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Abstract
Sampling strategies in diffusion models are criti-
cal to molecular generation yet remain relatively
underexplored. In this work, we investigate a
broad spectrum of sampling methods beyond con-
ventional defaults and reveal that sampling choice
substantially affects molecular generation perfor-
mance. In particular, we identify a maximally
stochastic sampling (StoMax), a simple yet under-
explored strategy, as consistently outperforming
default sampling methods for generative models
DDPM and BFN. Our findings highlight the piv-
otal role of sampling design and suggest promis-
ing directions for advancing molecular generation
through principled and more expressive sampling
approaches.

1. Introduction
Molecular generation has emerged as a crucial task in AI-
driven drug and material discovery, enabling the rapid ex-
ploration of chemical space for novel and functional com-
pounds. Among the many approaches to generative model-
ing, diffusion models have recently achieved state-of-the-art
performance in 3D molecular generation tasks due to their
superior capability in precisely modeling atomic positions.

While extensive research has focused on improving model
architectures and training objectives, a key component that
remains relatively under-explored is the sampling strategy,
the procedure by which new molecules are generated from
the learned diffusion models. In most existing approaches,
including Equivariant Diffusion Models (EDM) (Hooge-
boom et al., 2022) and Geometric Bayesian Flow Networks
(GeoBFN) (Song et al., 2023), the sampling process is in-
herently tied to the model’s design. Specifically, these meth-
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ods adopt the default sampling method of Denoising Dif-
fusion Probabilistic Models (DDPM) (Ho et al., 2020) and
Bayesian Flow Networks (BFN) (Graves et al., 2023), which
correspond to first-order discretizations of the reverse-time
stochastic differential equations (SDEs) of the diffusion
process.

However, the default sampling strategies commonly used in
diffusion models are not the only theoretically valid choices.
In fact, a broader family of sampling methods exists, each
defined by distinct assumptions about temporal dependen-
cies in the generative process. These variations can sub-
stantially affect the quality of generated samples, and hold
untapped potential for improving molecular generation per-
formance.

To further comprehend this design space, we first identify
two representative cases that conclude widely adopted strate-
gies: (1) a Markov forward process, which underlies DDPM
and BFN samplers, and (2) a Deterministic reverse process,
corresponding to DDIM (Song et al., 2021a) and ODE-based
sampling (Song et al., 2021b). Beyond these well-studied
methods, we introduce a third, intuitive alternative: (3) a
conditionally independent reverse process, in which the
noisy sample at each reverse timestep is conditionally inde-
pendent of the previous timestep given the initial data. This
method induces maximal stochasticity in the family of sam-
pling methods, we termed maximally stochastic sampling
(StoMax).

We systematically evaluate StoMax, a previously underex-
plored sampling alternative, across multiple molecular gen-
erative models, including UniGEM(EDM), UniGEM(BFN)
(Feng et al., 2025), EDM, and GeoBFN. Empirically,
StoMax consistently outperforms the native samplers of
these models on both the QM9 and GEOM-Drugs datasets.
Notably, StoMax brings substantial improvements under
the DDPM noise schedule, fully leveraging the capacity of
pretrained generative models. This enables UniGEM(EDM)
to achieve state-of-the-art performance in molecular gener-
ation. Interestingly, DDIM and StoMax represent the two
extremes of the sampling family in terms of stochasticity,
with DDPM and BFN default sampling falling in between.
To probe the potential of this design space, we interpolate
between the three sampling strategies and find that StoMax
yields the best overall sample quality, with a minor trade-off

1



Revisiting Sampling Strategies for Molecular Generation

in diversity.

These empirical observations motivate us to explore more
diverse and expressive sampling strategies beyond conven-
tional choices, aiming to further enhance the quality of
molecular generation. The results also motivate the devel-
opment of theoretical frameworks that can explain these
empirical gains and guide the design of optimal samplers.

2. Revisiting Sampling Methods in Diffusion
Models

2.1. General Reverse SDE

Following the notation introduced in Ni et al. (2025), we
describe the noise corruption process in the diffusion model
as:

xt = µtx0 + σtϵ, ϵ ∼ N (0, IN ), (1)

where x0,xt ∈ RN denote the clean and corrupted data
at time t, respectively. The functions µt and σt define the
noise schedule, with t ∈ [0, T ]. This general framework
can include DDPM and BFN. For DDPM, it satisfies the
variance preserving (VP) assumption µ2

t + σ2
t = 1, while

for BFN on continuous data, we have σt =
√

µt(1− µt).

