive with or outperform existing baselines, especially in the zero-shot scenario, and in some
 487 cases approach ensemble-level performance.
 488



489 Figure 2: ViT Landscapes for CIFAR10,
 490 showing fused model from K-means Gradi-
 491 ent Fusion using DeepLIFT scores
 492

486 REFERENCES

487

488 Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
489 permutation symmetries. *arXiv preprint arXiv:2209.04836*, 2022.

490 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-of-squares
491 clustering. *Machine learning*, 75:245–248, 2009.

492 Umar Asif, Jianbin Tang, and Stefan Harrer. Ensemble knowledge distillation for learning improved and efficient
493 networks. *arXiv preprint arXiv:1909.08097*, 2019.

494

495 Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms. *Advances in neural*
496 *information processing systems*, 7, 1994.

497 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
498 augmentation policies from data. *arXiv preprint arXiv:1805.09501*, 2018.

499

500 Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron? *arXiv preprint*
501 *arXiv:1805.12233*, 2018.

502 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and
503 the lottery ticket hypothesis. In *International Conference on Machine Learning*, pages 3259–3269. PMLR,
504 2020.

505 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv preprint*
506 *arXiv:1503.02531*, 2015.

507

508 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42, 1997.

509

510 Moritz Imfeld, Jacopo Graldi, Marco Giordano, Thomas Hofmann, Sotiris Anagnostidis, and Sidak Pal Singh.
Transformer fusion with optimal transport. *arXiv preprint arXiv:2310.05719*, 2023.

511

512 Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing
513 permuted activations for interpolation repair. *arXiv preprint arXiv:2211.08403*, 2022.

514

515 Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu.
A local search approximation algorithm for k-means clustering. In *Proceedings of the eighteenth annual*
516 *symposium on Computational geometry*, pages 10–18, 2002.

517

518 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
2014.

519

520 Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander
521 Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. Captum: A unified
522 and generic model interpretability library for pytorch, 2020. URL <https://arxiv.org/abs/2009.07896>.

523

524 Harold W Kuhn. The hungarian method for the assignment problem. *Naval research logistics quarterly*, 2(1-2):
83–97, 1955.

525

526 Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning: Do different neural
527 networks learn the same representations? *arXiv preprint arXiv:1511.07543*, 2015.

528

529 Stuart Lloyd. Least squares quantization in pcm. *IEEE transactions on information theory*, 28(2):129–137,
1982.

530

531 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*,
2017.

532

533 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
534 efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pages
535 1273–1282. PMLR, 2017.

536

537 Anshul Nasery, Jonathan Hayase, Pang Wei Koh, and Sewoong Oh. Pleas-merging models with permutations
538 and least squares. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages
30493–30502, 2025.

539

omihub777. Vit-cifar. <https://github.com/omihub777/ViT-CIFAR>. Accessed: 2025-05-16.

540 Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating
 541 activation differences. In *International conference on machine learning*, pages 3145–3153. PMLR, 2017.
 542

543 Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. *Advances in Neural Information
 544 Processing Systems*, 33:22045–22055, 2020.
 545

546 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *International
 547 conference on machine learning*, pages 3319–3328. PMLR, 2017.
 548

549 Alexander Theus, Alessandro Cabodi, Sotiris Anagnostidis, Antonio Orvieto, Sidak Pal Singh, and Valentina
 550 Boeva. Generalized linear mode connectivity for transformers. *arXiv preprint arXiv:2506.22712*, 2025.
 551

552 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
 553 and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
 554

555 Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
 556 learning with matched averaging. *arXiv preprint arXiv:2002.06440*, 2020.
 557

558 Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and Bingbing Ni.
 559 Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. *Scientific
 560 Data*, 10(1):41, 2023.
 561

562 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix:
 563 Regularization strategy to train strong classifiers with localizable features. In *Proceedings of the IEEE/CVF
 564 international conference on computer vision*, pages 6023–6032, 2019.
 565

566

567

A PROOFS

569 We first present the proof for Theorem 1.

570 *Proof.* We proceed to decompose the cost of Eq. (1) as follows, omitting the input \mathbf{x} for notational
 571 clarity:

$$\begin{aligned}
 J_{\mathbf{w}} &= \sum_{j=1}^{d^M} s_j \min_k \left\{ (z_k^F - z_j)^2 \right\} \\
 &= \sum_{j=1}^{d^M} s_j \left(z_{k_j}^F - z_j \right)^2 \quad \text{where } k_j = \arg \min_k (z_k^F - z_j)^2 \implies j \in R_{k_j} \\
 &= \sum_{j=1}^{d^M} s_j \left[\left(z_{k_j}^F - T_{k_j} \right)^2 + 2 \left(z_{k_j}^F - T_{k_j} \right) (T_{k_j} - z_j) + (T_{k_j} - z_j)^2 \right] \quad (\pm T_{k_j}) \quad (4)
 \end{aligned}$$

586 Here, when we set $k_j = \arg \min_k (z_k^F - z_j)^2$, we break ties arbitrarily such that the sets $(R_k)_k^{d^F}$
 587 are non-overlapping and cover all base model neurons.

588 Since no constraints are imposed on the target vector \mathbf{T} , we retain the flexibility to define it in a
 589 manner that simplifies the optimization. Specifically, if we rearrange the summation in Eq. (4) into
 590 two nested summations – first over neurons in the fused model (i.e., $k = 1, \dots, d^{F,i}$), and then
 591 over original neurons j assigned to each k (i.e., $k_j = \arg \min_k (z_k^F - z_j)^2$) and define T_k as the
 592 importance-weighted mean of the assigned level outputs, i.e., $T_k = \frac{\sum_{j \in R_k} s_j z_j}{\sum_{j \in R_k} s_j}$, then the cross-term
 593

594 in Eq. (4) vanishes:
595

$$\begin{aligned}
596 \quad & \sum_{j=1}^{d^M} 2s_j (z_{k_j}^F - T_{k_j}) (T_{k_j} - z_j) = 2 \sum_{k=1}^{d^M} \sum_{j \in R_k} s_j (z_k^F - T_k) (T_k - z_j) \\
597 \quad & = 2 \sum_{k=1}^{d^M} (z_k^F - T_k) \sum_{j \in R_k} s_j (T_k - z_j) \\
598 \quad & = 2 \sum_{k=1}^{d^M} (z_k^F - T_k) \sum_{j \in R_k} s_j \left(\frac{\sum_{i \in R_k} s_i z_i}{\sum_{i \in R_k} s_i} - z_j \right) \\
599 \quad & = 2 \sum_{k=1}^{d^M} (z_k^F - T_k) \left(\sum_{i \in R_k} s_i z_i - \sum_{j \in R_k} s_j z_j \right) \\
600 \quad & = 0
\end{aligned}$$

