
Under review as a conference paper at ICLR 2024

DISTRIBUTED LINEAR DIMENSIONALITY REDUCTION
ASSISTED BY CENTRALIZED NN FOR CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear dimensionality reduction is a widely used technique in data compression,
especially under computationally-constrained platforms. This paper presents a
linear dimensionality reduction technique tailored for distributed edge devices,
balancing resource constraints like data-rate and computing power at the device
side, while ensuring high classification accuracy at the server side. The core concept
of our approach is the simultaneous training of a unique single-layer for each
distributed device, determined by its compression needs, coupled with a centralized
deep neural network on the server for all-device classification. A standout feature of
our approach is its adaptability: when integrating a new device aiming to compress
data in an untrained dimension, only minimal training for the device’s initial two
layers is needed, leaving the server’s centralized deep neural network and the
compression layers for all existing devices untouched. Additionally, our findings
indicate that the peak accuracy attainable through our method approaches that
of the optimal accuracy achievable by the ideal Maximum Likelihood classifier,
outperforming traditional matrix decomposition-based techniques like Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Compared
to distance-metric-based strategies like Neighborhood Component Analysis (NCA),
our technique offers a marked reduction in training complexity for large datasets.
Experimental studies show that our approaches result in significant improvements
in classification accuracy under the same data-rate requirements compared to
existing linear dimensionality reduction approaches on real data sets.

1 INTRODUCTION

We are witnessing an unprecedented growth in the number of low-cost devices being deployed for
data collection at the network edge fueled by an Internet of Things (IoT) revolution El-Tawab et al.
(2017); Tapashetti et al. (2016); Payero et al. (2017). However, these edge devices typically have
limited computational resources, which makes it challenging to locally execute complex machine
learning algorithms for data processing. Consequently, it becomes essential to transmit the collected
information to a server with ample computational capability for further processing. Moreover, due
to both rate limitations at the low-cost devices and data-rate constraints of the wireless channel that
may be handling many concurrent transmissions, it becomes crucial for these devices to compress the
data prior to transmission in order to conserve bandwidth. The server can then efficiently process this
compressed data. The emphasis of this paper is on this process of data compression at the distributed
edge device, also known as dimensionality reduction at the network edge.

Among various dimensionality reduction methods, linear dimensionality reduction, which linearly
projects high-dimensional data onto a lower-dimensional space, is a popular choice due to its
computational efficiency and robustness against overfitting Goldberger et al. (2004). Given the
constrained computational capabilities of low-cost IoT devices, linear dimensionality reduction
emerges as a practical choice. Therefore, this study predominantly centers on leveraging this
technique to tackle classification challenges at the network edge.

A comprehensive survey of linear dimensionality reduction techniques can be found in Cunningham
& Ghahramani (2015). Among these techniques, matrix decomposition-based approaches, such as
Principal Component Analysis (PCA) Pearson (1901) and Linear Discriminant Analysis (LDA) Fisher
(1936), are the most well-known and widely adopted. Distance-metric based learning is also a widely

1

Under review as a conference paper at ICLR 2024

studied category of linear dimensionality reduction methods for classification. Notable examples
of distance-metric based learning approaches include Neighbourhood Components Analysis (NCA)
Goldberger et al. (2004) and Large Margin Nearest Neighbor (LMNN) Weinberger et al. (2005).
Alternative methods for linear dimensionality reduction include Canonical Correlations Analysis
(CCA) Hotelling (1992), Maximum Autocorrelation Factors (MAF) Larsen (2002), Slow Feature
Analysis (SFA) Wiskott & Sejnowski (2002), Independent Component Analysis (ICA) Stone (2002),
and many others.

In this paper, we introduce a novel imbalanced NN-based linear dimensionality reduction technique
tailored for distributed edge devices with low computational capability. The core concept of our
approach is the simultaneous training of a unique single-layer for each distributed device, determined
by its compression needs, coupled with a centralized deep neural network on the server for all-device
classification. This approach builds on the concept of split computing found in existing literature,
where edge devices deploy a streamlined NN for data compression to preserve communication
bandwidth Matsubara et al. (2022; 2019). On the one hand, we specialize to the case of linear
operations at the edge device (due to its limited computational capabilities). On the other hand, we
extend it to a tree-structured split computing that uses a shared server-side NN, combining input that
comes from distributed devices with varying compression levels (see Fig. 1).

To get clearer and more analyzable results, we first look at the special case where there is only a
single device in the network. Our results demonstrate that the peak accuracy attainable through our
imbalanced NN-based method approaches that of the optimal accuracy achievable by the ideal Maxi-
mum Likelihood (ML) classifier. Furthermore, we show that no nonlinear activation function should
be applied following the first fully-connected layer. We also revisit matrix decomposition-based
approaches and distance metric learning-based approaches. We delve into two widely employed
matrix decomposition-based techniques - Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) - and provide a theoretical analysis of their performance, which is shown to be
inferior in terms of accuracy compared to our proposed Neural Network (NN)-based method. Re-
garding the distance-metric based learning approaches such as Neighbourhood Components Analysis
(NCA), we demonstrate that our NN-based method offers considerably lower training complexity
when dealing with large datasets.

