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Abstract

We propose Mirror Descent Optimal Transport (MDOT), a novel method for solving discrete
optimal transport (OT) problems with high precision, by unifying temperature annealing in
entropic-regularized OT (EOT) with mirror descent techniques. In this framework, temper-
ature annealing produces a sequence of EOT dual problems, whose solution gradually gets
closer to the solution of the original OT problem. We solve each problem efficiently using a
GPU-parallel nonlinear conjugate gradients algorithm (PNCG) that outperforms traditional
Sinkhorn iterations under weak regularization. Moreover, our investigation also reveals that
the theoretical convergence rate of Sinkhorn iterations can exceed existing non-asymptotic
bounds when its stopping criterion is tuned in a manner analogous to MDOT.

Our comprehensive ablation studies of MDOT-PNCG affirm its robustness across a wide
range of algorithmic parameters. Benchmarking on 24 problem sets of size n = 4096 in a
GPU environment demonstrate that our method attains high-precision, feasible solutions
significantly faster than a representative set of existing OT solvers—including accelerated
gradient methods and advanced Sinkhorn variants—in both wall-clock time and number of
operations. Empirical convergence rates range between O(n2ε−1/4) and O(n2ε−1), where
ε is the optimality gap. For problem sizes up to n = 16 384, the empirical runtime scales
as Õ(n2) for moderate precision and as Õ(n5/2) at worst for high precision. These findings
establish MDOT-PNCG as a compelling alternative to current OT solvers, particularly in
challenging weak-regularization regimes.

1 INTRODUCTION
When a statistical distance is required for an event space equipped with a metric, optimal transport (OT)
distances, such as the Wasserstein metric, provide an intuitive means to account for the inherent structure
of the metric space. Consequently, fast, scalable, and accurate computation of OT distances is a major
problem encountered in various scientific fields. Example application areas include point cloud registration
(Shen et al., 2021), color transfer (Pitie et al., 2005; Ferradans et al., 2014; Rabin et al., 2014), shape matching
(Feydy et al., 2017), texture mixing (Ferradans et al., 2013; Bonneel et al., 2015) and meshing (Digne et al.,
2014) in computer vision and graphics, quantum mechanics (Léonard, 2012), astronomy (Frisch et al., 2002;
Levy et al., 2021) and quantum chemistry (Bokanowski & Grébert, 1996) in physics, and generative modeling
(Gulrajani et al., 2017; Genevay et al., 2018), reinforcement learning (Ferns et al., 2004; Dadashi et al., 2021),
and neural architecture search (Kandasamy et al., 2018) in machine learning. Exact solvers for the discrete
OT problem encounter significant computational hurdles in high dimensions, with theoretical complexity
Õ(n5/2) and practical complexity Õ(n3) (Lee & Sidford, 2014; Pele & Werman, 2009).

Entropic regularization, as pioneered by Cuturi (2013), has mitigated challenges in scalability by regularizing
the classical problem, thereby allowing approximate solutions in Õ(n2) time via the Sinkhorn-Knopp (SK)
matrix scaling algorithm. This advancement, together with GPU parallelization, has yielded substantial
speed improvements, making it several orders of magnitude faster than conventional CPU-based solvers
(e.g., linear programming) in high dimensions (Peyré et al., 2019). However, these methods necessitate a
delicate balance between regularization strength and convergence speed, a trade-off that can compromise
the precision of the solution. Despite significant progress in recent years, many state-of-the-art solvers still
struggle to strike a better trade-off than aggressively tuned Sinkhorn iterations in practice (Dvurechensky
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et al., 2018; Jambulapati et al., 2019; Lin et al., 2019). Although they offer superior theoretical guarantees,
their practical performance is often less compelling, particularly in terms of speed and scalability. Existing
algorithms either suffer from high computational complexity or do not take advantage of modern hardware
capabilities, such as GPU parallelization (Tang et al., 2024). To understand and combat these challenges,
we make the following contributions:

1. We empirically show that in a GPU environment the decades-old Sinkhorn-Knopp algorithm for OT
can still outperform many theoretically grounded recent OT algorithms in practice, especially when
tuned with a seemingly unconventional stopping criterion formula proposed here (Fig. 4).

2. We introduce mirror descent optimal transport (MDOT), a method which generalizes temperature
annealing in entropic OT (EOT) (Schmitzer, 2019; Feydy, 2020), and connects temperature annealing
to mirror descent (Alg. 1).

3. We introduce an instantiation of MDOT that empirically improves speed and robustness to temper-
ature (regularization strength) decay rate compared to ε-scaling of Schmitzer (2019) (Fig. 1).

4. We show that MDOT can compute high precision, feasible solutions and its performance can be
boosted by adopting a specialized GPU-parallel conjugate gradients (CG) algorithm developed here
(Alg. 2); this method is highly competitive in practice, as we show empirically (Figs. 4, 5, 8-17).

The remainder of this paper is organized as follows. In the next section, we introduce our notation and the
necessary background, followed by related work in Sec. 3. In Sec. 4.1-4.2, we introduce the MDOT framework
and establish its connection to temperature annealing strategies, and make some practical recommendations.
In Sec. 4.3, we introduce the non-linear CG algorithm to be used within MDOT as an alternative to SK. In
Sec. 5, we benchmark various algorithms on upsampled MNIST (n = 4096) under L1 and squared L2 costs,
and a color transfer problem in terms of wall-clock time, and further study the operation count dependence
of the proposed algorithm on problem size n. Lastly, we present concluding remarks in Sec. 6.

2 Background
Here, we present our notation, the basics of EOT, and the necessary background on mirror descent and CG.

Notation and Definitions. We consider discrete OT, where the event space is finite with n parti-
cles and ∆n ⊂ Rn

≥0 is the (n−1)-simplex. The row sum of an n× n matrix P is r(P ) := P1 and the
column sum is c(P ) := P ⊤1. Given marginals r, c ∈ ∆n, the transportation polytope is written as
U(r, c) = {P ∈ Rn×n

≥0 | r(P ) = r, c(P ) = c}. Division, exp and log over vectors or matrices are element-
wise. Vectors in Rn are column vectors, and (x, y) denotes the concatenation of x and y. Vector and
Frobenius inner products alike are given by ⟨·, ·⟩. An n× n diagonal matrix with x ∈ Rn along the diagonal
is written as D(x), and the vector formed by the diagonal entries of a matrix Q is diag(Q). LogSumExp re-
ductions over the rows and columns of X ∈ Rn×n are given by LSEr(X) := log

(
exp{X}1

)
and LSEc(X) :=

log
(

exp{X⊤}1
)
. The Shannon entropy of r ∈ ∆n is denoted H(r) = −⟨r, log r⟩ with the convention that

0 · log 0 = 0. Under the same convention, the KL divergence DKL(r|r′) = ⟨r, log(r/r′)⟩ + ⟨r′ − r, 1⟩ for
r, r′ ∈ Rn

≥0 given r absolutely continuous with respect to r′.

2.1 Optimal Transport
Given a cost matrix C ∈ [0, 1]n×n, where Cij is the transportation cost between the ith and jth particles, we
study the EOT problem given by:

minimize
P ∈ U(r, c)

⟨P, C⟩ − 1
γ

H(P ), (1)

where γ > 0. Here, the regularization weight γ−1 is called temperature. The Lagrangian of (1) is strictly
convex in P , which renders the solution P ∗(γ) unique. P ∗(γ) converges to a solution of the unregularized
OT problem as γ →∞ and admits the following form (Cuturi, 2013):

Pij(u, v; γ) = exp{ui + vj − γCij}, (2)
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where u, v ∈ Rn. An optimal pair (u, v) minimizes the following convex dual problem (Lin et al., 2019):

minimize
u, v ∈ Rn

g(u, v; γ) = 1⊤P (u, v; γ)1− ⟨u, r⟩ − ⟨v, c⟩, (3)

where ∇ug = r(P )−r and ∇vg = c(P )−c. Given some initial (u, v), solving (3) amounts to a KL projection
of P (u, v; γ) onto U(r, c). That is, P (u∗, v∗; γ) = arg minP ∈U(r,c) DKL

(
P |P (u, v; γ)

)
; see derivation in

Appx. A.1.

The Sinkhorn-Knopp (SK) algorithm (see Alg. 4 in Appx. A) can be used to solve (3) and carry out
an approximate projection of P (u, v; γ) onto U(r, c). Sinkhorn updates guarantee convergence to dual-
optimal variables as the number of iterations k →∞ (Sinkhorn & Knopp, 1967; Sinkhorn, 1967; Franklin &
Lorenz, 1989; Knight, 2008). Dvurechensky et al. (2018) showed that SK can be used to compute a solution
P ∈ U(r, c) satisfying ⟨P − P ∗, C⟩ ≤ ε with complexity Õ(n2/ε2), where P ∗ is an optimal solution of the
unregularized OT problem. In particular, one first minimizes the dual objective until the L1-norm of its
gradient is below a prescribed threshold, then applies the rounding algorithm of Altschuler et al. (2017) on
the infeasible plan given by (2) to obtain P ∈ U(r, c) with an upper bound on the primal cost increase.

2.2 Mirror Descent
Rather than the entropic regularized problem (1), we will approximately solve a sequence of relative-entropy
regularized problems as in mirror descent, where each problem has the form (Nemirovski & Yudin, 1983):

P (t+1) = arg min
P ∈F∩D

{⟨∇P f(P (t)), P ⟩+ 1
∆(t) Dh(P |P (t))}. (4)

Here f : D → R is the objective, F is a given feasible set, ∆(t)>0 is the step size and the Bregman divergence

Dh(Q|P ) = h(Q)− h(P )− ⟨∇h(P ), Q− P ⟩ (5)

given a strictly convex and differentiable function h : D → R called the mirror map. Equivalent to (4) is:

P̂ (t+1) = ∇h−1
(
∇h(P (t))−∆(t)∇f(P (t))

)
(6)

P (t+1) = arg min
P ∈F∩D

Dh(P |P̂ (t+1)). (7)

Here, (6) takes a gradient step in the dual space and maps the new point back onto the primal space via
∇h−1, while (7) defines a Bregman projection of P̂ (t+1) onto the feasible set F in the primal space.