601 Therefore, Eq. (4) becomes:
602

$$\begin{aligned}
603 \quad J_{\mathbf{w}} &= \sum_{j=1}^{d^M} s_j \left[(z_{k_j}^F - T_{k_j})^2 + (T_{k_j} - z_j)^2 \right] \\
604 \quad &= \sum_{k=1}^{d^M} \sum_{j \in R_k} s_j \left[(z_k^F - T_k)^2 + s_j (T_k - z_j)^2 \right] \quad (\text{re-express sum over output neurons})
\end{aligned}$$

605 \square
606
607
608

609 We now present the proof for Theorem 2.
610
611

612 *Proof.* We analyze Hungarian Fusion and K-means Fusion separately.
613

614 **(a) Optimality of Hungarian Fusion:** As established in Section 4.1, the decoupled objective Eq. (2)
615 separates into two terms: the *grouping error* and the *approximation error*. For linear levels, the
616 layer outputs z_k are affine functions of the weights \mathbf{w} , and thus the approximation error reduces to a
617 weighted least squares problem, which admits a closed-form solution.
618

619 Consequently, minimizing the total cost reduces to minimizing the grouping error. In the special case
620 of two models with equal-sized layers and one-to-one neuron matching, this corresponds to a Linear
621 Sum Assignment Problem (LSAP) with importance-weighted squared error as the cost matrix. The
622 Hungarian algorithm solves this problem exactly in polynomial time (Kuhn, 1955), hence the HF
623 algorithm returns the optimal solution.
624

625 **(b) Approximation Bound for K-means Fusion:** We consider a fixed assignment of neurons, where
626 we assign the j^{th} base model neuron to the fused neuron k_j . Consider the total representation cost
627 associated with all the base model neurons assigned to the k^{th} fused neuron for the layer l . That is,
628 the total representation cost of all base neurons j that have $k_j = k \implies j \in R_k$. For a single sample,
629 this is $\sum_{j \in R_k} s_j (z_k^F - z_j)^2$. If we stack this over the samples, we get $\sum_{j \in R_k} s_j \|\mathbf{z}_k^F - \mathbf{z}_j\|^2$, where
630 $\mathbf{z}_k^F, \mathbf{z}_j \in \mathbb{R}^n$ are column vectors with each entry corresponding to the preactivation for one input
631 sample. We let the previous layer's activations be $\mathbf{X} \in \mathbb{R}^{n \times d^M}$. Now, since it is a linear function of
632 the previous layer's activations, we have $\mathbf{z}_k^F = \mathbf{X}\mathbf{w}_k$, with \mathbf{w}_k being the weights associated with the
633 k^{th} fused neuron (here we append a column of 1s to X if we also have a bias term). Consider the
634 projection matrix $\mathbf{P} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^+ \mathbf{X}^T$ that projects vectors to the column space of \mathbf{X} . Then $\mathbf{I} - \mathbf{P}$
635 projects to the orthogonal complement of the image of \mathbf{X} . Recall that $\mathbf{P}\mathbf{X} = \mathbf{X}$ and $(\mathbf{I} - \mathbf{P})\mathbf{X} = 0$.
636 We then have
637

648
649
650
$$\sum_{j \in R_k} s_j \|\mathbf{z}_k^{\mathcal{F}} - \mathbf{z}_j\|^2 = \sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{z}_j\|^2$$

651
652
653
$$= \sum_{j \in R_k} s_j \|\mathbf{P}(\mathbf{Xw}_k - \mathbf{z}_j) + (\mathbf{I} - \mathbf{P})(\mathbf{Xw}_k - \mathbf{z}_j)\|^2$$

654
655
656
$$= \sum_{j \in R_k} s_j (\|\mathbf{P}(\mathbf{Xw}_k - \mathbf{z}_j)\|^2 + \|(\mathbf{I} - \mathbf{P})(\mathbf{Xw}_k - \mathbf{z}_j)\|^2)$$

657 (due to orthogonality)
658
659
660
$$= \sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{Pz}_j\|^2 + \sum_{j \in R_k} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2$$

661

662 We consider the term $\sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{Pz}_j\|^2$. Letting $\bar{\mathbf{z}}_k = \frac{\sum_{j \in R_k} s_j \mathbf{z}_j}{\sum_{j \in R_k} s_j}$ (such that
663 $\sum_{j \in R_k} s_j (\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j) = 0$), we have

664
665
$$\sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{Pz}_j\|^2 = \sum_{j \in R_k} s_j \|(\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k) + (\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j)\|^2$$

666
667
$$= \sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k\|^2 + 2 \sum_{j \in R_k} s_j (\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k)^T (\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j)$$

668
669
$$+ \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j\|^2$$

670
671
672
$$= \sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k\|^2 + 2 (\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k)^T \sum_{j \in R_k} s_j (\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j)$$

673
674
$$+ \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j\|^2$$

675
676
677
$$= \sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k\|^2 + \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j\|^2$$

678
679
680
681

682 Thus, substituting this back, and summing over k to get the whole layer's representation cost, we get
683

684
685
$$\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{z}_k^{\mathcal{F}} - \mathbf{z}_j\|^2 = \sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{Xw}_k - \mathbf{P}\bar{\mathbf{z}}_k\|^2$$

686
687
688
$$+ \sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j\|^2 + \sum_{j=1}^{d^{\mathcal{M}}} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2$$

689
690
691

692 Note first that the last term in the sum on the right is always incurred independently of the assignment
693 k_j or the chosen weights \mathbf{w}_k .