We then extend our design from the single-device scenario to accommodate a more generalized case
involving multiple distributed devices. In an effort to reduce server storage requirements and increase
the pool of training data without compromising data security, we advocate for the use of a singular,
centralized NN for classification across all dimensions, rather employing separate NNs for each
device. A standout feature of our approach is its adaptability: when integrating a new device aiming
to compress data in an untrained dimension, only minimal training for the first two layers of the new
device is needed, leaving the server’s centralized deep neural network and the compression layers for
all existing devices untouched. Notably, our strategy not only economizes on resources for training
but also minimizes disruption to the workflow of previously integrated devices.

Through rigorous experimental studies, we show that our methods yield significant improvements
in classification accuracy under identical data-rate constraints, compared to existing linear dimen-
sionality reduction approaches. These enhancements are evident across real-world datasets and are
applicable for both single-device and multiple-device scenarios.

2 SYSTEM MODEL AND PROBLEM STATEMENT

Consider a data classification framework deployed at the network edge, as illustrated in Fig. 1. There
are N edge devices that collect samples from the environment for classification purpose. Given the
constrained computational capabilities of the low-cost chip embedded in each edge device, local
classification is not feasible. Thus, these samples are transmitted to a edge compute server with a
high-performance computing cluster for subsequent classification. As highlighted in the introduction,
the constraints on data transmission rates mandate the compression of data before its transmission.
Furthermore, due to the diverse channel conditions encountered by various devices, the compression
rates differ among devices. Specifically, a device with good channel conditions might employ a less
aggressive compression rate, and vice versa. It is assumed that the raw samples harvested by all
devices share a common input dimension, but due to different compression rates, the compressed
data to be transmitted over the channel from different devices may have different dimensions. Once

2

Under review as a conference paper at ICLR 2024

Device 1 Device 2 Device 3 Device 𝑁
…

Collected Sample

Compressed Sample

Wireless Channel

Edge Server

𝑥1 ∈ ℝ
𝑚 𝑥2 ∈ ℝ

𝑚 𝑥3 ∈ ℝ
𝑚 𝑥𝑁 ∈ ℝ

𝑚

𝑧1 ∈ ℝ
𝑑1 𝑧2 ∈ ℝ

𝑑2 𝑧3 ∈ ℝ
𝑑3 𝑧𝑁 ∈ ℝ

𝑑𝑁

Classification Results:
ො𝑦1 = 𝑔 𝑧1
ො𝑦2 = 𝑔 𝑧2
ො𝑦3 = 𝑔 𝑧3
ො𝑦𝑁 = 𝑔 𝑧𝑁

Figure 1: System model for data classification at network edge.

the edge server receives the compressed data, a classification algorithm processes and classifies them
based on the compressed data received.

In this paper, we explore linear dimensionality reduction as the compression mechanism at the edge
devices, due to its low complexity and robustness characteristics (as discussed in the introduction).
Let xi denote a sample collected by source i (i = 1, 2, · · · , N). Assume there are L classes of
samples, and each xi has a corresponding label yi , where yi ∈ [L] ≜ {1, 2, · · · , L}. Let m denote
the dimension of the collected input sample, i.e., xi ∈ Rm for each i = 1, 2, · · · , N , and let di
denote the dimension after compression at device i, i.e., zi ∈ Rdi . Let Wi ∈ Rdi×m denote the linear
projection matrix at device i. Consequently, the compressed sample derived from xi, represented by
zi, is given by:

zi = Wixi, i = 1, 2, · · · , N. (1)
A classification algorithm at the server, denoted by g(·), uses the compressed samples for classification,
i.e.,

ŷi = g(zi), i = 1, 2, · · · , N, (2)
where ŷi is the classified label of the sample xi.

We assume that the classification tasks across all devices are uniform, meaning every sample should
be categorized into one of the L classes, just like the assumption in federated learning Li et al. (2020);
Zhang et al. (2021). While the classification objective remains constant, the classification algorithm
g(·) must accommodate varying input dimensions, namely, d1, d2, ... , dN .

We assume that each device i has a set of training samples and test samples, denoted by X train
i and

X test
i , and the corresponding sets of labels, denoted by Y train

i and Y test
i , respectively. The classification

accuracy in the training phase for device i is defined as

αtrain
i =

1

|X train
i |

∑
(xi,yi)∈(X train

i ,Y train
i)

1[g(Wixi) = yi]. (3)

And the average accuracy in the training phase for all devices is defined as

ᾱtrain =
1

N

N∑
i=1

αtrain
i . (4)

In the training phase, our target is to find the optimal Wi’s and g(·) that maximize ᾱtrain. After that,
we apply these Wi’s and g(·) to the test datasets, and the classification accuracy of the test set for
device i is given by

αtest
i =

1

|X test
i |

∑
(xi,yi)∈(X test

i ,Y test
i)

1[g(Wixi) = yi]. (5)

And the average accuracy in the test phase for all devices is defined as

ᾱtest =
1

N

N∑
i=1

αtest
i . (6)

3

Under review as a conference paper at ICLR 2024

Our final target is to find Wi’s and g(·) that maximize ᾱtest.