Throughout, we only use the negative entropy mirror map h(P ) = −H(P ) in domain D = Rn×n
≥0 , which

yields Dh(Q|P ) = DKL(Q|P ). Di Marino & Gerolin (2020) provide a treatment of more general divergence-
regularized optimal transport problems (using mirror maps besides negative Shannon entropy), albeit running
only a single step of (4) with P (0) ∈ Rn×n

≥0 set to the independence coupling rc⊤, F = U(r, c) and objective
f(P ) = ⟨P, C⟩; we consider multiple steps.

3 Related Work
Acceleration of approximate OT solvers has been a focus of machine learning research since the seminal work
of Cuturi (2013). For instance, Altschuler et al. (2017) proposed the Greenkhorn algorithm, which greedily
selects individual rows or columns to scale at a given step and requires fewer row/column updates than SK
to converge, but performs poorly due to low GPU utilization unless n is extremely large. Dvurechensky
et al. (2018) proposed an adaptive primal-dual accelerated gradient descent (APDAGD) algorithm. Lin
et al. (2019) later proposed adaptive primal-dual accelerated mirror descent (APDAMD) with theoretical
guarantees. Lin et al. (2019) showed APDAMD to outperform APDAGD in terms of number of iterations,
but not SK. Further, these tests only covered a high relative error regime (>50%); we investigate a broader
scope down to 10−9 error in Section 5. Modest gains over SK in terms of number of iterations in the same
regime were later obtained by Lin et al. (2022) via an accelerated alternating minimization (AAM) algorithm
similar to that of Guminov et al. (2021). Notably, APDAMD applies mirror descent to the dual (3) of the
EOT problem, while we apply it to the primal of the unregularized OT problem, i.e., problem (1) as γ →∞.
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Application of mirror descent to the primal of the OT problem has also been considered. Yang & Toh (2022)
discuss an algorithm similar to MDOT, although their approach differs from ours in a number of ways. They
require a rounding procedure onto U(r, c) after each mirror descent step, and verify complicated stopping
criteria for all Bregman projections; we did not find these to be necessary experimentally or mathematically.
Recently, Ballu & Berthet (2023) introduced Mirror Sinkhorn (MSK), which also takes gradient steps in the
dual space as in (6), but instead of approximately projecting onto the feasible set U(r, c) as in (7) (as we
do here), they alternately project onto U(·, c) and U(r, ·) via Sinkhorn updates, satisfying only half of the
equality constraints at a time. Our experiments in Sec. 5 suggest that this approach is efficient only in the
low precision regime. Furthermore, MSK requires maintaining a running average of the transport plan at
each iteration, precluding a straightforward O(n) memory implementation. One could, in principle, store
all past dual variables and recompute each plan to form the average at each step, but this would require
O(nT ) memory and O(n2T ) recomputation time at iteration T , which is typically impractical. In contrast,
all algorithms presented here admit O(n) memory implementations, assuming individual cost matrix entries
can be computed on-the-fly in O(1) time. Xie et al. (2020) previously proposed an algorithm (IPOT) similar
to MSK with a fixed, even number of Sinkhorn updates (usually 2) following temperature updates; we
omitted additional empirical comparison to IPOT given its similarity with MSK. Alg. 3.5 of Feydy (2020)
is also similar to these algorithms in spirit and is discussed thoroughly in Sec. 5.2. As discussed in detail in
Sec. 4.1, well-known ε-scaling strategies are also closely related (Kosowsky & Yuille, 1994; Schmitzer, 2019).

An alternative line of acceleration research focuses on multi-scale strategies, which employ clustering or grid-
based methods to solve a series of coarse-to-fine OT problems and are sometimes combined with ε-scaling
(Schmitzer, 2016; 2019; Feydy, 2020). These are known to provide performance gains when the marginals
are defined over well-clustered particles or in low-dimensional event spaces (Peyré et al., 2019). Lastly, in
a similar spirit to our use of non-linear CG here, curvature-aware convex optimization techniques such as
L-BFGS have also been considered for OT, e.g., Mérigot (2011); Blondel et al. (2018); however, scalability,
precision and better performance than SK on GPUs has not been demonstrated simultaneously to our
knowledge. Tang et al. (2024) recently adopted Newton’s method with Hessian sparsification to efficiently
use second order information, but their key sparsification strategy is maximally utilized only on CPUs.

4 A Mirror Descent Framework for Optimal Transport
4.1 Temperature Annealing as Mirror Descent
The OT objective ⟨P, C⟩ has a constant gradient ∇P ⟨P, C⟩ = C. Given step sizes ∆(t)

γ > 0 at time t ≥ 0,
mirror descent iterates with the negative entropy mirror map h(P ) = −H(P ) are thus given by (cf. 4):

P (t+1) = arg min
P ∈U(r,c)

{
⟨P, C⟩+ 1

∆(t)
γ

DKL(P |P (t))
}

. (8)

A useful convention here is to take P (0) = rc⊤, the maximum entropy transport plan in U(r, c). However,
as the second item of the next proposition, which describes the properties of P (t) computed via (8), suggests,
this initialization is not strictly necessary and any rank-1 matrix with positive entries may be selected.

Proposition 4.1. Suppose P (0) ∈ Rn×n
>0 is rank-1 and P (t) are computed via (8) for t ≥ 1. Let γ(0) = 0 and

γ(t+1) = γ(t) + ∆(t)
γ , which together imply γ(t+1) =

∑t
t′=0 ∆(t′)

γ . Given P ∗ ∈ U(r, c), a minimizer of ⟨P, C⟩,
and Hmin(r, c) := min

(
H(r), H(c)

)
, the following are true:

1. P (t) = P ∗(γ(t)), where P ∗(γ(t)) is the unique solution of (1) for γ = γ(t).

2. Let P̃ (t) ∈ Rn×n
>0 be any matrix of the form P̃

(t)
ij = exp{ui + vj − γ(t)Cij} for some u, v ∈ Rn. In

addition to (8), we also have P (t+1) = arg minP ∈U(r,c)

{
⟨P, C⟩+ 1

∆(t)
γ

DKL(P |P̃ (t))
}

.

3. ⟨P (t) − P ∗, C⟩ ≤ Hmin(r, c)
/

γ(t).

4. ⟨P (t)−P (t+1), C⟩ = 1
∆(t)

γ

(
DKL

(
P (t)|P (t+1)) + DKL

(
P (t+1)|P (t)))

for all t ≥ 0.
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The equivalence of P (t) to the solution of (1) can be seen as follows. By setting the partial derivatives (with
respect to P ) of the Lagrangian of (8) to zero, we find that P (t+1) must have the form

P
(t+1)
ij = P

(t)
ij exp{ui + vj −∆(t)

γ Cij}. (9)

These relations allow us to unroll the recursion to get P (t+1) as follows (using the fact that P (0) is rank-1):

P
(t+1)
ij = exp{u∗

i (γ(t)) + ui + v∗
j (γ(t)) + vj − γ(t+1)Cij}. (10)

Thus, P in (9-10) has the same form as (2). That is, the mirror descent procedure in (8) mapped to the
dual space can be understood as a temperature annealing strategy (called ε-scaling by Schmitzer (2019)), in
which dual-optimal u, v are found at each value of the decaying temperature 1/γ(t). Notice here that due to
strong duality, optimal u∗(γ(t)), v∗(γ(t)) are minimizers of the EOT dual objective g(u, v; γ(t)) in (3). The
sequence of dual problems correspond to a sequence of Bregman projections like (7) in the primal space.

The second item in Prop. 4.1 shows that in fact, intermediate dual problems need not be solved exactly to
optimality for this procedure to ultimately arrive at P ∗(γ). In other words, we can use approximations for
u∗(γ(t)) and v∗(γ(t)) in (10) and solve for the update vectors u and v to approximate P (t+1). Notice that
an initialization (u(0), v(0)) here corresponds to P̃

(0)
ij = exp{u(0)

i + v
(0)
j } with γ(0) = 0, which is why any

rank-1 P (0) ∈ Rn×n
>0 suffices. These observations will form the basis of MDOT (Alg. 1).

The third item in Prop. 4.1 bounds the excess cost of the primal objective at a given step t ≥ 1 in terms of the
entropies of the marginals r, c. It should be compared to the more standard upper bound γ−1 log n used in
prior work (Altschuler et al., 2017; Dvurechensky et al., 2018; Lin et al., 2019).1 Note Hmin(r, c) ≤ log n for
r, c ∈ ∆n and therefore this is a tighter bound. The final item in Prop. 4.1 shows the one-step improvement
in the linear objective with equality; this is in contrast to the more standard analysis of mirror descent
procedures where the improvement is bounded above with an inequality. See Appx. A.2 for proofs.

4.2 A mirror descent method for optimal transport: MDOT

Algorithm 1 MDOT(C, r, c, γi, γf , p ≥ 1, q > 1)
1: t← 1, done← False, γ ← γi ∧ γf
2: while not done do
3: done← γ == γf
4: εd ← Hmin(r, c)/γp

5: (r̃, c̃)← (1− εd
4 ) · (r, c) + εd

4n · 12n

6: if t == 1 then z(t) ← (log r̃, log c̃)
7: z(t) ← BregmanProject(z(t), γ, C, r̃, c̃, εd/2)
8: γ ← qγ ∧ γf
9: z(t+1) ←WarmStart(z(t); · · · )

10: t← t + 1
11: end while
12: (u, v)← z(t−1), P ← exp{u1⊤

n + 1nv⊤− γfC}
13: Output P ← Round(P, r, c)

Here we introduce the generic MDOT framework shown
in Alg. 1 which will be exemplified throughout this sec-
tion. Note that a routine in L9 is defined using “· · · ”
as a placeholder for additional parameters that may be
required by specific implementations. MDOT accepts
as input problem parameters C, r, c, as well as user-
provided positive scalars γi, γf , p, q. Here, γi will be the
initial step size ∆(0)

γ = γ(1) of the (inexact) mirror de-
scent procedure mimicking (8), while γf will be the final
(inverse) temperature. As seen in L8, near the end of
each outer loop iteration, MDOT decays the temper-
ature under a schedule γ(t+1) = qγ(t) until γ(t) = γf
similarly to Schmitzer (2019); Feydy (2020). Observe
that due to L1 and L3, if called with γi ≥ γf , MDOT
terminates after a single iteration of the while loop.