694 Assume we have a solution that obtains the optimal representation cost OPT . Then, since the first
695 term in the sum is nonnegative, the representative cost of the optimal solution is at least the optimal
696 value of $\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j\|^2 + \sum_{j=1}^{d^{\mathcal{M}}} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2$. If we let $OPT_{grouping}$ be the
697 minimum possible value of $\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{Pz}_j\|^2$, then we get $OPT \geq OPT_{grouping} +$
698 $\sum_{j=1}^{d^{\mathcal{M}}} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2$
699
700

701 We now consider the sum on the right for KF. Recall that KF first projects the activations to the
702 image of X and then finds the K-means clusters. That is, it finds the K-means clustering of $(\mathbf{Pz}_j)_{j=1}^{d^{\mathcal{M}}}$

702 to find the clusters R_k , aiming to minimize $\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{P}\mathbf{z}_j\|^2$. Then, it fits \mathbf{w}_k such
 703 that $\|\mathbf{X}\mathbf{w}_k - \mathbf{P}\bar{\mathbf{z}}_k\|^2$ is minimized by solving a weighted least squares problem as elaborated in
 704 Appendix B.2. Notice that this achieves $\|\mathbf{X}\mathbf{w}_k - \mathbf{P}\bar{\mathbf{z}}_k\|^2 = 0$, since, as $\mathbf{P}\bar{\mathbf{z}}_k$ is in the image of \mathbf{X}
 705 by virtue of being a projection to that image, there is a \mathbf{w}_k satisfying $\mathbf{X}\mathbf{w}_k = \mathbf{P}\bar{\mathbf{z}}_k$. Thus, the total
 706 representation cost for KF for any layer will be $\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{P}\mathbf{z}_j\|^2 + \sum_{j=1}^{d^{\mathcal{M}}} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2$, where the first term is the the weighted K-means cost with respect to clustering the projected
 707 preactivations, and the second term is always incurred regardless of assignment or chosen weights.
 708

709 The K-means problem is NP-hard in general (Aloise et al., 2009). However, the local-search algorithm
 710 introduced by Kanungo et al. (2002), provides a $(9 + \epsilon)$ -approximation guarantee for the weighted
 711 K-means cost under squared Euclidean distance. By using this algorithm to construct the cluster
 712 assignments in KF, we obtain a solution where the term $\sum_{k=1}^{d^{\mathcal{F}}} \sum_{j \in R_k} s_j \|\mathbf{P}\bar{\mathbf{z}}_k - \mathbf{P}\mathbf{z}_j\|^2$ is within a
 713 constant factor of the optimal cost $OPT_{grouping}$.
 714

715 Thus, the cost for this layer attained by KF is at most $(9 + \epsilon)OPT_{grouping} + \sum_{j=1}^{d^{\mathcal{M}}} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2 \leq$
 716 $(9 + \epsilon)(OPT_{grouping} + \sum_{j=1}^{d^{\mathcal{M}}} s_j \|(\mathbf{I} - \mathbf{P})\mathbf{z}_j\|^2) \leq (9 + \epsilon)OPT$, showing that it is a $(9 + \epsilon)$ -
 717 approximation for the layer representation cost.
 718

719 \square

720 B EFFICIENTLY MINIMIZING THE FUSION ERRORS

721 B.1 MINIMIZING THE GROUPING ERROR

722 For the special case (a), we can re-express Eq. (1) as a sum over the two base models:

$$723 J_{\mathbf{w}} = \sum_{j=1}^{d^{M_1}} s_j^{M_1} \min_k \left\{ (z_k^{\mathcal{F}} - z_j^{M_1})^2 \right\} + \sum_{j=1}^{d^{M_2}} s_j^{M_2} \min_k \left\{ (z_k^{\mathcal{F}} - z_j^{M_2})^2 \right\} \quad (5)$$

724 This cost can also be decomposed analogously to Eq. (2). We can now define the cost of matching
 725 neuron j_1 of M_1 to neuron j_2 of M_2 , as the cost of trying to approximate the resulting cluster center
 726 T_{j_1, j_2} , from any neuron of the fused model \mathcal{F} . A simpler alternative/heuristic is to just compute the
 727 distances between the level outputs. After defining this cost matrix, we can then run the Hungarian
 728 Matching algorithm (Kuhn, 1955) to find a one-to-one matching that minimizes Eq. (5).
 729

730 For the general case (b), we can run Lloyd’s (Lloyd, 1982) algorithm for K-means, since it usually
 731 offers a good tradeoff between simplicity and effectiveness. By making use of the K-means++
 732 initialization, we usually get better clusterings. Note that for this task, we treat neurons “as data
 733 points”, in the sense that we want to cluster neurons together. Therefore, the features of a neuron
 734 are the values (e.g. activations) it takes for different samples \mathbf{x} in the dataset. Clustering is then
 735 performed over these vectors using importance-weighted K-means, where the number of clusters “ k ”
 736 is set to the desired number of neurons in the fused layer. Once clusters are formed, we compute the
 737 corresponding importance-weighted centroids, giving us the target matrix $\mathbf{T} \in \mathbb{R}^{B \times d^{\mathcal{F}}}$, where B is
 738 the batch dimension.
 739

740 B.2 MINIMIZING THE APPROXIMATION ERROR

741 For the special case where a level is a linear function of its weights \mathbf{w} , i.e. $\mathbf{z} = \mathbf{X}\mathbf{w}$ for some \mathbf{X} , then
 742 the approximation error in Eq. (3) admits to a closed-form weighted-MSE solution:
 743

$$744 \mathbf{w}^* = (\mathbf{X}^\top \mathbf{S} \mathbf{X})^+ \mathbf{X}^\top \mathbf{S} \mathbf{T}$$

745 where $\mathbf{S} = \text{diag}(s_1, \dots, s_{d^{\mathcal{M}}})$, and $(\cdot)^+$ denotes the Moore-Penrose pseudoinverse.
 746

747 For the general case, where a level is a non-linear differentiable function of its weights, we can
 748 obtain a local minima by optimizing with SGD. In practice we often use Adam (Kingma and Ba,
 749 2014) or AdamW (Loshchilov and Hutter, 2017). Furthermore, in practice, we do not minimize the
 750 weighted MSE, but rather the plain MSE. This is due to the fact that neurons with low importance
 751

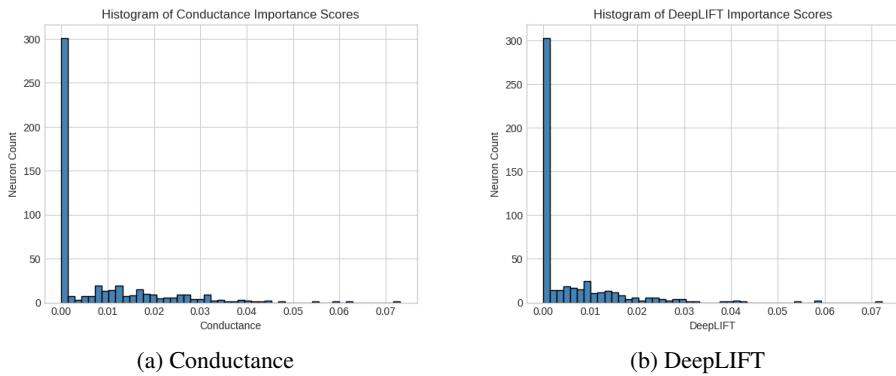


Figure 3: Histogram of Conductance and DeepLIFT Importance Scores

scores will barely change if we use the weighted MSE. While this could only minimally affect the representation loss for the current level, it could lead to noisy inputs in later levels, or just poor intermediate representations. In our experiments we noticed that, especially in non-IID cases, many neurons tend to be attributed scores that are virtually zero as seen in Fig. 3.