This process corresponds to a linear stochastic differential
equation (SDE) (Ni et al., 2025):

dxt =
µ̇t

µt
xtdt+

√
2σtσ̇t − 2σ2

t

µ̇t

µt
dwt, (2)

where dwt denotes the standard Wiener process.

Interestingly, it is possible to design a family of reverse
processes (Prop. 4.1 in Xue et al. (2024b)) that share the
same marginal probability distributions as equation 2 :

dxt =

[
µ̇t

µt
xt −

1 + β(t)

2
g2(t)∇x log pt(x)

]
dt

+
√

β(t)gtdwt,

(3)

where gt =
√
2
√

σtσ̇t − σ2
t
µ̇t

µt
, β(t) is any non-negative

bounded function. As proved in Appendix E of Song et al.
(2021b) and Proposition 4.2 in Xue et al. (2024a) respec-
tively, the sampling processes of both DDPM and BFN can
be interpreted as first-order discretizations of the reverse-
time SDE in equation 3 with β = 1.

2.2. Discretized Sampling Strategy with Varying
Correlation Hypotheses

To derive concrete sampling strategies, we begin by dis-
cretizing the reverse-time SDE in equation 3. Although
different discretization schemes may lead to variations in
the resulting sampling formula, these differences become
negligible when the step size is sufficiently small. As this
work focuses on improving sampling quality in the regime

of a large number of discretization steps, we adopt a simple
first-order discretization:

xt−∆t =
µt−∆t

µt
xt +

(1 + β(t))g2t∆t

2
∇x log pt(xt)

+
√

β(t)g2t∆tϵ,

(4)

where g2t∆t ≈ 2σ2
t
µt−∆t

µt
−2σtσt−∆t, with derivation given

in Appendix A.1. In this formulation, the next state is sam-
pled from a Gaussian distribution conditioned on the current
state. The optimal mean of this distribution, i.e. the con-
ditional expectation E[xt−∆t|xt] has an analytic form in-
volving the score function. This expectation depends on the
form of the conditional distribution p(xt−∆t|xt,x0) which
captures the correlation between different time steps. Ac-
cording to (Song et al., 2021a), a family of such conditional
distributions parameterized by λt all satisfy equation 1:

pλ(xt−∆t|xt, x0) = N(µt−∆tx0 + γt
xt − µtx0

σt
, λ2

t I), (5)

where γ2
t + λ2

t = σ2
t−∆t. Based on this, the conditional

expectation is given by:

E[xt−∆t|xt] =
µt−∆t

µt
xt + (

µt−∆t

µt
σ2
t − γtσt)∇x log pt(xt),

(6)
with derivation given in Appendix A.2. By aligning the
mean in equation 4 with this conditional expectation, we
derive the corresponding variance as 2σt(σt−∆t − γt). Sub-
stituting this into the original expression, the discretized
reverse SDE becomes:

xt−∆t =
µt−∆t

µt
xt + (

µt−∆t

µt
σt − γt)σt∇x log pt(xt)

+
√

2σt(σt−∆t − γt)ϵ.

(7)

2.3. Canonical Sampling Methods and Beyond

In this subsection, we examine the landscape of feasible
sampling strategies, each reflecting a different temporal
correlation assumption. First of all, we identify two rep-
resentative cases that together cover the most widely used
sampling strategies in existing diffusion models:

• Markov forward process: When the forward dif-
fusion process satisfies the Markov property, i.e.,
p(xt|xt−∆t,x0) = p(xt|xt−∆t), we prove in the
Proposition A.1 and Proposition A.2 that this corre-

sponds to the choice γt =
µtσ

2
t−∆t

µt−∆tσt
. Note that this

result does not depend on the VP assumption and both
DDPM and BFN sampling belong to this category.