To solve this problem, in the rest of this paper, we will begin with the special case where there is only
a single device in the network. This approach will lay a foundational groundwork that shapes our
broader exploration. With insights from this special case, we will then transition to the distributed
devices context, ensuring that methodologies derived for a single device could be effectively extended
to accommodate multiple devices.

3 SINGLE-DEVICE CASE: AN IMBALANCED NN-BASED SOLUTION

Initially, we examine a specific where N = 1, indicating the presence of just a single device in the
network. For this particular scenario, in this section, we introduce a novel “Imbalanced NN-based”
approach to determine the dimensionality reduction matrix W and the classification algorithm g(·),
conduct theoretical analysis, and compare it with existing linear dimensionality reduction methods.

3.1 IMBALANCED NN-BASED APPROACH: BASIC FRAMEWORK

Fig. 2 presents an example framework for the imbalanced NN-based approach for a single device.
The framework consists of two components:

1. An m× d fully connected layer, which represents the linear dimensionality reduction matrix
W .

2. A deep neural network, embodying the non-linear classification algorithm g(·).

Since the complexity of the first component is much lower than that of the second component, we
refer to this design as “imbalanced.”

Imbalanced NN Training Operation: During the training phase, both W and g(·) are trained
together using the backpropagation algorithm and cross-entropy loss function, with input from xtrain

i ’s
and ytrain

i ’s. Upon convergence, W is isolated as the linear dimensionality reduction matrix and will
be deployed at the edge device.

It is important to note that the proposed framework does not dictate the specific design of the deep
neural network g(·). Essentially, g(·) can be any neural network with a minimum of two layers and
at least one non-linear activation function. In Fig. 2, we illustrate a particular design of the deep
neural network g(·), which consists of B blocks with identical structures: a series of Multilayer
Perceptrons (MLPs) featuring GELU activation Hendrycks & Gimpel (2016) and skip connections
He et al. (2016). This design draws inspiration from the MLP-Mixer Tolstikhin et al. (2021), which
has demonstrated state-of-the-art performance on manyof real-world datasets, compared with both
ResNets and Transformers. Unless otherwise stated, all numerical results in this paper are based on
the design depicted in Fig. 2.

It is also crucial to note that no non-linear activation function should follow the first fully connected
layer (represented by W). The rationale behind this design choice will be elaborated upon in the
subsequent section.

𝑥 𝑧
GELU … GELU

Skip connection Skip connection

Linear dimensionality
reduction 𝑾

Classification algorithm 𝑔(∙): Deep Neural Network

ො𝑦× 𝐵

Figure 2: An Example for Imbalanced NN-Based Linear Dimsionality Reduction for a single device.

4

Under review as a conference paper at ICLR 2024

3.2 GLOBAL OPTIMALITY

In this section, we analyze the global optimality of the imbalanced NN-based approach. We assume
the availability of infinite training and testing data. Under this assumption, both the training and
testing sets can be characterized by a Probability Density Function (PDF). Moreover, we assume that
the PDFs of the training and testing sets are identical. Consequently, the accuracy of the training and
testing sets are equal. The probability of label y given a data sample x is denoted as p(y|x), and the
PDF of class i is denoted by f(x|y = i).

We now investigate the global optimal accuracy over all feasible approaches (including a linear
dimensionality reduction to Rd and a general classification algorithm) without being limited to the
NN-based method. For any fixed W , the ideal (optimal) classification algorithm g(·) corresponds to
the Maximum Likelihood (ML) algorithm, expressed as:

gML(x) = argmax
y

p(y|Wx). (7)

The accuracy of this ML classifier can be represented as:

αML(W) =

∫
f(x) ·max

y
p(y|Wx) · dx. (8)

Consequently, the global optimal accuracy over all feasible approaches under a fixed d is given by:

α∗(d) = max
W

αML(W), W ∈ Rd×m. (9)

Returning to our NN-based approach, where the classification algorithm g(·) is a deep neural network,
let us denote α∗(d, gNN) as the global optimal accuracy when g(·) is constrained to a specific
neural network structure gNN (e.g., the neural network illustrated in Fig. 2). The following theorem
establishes the relationship between α∗(d, gNN) and α∗(d):

Theorem 1 If f(x|y = i) is continuous with respect to x for each i = 1, 2, · · · , L, then for any
ϵ > 0, there always exists a neural network structure gNN such that α∗(d, gNN) > α∗(d)− ϵ.

Theorem 1 indicates that the global optimal accuracy of the NN-based approach can be arbitrarily
close to the global optimal accuracy over all approaches. The underlying concept of this theorem
stems from the universal approximation ability of neural networks Cybenko (1989); Hornik et al.
(1989), which enables them to approximate the ML classifier when f(x|y = i) is continuous with
respect to x. A detailed proof of Theorem 1 is provided in the Appendix.