C COMPARISON OF HUNGARIAN FUSION WITH EXISTING ALGORITHMS

We note that **Hungarian Fusion** is in spirit very similar to both **OTFusion** (Singh and Jaggi, 2020) and the activations-based version of **Git Re-Basin** (Ainsworth et al., 2022). In the case of **Equal-size models with level-wise one-to-one matching** that we restrict HF to, they all construct a matching between neurons (or equivalent a transport map or permutation matrix to align the second model to the first) by solving a minimum cost matching problem.

However, a key difference is that HF accounts for the effect of refitting the previous layers and correspondingly refits the weights of the current layer being considered to minimize the effect of the accumulated error. Empirically, this significantly improves the zero-shot performance significantly as shown in our experimental results.

With regards to the incorporation of neuron importance scores, for OTFusion, Singh and Jaggi (2020) proposed using the neuron importance as the probability measure assigned to a neuron in the optimal transport problem setup, while Ainsworth et al. (2022) did not discuss applying importance scores in Git Re-Basin. In our experiments, we follow the recommendation of Singh and Jaggi (2020) for OTFusion and for Git Re-Basin we weigh the neuron weights according to the neuron’s score when averaging, in the same manner as we do for HF.

D DATA PARTITIONING REGIMES

D.1 NON-IID SPLITS

To simulate non-IID splits, we utilize a Dirichlet distribution to create unbalanced class distributions across models. Let N_c represent the number of data points in class c , and α_k denote the concentration parameter for model k . The data for each class c is distributed across models as:

$$\text{split}_k \sim \text{Dir}(\alpha_1, \dots, \alpha_k)$$

where $\text{Dir}(\cdot)$ represents the Dirichlet distribution. The concentration parameters α_k are arranged in an ordered sequence, determined by the parameter `min_max_ratio`:

```

alpha_min = 1.0
min_max_ratio = 0.2
alpha_max = alpha_min / min_max_ratio
alphas = linspace(alpha_min, alpha_max, min_max_ratio)

```

810 A smaller ratio results in a wider disparity between splits, amplifying the heterogeneity. The Dirichlet-
 811 distributed probabilities dictate the number of samples assigned to each model for class c , ensuring
 812 that splits exhibit diverse and non-uniform class distributions. Random shuffling of *class indices* and
 813 *concentration parameters* for each class c introduces additional randomness in the resulting splits.
 814

815 D.2 SHARDED SPLITS 816

817 In the sharded partitioning regime, the dataset is split such that each model receives examples from a
 818 disjoint subset of classes. That is, no two models share any classes in their local datasets, simulating
 819 a strongly divergently distributed base model training datasets scenario based on class exclusivity
 820 rather than distributional imbalance.

821 Let \mathcal{C} denote the set of all classes in the dataset. The class set is first randomly permuted and then
 822 evenly partitioned into K disjoint subsets, where K is the number of models. Each subset \mathcal{C}_k is
 823 assigned to model k , and all examples belonging to classes in \mathcal{C}_k are included in that model’s local
 824 dataset:

$$825 \quad \bigcup_{k=1}^K \mathcal{C}_k = \mathcal{C}, \quad \mathcal{C}_i \cap \mathcal{C}_j = \emptyset \quad \forall i \neq j$$

829 E MODEL TRAINING DETAILS 830

831 We trained **VGGs on CIFAR-10** and **ViTs on CIFAR100**. All models were trained on NVIDIA RTX
 832 A5000 GPUs.

833 The VGGs followed the VGG11 architecture and the implementation is based on the open source
 834 implementation provided by ¹[Singh and Jaggi \(2020\)](#).

835 The ViTs implementation is based on ²[omihub777](#), and we used the following model hyperparameters:

838 Model Hyperparameter	839 Value
839 Patch Size	8
840 Attention Heads	12
841 Encoder Blocks	7
842 Feed Forward Network Hidden Size	384
843 Encoder Hidden Size	384

844 To train the models, we use the non-exhaustive list of hyperparameters listed in Table 8
 845

847 Splits	848 VGG Epochs	848 ViT Epochs	847 Training Hyperparameter	848 Value
848 Full Dataset	300	350	848 Warmup Epochs	5
849 Split By 2	200	250	849 Minimum Learning Rate	10^{-5}
850 Split By 4	150	225	850 Learning Rate	10^{-3}
851 Split By 6	–	200	851 Label Smoothing	0.1
852 Split By 8	125	–	852 Batch Size	128

853 (a) Number of training epochs

854 (b) Training hyperparameters

855 Table 8: Training configurations and schedules for VGG and ViT models.

856 The following torch augmentations were used for training: RandomCrop, RandomHorizontalFlip,
 857 Normalize, and other augmentations as in [omihub777](#) based on [Cubuk et al. \(2018\)](#).

858 The model was trained using torch’s Gradual Warmup Scheduler with torch’s CosineAnnealingLR
 859 scheduler.

860 ¹<https://github.com/sidak/otfusion>

861 ²<https://github.com/omihub777/ViT-CIFAR>

864 We believe that these are sufficient to reproduce the main claims of our work. Additional information
865 about hyperparameters can be found in our open-source code repository.
866

867 F FUSION IMPLEMENTATION DETAILS 868

869 F.1 FUSION HYPERPARAMETERS 870

871 Our proposed fusion algorithms include both linear and gradient-based variants, each with distinct
872 hyperparameter considerations.
873

874 **Linear Variants.** The linear fusion algorithms (e.g., plain Hungarian Fusion and K-means Fusion)
875 require minimal hyperparameter tuning. The primary decisions involve whether to normalize (i)
876 neuron outputs and/or (ii) neuron importance scores. In our experiments, we found that omitting
877 normalization typically yielded better results across both all data partitioning settings. This is likely
878 because normalization can distort relative differences in neuron output magnitude that are informative
879 for matching or clustering.
880

881 **Gradient-based Variants.** In contrast, the gradient-based fusion variant introduces a broader set of
882 hyperparameters. These include:
883

- 884 1. **Optimization Parameters:** learning rate, weight decay, number of gradient steps per level,
885 and batch size, validation split, validation patience.
886
- 887 2. **Initialization Scheme:** initialization of the fused model weights at each level (e.g., weights
888 from a randomly selected base model with added noise ϵ).
889
- 890 3. **Clustering Settings:** number of clusters (typically matched to the fused model’s layer
891 width), use of K-means++ initialization, early stopping criteria and whether to normalize
neuron outputs just for the clustering stage.
892
- 893 4. **Importance Weighting:** whether and how to incorporate neuron importance scores into
894 both clustering and loss weighting.
895