At each value of the temperature, in L4 we first select a tolerance εd = Hmin(r, c)/γp for dual objective
gradient norm ∥∇g∥1, where p ≥ 1. This is in contrast to the more standard usage εd ∝ (log n)/γ in
prior work. In Appx. C, we show the advantage of using Hmin(r, c) over log n empirically (for p = 1),
demonstrating substantial speedups of order log n/Hmin(r, c) for Sinkhorn iteration. The case of p > 1 is
discussed in detail in Sec. 4.2.2. In L5 of Alg. 1, we “smooth” the target marginals r and c by mixing
in uniform distributions, similarly to prior work by Dvurechensky et al. (2018) and Lin et al. (2019). This
step helps provide convergence guarantees for certain choices of minimization algorithms for problem (3)
used in L7. Since the mixing weight used in L5 is proportional to γ−p, i.e., it gradually decreases with the
temperature, this scheme smoothes marginals more aggressively in earlier iterations of MDOT. In Appx. D,
we empirically show the performance benefits of this variable smoothing.

1This log n term appears in the time complexity of various algorithms, but is often hidden in Õ-notation.
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In L6, the dual variables are initialized as u = log r̃ and v = log c̃, which corresponds to initializing
P̃ (0) = r̃c̃⊤ ∈ U(r̃, c̃), i.e., the maximum entropy plan in U(r̃, c̃), which is rank-1 as required by Prop. 4.1.
Next in L7, given the initial guess for the dual variables z = (u, v) the objective in (3) is minimized under
the smoothed marginals r̃, c̃ until ∥r(P )− r̃∥1 + ∥c(P )− c̃∥1 ≤ εd/2. This step is called BregmanProject as
it carries out (inexact) Bregman projection of the plan P (u(t), v(t); γ) onto U(r̃, c̃) as in (7). The algorithm
to be used for minimizing the dual objective is left unspecified here for generality; for example, Sinkhorn
iteration can be used. In 4.3, we introduce a new algorithm (PNCG) for this purpose. L8 sets γ(t+1) = qγ(t),
which corresponds to a default mirror descent step size ∆γ = (q−1)γ. In L9 we use the current near-optimal
dual variable z(t) (and perhaps additional z(t−k)’s for k ≥ 1) to produce a warm-starting guess for the op-
timal dual variables at the next temperature value. Finally in L13, after an approximation P of P ∗(γf) has
been obtained, P is rounded onto U(r, c) via Alg. 2 of Altschuler et al. (2017); see Alg. 3 in Appx. A.

Remark 4.2. If γf = 5Hmin
(
r, c

)
/2ε, the output P ∈ U(r, c) of Alg. 1 satisfies ⟨P − P ∗, C⟩ ≤ ε + Õ(ε2).

Note that the above guarantee can be obtained considering only the very last iteration of MDOT. That is,
the specific assignments in L4-5 in prior iterations, choices p, q and implementations of L7 and L9 play a
significant role on the overall runtime of the algorithm (as we shall see), but not the guaranteed precision of
the final solution returned as per Remark 4.2 above.

In the remainder of this section, we will:

1. Develop a warm-starting routine and compare it to a prior approach in temperature annealing.
2. Investigate the implications of various choices for the p and q parameters via ablation experiments.
3. Show the potential advantage of choosing p > 1 theoretically (Prop. 4.4).
4. Investigate a new BregmanProject routine based on non-linear CG for problem (3) in L7 of MDOT.

4.2.1 Warm-starting Bregman Projections
Assume that at each prior temperature value, we obtained the dual-optimal u∗(γ(t)), v∗(γ(t)) without error.
How should u, v be initialized for γ(t+1)? A simple, memory-efficient approach is to consider a Taylor
expansion around recent γ to predict u∗(γ(t+1)), v∗(γ(t+1)). Letting z = (u, v) to reduce clutter:

z∗(γ(t+1)) = z∗(γ(t)) + ∂z∗

∂γ
(γ(t))(γ(t+1) − γ(t)) + . . . (11)

As we cannot compute ∂z∗/∂γ analytically, we use a numerical approximation (backward finite differencing):

∂z∗

∂γ
(γ(t)) ≈ z∗(γ(t))− z∗(γ(t−1))

γ(t) − γ(t−1) . (12)

Keeping the first two terms in (11) and rearranging:

z∗(γ(t+1)) ≈ z∗(γ(t)) + ∆(t)
γ

∆(t−1)
γ

(
z∗(γ(t))− z∗(γ(t−1))

)
. (13)

In contrast, the ε-scaling approach of Schmitzer (2019) and Feydy (2020) maintains reparamatrized dual
variables z̃ := z/γ as the temperature decays. Rewriting (2) in terms of z̃ reveals that ε-scaling amounts to
predicting z∗(γ(t+1)) ≈ (γ(t+1)/γ(t))z∗(γ(t)), i.e., simply scaling the dual variables instead of modelling the
trajectory of z∗ with a Taylor approximation, which we argue is a better approach.

Note that in practice, optimal z∗ are unknown; only approximate minimizers are available. Since the Taylor
approximation and backward finite differencing in (12-13) already incur some amount of error, care should
be taken not to over-optimize (3) in an effort to better approximate z∗ in intermediate steps t.

In Fig. 1, we present an empirical study with varying step sizes ∆γ = (q − 1)γ by ablating q, where the
advantage of (13) over the ε-scaling warm-start of Schmitzer (2019) is demonstrated. On the left, MDOT
warm-start initializes each dual problem closer to the solution than the ε-scaling approach. The quality of
initial guesses increase markedly with decreasing temperature (left); at high temperatures dual problems
are initialized very close to the solution with the gradient norm just a small multiple of the target εd. In
contrast, the ε-scaling warm-start stays relatively fixed. For the same decay rate q, this translates to about
10× gains in convergence speed or precision (mid-right). The performance gap widens for slow temperature
decay (lower q), as MDOT benefits from reduced Taylor approximation errors given smaller step sizes ∆γ .
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Figure 1: Comparison of the MDOT warm-start proposed in Sec. 4.2.1 to ε-scaling. Curves show the median
over 36 upsampled-MNIST problems (n=4096) under L1 (top) and L2

2 (bottom) distance costs (see Sec. 5
for details). In all experiments, p = 1.5 and γi = 24. For the L1 cost, γf = 216 and for the L2

2 cost, γf = 219.

4.2.2 Bregman Projection Stopping Criteria
Our assignment εd ∝ γ−p for some p ≥ 1 in L4 of MDOT departs from the conventional wisdom of choosing
εd ∝ γ−1 (Altschuler et al., 2017; Dvurechensky et al., 2018; Lin et al., 2019). Here, we aim to provide
justification for this departure. Consider first the fixed-temperature problem (3) for simplicity. building on
the results of Cominetti & Martín (1994), Weed (2018) showed in his Prop. 4 and Thm. 5 that there is both
a uniform bound ⟨P ∗(γ) − P ∗, C⟩ ≤ log n/γ (slow rate), and a fast asymptotic rate O(exp(−γK)) which
takes over for large enough γ, where the constant K > 0 is problem-dependent. Taking these as a starting
point, the following remark generalizes the third statement of Prop. 4.1.

Remark 4.3. For any constant p ∈ [1,∞) and OT problem given by (r, c, C), there exists a γ0 > 0 such that
for any γ ≥ γ0, we have ⟨P ∗(γ)− P ∗, C⟩ ≤ Hmin(r, c)/γp.

That is, below some temperature γ−1
0 , a stronger bound Hmin(r, c)γ−p for some p > 1 replaces the uniform

bound Hmin(r, c)γ−1. Thus, the SK algorithm (see Alg. 4 in the Appx.) can be tuned (via the p parameter
in Alg. 1) to enjoy a rate substantially better than O(n2 log n/ε2) given by Dvurechensky et al. (2018).

Proposition 4.4. Sinkhorn iteration, as instantiated by calling Alg. 1 (L7) with p ∈ [1,∞) and a sufficiently
large γi = γf = p

√
5Hmin

(
r, c

)
/2ε, returns a plan P ∈ U(r, c) satisfying ⟨P −P ∗, C⟩ ≤ ε + Õ(ε2) in at most

O
(

n2Hmin
(
r, c

)1/p
/

ε
p+1

p

)
arithmetic operations. (14)

This result is consistent with the empirical findings of Jambulapati et al. (2019), who noted “The [tuned]
Sinkhorn algorithm converged at rates much faster than the predicted ε−2 rate on all experiments, outper-
forming all other methods, which we believe merits further investigation.” We believe Prop. 4.4 sheds some
light on this phenomenon, and further present an ablation of p in Fig. 2 for SK and MDOT algorithms.

For the SK algorithm, Fig. 2 (left) verifies the insight derived from Prop. 4.4. The choice p = 1 is better
at low precision, but the trend gradually shifts in favor of higher p with (sufficiently) higher γf . That is,
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Figure 2: Ablation of stopping criterion parameter p (Sec. 4.2.2) for the SK algorithm (left) and MDOT
with Sinkhorn and PNCG as Bregman projectors (right). The SK algorithm (left) is called by running
MDOT (Alg. 1) with γi = γf , where higher precision is achieved by increasing γf . Results show the median
over 36 random problems from the upsampled MNIST dataset (n = 4096) with the L1 cost.

for sufficiently low temperature γ−1, it is advantageous to reduce the gradient norm error tolerance, from
Hmin/γ to Hmin/γp for p > 1. In contrast, MDOT is more robust to the p parameter in the high precision
regime (right). Moreover, the use of PNCG projections (Alg. 2) for Bregman projections in MDOT (L7 of
Alg. 1) provides a speedup of 2− 3× over Sinkhorn projections. PNCG is introduced and discussed next.