Now we discuss why a non-linear activation function should not follow the first fully connected layer.
Let α∗(d, σ, gNN) denote the global optimal accuracy when a non-linear activation function σ(·) is
applied after the first fully connected layer and is followed by a neural network gNN. The following
proposition states the relationship between α∗(d, σ, gNN) and α∗(d, gNN).

Proposition 1 For any activation function σ, we have max
gNN

α∗(d, σ, gNN) ≤ max
gNN

α∗(d, gNN).

The rationale behind Proposition 1 is that the neural network gNN can approximate any continuous
function, including the activation function σ. Therefore, the activation function σ cannot enhance the
global optimal accuracy. On the other hand, activation functions applied to the reduced-dimension
data z might be unrecoverable by the neural network gNN, potentially degrading performance. For
instance, with the ReLU activation, the negative part of the signal is irretrievable. A proof of
Proposition 1 is provided in the Appendix. Numerical results in Appendix D will validate the intuition
that some non-linear activation functions may worsen the performance.

It is important to note that although the global optimal accuracy achieved by our imbalanced NN-
based method can be arbitrarily close to the global optimal accuracy attainable by all other feasible
approaches, this does not guarantee that the backpropagation algorithm will converge to the global
optimum, as the cost function is generally non-convex so the algorithm may converge to local
minimums or saddle points, as is predominantly the case for other classification algorithms.

5

Under review as a conference paper at ICLR 2024

3.3 COMPARISON WITH MATRIX DECOMPOSITION BASED APPROACHES

Matrix decomposition-based methods are traditionally favored for linear dimensionality reduction
due to their computational efficiency and straightforward geometric interpretations. The two most
widely adopted matrix decomposition-based approaches are Principal Component Analysis (PCA)
Pearson (1901) and Linear Discriminant Analysis (LDA) Fisher (1936).

Despite the widespread use of PCA and LDA for linear dimensionality reduction, their application in
our edge classification problem often results in significantly lower classification accuracy compared
to our imbalanced NN approach. This claim will be substantiated by numerical results on various
real-world datasets in Section 5.

From the theoretical perspective, let us revisit Theorem 1. The global optimal accuracy of the
NN-based approach can approach α∗(d) (the global optimal accuracy over all methods), as the NN
classifier gNN has the capacity to approximate the ideal (Maximum Likelihood) classifier. However,
for PCA or LDA, even if the classifier g(·) is ideal, the accuracy may still fall short of α∗(d). This is
due to the fact that the linear projection of PCA or LDA may degrade the accuracy compared to the
optimal projection. Illustrative examples are given in Appendix.

3.4 COMPARISON WITH DISTANCE-METRIC BASED LEARNING APPROACHES

Distance-metric based learning is also a widely studied category of linear dimensionality reduction
methods for classification. These methods aim to optimize the matrix W in order to improve
certain objectives within the training data, based on the Mahalanobis distance dW (xtrain

i , xtrain
j) =

||Wxtrain
i −Wxtrain

j ||22. They typically utilize gradient-descent based optimization algorithms for
training. Notable examples of distance-metric based learning approaches include Neighbourhood
Components Analysis (NCA) Goldberger et al. (2004), Large Margin Nearest Neighbor (LMNN)
Weinberger et al. (2005), and others. NCA optimizes the leave-one-out KNN score on the training
set, and it often outperforms PCA and LDA in terms of classification accuracy on many real-world
datasets.

However, distance-metric based learning approaches have a significant drawback - their training
complexity is considerably high, particularly with large datasets. This is due to their objective function
incorporating the distance between any two samples in the training set, leading to a total of N2

train−Ntrain

2

distance metrics and rendering the complexity for each training iteration at least proportional to N2
train.

Even faster variants, such as Fast Neighbourhood Components Analysis (FNCA) Yang et al. (2012),
still require computing of all the distance metrics, thereby maintaining a complexity proportional to
N2

train. Although training is executed on the server side, the process can be overly time-consuming
when dealing with large datasets.

In contrast, our proposed imbalanced NN approach uses backpropagation to train the neural network,
resulting in a complexity per iteration that is linear with Ntrain. Thus, it is evident that for large
datasets, the imbalanced NN approach’s training complexity is significantly lower than that of
distance-metric based learning approaches.

When it comes to accuracy performance, as demonstrated in Section 5, our imbalanced NN approach
displays a slightly superior accuracy to distance-metric based learning approaches on real data sets.

4 MULTI-DEVICE CASE: A DISTRIBUTED APPROACH

Having established the imbalanced NN-based approach for a single device, we now aim to extend
this method to accommodate an edge network comprising N devices, as in the scenario depicted in
Fig. 1. Each of these devices has its distinct compression dimension di.

The basic approach for this extension would be to train N distinct NNs, a different one for each edge
device that is tailored for its particular compression dimension di. While this strategy is feasible, it is
accompanied by a couple of challenges:

1. Storing N separate, large-scale NNs on the server would consume substantial storage,
proving to be resource-intensive.