896 While this added complexity increases flexibility and modeling capacity, it also requires careful
897 tuning for stable and effective optimization. To mitigate this, we conducted extensive experiments and
898 identified two sets of hyperparameter configurations that generalized well across datasets (CIFAR-
899 10, CIFAR-100), model architectures (VGG11, ViT), and fusion regimes (Full Dataset, Non-IID,
900 Sharded). Specifically, we found the hyperparameters in Table 9.
901

902 Table 9: Sets of hyperparameters used for K-means Gradient Fusion
903
904

905 Hyperparameter	906 Setting 1	907 Setting 2
908 Optimizer ($n - 1$ first levels)	909 AdamW	910 SGD
911 Learning Rate ($n - 1$ first levels)	912 10^{-3}	913 10^{-4}
914 Epochs ($n - 1$ first levels)	915 100	916 50
917 Weight Decay (All levels)	918 10^{-4}	919 10^{-4}
920 Perturbation ϵ	921 1.0	922 0.1
923 Optimizer (Last level)	924 AdamW	925 Adam
926 Learning Rate (Last level)	927 10^{-3}	928 10^{-3}
929 Epochs (Last level)	930 100	931 100
932 Epochs ($n - 1$ first levels)	933 100	934 100
935 Normalize Activations	936 False	937 False
938 Train Batch Size	939 32	940 32
941 Val Split	942 0.1	943 0.1
944 Head Weights	945 False	946 False

947 We note that “Head Weights” refers to weighing the final logits of the models by the proportion of
948 samples seen per class, for every model. In practice, this heuristic improves accuracy by a small
949 margin, but this comes at a cost of calibration, as the test loss increases, which in some cases might
950 not be a good tradeoff.
951

918 Each setting of hyperparameters induces a different behavior in the gradient-based variant of our
919 algorithm. By using Setting 1, we essentially take larger gradient steps that move us far away from
920 initialization. The resulting model is quite different from base models, in terms of plain weight L2
921 norm. On the other hand, Setting 2 relies on the initialization of the model to be already decent
922 (e.g. any base model), and takes small gradient steps. Empirically, we found that with the second
923 setting, the majority of performance gain occurs at the classification head, where the targets become
924 the raw average logits of all base models. This is similar to Linear Probing (LP), with the only
925 difference that LP typically minimizes some sort of KL-divergence loss between softmaxed logits
926 and average-softmaxed ensemble-logits, instead of minimizing the L2 distance between averaged
927 raw logits. Nevertheless, most interesting models are produced with the first setting, which finds new
928 solutions far away from initialization, and within a much richer context.
929

For the gradient variants of our algorithms, in our experiments:

- **All** Full-dataset models were fused using *Setting 1*.
- **All** sharded models were fused using *Setting 1*.
- **All** Non-IID models, **except** for VGG11s with $n = 2$ models for CIFAR-10 (which used
Setting 1), were fused using *Setting 2*.

F.2 MODEL PARTITIONING SCHEMES

Due to the flexibility of our algorithm, we had the freedom to develop our own partition. In practice
we as we primarily tested on like models, there were obvious answers that we used.

For VGG11s, each level contained only a single convolutional or linear layer to be aligned or an
activation function, which did not need to be aligned.

For ViTs, each level corresponded to an encoder block except for the last one which corresponded to
the classifier head.

F.3 POST FUSION FINETUNING HYPERPARAMETERS

For fusing full dataset models, a finetuning phase is shown to improve fused model performance
above base model performance. For this finetuning phase we used the same optimizer that was used
to train the corresponding base models, and torch’s CosineAnnealingWarmRestarts scheduler. The
whole process had the following hyperparameters:

Hyperparameter	CIFAR 10/100	Tiny-ImageNet
Learning Rate	$3 \cdot 10^{-4}$	10^{-5}
Minimum Learning Rate	10^{-6}	10^{-6}
Label Smoothing	0.1	0.1
Epochs	200	200

The augmentation was the same generic suite as we used to train VGGs and ViTs initially. See
Appendix E for more details. Once again, all code for reproduction is present in our open source
repository.

F.4 NEURON IMPORTANCE SCORE DETAILS

F.4.1 IMPLEMENTATION

For the computation of neuron importance scores, we used the LayerConductance (Dhamdhere
et al., 2018) and LayerDeepLIFT (Shrikumar et al., 2017) implementations of Kokhlikyan et al.
(2020). However, our fusion framework allows for the usage of any importance score, possibly
computed by other means.

972 F.4.2 COMPUTATION
973

974 Neuron importance scores can be estimated either (i) independently by each model using its own
975 training or validation data, or (ii) jointly using the designated fusion dataset prior to fusion. The
976 first approach typically yields more reliable estimates and, in our experiments, resulted in higher
977 zero-shot accuracy. Moreover, it aligns naturally with the federated learning setting, where clients
978 could compute scores locally and transmit them together with their models for fusion.

979 For our benchmarks, however, we adopt the second approach, as it is more computationally efficient:
980 the fusion dataset is usually much smaller than the private datasets of the individual models.

981 F.4.3 SCORE SELECTION

982 The choice of importance score can be regarded as a hyperparameter, akin to learning rate or weight
983 decay, and can in principle be optimized using standard procedures such as cross-validation. In our
984 experiments, uniform scores rarely outperformed other measures such as Conductance or DeepLIFT.
985 The latter two usually performed on par, with Conductance showing a slight advantage in some cases.
986

987 F.5 ALGORITHM RUNTIME COMPARISON

988 As our methods are technically specific implementations of our general framework, it is difficult to
989 definitively give an evaluation of the overall framework. However, we did quantify the performance
990 of our realizations, both on VGGs and ViTs. We only used importance scores for VGGs as they just
991 add a constant startup time and usually do not interfere with the performance of the algorithm. For the
992 same reason, we only use conductance when testing for importance score times. Interestingly,
993 KF Linear speeds up significantly when we use importance scores, suggesting that the K-means
994 portion of the algorithm resolves faster in this case because of the weights. All experiments were ran
995 on NVIDIA RTX A5000 GPUs.
996

997 Table 10: **Algorithm runtime** comparison when fusing VGG networks on CIFAR-10. We fused the same
998 two models 10 times and averaged the run times. All algorithms were run with the same 400 samples in each
999 iteration. All times are in seconds.
1000