• Deterministic reverse process: When the reverse pro-
cess becomes deterministic, i.e. p(xt−∆t|xt,x0) col-
lapses to a point mass, this corresponds to setting
γt = σt−∆t, as in DDIM sampling.
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These two methods span a spectrum of correlation structures
from fully stochastic to fully deterministic. However, it re-
mains an open and compelling question whether alternative,
potentially superior sampling strategies exist within this fam-
ily. We now consider a less-explored but intuitively natural
alternative that lies at the opposite end of the deterministic
method:

• When the reverse process is conditional independent,
that is p(xn−1|xn, x0) = p(xn−1|x0). This corre-
sponds to setting γt = 0, which maximizes the vari-
ance in both equation 5 and equation 7. We refer to this
setting as maximally stochastic sampling (StoMax).

Please note that the categorization here refers to how the
mean is chosen during the iterative process, while allowing
for multiple theoretically sound options for the variance.
By default, we use the variance from the SDE sampling
formulation in equation 7. However, alternative choices,
such as those used in DDIM or Analytic-DPM (Bao et al.,
2022), are also feasible. In the deterministic case, these
methods all yield zero variance. In the Markovian case, the
performance of different variance choices tends to converge
as the number of discrete steps increases (Bao et al., 2022).
In the StoMax setting, the variance can be interpreted as
a form of temperature control (Ni et al., 2025), offering a
trade-off between sample diversity and fidelity.

3. Experimental Results
In this section, we compare the performance of different
sampling strategies on molecular generation tasks.

3.1. Settings

Datasets We conduct generation experiments on two com-
monly used datasets. The QM9 dataset (Ruddigkeit et al.,
2012; Ramakrishnan et al., 2014) is a database contain-
ing approximately 134,000 organic small molecules, com-
posed of C, H, O, N, and F atoms. Each molecule contains
up to 9 heavy atoms. We adopt the same data split strat-
egy as the baseline methods, with 100k molecules in the
training set, 18k in the validation set, and 13k in the test
set. The other dataset is GEOM-Drugs (Axelrod & Gomez-
Bombarelli, 2022), which consists of drug-like molecules.
It contains 430,000 molecules, with an average of 44 atoms
per molecule and up to 181 atoms in the largest molecule,
making it more challenging than QM9. The dataset is split
in the same way as in previous works: randomly divided
into training, validation, and test sets with a ratio of 8:1:1.

Baselines Our baselines include the classic 3D molecular
generation algorithm EDM (Hoogeboom et al., 2022), which
performs joint diffusion over discrete atom types and con-
tinuous molecular coordinates. GeoBFN (Song et al., 2023)
improves the scheduling of discrete atom types and continu-

Table 1. Unconditional molecular generation results on QM9. For
all diffusion-based models, the sampling steps are 1000. Metrics
are calculated with 10000 samples generated from each model.
Higher values indicate better performance. *: The GeoBFN model
is re-trained and evaluated by ourselves, as the original paper did
not release the pretrained model.

Models Sampling Atom sta(%) Mol sta(%) Valid(%) V*U(%)
Data - 99.0 95.2 97.7 97.7

EDM
Default 98.7 82.0 91.9 90.7
StoMax 98.9 87.9 94.5 92.1

UniGEM
(EDM)

Default 99.0 89.8 95.0 93.2
StoMax 99.6 96.1 98.1 93.7

GeoBFN
Default* 99.3 93.0 96.5 92.7
StoMax 99.3 94.2 96.9 91.9

UniGEM
(BFN)

Default 99.3 93.7 97.3 93.0
StoMax 99.5 95.7 97.8 91.3

Table 2. Comparison between the StoMax strategy and the default
unconditional sampling for EDM and UniGEM on the GEOM-
Drugs dataset. 10,000 molecules were sampled using 1,000 diffu-
sion steps.

Models Sampling Atom sta(%) Valid(%)
Data - 86.5 99.9

EDM
Default 81.3 92.6
StoMax 86.2 99.7

UniGEM(EDM)
Default 85.1 98.4
StoMax 89.5 99.9

ous coordinates using Bayesian Flow Networks. UniGEM
(Feng et al., 2025) treats molecular generation as a two-stage
process: a nucleation phase for generating molecular scaf-
folds and a growth phase for completing the molecule. In
UniGEM, atom type prediction is decoupled and performed
only during the growth phase. For coordinate generation,
UniGEM can adopt either EDM or GeoBFN, and we refer to
these variants as UniGEM(EDM) and UniGEM(GeoBFN),
respectively.