6

Under review as a conference paper at ICLR 2024

2. In this strategy, training processes for the NN of each device are isolated. If devices
choose not to share their training data with one another due to privacy implications, it could
compromise the training efficacy, possibly leading to insufficient training data.

To address these challenges, we advocate for the utilization of a common deep neural network to
serve as the classifier for all devices, as illustrated in Fig.3. It is crucial to understand that this single
NN is designed to manage multiple input dimensions, namely d1, d2, · · · , dN . Consequently, the
first layer of this single NN acts as a transition layer, converting these diverse input dimensions to
a uniform dimension a, as shown in Fig.3. Additionally, as indicated by Proposition 1, there is no
requirement for any activation function preceding the transition layer.

…

fc,
𝑑2 × 𝑎

fc,
𝑑1 × 𝑎

fc,
𝑑3 × 𝑎

𝑾1 𝑾2 𝑾𝑁

Classification algorithm 𝑔(∙)

𝑥1 𝑥2 𝑥𝑁

𝑧1 𝑧2 𝑧𝑁

DNN
𝑎

Figure 3: An Example for Imbalanced NN for multiple devices.

Training for Multiple Devices: Just like the single-device case, in the training phase for multiple
distributed devices, the classification algorithm g(·) and the linear compression matrices Wi’s are
trained together. In each training iteration, every device updates its compressed samples based on its
respective compression matrix, Wi. Subsequently, the server deploys backpropagation to calculate
the gradients for both g(·) and Wi matrices. It then returns the gradients of Wi for each device i
via a downlink channel, facilitating the update of its local weights. For the purpose of optimizing
aggregate accuracy, the server requires data from all devices in every iteration (or batch) to ascertain
the gradients. Throughout this procedure, samples from all devices jointly aid in updating the weights
for the classification algorithm g(·), ensuring that no information is inadvertently shared among the
devices.

In contrast to training N separate NNs for each device, the above procedure offers dual benefits: (i) it
decreases storage demands on the server, and (ii) it augments the volume of training data without
risking data leakage. As showcased in Section 5, this method yields similar accuracy performance
comparable to that of training N individual NNs for every device.

Integrating New Device with Untrained Dimension: In practical network environments, it is typical
for new devices to join or for existing ones to depart. Ensuring a seamless integration for these new
devices is paramount from a systems perspective.

If the incoming device possesses a compression dimension identical to one already in the network,
the integration process becomes relatively straightforward. The new device can simply request and
duplicate the compression matrix from its existing counterpart. Challenges arise, however, when
the new device seeks to compress its sample to a dimension that has not been trained for. One
straightforward but inefficient solution is to re-train the entire network for all devices, consequently
deriving new Wi’s and g(·). This method, aside from being resource-intensive, also disrupts the
operational flow of established devices.

Fortunately, a more streamlined solution is at our disposal to tackle this challenge. Let’s assume
we’ve already established an imbalanced NN framework accommodating multiple dimensions d1, d2,
· · · , dN . When a new device with an untrained dimension dN+1 comes into play, we can maintain
the g(·) and the Wi’s of all pre-existing devices as they are. The adjustment would involve solely
re-training two layers (m× dN+1 and dN+1 × a) specific to the new device. The feasibility of this
approach hinges on the fact that the current g(·) has effectively assimilated generalized classification
information across various dimensions and can aptly extend this knowledge to a fresh dimension. As

7

Under review as a conference paper at ICLR 2024

evidenced by the numerical findings in Section 5, training just these two layers for the new device
achieves an accuracy level that is close to the outcome of training the entire NN with the new device.

5 NUMERICAL RESULTS

In this section, we assess the performance of our Imbalanced NN-based approach on real-world
datasets, spanning both single-device and multiple-device scenarios. Due to space limitation, we
show the results for the Extended Yale Face Database B Belhumeur et al. (1997) in the main text, and
leave the results for the MNIST handwritten digits LeCun (1998) in the Appendix.

5.1 EXPERIMENT SETUP

All experiments in this section were conducted using an NVIDIA RTX 3090 GPU and an Intel Core
i7-12700 CPU. The programming was done in Python 3.9 and Pytorch 2.0.

We do numerical study on The Extended Yale face data set, which contains 2414 frontal images of
38 subjects Belhumeur et al. (1997), i.e., about 64 images for each person. All the face images are
cropped and resized to 32x32 pixels, following Cai et al. (2007). We divide the dataset using a 75/25
split for training and testing, respectively. For this dataset, the parameters for the imbalanced NN
approach shown in Fig. 2 are set as follows: m = 1024, a = 500, b = 2000, B = 8, and L = 38. To
train the neural networks, we utilize the SGD optimizer with a learning rate of 0.001, a batch size of
32, a weight decay of 0.0001, and a momentum of 0.9. The network is trained over 100 epochs.

At the device side, we simulate four linear dimensionality reduction algorithms, which include the
imbalanced NN-based approach, PCA, LDA, and NCA. The implementation of the imbalanced
NN-based linear dimensionality reduction adheres to the design depicted in Fig. 2. We implement
NCA based on Scikit-learn Scikit-learn using the default parameters.