4.3 Preconditioned Non-linear Conjugate Gradients for Bregman Projections

Algorithm 2 PNCGProject(z, γ, C, r, c, εd)
1: (u, v)← z, p← 02n, β ← 0
2: log r(P )← u + LSEr(1nv⊤ − γC)
3: log c(P )← v + LSEc(u1⊤

n − γC)
4: ∇g ←

(
r(P )− r, c(P )− c

)
5: while ∥∇g∥1 > εd do
6: s←

(
log r − log r(P ), log c− log c(P )

)
7: p← s + βp ▷ See (20)
8: if ⟨p,∇g⟩ ≥ 0 then
9: p← s ▷ Reset CG if not a descent dir.

10: end if
11: α, log r(P ), log c(P )← LineSearch(p, u, v)
12: (u, v)← (u, v) + αp
13: ∇g ←

(
r(P )− r, c(P )− c

)
14: end while
15: Output z ← (u, v)

SK converges more slowly at low temperatures
(Kosowsky & Yuille, 1994).2 For a faster alterna-
tive, we develop Alg. 2 based on non-linear CG
(NCG) methods (Fletcher & Reeves, 1964; Nocedal
& Wright, 2006), which we now briefly review.
Given an objective g, NCG takes descent directions
p(0) = −∇g(z(0)) and p(k) ← −∇g(k) + β(k)p(k−1),
and iterates z(k+1) ← z(k) + α(k)p(k), where α(k) is
the step size. Optimal α(k) has a closed-form solution
for quadratics, but for general non-linear objectives,
line search is necessary to find suitable step sizes
α(k). Various formulas for computing β(k) exist; for
quadratic objectives, they are equivalent and guarantee
convergence in at most n′ iterations, where n′ ≤ n is
the number of distinct eigenvalues of ∇2g. Further,
the objective decreases faster if eigenvalues are tightly
clustered (Stiefel, 1958; Kaniel, 1966; Nocedal &
Wright, 2006). For example, the Hestenes-Stiefel formula sets (Nocedal & Wright, 2006):

β(k) = ⟨∇g(k) −∇g(k−1),∇g(k)⟩
⟨∇g(k) −∇g(k−1), p(k−1)⟩

. (15)

A practical way to further improve the convergence rate of CG methods is via preconditioning. By making
a change of variables z = M−1/2ẑ given some symmetric positive-definite matrix M , one reduces the

2In Appx. A we provide a proposition that applies Thm. 4 of Franklin & Lorenz (1989) on matrix scaling to the MD setting,
which also characterizes this behavior, albeit asymptotically.
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condition number of the problem or tightens the clustering of eigenvalues for improved convergence (ideally,
M−1 ≈ ∇2g−1). We refer the reader to Hager & Zhang (2006b) for further details on CG methods.

For the EOT problem, recall the 1st and 2nd order derivatives of the dual objective g in (3) at z = (u, v):

∇g =
(
r(P )−r, c(P )−c

)
, ∇2g =

(
D(r(P )) P

P ⊤ D(c(P ))

)
. (16)

A typical choice of a preconditioner M , known to be effective for diagonally-dominant matrices (Golub &
Van Loan, 2013), is the diagonal approximation of the Hessian, which yields the following descent direction:

s̃ = −D
(
diag(∇2g)

)−1∇g =
(

r − r(P )
r(P ) ,

c− c(P )
c(P )

)
=

(
r

r(P ) ,
c

c(P )

)
− 12n. (17)

Observe, however, that if at any point in the optimization r(P ) or c(P ) has infinitesimal entries, numerical
instabilities may occur when evaluating s̃. We propose using the Sinkhorn direction, s, in place of s̃:

s =
(

log r

r(P ) , log c

c(P )

)
. (18)

The Sinkhorn direction can be understood as the result of an alternative diagonal preconditioner, namely
M = D (−∇g/s), since s = −M−1∇g. Furthermore, for any sub-optimal (u, v), we have

−
〈
s,∇g

〉
= DKL

(
r(P )|r

)
+ DKL

(
r|r(P )

)
+ DKL

(
c(P )|c

)
+ DKL

(
c|c(P )

)
> 0,

and therefore s is also a descent direction. Empirically we find that this Sinkhorn preconditioner results in
improved numerical stability. Finally, note that near the solution (for r ≈ r(P ) and c ≈ c(P )) we have

s =
(

log r

r(P ) , log c

c(P )

)
≈

(
r

r(P ) ,
c

c(P )

)
− 12n = s̃, (19)

where we have used log x ≈ x−1 for x ≈ 1. Therefore, near the solution, the Sinkhorn direction s approaches
the direction s̃ obtained using the common preconditioner from the diagonal of the Hessian.

Plugging the preconditioner M = D (−∇g/s) into the preconditioned Hestenes-Stiefel formula (Al-Baali &
Fletcher, 1996), we take β(k) in L7 of Alg. 2:

β(k) = ⟨∇g(k) −∇g(k−1),−s(k)⟩
⟨∇g(k) −∇g(k−1), p(k−1)⟩

, (20)

where s(k) is the Sinkhorn direction as in (18), β(1) = 0, p(0) = 02n. Observe that −s(k) above simply
replaces a ∇g(k) term in the numerator of (15).

We defer details of the line search in L11 of Alg. 2 to Appx. B, but note that by design, the proposed line
search only carries out the same form of LogSumExp reductions as the log-domain stabilized SK algorithm
(Alg. 4 in the Appx A), so that its output is reused when evaluating the Sinkhorn direction s in (18)
at the next iteration (see L11 of Alg. 2). This also allows for a fair comparison of the two algorithms’
performance. Indeed, Fig. 3 plots the runtime of the two algorithms in terms of LogSumExp evaluations;
PNCG outshines SK empirically, especially at lower temperatures (higher γ). Further, to see whether the
added numerical stability of the newly proposed Sinkhorn preconditioner comes at a performance trade-off,
we implement an alternative stabilization scheme for the diagonal Hessian preconditioner. In particular, for
this alternative we use s only if the vector (r/r(P ), c/c(P )) has any entries outside the range [0.01, 100] and
otherwise assign s̃ given by (17) in L6 of Alg. 2. The results shown in Fig. 3 suggest that, on the contrary,
the Sinkhorn preconditioner also provides a performance benefit over the diagonal Hessian in addition to
numerical stability.

5 EXPERIMENTS
In this section, we first detail the MNIST experimental setup in Figs. 1-3. Then, we describe an additional
color transfer task we use for benchmarking. Next, performance evaluations in terms of precision vs. wall-
clock time are discussed given the results over 4 sets of problems shown in Fig. 4. In Appx. F, we add 20
more problem sets from the DOTmark benchmark of Schrieber et al. (2017) showing similar results both in
terms of wall-clock time and operation counts. Lastly, the dependence on problem size n is investigated in
Fig. 5. All experiments were performed on an NVIDIA GeForce RTX 2080 Ti GPU with 64-bit precision.
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Figure 3: Comparison of BregmanProject algorithms (used in L7 of Alg. 1) over the upsampled MNIST
dataset with L1 (left) and L2

2 (right) costs. Algorithms evaluated are the SK algorithm, the newly proposed
PNCG given in Alg. 2, and a variant (see text). In all 36 problems, n = 4096, p = 1.5 and q = 2. Each
curve shows the convergence behavior, at one specific temperature 1/γ, in terms of the median number of
LogSumExp reductions (x-axis) until gradient norm (y-axis) reaches below target dual gradient norm εd(γ).

5.1 Experimental Setup
Upsampled MNIST. In line with prior work (Cuturi, 2013; Altschuler et al., 2017; Lin et al., 2022;
Tang et al., 2024), we first consider the MNIST dataset, where each pixel represents an event and each
image a probability distribution. Unlike prior work, we form higher dimensional problems by upsampling
the original 28× 28 images to be 64× 64 (with bilinear interpolation) so that n = 4096. Cost matrices C are
constructed by measuring the L1 or squared L2 distances between pixel locations on a 2D grid, and dividing
all entries by the maximum distance value so that all entries of C lie in [0, 1]. The probability of each pixel
is proportional to its intensity value; marginals r, c are obtained by flattening the pixel intensity matrices
and subsequent L1 normalization. To select m random problems, we sample 2m images from the dataset
without replacement, and compute the OT distances between the first and second halves of the samples.
Our selection of n = 4096 is driven by the objective of conducting a large number of tests per configuration
to ensure statistically significant results, rather than by any inherent limitations of the algorithm. In fact,
our MDOT code supports the use of on-the-fly CUDA kernels to evaluate entries of the cost matrix on the
go using the PyKeOps package (Charlier et al., 2021). In this case, MDOT leaves an O(n) memory footprint
(with both Sinkhorn and PNCG projections) rather than O(n2); it has been verified to scale to much larger
problems (n ≈ 100, 000).

Color Transfer. For the color transfer problem, each image is viewed as a point cloud in RGB space
(pixel locations carry no importance). Cost matrices C are constructed by measuring the L1 or L2

2 distances
between pixels in RGB space and dividing all entries by the maximum distance. Marginals r, c are taken
to be uniform over ∆n. With the help of GPT-4, we prompt DALL-E 2 to generate 20 vibrant and colorful
images with intricate details or patterns. To match the dimensionality of the upsampled MNIST problem
set, we downsample the original 1024 × 1024 images to 64 × 64 so that n = 4096. Once again, cost matrix
entries are normalized to lie in [0, 1].