Metric We follow the evaluation protocol of prior works
(Hoogeboom et al., 2022), generating 10,000 molecules to
assess atom stability, molecule stability, validity, and valid
& unique (V*U). Consistent with EDM’s strategy, covalent
bonds are inferred from inter-atomic distances. Atom stabil-
ity is the portion of atoms with correct valence; molecule
stability is the portion of molecules whose atoms all satisfy
valence rules. Validity measures the proportion of generated
generated 3D structures convertible to valid SMILES via
RDKit. The V*U metric calculates the proportion of unique
samples among all valid molecules.
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Figure 1. Unconditional molecular generation results on QM9. We evaluate interpolation-based sampling strategies across StoMax,
DDPM, and DDIM using the UniGem (EDM) model. Higher values indicate better performance across all metrics.

3.2. Molecular Generation Evaluated on QM9 Dataset

We applied the StoMax strategy to EDM, GeoBFN, and two
variants of UniGEM (UniGEM(EDM) and UniGEM(BFN))
and evaluated their unconditional generation performance
on the QM9 dataset. The results are summarized in Table 1.
Here default sampling for EDM and GeoBFN refers to the
sampling method of DDPM and BFN, respectively. StoMax
consistently improves quality-related metrics, atom and
molecule stability, and validity across all models, demon-
strating its general effectiveness in enhancing sample quality.
The gains are especially pronounced for models based on
EDM. A slight drop in diversity is observed, particularly for
GeoBFN and UniGEM(GeoBFN), suggesting a trade-off
between stability and uniqueness.

3.3. Molecular Generation Evaluated on GEOM-Drugs

We evaluate StoMax on the larger and more structurally
diverse GEOM-Drugs dataset. As shown in Table 2, we
apply StoMax to EDM and UniGEM(EDM) and compare
the results of unconditional generation with their respective
default samplers. StoMax yields notable gains in sample
quality. Atom stability improves by around 5 points for
EDM and over 4 points for UniGEM. In addition, the va-
lidity metric was improved to near-perfect levels (close to
1.0) in both models, clearly highlighting the advantage of
StoMax in generating high-quality molecular samples.

3.4. Interpolation

To investigate whether better sampling methods exist within
the explored design space, we follow (Song et al., 2021a)
and conduct interpolation experiments between different
sampling strategies. Notably, the deterministic and StoMax
approaches represent two extremes of the sampling fam-
ily in terms of stochasticity, with the sampling method
based on a Markovian forward process lying between them.
We thus interpolate between StoMax and DDPM using

γt = p′γDDPM
t +(1− p′)γStoMax

t = p′
µtσ

2
t−∆t

µt−∆tσt
, and between

DDPM and DDIM via γt = p′′γDDPM
t + (1− p′′)γDDIM

t =

p′′
µtσ

2
t−∆t

µt−∆tσt
+ (1− p′′)σt−∆t, where p′ and p′′ are interpola-

tion coefficients in [0, 1]. We evaluate the resulting sampling
strategies using the UniGEM(EDM) model.

As shown in Figure 1, increasing the level of stochasticity
consistently enhances the stability and validity of generated
molecules, though it slightly compromises uniqueness. No-
tably, the StoMax strategy achieves the highest score on the
U×V metric, demonstrating a favorable trade-off between
diversity and generation quality. Among the sampling meth-
ods considered, StoMax emerges as the most balanced and
effective approach.

4. Discussion and Future Work
Our findings raise compelling questions about the theoret-
ical foundations of optimal sampling in diffusion-based
generative models. While Appendix C in (Xue et al., 2024b)
suggest that the optimal sampling strategy that minimizes
the ELBO corresponds to β(t) = 1 in equation 3, which
aligns with the default samplers used in DDPM and BFN,
our empirical results demonstrate that, at least for molecular
generation, alternative strategies such as StoMax can yield
superior performance.