Note that our imbalanced NN approach can be used specifically to generate the linear projection matrix
Wi’s, and subsequently the obtained projection can be employed to train alternative classification
algorithms aside from Deep Neural Network (DNN). Therefore, at the server side, we simulate three
classification algorithms (represented by g(·) in Fig. 1). These include DNN, Random Forest (RF),
and K-Nearest Neighbors (KNN). For DNN, we use the design illustrated in Fig. 2. For RF, we use a
forest comprised of 100 trees. For KNN, we use a configuration of k = 10 neighbors.

Dimensionality Classification Algorithm
Reduction DNN RF KNN

When d = 20
Imbalanced-NN (5.86, 1.54) (8.18, 1.34) (8.21, 0.76)

NCA (19.00, 1.19) (16.39, 0.54) (12.25, 0.00)
PCA (13.31, 0.80) (22.81, 0.74) (61.42, 0.00)
LDA (19.44, 1.31) (17.02, 0.67) (12.25, 0.00)

When d = 8
Imbalanced-NN (8.18, 0.36) (10.50, 0.48) (9.87, 0.97)

NCA (29.44, 0.96) (27.62, 0.80) (23.51, 0.00)
PCA (38.27, 1.31) (57.98, 0.45) (84.77, 0.00)
LDA (38.60, 0.84) (33.81, 0.86) (29.97, 0.00)

Table 1: Test error rate on Extended Yale Face
Database B for the single-device case. Data
format: (mean (%), standard deviation).

5 10 15 20

d

0

20

40

60

80

100

T
e
s
t
E

rr
o
r

R
a
te

 (
%

)

PCA

LDA

NCA

Imbalanced NN

Figure 4: Test error rate on Extended Yale Face
Database B with DNN classification algorithm for
the single-device case. Every curve is the median
of 5 independent runs.

5.2 RESULTS FOR SINGLE-DEVICE CASE

We first evaluate the performance of the imbalanced NN under the single-device special case. Table 1
shows the test classification error rate on Extended Yale Face Database B when d = 20 and d = 8
under different dimensionality reduction algorithms (imbalanced NN, NCA, PCA, and LDA) and
different classification algorithms (DNN, RF, and KNN). The mean and standard deviation values
are derived from five independent runs for each simulation. We can observe that, for both d = 20
and d = 8, regardless of the classification algorithm used, the average error rate when employing our

8

Under review as a conference paper at ICLR 2024

proposed imbalanced NN approach is significantly lower than those associated with NCA, PCA, and
LDA. Particularly striking is the observation that, even under KNN classification–NCA’s primary
domain–our imbalanced NN approach outperforms NCA. Fig. 4 shows the test classification error rate
on Extended Yale Face Database B for d ∈ {4, 6, 8, 10, 15, 20} with DNN classification algorithm.
We can observe that the imbalanced NN outperforms NCA, PCA, and LDA in terms of test error rate.

5.3 RESULTS FOR MULTIPLE-DEVICE CASE

In the multi-device scenario, we study a network consisting of N = 3 devices with distinct input
dimensions: d1 = 4, d2 = 6, and d3 = 10. A common deep neural network serves as the classifier,
accommodating these diverse dimensions, as depicted in Fig. 3. For comparative analysis, we also
construct three individual imbalanced NNs, each optimized for its unique dimension di. Additionally,
we benchmark against other linear dimensionality reduction methods (NCA, PCA, and LDA) under
the same DNN classifier. We conduct five independent runs for each simulation and calculate the
mean and standard deviation values. As presented in Table 2, the test classification error rates for
the three devices demonstrate that a common DNN classifier yields performance comparable to
three separate NNs, and it surpasses other conventional linear techniques. Considering the storage
efficiency and augmented training data without sacrificing data privacy, using a common NN emerges
as the recommended choice.

Dimensionality Device 1 Device 2 Device 3
Reduction d1 = 4 d2 = 6 d3 = 10

Imbalanced-NN (19.43, 2.48) (11.26, 1.75) (7.55, 0.76)(1 common NN)
Imbalanced-NN (19.54, 2.66) (11.32, 2.52) (7.58, 2.03)(3 distinct NNs)

NCA (37.45, 0.74) (32.78, 0.39) (26.69, 0.34)
PCA (87.72, 0.62) (57.95, 0.67) (29.04, 1.83)
LDA (52.12, 0.56) (42.68, 0.54) (30.40, 0.82)

Table 2: Test error rate on Extended Yale Face
Database B for the multiple-device case. Data
format: (mean (%), standard deviation).

Dimensionality Device 4 Device 5 Device 6
Reduction d4 = 5 d5 = 8 d3 = 15

Imbalanced-NN (13.35, 1.05) (9.31, 0.71) (7.85, 0.60)(re-train 2 layers)
Imbalanced-NN (13.04, 0.96) (8.44, 0.85) (7.25, 0.49)(re-train entire NN)

NCA (33.44, 0.60) (29.56, 0.98) (21.76, 0.80)
PCA (75.89, 1.52) (38.33, 1.49) (18.18, 0.73)
LDA (45.69, 0.87) (38.60, 0.84) (22.61, 1.25)

Table 3: Test error rate on Extended Yale Face
Database B when integrating a new device into
an existing network. Data format: (mean (%),
standard deviation).