Algorithm	Runtime (Uniform)	Runtime (Conductance)
OT Fusion	0.7	3.0
Git Re-Basin	1.0	3.2
HF Linear (Ours)	14.2	16.5
KF Linear (Ours)	78.3	83.7
KF Gradient Uniform (Ours)	16.5	18.8

1011 Table 11: **Algorithm runtime** comparison when fusing ViT networks on CIFAR-100. We fused the same two
1012 models 5 times using our KF Gradient method with uniform importance scores and averaged the run times.
1013

Fusion Samples	Runtime (s)
400	38.1
6000	632.5

1026 **G ADDITIONAL RESULTS**
1027

1028 In this section, besides complimentary tables, we will also present the full tables for results shown
1029 earlier. These full tables include the standard deviation for base models, as well as the performance
1030 of each fusion algorithm for each neuron importance score.
1031

1032
1033 **G.1 VGGs on CIFAR-10**
1034

1035 **Table 12: Test accuracy** comparison when fusing VGG11 networks on CIFAR-10 for **Non-IID** splits. Fusion
1036 was performed using 400 data points sampled from the dataset seen by the first model. The same fusion data
1037 was used for all algorithms.
1038

1039
1040

Method	2-WAY SPLIT	4-WAY SPLIT	8-WAY SPLIT
Individual Models	83.8 ± 2.7 , 77.3 ± 2.1	79.8 ± 3.2 , 74.7 ± 3.3 , 69.7 ± 4.6	77.5 ± 2.9 , 65.4 ± 1.6 , 63.4 ± 1.2 , 58.6 ± 3.5 , 55.6 ± 3.0
Ensemble	89.1 ± 0.4	85.7 ± 0.2	78.9 ± 0.8
Vanilla Averaging	11.5 ± 1.5	10.0 ± 0.0	10.0 ± 0.0
KD	83.3 ± 1.5	79.2 ± 1.8	71.4 ± 1.4
LP	85.8 ± 1.7	81.7 ± 1.7	74.2 ± 1.0
OTF Uniform	50.0 ± 6.2	14.7 ± 5.5	12.3 ± 3.1
OTF Conductance	40.6 ± 2.7	11.3 ± 2.5	10.9 ± 1.0
OTF DeepLIFT	41.2 ± 3.1	12.7 ± 2.8	14.0 ± 2.0
Git Re-Basin ¹ Uniform	58.0 ± 3.3	N/A	N/A
Git Re-Basin Conductance	73.1 ± 3.2	N/A	N/A
Git Re-Basin DeepLIFT	75.8 ± 2.9	N/A	N/A
HF Linear Uniform (Ours)	78.0 ± 2.6	N/A	N/A
HF Linear Conductance (Ours)	86.6 ± 0.5	N/A	N/A
HF Linear DeepLIFT (Ours)	86.5 ± 0.5	N/A	N/A
KF Linear Uniform (Ours)	85.3 ± 1.2	78.7 ± 0.5	69.1 ± 1.5
KF Linear Conductance (Ours)	86.5 ± 0.6	79.5 ± 0.8	71.3 ± 1.4
KF Linear DeepLIFT (Ours)	86.5 ± 0.3	79.6 ± 0.8	71.3 ± 1.2
HF Gradient Uniform (Ours)	85.4 ± 1.9	N/A	N/A
HF Gradient Conductance (Ours)	85.5 ± 2.0	N/A	N/A
HF Gradient DeepLIFT (Ours)	85.5 ± 2.0	N/A	N/A
KF Gradient Uniform (Ours)	85.5 ± 1.9	81.3 ± 1.8	73.7 ± 1.1
KF Gradient Conductance (Ours)	85.4 ± 2.0	81.4 ± 1.8	73.7 ± 1.1
KF Gradient DeepLIFT (Ours)	85.4 ± 2.0	81.3 ± 2.0	73.8 ± 1.1

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078 ¹Git Re-Basin reduces to OTFusion when solving the OT problem exactly with uniform importance scores. In
1079 practice, OTFusion uses preactivations (Singh and Jaggi, 2020), while Git Re-Basin uses activations (Ainsworth
et al., 2022); we follow these defaults. Empirically, both yield the same fused model when using preactivations.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 13: **Test accuracy** comparison when fusing VGG11 networks on CIFAR-10 for **Sharded** splits. Fusion was performed using 400 data points sampled from the dataset seen by the first model. The same fusion data was used for all algorithms.

Method	2-WAY SPLIT	4-WAY SPLIT	6-WAY SPLIT	
Individual Models	47.8 \pm 0.5, 46.7 \pm 0.8	29.1 \pm 0.1, 19.7 \pm 0.2, 19.1 \pm 0.6	19.9 \pm 0.0, 10.0 \pm 0.0, 10.0 \pm 0.0	19.8 \pm 0.1, 10.0 \pm 0.0, 10.0 \pm 0.2, 15.2 \pm 3.7
Ensemble	80.2 \pm 2.3	58.3 \pm 1.7	41.3 \pm 1.7	
Vanilla Averaging	12.1 \pm 2.2	10.0 \pm 0.0	10.0 \pm 0.0	
KD	58.5 \pm 1.9	42.8 \pm 2.3	33.4 \pm 1.4	
LP	49.8 \pm 1.2	32.0 \pm 1.7	22.0 \pm 1.0	
OTF Uniform	28.3 \pm 5.9	11.5 \pm 2.1	10.4 \pm 0.8	
OTF Conductance	24.9 \pm 6.3	10.8 \pm 1.4	10.0 \pm 0.0	
OTF DeepLIFT	24.9 \pm 5.0	10.0 \pm 0.0	10.0 \pm 0.0	
Git Re-Basin Uniform	30.6 \pm 4.2	N/A	N/A	
Git Re-Basin Conductance	58.2 \pm 3.9	N/A	N/A	
Git Re-Basin DeepLIFT	62.3 \pm 5.3	N/A	N/A	
HF Linear Uniform (Ours)	60.5 \pm 2.9	N/A	N/A	
HF Linear Conductance (Ours)	76.7 \pm 4.2	N/A	N/A	
HF Linear DeepLIFT (Ours)	76.6 \pm 4.0	N/A	N/A	
KF Linear Uniform (Ours)	77.1 \pm 1.3	52.4 \pm 2.7	35.5 \pm 3.2	
KF Linear Conductance (Ours)	76.4 \pm 4.4	44.0 \pm 2.7	29.9 \pm 2.2	
KF Linear DeepLIFT (Ours)	76.4 \pm 4.1	44.4 \pm 2.2	30.4 \pm 2.0	
HF Gradient Uniform (Ours)	59.0 \pm 3.1	N/A	N/A	
HF Gradient Conductance (Ours)	70.8 \pm 2.5	N/A	N/A	
HF Gradient DeepLIFT (Ours)	70.3 \pm 1.5	N/A	N/A	
KF Gradient Uniform (Ours)	69.7 \pm 1.9	45.9 \pm 2.6	34.7 \pm 3.4	
KF Gradient Conductance (Ours)	71.3 \pm 1.1	44.1 \pm 2.7	34.7 \pm 1.8	
KF Gradient DeepLIFT (Ours)	71.5 \pm 1.9	44.8 \pm 3.2	34.2 \pm 1.0	