Despite the strong empirical performance of StoMax on
molecular tasks, its rigorous theoretical explanation is still
lacking. Interestingly, viewing the continuous formula-
tion in equation 3, the StoMax strategy, characterized by
maximal sampling variance, can be seen as approximating
Langevin dynamics by taking the limit β(t) → ∞, although
our discrete implementation still differs from the commonly
used Langevin dynamics used in generative models (Song
& Ermon, 2019; Saremi & Hyvärinen, 2019). This obser-
vation raises the intriguing possibility that Langevin-like
samplers may be inherently better suited for molecule gen-
eration. However, this remains a hypothesis that requires
further systematic investigation.
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Moreover, our experiments reveal a clear trade-off between
diversity and validity across different sampling strategies.
Developing a unified theoretical framework to character-
ize how different variance schedules affect this trade-off
remains an open and promising direction for future work.
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A. Complementary Proofs
A.1. Discretizing the Reverse-Time SDE

To derive the discrete-time update rule for sampling, we begin by discretizing the reverse-time SDE in equation 3 using the
Euler–Maruyama method. The resulting update step takes the following form:

xt−∆t = xt −
[
µ̇t

µt
xt −

(1 + β(t))g2t
2

∇x log pt(xt)

]
∆t+

√
β(t)g2t∆tϵ, (8)

where ϵ ∼ N (0, IN ) denotes Gaussian noise.

To simplify the expression, we expand µt−∆t and σt−∆t using a first-order Taylor approximation:

µt−∆t = µt − µ̇t∆t+O((∆t)2), σt−∆t = σt − σ̇t∆t+O((∆t)2) (9)

Recall that g2t = 2
(
σtσ̇t − σ2

t
µ̇t

µt

)
, applying the above Taylor expansions, we approximate:

g2t∆t = 2σtσ̇t∆t− 2σ2
t

µ̇t

µt
∆t ≈ 2σ2

t

µt−∆t

µt
− 2σtσt−∆t. (10)

Substituting this into equation 8, and collecting terms, we obtain the final discrete-time update:

xt−∆t =
µt−∆t

µt
xt +

(1 + β(t))g2t∆t

2
∇x log pt(xt) +

√
β(t)g2t∆tϵ, (11)

where g2t∆t ≈ 2σ2
t
µt−∆t

µt
− 2σtσt−∆t. This formulation offers a general discrete-time sampling framework encompassing a

broad family of strategies, each determined by specific choices of β(t)

A.2. Analytic Expectation of the Reverse Probability

We begin by connecting the score function to the conditional expectation of the original data:

∇xt
log pt(xt) =

∫
f(x0)∇xtp(xt|x0)dx0

p(xt)
=

∫
f(x0)p(xt|x0)(−xt−µtx0

σ2
t

)dx0

p(xt)
= −xt

σ2
t

+
µt

σ2
t

E[x0|xt], (12)

which directly yields the Tweedie formula:

E[x0|xt] =
1

µt

(
xt + σ2

t∇xt log pt(xt)
)

(13)

To compute the expectation of the reverse sample xt−∆t given xt, we write:

E[xt−∆t|xt] =

∫
xt−∆tp(xt−∆t|xt)dxt−∆t =

∫
xt−∆t

∫
p(xt−∆t|xt,x0)p(x0|xt)dx0dxt−∆t

=

∫ (∫
xt−∆tp(xt−∆t|xt,x0)dxt−∆t

)
p(x0|xt)dx0

(14)

Using equation 5, we know that: E[xt−∆t|xt,x0] = µt−∆tx0 + γt
xt−µtx0

σt
, where γt =

√
σ2
t−∆t − λ2

t .

Thus equation 14 can be further reduced to

E[xt−∆t|xt] = µt−∆tE[x0|xt] + γt
xt − µtE[x0|xt]

σt

(15)

Substituting E[x0|xt] from equation 12, we have:

Ep[xt−∆t|xt] = xt−∆t =
µt−∆t

µt
xt + (

µt−∆t

µt
σt − γt)σt∇x log pt(xt) (16)

thus we proved equation 7.
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A.3. Reverse-Time SDE with Analytic Expectation

By aligning the mean in equation 4 with equation 6, we obtain:

(1 + β(t))g2t∆t

2
= (

µt−∆t

µt
σt − γt)σt

β(t)g2t∆t = 2(
µt−∆t

µt
σt − γt)σt − g2t∆t

≈ 2(
µt−∆t

µt
σt − γt)σt − (2σ2

t

µt−∆t

µt
− 2σtσt−∆t)

= 2σt(σt−∆t − γt)

(17)

The approximation in the third line follows from equation 10. This result provides the sampling variance and confirms the
expression in equation 7.