Then we evaluate our algorithm’s capability when integrating a new device with a previously untrained
dimension. As per the prior experiment (refer to Table 2), we train a common NN that accommodates
three devices with dimensions d1 = 4, d2 = 6 and d3 = 10. Subsequently, we introduce three new
devices with dimensions d4 = 3, d5 = 8 and d6 = 15—all of which represent untrained dimensions.
To integrate these devices, we apply the strategy detailed in Section 4: specifically, re-training only
the initial two layers of the NN for each new device while leaving the g(·) and the Wi’s of the existing
devices untouched. For comparison, we also entirely re-train the entire NN to accommodate all
devices, both old and new, and further juxtapose this against traditional linear methods (NCA, PCA,
and LDA) with a DNN classifier. The results, presented in Table 2, reveal that simply re-training
the initial two layers for each new device offers comparable performance to a full re-training, and
outperforms standard linear approaches. Given its resource efficiency and the minimized disruption
to established devices, this partial re-training strategy stands out as the optimal choice.

6 CONCLUSION

This paper introduces a linear dimensionality reduction method specifically designed for distributed
edge devices. It addresses challenges like data-rate limitations and computational constraints on
the device side while optimizing classification accuracy on the server end. In the context of a
single-device scenario, our proposed imbalanced NN-based approach outperforms conventional
linear dimensionality reduction techniques, both analytically and numerically. When extended to
multiple devices, our methodology employs a unified, centralized NN for classification across varied
dimensions, offering advantages in reduced server storage and expanded training data access without
sacrificing data security. Furthermore, our framework can seamlessly incorporate new devices
with previously untrained dimensions, requiring only minimal retraining and without affecting the
operations of existing devices.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Peter N. Belhumeur, Joao P. Hespanha, and David J. Kriegman. Eigenfaces vs. fisherfaces: Recogni-
tion using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):711–720, 1997.

Deng Cai, Xiaofei He, and Jiawei Han. Spectral regression for efficient regularized subspace learning.
In 2007 IEEE 11th international conference on computer vision, pp. 1–8. IEEE, 2007.

John P Cunningham and Zoubin Ghahramani. Linear dimensionality reduction: Survey, insights, and
generalizations. The Journal of Machine Learning Research, 16(1):2859–2900, 2015.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Samy El-Tawab, Raymond Oram, Michael Garcia, Chris Johns, and B Brian Park. Data analysis of
transit systems using low-cost iot technology. In 2017 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom Workshops), pp. 497–502. IEEE, 2017.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7
(2):179–188, 1936.

Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neighbourhood
components analysis. Advances in neural information processing systems, 17, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Harold Hotelling. Relations between two sets of variates. Breakthroughs in statistics: methodology
and distribution, pp. 162–190, 1992.

Rasmus Larsen. Decomposition using maximum autocorrelation factors. Journal of Chemometrics:
A Journal of the Chemometrics Society, 16(8-10):427–435, 2002.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Yoshitomo Matsubara, Sabur Baidya, Davide Callegaro, Marco Levorato, and Sameer Singh. Distilled
split deep neural networks for edge-assisted real-time systems. In Proceedings of the 2019
Workshop on Hot Topics in Video Analytics and Intelligent Edges, pp. 21–26, 2019.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting
for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55(5):
1–30, 2022.

José O Payero, Ali Mirzakhani-Nafchi, Ahmad Khalilian, Xin Qiao, and Rebecca Davis. Development
of a low-cost internet-of-things (iot) system for monitoring soil water potential using watermark
200ss sensors. Advances in Internet of Things, 7(3):71–86, 2017.

Karl Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

Scikit-learn. Neighborhoodcomponentsanalysis. URL https://
scikit-learn.org/stable/modules/generated/sklearn.neighbors.
NeighborhoodComponentsAnalysis.html. Accessed: 2023-05-16.

10

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NeighborhoodComponentsAnalysis.html

Under review as a conference paper at ICLR 2024

James V Stone. Independent component analysis: an introduction. Trends in cognitive sciences, 6(2):
59–64, 2002.

Akshata Tapashetti, Divya Vegiraju, and Tokunbo Ogunfunmi. Iot-enabled air quality monitoring
device: A low cost smart health solution. In 2016 IEEE Global Humanitarian Technology
Conference (GHTC), pp. 682–685. IEEE, 2016.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Kilian Q Weinberger, John Blitzer, and Lawrence Saul. Distance metric learning for large margin
nearest neighbor classification. Advances in neural information processing systems, 18, 2005.

Laurenz Wiskott and Terrence J Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural computation, 14(4):715–770, 2002.