5.2 Wall-clock Time Comparisons With Prior Work
In Fig. 4, we present wall-clock time benchmarking of MDOT (with both Sinkhorn and PNCG projections)
against existing algorithms on the upsampled MNIST and color transfer problems. All benchmark methods
were implemented in PyTorch and run on the GPU. For MDOT, we use q=21/3, p = 1.5 and γi=24 in all
experiments. For the closely related Mirror Sinkhorn (MSK) algorithm of Ballu & Berthet (2023) the variable
step size schedule prescribed by their Thm. 3.3 is used in our implementation. For Alg. 3.5 of Feydy (2020),
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Figure 4: Wall-clock time vs. error benchmarking over the upsampled MNIST (top) and color transfer
(bottom) problems using L1 (left) and L2

2 (right) distances as cost functions. Each marker shows the median
time to converge (over 18 random problems) for each algorithm at a given hyperparameter setting, which
controls the precision level, and the error ⟨P −P ∗, C⟩ after rounding the output of the algorithm onto U(r, c)
– with the exception of Alg. 3.5 of Feydy (2020); see text.

we decay temperature at a rate q = 0.7−1, which interpolates their fast (q=0.5−1) and safe (q=0.9−1) settings.
For AAM (Guminov et al., 2021), Mirror Prox Sherman Optimized (Jambulapati et al., 2019) and APDAGD
(Dvurechensky et al., 2018), each implementation closely follows an open-source NumPy implementation.
Our PyTorch implementation was verified to produce identical results to the publicly available NumPy code.
We additionally attempted comparison with APDAMD (Lin et al., 2019) and PDASMD (Luo et al., 2023),
but observed extremely long convergence times for n = 4096 and omitted the results. For further details on
the implementation of benchmark methods, we refer the reader to Appx. E.

While MDOT optimizes (3) to satisfy a convergence criterion following each temperature decrease, Alg. 3.5
of Feydy (2020) performs a single (symmetrized) Sinkhorn update instead, i.e., it does not minimize the
sequence of dual objectives sufficiently despite taking increasingly large gradient steps in the dual space (cf.
6-7). This causes an accumulation of projection errors and results in the algorithm hitting a precision wall.
Their debiasing option for estimating the OT distance via Sinkhorn divergences (introduced by Ramdas et al.
(2017)) fares slightly better and is used here to comprise a stronger baseline, albeit this approach does not
find a member of U(r, c), which may be a strict requirement in some applications. MSK also runs a single
row/column scaling update after a temperature decrease, but takes increasingly smaller steps and maintains
a running average of transport plans to ensure convergence. It performs well at low precision, but shrinking
step sizes slow it down, so that it exhibits O(n2ε−2) convergence behavior. Sinkhorn iteration (log-domain
stabilized, see Alg. 4 in the Appx. A) benefits substantially from setting p = 1.5 rather than p = 1 at
sufficiently low temperatures for L1 costs (see also Sec. 4.2.2). APDAGD underperforms SK with p = 1
and AAM performs similarly to it. Mirror Prox Sherman Optimized of Jambulapati et al. (2019) overtakes
SK (p = 1.0) in one case only (top-left) in the high precision range. Meanwhile, MDOT-Sinkhorn enjoys
faster convergence than the more competitive SK (p = 1.5) owing to warm-started temperature annealing,
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transfer (bottom) problems using L1 (left) and L2
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Each marker displays the median over 20 problems and shaded areas show 75% confidence intervals.

especially in the high precision range (near the solution). MDOT-PNCG is the quickest to converge in all
cases. The performance gap with its close second, MDOT-Sinkhorn, grows with higher precision.

5.3 Empirical Dependence on Problem Size of MDOT-PNCG
Our last set of experiments investigates the practical dependence of MDOT-PNCG on the problem size n.
Over the same 4 problem sets as Fig. 4, we change n from 36 to 16, 384 by up- or down-sampling images.
The n values are selected to be approximately equally spaced on a logarithmic scale. In Fig. 5, we plot
the behavior of MDOT-PNCG for a range of final temperature values γf ∈ {26, 29, 212, 215}. At medium
precision (green and blue), we find that the algorithm behaves no worse than O(n2) in practice as implied
by the flatness of the curves. As seen visually, at higher precision (roughly 5-decimals) with γf ∈ {212, 215},
the proposed GPU-parallel algorithm behaves roughly as O(n5/2) at worst and even better for some of the
problems in practice. These should be compared to the Õ(n5/2) theoretical and Õ(n3) practical complexity
of CPU-based exact solvers (Pele & Werman, 2009; Lee & Sidford, 2014).

6 CONCLUSION
In this work, we first presented a general procedure, MDOT, for computing OT distances with high precision
and described its relation to a well-known temperature annealing strategy (ε-scaling). MDOT employs a
novel warm-starting of the sequence of EOT dual problems encountered in temperature annealing, which was
empirically shown to be highly effective compared to existing approaches. In addition, a specialized non-linear
CG algorithm was developed as an alternative to Sinkhorn iteration and was shown to be more effective at
low temperatures (under weak regularization). Over 24 different problem sets, the combined MDOT-PNCG
algorithm outperforms aggressively tuned Sinkhorn iteration and many other recent baselines in terms of
convergence of the primal suboptimality gap measured in wall-clock time. The algorithm was also shown to
behave well with respect to the problem size. Interesting directions for future research include the theoretical
convergence behavior of PNCG and bounds on the gradient norm of our warm-started initialization, as well as
the development of faster Bregman projection algorithms and warm-starting methods. Adaptive temperature
decay and dual problem stopping criteria are also of interest.
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A Proofs
A.1 Derivation of dual objective minimization as Bregman projection
For the interested reader, we provide here a short sketch of the relationship

P (u∗, v∗; γ) = arg min
P ∈U(r,c)

DKL
(
P |P (u′, v′; γ)

)
, (21)

given any initial u′, v′ ∈ Rn and u∗, v∗ ∈ arg minu,v∈Rn g(u, v; γ). First, given the definition in Sec. 2 of
DKL for un-normalized P ∈ Rn×n

>0 , observe that

DKL
(
P |P (u′, v′; γ)

)
= ⟨P, log P − log P (u′, v′; γ)⟩+ ⟨P (u′, v′; γ)− P, 1⟩

= ⟨P, log P − u′1⊤ − 1v′⊤ + γC⟩+ ⟨P (u′, v′; γ)− P, 1⟩
= ⟨P,−1 + γC + log P ⟩ − ⟨u′, r(P )⟩ − ⟨v′, c(P )⟩+ const.

We shall apply the method of Lagrange multipliers. Given the equality constraints r(P ) = r and c(P ) = c,
we write the Lagrangian:

L(P, u, v) = ⟨P,−1 + γC + log P ⟩ − ⟨u′, r(P )⟩ − ⟨v′, c(P )⟩ − ⟨u, r(P )− r⟩ − ⟨v, c(P )− c⟩.

Taking the partial derivative with respect to Pij yields

∂L
∂Pij

= γCij + log Pij − u′
i − ui − v′

j − vj .

Setting the partial to zero, we obtain:

P ∗
ij = exp(ui + u′

i + vj + v′
j − γCij).

Plugging the above into the Lagrangian reveals that −L(P ∗, u, v) = g(u, v), i.e., minimizing the KL diver-
gence DKL

(
P |P (u′, v′; γ)

)
over the feasible set U(r, c) can be cast as minimizing the dual (3).

A.2 Proof of Proposition 4.1
First, we write the following helper lemma.

Lemma A.1 (A mirror descent bound for linear objectives). Given a linear objective function f(P ) = ⟨P, C⟩,
an initial point P (0) ∈ F , an optimal point P ∗ and any T > 0, a sequence [P (t)]t∈N obtained via (4) satisfies:

f(P (T ))− f(P ∗) ≤ Dh(P ∗|P (0))∑T −1
t=0 ∆(t)

. (22)

Proof. Recall the definition of P̂ (t+1) from mirror descent iterates in (6):

P̂ (t+1) = ∇h−1
(
∇h(P (t))−∆(t)∇f(P (t))

)
For any P ∈ D,

f(P (t+1))− f(P ) = ⟨∇f(P (t)), P (t+1) − P ⟩ (since f is linear)

= 1
∆(t) ⟨∇h(P (t))−∇h(P̂ t+1), P (t+1) − P ⟩ (due to (6))

≤ 1
∆(t) ⟨∇h(P (t))−∇h(P (t+1)), P (t+1) − P ⟩ (by Lemma 4.1 in Bubeck (2015))

= 1
∆(t)

(
Dh(P |P (t))−Dh(P |P (t+1))−Dh(P (t+1)|P (t))

)
(by Eq. 4.1 in Bubeck (2015))

≤ 1
∆(t)

(
Dh(P |P (t))−Dh(P |P (t+1))

)
, (since Dh ≥ 0)
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which implies

∆(t)(f(P (t+1))− f(P )
)
≤ Dh(P |P (t))−Dh(P |P (t+1)).

The above inequality proves monotonic improvement in each step t once we take P = P (t). Letting P = P ∗,
taking a telescopic sum and dividing both sides by

∑T −1
s=0 ∆(s) we arrive at:∑T −1

t=0 ∆(t)(f(P (t+1))− f(P ∗)
)∑T −1

s=0 ∆(s)
≤ Dh(P ∗|P (0))−Dh(P ∗|P (T ))∑T −1

s=0 ∆(s)

≤ Dh(P ∗|P (0))∑T −1
s=0 ∆(s)

,

which implies (22) since improvement is monotonic and the first term on the LHS is a convex combination
of objective values. ■

Proposition 4.1. Suppose P (0) ∈ Rn×n
>0 is rank-1 and P (t) are computed via (8) for t ≥ 1. Let γ(0) = 0 and

γ(t+1) = γ(t) + ∆(t)
γ , which together imply γ(t+1) =

∑t
t′=0 ∆(t′)

γ . Given P ∗ ∈ U(r, c), a minimizer of ⟨P, C⟩,
and Hmin(r, c) := min

(
H(r), H(c)

)
, the following are true:

1. P (t) = P ∗(γ(t)), where P ∗(γ(t)) is the unique solution of (1) for γ = γ(t).

2. Let P̃ (t) ∈ Rn×n
>0 be any matrix of the form P̃

(t)
ij = exp{ui + vj − γ(t)Cij} for some u, v ∈ Rn. In

addition to (8), we also have P (t+1) = arg minP ∈U(r,c)

{
⟨P, C⟩+ 1

∆(t)
γ

DKL(P |P̃ (t))
}

.