Table 14: **Test accuracy** comparison when fusing VGG11 networks pairwise on CIFAR-10 trained on the **full dataset**. Results are averaged across 3 seeds. Fusion was performed using 400 samples from the full dataset. The same fusion data was used for all algorithms. Fine-tuning was performed for 200 epochs with a learning rate of $3 \cdot 10^{-4}$ and a cosine annealing with warm restarts scheduler with a minimum learning rate of 10^{-6} .

Method	ZERO-SHOT	FINETUNED
Individual Models	93.2 \pm 0.1 93.0 \pm 0.1	93.2 \pm 0.1 93.2 \pm 0.1
Vanilla Averaging	9.3 \pm 1.4	—
Ensemble	94.1 \pm 0.1	94.2 \pm 0.1
OTF Uniform	72.6 \pm 5.2	93.2 \pm 0.2
OTF Conductance	46.7 \pm 11.1	93.5 \pm 0.3
OTF DeepLIFT	49.8 \pm 4.0	93.4 \pm 0.1
Git Re-Basin Uniform	77.1 \pm 3.6	93.5 \pm 0.1
Git Re-Basin Conductance	61.8 \pm 2.8	93.3 \pm 0.1
Git Re-Basin DeepLIFT	65.3 \pm 5.9	93.6 \pm 0.0
HF Linear Uniform (Ours)	87.0 \pm 0.2	93.3 \pm 0.1
HF Linear Conductance (Ours)	74.3 \pm 1.8	93.3 \pm 0.1
HF Linear DeepLIFT (Ours)	73.4 \pm 1.7	93.4 \pm 0.2
KF Linear Uniform (Ours)	74.2 \pm 0.8	93.2 \pm 0.2
KF Linear Conductance (Ours)	74.9 \pm 1.4	93.4 \pm 0.1
KF Linear DeepLIFT (Ours)	75.3 \pm 0.5	93.4 \pm 0.2
HF Gradient Uniform (Ours)	88.1 \pm 0.2	93.4 \pm 0.1
HF Gradient Conductance (Ours)	87.9 \pm 0.2	93.4 \pm 0.1
HF Gradient DeepLIFT (Ours)	88.1 \pm 0.1	93.3 \pm 0.3
KF Gradient Uniform (Ours)	85.0 \pm 0.2	93.0 \pm 0.2
KF Gradient Conductance (Ours)	85.9 \pm 0.7	93.2 \pm 0.1
KF Gradient DeepLIFT (Ours)	86.2 \pm 1.3	93.0 \pm 0.1

1134 **G.2 ViTs on CIFAR-100 and Tiny-ImageNet**

1135 **G.2.1 CIFAR-100**

1138 Table 15: **Test accuracy** comparison when fusing ViT networks on CIFAR-100 for **Sharded** splits. Fusion was
 1139 performed using 5000 data points sampled from the dataset seen by the first model. For “activations-based”
 1140 (i.e. acts) Transformer OTFusion, following (Imfeld et al., 2023), we used a subset of 200 samples. The
 1141 weights-based variant (wts) does not use data. This table is complimentary to Table 2.

Method	2-WAY SPLIT	4-WAY SPLIT	6-WAY SPLIT	
Individual Models	38.6 ± 0.5 37.2 ± 0.6	20.4 ± 0.2 19.5 ± 0.2	19.9 ± 0.1 19.2 ± 0.3	14.3 ± 0.2 , 13.7 ± 0.3 13.2 ± 0.2
Ensemble	63.7 ± 0.4	53.4 ± 1.8	45.4 ± 2.0	
Vanilla Averaging	2.2 ± 0.6	1.4 ± 0.2	1.1 ± 0.3	
KD	50.4 ± 1.4	40.3 ± 0.9	34.3 ± 1.1	
LP	51.8 ± 0.6	37.1 ± 0.8	28.0 ± 0.8	
Transformer OTFusion acts Uniform	2.2 ± 0.4	1.2 ± 0.1	1.0 ± 0.0	
Transformer OTFusion acts Conductance	2.3 ± 0.4	1.0 ± 0.1	1.0 ± 0.0	
Transformer OTFusion acts DeepLIFT	2.3 ± 0.6	1.0 ± 0.0	1.0 ± 0.0	
Transformer OTFusion wts Uniform	3.9 ± 0.8	1.5 ± 0.4	1.2 ± 0.3	
Transformer OTFusion wts Conductance	4.4 ± 1.3	1.3 ± 0.3	1.2 ± 0.3	
Transformer OTFusion wts DeepLIFT	4.1 ± 1.3	1.2 ± 0.2	1.1 ± 0.3	
HF Gradient Uniform (Ours)	49.9 ± 1.1	N/A	N/A	
HF Gradient Conductance (Ours)	55.5 ± 1.3	N/A	N/A	
HF Gradient DeepLIFT (Ours)	55.5 ± 0.8	N/A	N/A	
KF Gradient Uniform (Ours)	54.1 ± 1.1	43.1 ± 0.7	36.9 ± 0.8	
KF Gradient Conductance (Ours)	54.7 ± 1.2	43.5 ± 0.5	37.4 ± 0.8	
KF Gradient DeepLIFT (Ours)	54.6 ± 1.2	43.4 ± 0.5	37.3 ± 1.1	

1163 Table 16: **Test accuracy** comparison when fusing ViT networks on CIFAR-100 trained on the **full dataset**.
 1164 Results for 2-way fusion are averaged over 3 seeds, while results for 4-way fusion are shown only for a single
 1165 seed. Fusion was performed with 5000 samples from the full dataset, except for activations-based Transformer
 1166 OTFusion, where a subset of 200 samples was chosen, following (Imfeld et al., 2023). Fine-tuning was
 1167 performed for 200 epochs with a learning rate of $3 \cdot 10^{-4}$ and a cosine annealing with warm restarts scheduler
 1168 with a minimum learning rate of 10^{-6} . During fine-tuning, the base models failed to improve. This table is
 1169 complimentary to Table 4.