A.4. Sampling with Markov Forward Process Assumption

Proposition A.1. Assume the forward diffusion process satisfies the Markov property:

p(xt|xt−∆t,x0) = p(xt|xt−∆t). (18)

We show that this leads to the variance parameter in equation 5 becomes:

λt =
σt−∆t

σt

√
σ2
t −

µ2
t

µ2
t−∆t

σ2
t−∆t. (19)

Then γt =
√
σ2
t−∆t − λ2

t =
σ2
t−∆tµt

σtµt−∆t
.

Proof. Following the derivation approach in equation 5, the conditional distribution p(xt|xt−∆t,x0) under general variance
λ̃t takes the form:

p(xt|xt−∆t,x0) = N
(
µtx0 + γ̃t−∆t ·

xt−∆t − µt−∆tx0

σt−∆t
, λ̃2

t−∆tI

)
, (20)

where γ̃t−∆t =
√

σ2
t − λ̃2

t−∆t.

Now, consider the identity:

p(xt | xt−∆t,x0) p(xt−∆t | x0) = p(xt−∆t | xt,x0) p(xt | x0), (21)

and substitute the Gaussian expressions into both sides. By matching the exponents, we obtain the following equality:∥∥∥xt−∆t − µt−∆tx0 − γt · xt−µtx0

σt

∥∥∥2
2λ2

t

+
∥xt − µtx0∥2

2σ2
t

(22)

=

∥∥∥xt − µtx0 − γ̃t−∆t · xt−∆t−µt−∆tx0

σt−∆t

∥∥∥2
2λ̃2

t−∆t

+
∥xt−∆t − µt−∆tx0∥2

2σ2
t−∆t

. (23)

Treating xt − µtx0 and xt−∆t − µt−∆tx0 as independent variables and matching the coefficients, we obtain the constraint:

σ2
t−∆t

σ2
t

=
λ2
t

λ̃2
t−∆t

. (24)

Under the Markov assumption, the conditional distribution p(xt | xt−∆t,x0) must be independent of x0. Therefore, from
equation 20, the mean term must satisfy:

µt − γ̃t−∆t ·
µt−∆t

σt−∆t
= 0, (25)

7
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which implies: γ̃t−∆t =
µtσt−∆t

µt−∆t
.

Substituting into the definition of λ̃t−∆t:

λ̃2
t−∆t = σ2

t − γ̃2
t−∆t = σ2

t −
(
µtσt−∆t

µt−∆t

)2

= σ2
t −

µ2
t

µ2
t−∆t

σ2
t−∆t. (26)

Finally, using the earlier ratio between λt and λ̃t−∆t, we obtain:

λ2
t = λ̃2

t−∆t ·
σ2
t−∆t

σ2
t

=
σ2
t−∆t

σ2
t

(
σ2
t −

µ2
t

µ2
t−∆t

σ2
t−∆t

)
. (27)

Note that our derivation holds for any noise schedule {µt, σt}, without assuming VP or any particular form of µt and σt.

Proposition A.2. We verify that the sampling formulation of BFN for continuous data satisfies the expression for λt derived
under the assumption of a Markov forward process in Proposition A.1.

Proof. The original BFN sampling procedure for continuous data, as proposed in (Graves et al., 2023), involves multiple
iterative parameters. By deriving a closed-form expression, the sampling update can be simplified into the following compact
form (see (Xue et al., 2024a) for detailed derivation):

xt−∆t =
µt−∆t

µt
xt +

µt − µt−∆t√
µt(1− µt)

ϵθ +

√
1− µt−∆t

1− µt
(µt−∆t − µt)ϵ. (28)

where ϵθ is the predicted noise and ϵ is standard Gaussian noise.

To establish its correspondence with the reverse SDE derived under the Markov assumption, it suffices to verify that the

mean term in equation 28 matches that in equation 7, with the parameter γt =
σ2
t−∆tµt

σtµt−∆t
in the Markov forward process case:

(
µt−∆t

µt
σt − γt)σtsθ = −(

µt−∆t

µt
σt −

σ2
t−∆tµt

σtµt−∆t
)ϵθ =

µt − µt−∆t√
µt(1− µt)

ϵθ, (29)

where σ2
t = µt(1− µt) for any t in BFN schedule and sθ denotes the score function predictor, which is related to the noise

predictor via sθ(xt, t) = −ϵθ(xt, t)/σt.
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