3. ⟨P (t) − P ∗, C⟩ ≤ Hmin(r, c)
/

γ(t).

4. ⟨P (t)−P (t+1), C⟩ = 1
∆(t)

γ

(
DKL

(
P (t)|P (t+1)) + DKL

(
P (t+1)|P (t)))

for all t ≥ 0.

Proof. We prove each of the four statements in order.

Proof of the 1st statement. Here, we provide the derivations for (9-10). Consider a mirror descent
problem given by (8):

P (t+1) = arg min
P ∈U(r,c)

{
⟨P, C⟩+ 1

∆(t)
γ

DKL(P |P (t))
}

.

To derive the dual problem, we write the (scaled) Lagrangian with dual variables u, v ∈ Rn corresponding
to equality constraints r(P ) = r and c(P ) = c:

L(P, u, v) = ∆(t)
γ ⟨P, C⟩+ Dh(P |P (t)) + ⟨u, r − r(P )⟩+ ⟨v, c− c(P )⟩

= ∆(t)
γ ⟨P, C⟩+ ⟨P, log P ⟩ − ⟨P, log P (t)⟩ − ⟨P − P (t), 1⟩+ ⟨u, r − r(P )⟩+ ⟨v, c− c(P )⟩.

Taking the first derivative with respect to the ijth entry Pij of P :

∂L
∂Pij

= ∆(t)
γ Cij + 1 + log Pij − log P

(t)
ij − 1− ui − vj

= ∆(t)
γ Cij + log Pij − log P

(t)
ij − ui − vj

Setting the partial to 0:

∂L
∂Pij

= 0 ⇐⇒ log Pij = log P
(t)
ij + ui + vj −∆(t)

γ Cij

⇐⇒ Pij = P
(t)
ij exp{ui + vj −∆(t)

γ Cij},
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which is equivalent to (9). Under this reparametrization, we have:

P = P (t) ⊙ exp{u1⊤ + 1v⊤ −∆(t)
γ C}

log P = log P (t) + u1⊤ + 1v⊤ −∆(t)
γ C,

where ⊙ denotes the Hadamard product.

Now, plugging the above into the Lagrangian and maximizing with respect to the dual variables (and
dropping constant terms), we obtain the dual problem (cf. 3):

minimize
u, v ∈ Rn

∑
ij

P (u, v)ij − ⟨u, r⟩ − ⟨v, c⟩. (23)

Let û∗(γ(t)) denote the dual-optimal variables at step t and u∗(γ(t)) =
∑t

t=0 û∗(γ(t)) (similarly for v).
Unrolling the recursion backwards in time:

P (t) = P (0) ⊙ exp
{

u∗(γ(t))1⊤ + 1v∗(γ(t))⊤ − γ(t)C
}

,

where we used the definition γ(t) =
∑t

t′=0 ∆(t′)
γ . Since P (0) ∈ Rn

>0 is rank-1 by construction, we can write it
in the form P (0) = exp{u01⊤ + 1v⊤

0 } given some vectors u0, v0 ∈ Rn. That is,

P (t) = exp
{

(u∗(γ(t)) + u0)1⊤ + 1(v∗(γ(t)) + v0)⊤ − γ(t)C
}

.

Then, we observe that problem (23) is identical to the dual EOT problem (3) up to a simple reparametrization
of the dual variables. The result follows since strong duality holds (Slater’s condition is satisfied given the
feasible plan rc⊤) and the objective is strictly convex, i.e., the solution P ∗(γ) of the primal is unique.

Proof of the 2nd statement. Observe that at no point in the above proof of the 1st statement did we
use the fact that P (t) ∈ U(r, c), nor did we use the optimality of û∗(γ(t)), v̂∗(γ(t)) ∈ Rn. As long as each
member of the sequence can be written in the form P̃ (t) = P̃ (t−1)⊙ exp{û(γ(t))1⊤ +1(v̂(γ(t)))⊤−γ(t)C} for
some dual variables at û, v̂ ∈ Rn, the recursion can be unrolled in the same way. That is, the dual problem
remains identical in structure (as does its solution), but only the initial values of the dual variables change.

Proof of the 3rd statement. By Lemma A.1, for P (0) ∈ U(r, c) we have

⟨P (t) − P ∗, C⟩ ≤ Dh(P ∗|P (0))∑t−1
t′=0 ∆(t′)

γ

.

Given γ = γ(t) =
∑t−1

t′=0 ∆(t′)
γ , it remains to show that Dh(P ∗|P (0)) ≤ Hmin(r, c).

Recall that for the negative entropy h(x) =
∑

i xi log xi, we have Dh(x|y) = DKL(x|y). Suppose we take
P (0) = rc⊤:

DKL(P ∗|P (0)) =
∑

ij

P ∗
ij(log P ∗

ij − log ricj)

=
∑

ij

P ∗
ij(log P ∗

ij − log ri − log cj)

= −H(P ∗)−
∑

i

log ri

∑
j

P ∗
ij −

∑
j

log cj

∑
i

P ∗
ij

= −H(P ∗)−
∑

i

ri log ri −
∑

j

cj log cj (since P ∗ ∈ U(r, c))

= H(r) + H(c)−H(P ∗)
= max(H(r), H(c)) + min(H(r), H(c))−H(P ∗)
≤ min(H(r), H(c)).
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The last inequality holds since H(P ) ≥ H(r) and H(P ) ≥ H(c) for any P ∈ U(r, c) (Cover, 1999), which
together imply H(P ) ≥ max(H(r), H(c)).

Given the 2nd statement, P (t) remains the same if P (0) was any non-negative rank-1 matrix, which can be
written as exp{u01⊤ + 1v⊤

0 }. Hence, the result holds for all such initializations, and not just P (0) = rc⊤.

Proof of the 4th statement. First, note that given h(P ) =
∑

ij Pij log Pij , we have ∇h(P )ij = 1 + log Pij

and ∇h−1(Q)ij = exp(Qij − 1). Then, given the definition of P̂ (t+1) from mirror descent iterates in (6):

P̂ (t+1) = ∇h−1
(
∇h(P (t))−∆(t)

γ ∇f(P (t))
)

= exp(log P (t) −∆(t)
γ C)

= exp
(
u∗(γ(t))1⊤ + 1v∗(γ(t))⊤ − (γ(t) + ∆(t)

γ )C
)
. (given u∗(γ(t)), v∗(γ(t)) ∈ arg min g(u, v; γ(t)))

= exp
(
u∗(γ(t))1⊤ + 1v∗(γ(t))⊤ − γ(t+1)C

)
. (24)

In the third equality, we used the known closed-form expression (2) to expand P (t).

In the special case that the feasible set F = U(r, c),

⟨P (t), C⟩ − ⟨P (t+1), C⟩
= ⟨∇f(P (t)), P (t) − P (t+1)⟩ (since f = ⟨P, C⟩ is linear)

= 1
∆(t)

γ

⟨∇h(P (t))−∇h(P̂ t+1), P (t) − P (t+1)⟩ (due to (6))

= 1
∆(t)

γ

⟨∇h(P (t))−∇h(P (t+1)), P (t) − P (t+1)⟩ (see below)

= 1
∆(t)

γ

(
Dh(P (t)|P (t+1)) + Dh(P (t+1)|P (t))

)
(by definition of the Bregman divergence as in (5))

= 1
∆(t)

γ

(
DKL(P (t)|P (t+1)) + DKL(P (t+1)|P (t))

)
.

To see why the third equality holds, observe that P t+1
ij = P̂ t+1

ij exp{û∗
i + v̂∗

j } for some optimal update vectors
û∗, v̂∗ ∈ Rn given the closed-forms (2) and (24). Then, for any P, P ′ ∈ U(r, c),

⟨∇h(P (t+1)), P − P ′⟩

=
∑

ij

(1 + log P̂ t+1
ij + û∗

i + v̂∗
j )(Pij − P ′

ij)

= ⟨∇h(P̂ t+1), P − P ′⟩+
∑

i

û∗
i

∑
j

(Pij − P ′
ij) +

∑
j

v̂∗
j

∑
i

(Pij − P ′
ij)

= ⟨∇h(P̂ t+1), P − P ′⟩+ ⟨û∗, r − r⟩+ ⟨v̂∗, c− c⟩ (since P, P ′ ∈ U(r, c) by construction)
= ⟨∇h(P̂ t+1), P − P ′⟩. ■

Algorithm 3 Round(P, r, c) (Altschuler et al., 2017)
1: X ←D(x) with x = r/r(P ) ∧ 1
2: F ← XP
3: Y ←D(y) with y = c/c(F ) ∧ 1
4: F ′ ← FY
5: errr ← r − r(F ′), errc ← c− c(F ′)
6: Output G← F ′ + errrerr⊤

c / ∥errr∥1

Algorithm 4 Sinkhorn(z, γ, C, r, c, εd)
1: (u, v)← z
2: log r(P )← u + LSEr(1nv⊤ − γC)
3: while ∥∇g∥1 = ∥r − r(P )∥1 > εd do
4: u← u + log r − log r(P )
5: v ← log c− LSEc(u1⊤

n − γC)
6: log r(P )← u + LSEr(1nv⊤ − γC)
7: end while
8: Output z ← (u, v)

20



Under review as submission to TMLR

A.3 Proof of Proposition 4.4
In the remainder of this section, the L1 norm ∥P∥1 of a matrix denotes the L1 norm of the vectorized form
of the matrix, and not the L1 matrix norm.

First we state the following lemma, which is a simple combination of Lemmas 6 and 8 by Weed (2018).