Method	2-WAY ZERO-SHOT	2-WAY FINETUNED	4-WAY ZERO-SHOT	4-WAY FINETUNED
Individual Models	73.9 ± 0.2 73.4 ± 0.3	73.5 ± 0.3 73.0 ± 0.3	74.1 , 73.6 , 73.0 , 72.9	73.7 , 73.2 , 72.7 , 72.7
Ensemble	75.7 ± 0.3	75.5 ± 0.4	76.6	76.4
Vanilla Averaging	1.9 ± 0.2	—	1.1	—
Transf. OTF acts Uniform	2.7 ± 0.2	73.8 ± 0.4	1.0	63.7
Transf. OTF acts Conductance	2.4 ± 0.8	73.7 ± 0.4	1.0	63.0
Transf. OTF acts DeepLIFT	2.3 ± 0.9	74.0 ± 0.4	1.0	62.6
Transf. OTF wts Uniform	4.3 ± 0.2	74.0 ± 0.4	1.0	72.6
Transf. OTF wts Conductance	3.2 ± 1.1	73.8 ± 0.3	1.0	68.6
Transf. OTF wts DeepLIFT	3.2 ± 1.5	73.9 ± 0.3	1.0	68.8
HF Gradient Uniform (Ours)	57.0 ± 1.1	74.8 ± 0.4	N/A	N/A
HF Gradient Conductance (Ours)	58.6 ± 1.1	75.0 ± 0.5	N/A	N/A
HF Gradient DeepLIFT (Ours)	58.6 ± 1.3	75.2 ± 0.6	N/A	N/A
KF Gradient Uniform (Ours)	63.0 ± 1.2	75.2 ± 0.5	57.5	75.2
KF Gradient Conductance (Ours)	62.8 ± 0.9	75.4 ± 0.1	57.5	75.2
KF Gradient DeepLIFT (Ours)	62.4 ± 1.9	75.2 ± 0.1	57.1	75.6

1184
1185
1186
1187

1188 G.2.2 TINY-IMAGENET
1189

1190 Table 17: **Test accuracy** comparison when fusing ViT networks on Tiny-ImageNet for **Sharded 2-way splits**.
1191 Fusion was performed using 5000 data points sampled from the dataset seen by the first model. For “activations-
1192 based” (i.e. acts) Transformer OTFusion, following (Imfeld et al., 2023), we used a subset of 200 samples. The
1193 weights-based variant (wts) does not use data.

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Method	2-WAY SPLIT
Individual Model 0	28.3 ± 0.2
Individual Model 1	27.5 ± 0.5
Ensemble	43.9 ± 0.4
Vanilla Averaging	0.9 ± 0.4
KD	31.0 ± 0.6
LP	33.2 ± 0.6
Transformer OTFusion acts Uniform	2.6 ± 1.2
Transformer OTFusion acts Conductance	2.7 ± 1.5
Transformer OTFusion acts DeepLIFT	2.6 ± 1.4
Transformer OTFusion wts Uniform	4.0 ± 0.9
Transformer OTFusion wts Conductance	2.3 ± 0.8
Transformer OTFusion wts DeepLIFT	1.9 ± 0.5
HF Gradient Uniform (Ours)	30.1 ± 2.1
HF Gradient Conductance (Ours)	32.9 ± 1.6
HF Gradient DeepLIFT (Ours)	33.5 ± 1.3
KF Gradient Uniform (Ours)	32.3 ± 1.6
KF Gradient Conductance (Ours)	32.1 ± 1.4
KF Gradient DeepLIFT (Ours)	32.6 ± 2.0

1217 Table 18: **Test accuracy** comparison when fusing ViT networks on Tiny-ImageNet trained on the **full dataset**.
1218 Results for 2-way fusion are averaged over 2 seeds. Fusion was performed with 5000 samples from the
1219 full dataset, except for activations-based Transformer OTFusion, where a subset of 200 samples was chosen,
1220 following (Imfeld et al., 2023). Fine-tuning was performed for 200 epochs with a learning rate of 10^{-5}
1221 and a cosine annealing with warm restarts scheduler with a minimum learning rate of 10^{-6} . This table is
1222 complimentary to Table 5.

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Method	2-WAY ZERO-SHOT	2-WAY FINETUNED
Individual Models	52.7 ± 0.2 51.7 ± 0.0	53.2 ± 0.5 51.7 ± 0.0
Ensemble	54.9 ± 0.4	55.7 ± 0.4
Vanilla Averaging	1.1 ± 0.1	—
Transf. OTF acts Uniform	1.4 ± 0.1	53.6 ± 0.1
Transf. OTF acts Conductance	1.4 ± 0.3	53.7 ± 0.2
Transf. OTF acts DeepLIFT	1.2 ± 0.3	53.7 ± 0.2
Transf. OTF wts Uniform	3.1 ± 0.2	53.8 ± 0.1
Transf. OTF wts Conductance	2.2 ± 0.8	53.6 ± 0.1
Transf. OTF wts DeepLIFT	2.1 ± 0.9	53.7 ± 0.3
HF Gradient Uniform (Ours)	40.5 ± 1.5	53.0 ± 0.3
HF Gradient Conductance (Ours)	42.1 ± 4.9	53.6 ± 0.2
HF Gradient DeepLIFT (Ours)	41.9 ± 3.2	53.7 ± 0.1
KF Gradient Uniform (Ours)	42.5 ± 0.5	53.9 ± 0.1
KF Gradient Conductance (Ours)	42.6 ± 0.8	54.2 ± 0.4
KF Gradient DeepLIFT (Ours)	42.9 ± 0.3	53.8 ± 0.8

1242 **H EXISTING ASSETS AND LICENSES**
1243

1244 We make use of code from the following sources:
1245

1246 1. OTFusion [Singh and Jaggi \(2020\)](#), Open Source, <https://github.com/sidak/otfusion>.
1247 2. ViT-CIFAR [omihub777](#), MIT License, <https://github.com/omihub777/ViT-CIFAR/blob/main/LICENSE>.
1248 3. Captum [Kokhlikyan et al. \(2020\)](#), BSD 3-Clause License,
1249 <https://github.com/pytorch/captum/blob/master/LICENSE>.
1250

1252 **I BROADER IMPACT**
1253

1254 This work concerns foundational research on model fusion algorithms. We do not foresee any negative
1255 applications beyond those broadly applicable to model fusion algorithms.
1256

1257 As with other fusion methods, negative societal impacts may follow from using biased or harmful
1258 models as a base model to perform fusion as the fused model may contain the biases / harmful
1259 potential of the base model.
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295