Lemma A.2 (Entropy increase from mixing (Weed, 2018)). Let r1, r2, r3 ∈ ∆n and r2 = (1 − ε)r1 + εr3,
where ε ∈ (0, 1]. We have,

H(r2) ≤ (1− ε)H(r1) + εH(r3) + ε(1− log ε) < H(r1) + ε(1 + log n

ε
). (25)

Next, we provide a simple proof for Remark 4.3

Remark 4.3. For any constant p ∈ [1,∞) and OT problem given by (r, c, C), there exists a γ0 > 0 such that
for any γ ≥ γ0, we have ⟨P ∗(γ)− P ∗, C⟩ ≤ Hmin(r, c)/γp.

Proof. Recall from Thm. 5 of Weed (2018) that the quantity ⟨P ∗(γ)−P ∗, C⟩ decays at an exponential rate
with increasing γ for sufficiently large γ. Since the exponential function exp{−γK} decays more quickly
than γ−p for any constant K > 0 and finite p, we conclude that there exists some constant γ0 > 0 such that

⟨P ∗(γ)− P ∗, C⟩ ≤ Hmin(r, c)/γp (26)

for all optimal transport problems given by r, c, C provided that γ ≥ γ0. ■

Proposition 4.4. Sinkhorn iteration, as instantiated by calling Alg. 1 (L7) with p ∈ [1,∞) and a sufficiently
large γi = γf = p

√
5Hmin

(
r, c

)
/2ε, returns a plan P ∈ U(r, c) satisfying ⟨P −P ∗, C⟩ ≤ ε + Õ(ε2) in at most

O
(

n2Hmin
(
r, c

)1/p
/

ε
p+1

p

)
arithmetic operations. (14)

Proof. Let B ∈ U(r′, c′) be the transport plan P (u, v) = exp{u1⊤ + 1v⊤ − γfC} after the termination of
the main loop (before rounding in L13) of Alg. 1, which takes place after a single outer loop iteration in
this setting, since γi = γf by construction. Since B is the output of Sinkhorn iteration (Alg. 4), it lies on
the simplex, as do its row and column marginals (specifically, we have c′ = c(B) = c̃ ∈ ∆n from Alg. 4).
Furthermore, B is the unique optimizer of the EOT problem over U(r′, c′) due to Prop. 4.1 and the fact
that it has the form Bij = exp{ui + vj − γfCij}:

B = arg min
P ∈U(r′,c′)

⟨P, C⟩ − 1
γf

H(P ). (27)

Sinkhorn iteration used in L7 returns a solution u, v such that

∥r̃ − r(B)∥1 + ∥c̃− c(B)∥1 ≤ ε′/2
=⇒ ∥∇g∥1 = ∥r − r(B)∥1 + ∥c− c(B)∥1

≤ ∥r − r̃∥1 + ∥r̃ − r(B)∥1 + ∥c− c̃∥1 + ∥c̃− c(B)∥1 (triangle inequality)
≤ ∥r − r̃∥1 + ∥c− c̃∥1 + ε′/2.

Then, given mixing weights ε′/4 in L5 of Alg. 1:

∥∇g∥1 ≤ ε′. (28)

Now, we make the following definitions:

• B̂ = Round(B, r, c), the rounding of B onto U(r, c) via Alg. 2 of Altschuler et al. (2017), returned
by our Alg. 1,

• B∗ ∈ arg minP ∈U(r′,c′)⟨P, C⟩, an optimal plan in the feasible set U(r′, c′),
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• P ∗ ∈ arg minP ∈U(r,c)⟨P, C⟩, an optimal plan in the feasible set U(r, c).

We have that,

⟨B̂ − P ∗, C⟩ = ⟨B̂ −B, C⟩+ ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩

= ⟨B̂ −B, C − 1
21n×n⟩+ ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩ (since B̂, B ∈ ∆n×n.)

≤ 1
2

∥∥∥B̂ −B
∥∥∥

1
+ ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩ (Hölder’s ineq., given Cij ∈ [0, 1] ∀i, j ∈ [n])

≤ ∥∇g∥1 + ⟨B −B∗, C⟩+ ⟨B∗ − P ∗, C⟩ (by Lemma 7 of Altschuler et al. (2017))

≤ ∥∇g∥1 + Hmin(r′, c′)
γp

f
+ ⟨B∗ − P ∗, C⟩ (given (26-27), assuming γf sufficiently large)

≤ ε′ + Hmin(r′, c′)
γp

f
+ ⟨B̃ − P ∗, C⟩, (29)

where B̃ is any transport plan in U(r′, c′). We take B̃ to be the “shadow” of P ∗ in the sense of Definition
3.1 of Eckstein & Nutz (2022), under the discrete metric. In other words, letting

B̃ = arg min
P ∈U(r′,c′)

∥P − P ∗∥1 ,

and noting that the 1-Wasserstein distance under the discrete metric is equal to the total variation (TV)
distance, the first equation in Lemma 3.2 of Eckstein & Nutz (2022) yields the equality (∗) below:

1
2

∥∥∥B̃ − P ∗
∥∥∥

1
= TV(B, P ∗) (∗)= TV(r, r′) + TV(c, c′) = 1

2 ∥∇g∥1 . (30)

Then, continuing from (29),

⟨B̂ − P ∗, C⟩ ≤ ε′ + Hmin(r′, c′)
γp

f
+ ⟨B̃ − P ∗, C⟩

= ε′ + Hmin(r′, c′)
γp

f
+ ⟨B̃ − P ∗, C − 1

21n×n⟩ (since B̃, P ∗ ∈ ∆n×n.)

= ε′ + Hmin(r′, c′)
γp

f
+

∥∥∥B̃ − P ∗
∥∥∥

1

∥∥∥∥C − 1
21n×n

∥∥∥∥
∞

≤ 3
2ε′ + Hmin(r′, c′)

γp
f

(given (28-30))

≤ 3
2ε′ + Hmin(r, c)

γp
f

+ ε′

γp
f

(1 + log(n/ε′)) (by Lemma A.2)

= 5Hmin(r, c)
2γp

f
+ Õ(γ−2p

f ) (since ε′ = Hmin(r,c)
γp

f
in L4 of Alg. 1)

= ε + Õ(ε2). (since γf =
(

5Hmin
(
r, c

)
/2ε

)1/p

by construction)

The computational complexity of the algorithm follows simply from the same line of reasoning as Thm. 1 and
Thm. 2 of Dvurechensky et al. (2018). In particular, they show that Sinkhorn iteration converges in O(R/ε′)
steps, where R = O(γf) = O(Hmin(r, c)1/pε−1/p) in our case. The complexity result O(n2Hmin(r, c)1/p/ε

p+1
p )

follows since ε′ = O(Hmin(r, c)γ−p
f ) = O(ε−1), and each Sinkhorn step costs O(n2).

■

B An Efficient Line Search Algorithm
B.1 Background: Line Search
Given a descent direction p(k) ∈ Rn, i.e., a direction that satisfies ⟨p(k),∇f(x(k))⟩ ≤ 0, line search algorithms
aim to find an appropriate step size α, where x(k+1) ← x(k)+αp(k). Perhaps the most well-known of desirable
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Figure 6: We control the problem parameter Hmin(r, c) over synthetically sampled OT problems (r, c, C)
and show that using the entropy-aware stopping criterion can yield substantial performance gains, with
the gap between the two approaches growing proportionally to the gap between Hmin(r, c) and log n. The
experiments carried out use γ ∈ {24, 25, · · · , 214} to control precision. We sample 18 problems for each γ
value and plot the median along both axes. The results are consistent between L1 (left) and L2

2 (right) costs.

properties that a step size α should satisfy at any given optimization step are the Wolfe conditions (Wolfe,
1969; 1971). Given ϕ(α) := f(x(k) + αp(k)):

ϕ(α)− ϕ(0)
α

≤ c1ϕ′(0) (31a)

ϕ′(α) ≥ c2ϕ′(0). (31b)

where 0 < c1 < c2 < 1 and (31a) and (31b) are known as the sufficient decrease and curvature condi-
tions respectively (Nocedal & Wright, 2006). It is well-known that given step sizes satisfying the Wolfe
conditions and descent directions p(k) that are not nearly orthogonal to the steepest descent directions
−∇f(x(k)), line search methods ensure convergence of the gradient norms to zero (Zoutendijk, 1966; Wolfe,
1969; 1971). Instead of satisfying (31), some algorithms or theoretical analyses consider exact line search,
where α∗ ∈ arg minα∈R ϕ(α), which has a unique closed-form solution for quadratic objectives with a posi-
tive definite Hessian. However, a rule of thumb for general non-linear objectives is to not spend too much
time finding α∗ (Nocedal & Wright, 2006). Hager & Zhang (2006a) proposed approximate Wolfe conditions,
derived by replacing the ϕ(α) and ϕ(0) terms in (31a) with q(α) and q(0), where q is a quadratic interpolant
of ϕ such that q(0) = ϕ(0), q′(0) = ϕ′(0) and q′(α) = ϕ′(α):

(2c1 − 1)ϕ′(0) ≥ ϕ′(α) ≥ c2ϕ′(0). (32)

A key advantage of replacing (31) by (32) stems from the fact that one only needs to evaluate ϕ′ rather than
both ϕ and ϕ′ to check whether the conditions are satisfied, thereby halving the amount of computation
necessary per iteration in cases where their evaluation has similar computational cost.

Bisection is a line search strategy with convergence guarantees when the objective is convex. One simply
maintains a bracket [αlo, αhi], where ϕ′(αlo) < 0 and ϕ′(αhi) > 0, and recursively considers their average and
updates either endpoint of the bracket given the sign of ϕ′((αhi + αlo)/2

)
.

B.2 PNCG Line Search
To perform line search in PNCG (Alg. 2), we adopt a hybrid strategy combining bisection and the secant
method to find αk satisfying approximate Wolfe conditions (32). Given αlo, αhi, the secant method computes
the minimizer of a quadratic interpolant q̂ that satisfies q̂′(αlo) = ϕ′(αlo) and q̂′(αhi) = ϕ′(αhi) as follows:

αsec = αloϕ′(αhi)− αhiϕ
′(αlo)

ϕ′(αhi)− ϕ′(αlo) . (33)
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Thanks to the convexity of the objective g, by ensuring ϕ′(αlo) < 0 and ϕ′(αhi) > 0 with simple algorithmic
checks, we can guarantee that αlo < αsec < αhi. Thus, the updated bracket is guaranteed to be smaller once
we replace either of αlo or αhi by αsec for the next bracket given the sign of ϕ′(αsec). If ϕ behaves like a
quadratic inside the bracket, the secant method converges very quickly, but convergence can be arbitrarily
slow otherwise. For this reason, we simply average the bisection estimate and αsec for a less aggressive but
more reliable line search that still converges quickly, i.e., αhybrid = 0.5αsec + 0.5(αhi + αlo)/2.

Evaluation of ϕ′ has computational complexity O(n2) as does a single step of Sinkhorn’s algorithm (given
by the two LogSumExp reductions seen in L5-6 of Alg. 4):

ϕ′(α) = ⟨pu, r(Pα)− r⟩+ ⟨pv, c(Pα)− c⟩, (34)

where (pu, pv) is the descent direction. Since evaluating ϕ′ requires the computation of r(Pα) and c(Pα) for
the new matrix Pα := exp{(u + αpu)1⊤ + 1(v + αpv)⊤− γC}, the last step of the line search readily carries
out the LogSumExp reductions necessary for computing the Sinkhorn direction in the next step of PNCG
(see L11 of Alg. 2). Observe also that at the next PNCG iteration, ϕ′(0) can also be computed in O(n) time
rather than O(n2) since r(P0), c(P0) are already known from the last line search step of the previous PNCG
iteration. With these important implementation details in place, we find that the average number of ϕ′

evaluations necessary to find an α that satisfies (32) is typically between 1.5− 2.5 for the PNCG algorithm.
While the approach outlined here is easy to implement (including as a batch process) and works well in
practice, better line search methods may further benefit Alg. 2.

C Entropy-aware Stopping Criteria on the Dual Objective Gradient Norm
Here, we show the effect of choosing Hmin(r, c) over the weaker bound log n in L4 of Alg. 1, where the
stopping criterion ε′ is selected. To control the problem setting Hmin(r, c), we construct synhetic problems
by randomly sampling r from the simplex via a Dirichlet distribution constructed to meet a target entropy
level H(r) as a fraction of the maximum possible entropy log n. The column marginal c is simply taken to
be the uniform distribution 1n/n, so that Hmin(r, c) = H(r). Cost matrices are constructed by sampling n
points x ∈ R3 from a multivariate normal distribution and assigning Cij = ∥xi − xj∥r

r for r ∈ {1, 2}, before
entrywise division by maxij Cij to ensure Cij ∈ [0, 1].

Fig. 6 illustrates the effect of this choice by ranging Hmin(r, c)/ log n ∈ {0.03, 0.1, 0.3, 0.9}. Towards the
RHS of the plots, we observe an improvement in precision roughly proportional to log n/Hmin(r, c) for the
same number of operations, which agree with our complexity result O(n2Hmin(r, c)/ε−2) for p = 1 in (26)
vs. the O(n2 log n/ε−2) result by Dvurechensky et al. (2018).

D Variable vs. Fixed Smoothing of the Marginals in MDOT
As discussed in Sec. 4.2, MDOT smoothes the marginals r, c (by mixing in the uniform distribution) with
a weighting factor that tracks the temperature. Since MDOT anneals the temperature, this means that
the smoothing weight is higher in earlier iterations of MDOT. In particular, the mixture weight gradually
decays from Hmin(r, c)

/
4γp

i to Hmin(r, c)
/

4γp
f given input parameter p ≥ 1. Here, we study the effect of this

design choice as it influences the convergence of two Bregman projection algorithms used in L7 of Alg. 1:
Sinkhorn iteration and the newly proposed PNCG algorithm (Alg. 2). The approach is benchmarked against
a baseline that fixes the smoothing weight at Hmin(r, c)

/
4γp

f all throughout instead. For these experiments,
we fix p = 1.5 following our experimental setup in Sec. 5. Fig. 7 shows that while MDOT-Sinkhorn is largely
unaffected by this design choice, MDOT-PNCG enjoys a notable speedup from variable smoothing. We thus
conclude that the approach provides a performance benefit.

E Details of Baseline Algorithm Implementations
Here, we provide details and sources on the implementation of various algorithms shown in Fig. 4. Our
implementations of other algorithms will be open-sourced for transparency.

Mirror Prox Sherman Optimized (Jambulapati et al., 2019). For this algorithm, the source code is
originated in the NumPy code at this repository. The owner of the repository notes that this NumPy
implementation is based on a Julia implementation by the original authors, which was provided in a private
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Figure 7: The variable smoothing scheme has almost no impact on the convergence behavior of MDOT-
Sinkhorn (left) for both settings q = 2 (rapid temperature decay) and q = 21/8 (slow temperature decay).
MDOT-PNCG (right) enjoys a speedup of nearly 2× under rapid decay and a more modest speedup under
slow decay. All curves show the median over 36 sample problems from the MNIST dataset (L1 cost).

exchange. The code used in this paper is a PyTorch adaptation of the NumPy code and has been verified
to produce identical output as the NumPy version over multiple problems. The algorithm was called with
entropy factor parameter set to the default 2.75 in all experiments. The number of iterations for the algorithm
was varied from 2 to 215 to achieve different levels of precision.

APDAGD (Dvurechensky et al., 2018). For APDAGD, a similar strategy was used, except with this code
repository. A PyTorch version of the original NumPy code was written and verified to produce identical
output. For different levels of precision, the ε parameter of the algorithm was varied from 2−1 to 2−6. For
smaller ε, non-convergence was observed.

AAM (Guminov et al., 2021). The implementation is based on NumPy code by the original authors at this
repository. A PyTorch version was verified to produce identical output for GPU execution. The ε parameter
was varied from 2−1 to 2−10. For smaller ε, numerical errors were encountered.

Feydy, Alg. 3.5 (Feydy, 2020). The implementation is based on the algorithm as presented in the original
work. For different levels of precision, the number of total iterations was varied from 2 to 212. Beyond
the upper bound, numerical errors were observed. As it produced better estimates than the alternative,
the algorithm was called with debiasing turned on; hence, the error ⟨P − P ∗, C⟩ was instead measured in
absolute value as |⟨P − P ∗, C⟩| for this algorithm only. Scaling ratio was set to an intermediate 0.7, which
is between the listed 0.5 (fast) and 0.9 (safe) settings.

Sinkhorn (Cuturi, 2013). A log-domain stabilized implementation was used. For different precision levels,
γ was varied from 25 to 214 for L1 distance cost and to 215 for L2

2 distance cost. Stopping criteria were given
by our formula in L4 of Alg. 1, and the results obtained by calling Alg. 1 with γi = γf , so that the algorithm
terminates after a single Bregman projection via SK iteration.

Mirror Sinkhorn (MSK) (Ballu & Berthet, 2023). The implementation is based on the algorithm pre-
sented in the original paper. For different levels of precision, the number of total iterations was varied from
25 to 216.

F Additional Benchmarking on DOTmark
Figs. 8-17 add further benchmarking on 10 more datasets from the DOTmark benchmark of Schrieber et al.
(2017), which include various kinds of randomly generated images, classical test images and real data from
microscopy. Each dataset contains 45 unique pairs of marginals (r, c) obtained from pixel values. The cost
matrix is constructed from distances in 2D pixel locations; we evaluate on both L1 and L2 distance costs for
n = 4096 following our setup in Sec. 5.
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Besides clock time, we additionally plot here the total number of O(n2)-costing operations for each algorithm,
e.g., matrix-vector products, row/column sums of matrices, vector outer products, element-wise operations
on matrices. We count primitive operations for consistency across algorithms; counting a higher-level function
call such as the number of gradient evaluations would be unfair due to inherent differences in the design
of various algorithms. For instance, some require costly line search between gradient evaluations. These
plots show that operation counts of the baseline algorithms follow similar trends to wall-clock time and no
algorithm is unfairly advantaged via low-level optimizations.

For each of 20 problem sets (10 image datasets × 2 cost functions), 20 out of 45 problems are sampled
without replacement. The wall-clock time plots for the respective cost functions (L1 and L2

2) follow similar
trends as Fig. 4. In addition to the median, we also include 75% confidence intervals along both axes, which
show that MDOT is generally robust.
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Figure 8: CauchyDensity problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).

10 7

10 6

10 5

10 4

10 3

10 2

10 1

MDOT-Sinkhorn
MDOT-PNCG
Jambulapati et al. (2019)
Sinkhorn (p=1.0)
Sinkhorn (p=1.5)
MSK
APDAGD
Feydy Alg. 3.5
AAM

101 102 103 104 105

Number of O(n2) operations

10 6

10 5

10 4

10 3

10 2

10 1

10 2 10 1 100 101 102

Wall-clock time (s)

Op
tim

al
ity

 g
ap

 P
P

* ,
C

  L1
cost

  L2
2

cost

ClassicImages

Figure 9: ClassicImage problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 10: GRFSmooth problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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Figure 11: GRFModerate problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 12: GRFRough problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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Figure 13: LogGRF problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number of

O(n2) operations (left) and wall-clock time (right).
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Figure 14: LogitGRF problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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Figure 15: MicroscopyImage problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs.

number of O(n2) operations (left) and wall-clock time (right).
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Figure 16: Shape problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number of

O(n2) operations (left) and wall-clock time (right).
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Figure 17: WhiteNoise problem with L1 (top) and L2
2 (bottom) costs, showing excess cost (error) vs. number

of O(n2) operations (left) and wall-clock time (right).
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