Wei Yang, Kuanquan Wang, and Wangmeng Zuo. Fast neighborhood component analysis. Neuro-
computing, 83:31–37, 2012.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 PROOF OF THEOREM 1

We assume that f(x|y = i) is continuous with respect to x for each i = 1, 2, · · · , L, and ϵ > 0 is
given. We consider a neural network structure gNN with L output neurons gNN

1 , gNN
2 · · · , gNN

L , and let
gNN
i (x) denote the output value of the i-th neuron when the input is x. Let W ∗ denote the global

optimal projection matrix of the Maximum Likelihood classifier, i.e.,

W ∗ = argmax
W

αML(W), W ∈ Rd×m. (10)

For each i = 1, 2, · · · , L, since f(x|y = i) is continuous with respect to x, the PDF of W ∗x, denoted
by f(W ∗x|y = i), is also continuous with respect to x. From Bayes’ Theorem, we have

f(W ∗x) · p(y = i|W ∗x) = p(y = i) · f(W ∗x|y = i). (11)

When f(W ∗x) = 0, the value of p(y = i|W ∗x) becomes undefined, but it does not influence the
classification outcome. When f(W ∗x) > 0, based on equation 11, it follows that p(y = i|W ∗x) is
continuous with respect to x. Then, based on the Universal Approximation Theorem, there exists a
neural network gNN,0

i (x), such that for any x with f(W ∗x) > 0, we have

|gNN,0
i (x)− p(y = i|W ∗x)| < ϵ. (12)

That is, there exists a neural network gNN,0
i (x) that can approximate the continuous function p(y =

i|W ∗x) with an error upper-bounded by ϵ.

For the imbalanced NN classifier, the classification result is

gNN,0(x) = argmax
y

gNN,0
i (x). (13)

Let X denote the domain of x. Then the overall classification accuracy of the imbalanced NN
classifier is given by

α(d, gNN,0) =

∫
x∈X

f(x)max
y

gNN,0
i (x)dx. (14)

Plugging 12 into equation 14 and considering equation 8, we have

α(d, gNN,0) >

∫
x∈X

f(x)max
y

(p(y = i|W ∗x)− ϵ)dx = α∗(d)− ϵ. (15)

Since α∗(d, gNN) ≥ α(d, gNN,0), we have α∗(d, gNN) > α∗(d)− ϵ. This completes our proof. ■

A.2 PROOF OF PROPOSITION 1

Assume max
gNN

α∗(d, σ, gNN) is achieved by an activation function σ∗ applied after the the first

fully-connected layer and followed by a K-layer neural network gNN
K , i.e., max

gNN
α∗(d, σ, gNN) =

α∗(d, σ∗, gNN
K). Then we consider a (K + 1)-layer neural network gNN

K+1, where the first layer is an
an identity mapping followed by an activation function σ∗, and the remaining K layers are identical
to gNN

K . Let α∗(d, gNN
K+1) denote the the accuracy of gNN

K+1 when there is no after the the first fully-
connected layer in our Imbalanced NN approach. Then it is clear that α∗(d, gNN

K+1) = α∗(d, σ∗, gNN
K).

Considering α∗(d, gNN
K+1) ≤ max

gNN
α∗(d, gNN), we have max

gNN
α∗(d, σ, gNN) ≤ max

gNN
α∗(d, gNN). This

completes our proof. ■

A.3 EXAMPLES FOR SUBOPTIMALITY OF PCA AND LDA

Fig. 5 presents two examples where PCA or LDA yield suboptimal results. In each figure, we generate
2-dimensional data uniformly distributed within each rectangle, and the labels of the data are indicated
by different colors. In Fig. 5a, PCA projects the data onto the y-axis, which is the optimal projection.
However, LDA disapproves of this projection because it causes the two purple blocks to be too distant

12

Under review as a conference paper at ICLR 2024

LDA
Accuracy: 83.3%

PCA, Imbalanced NN
Accuracy: 100%

(a) Example 1: LDA is suboptimal.

LDA, Imbalanced NN
Accuracy: 100%

PCA
Accuracy: 50%

(b) Example 2: PCA is suboptimal.
Figure 5: Examples to show the suboptimality of PCA and LDA.

from each other, leading to a large within-class variability. Although this within-class variability does
not affect the classification accuracy, LDA rejects it, preferring instead to project the data onto the
x-axis, thereby bringing the purple blocks closer together. However, this projection causes an overlap
between the yellow block and the purple blocks, reducing the classification accuracy from 100% to
83.3%. On the other hand, Fig. 5b illustrates an example where LDA is optimal, while PCA falls
short. The reason for PCA’s suboptimal performance is straightforward: it entirely disregards the
label information. As comparison, our proposed imbalanced NN-based approach, after fine-tuning,
can achieve 100% accuracy in both examples, which surpasses the performance of both PCA and
LDA.

A.4 NUMERICAL RESULTS FOR MNIST DATASET

In this section, we evaluate the performance of the imbalanced NN approach for the single-device
case on the MNIST dataset of handwritten digits LeCun (1998) to validate the imbalanced NN can
outperform existing linear methods. The dataset consists of 60,000 training images and 10,000
test images, each image being 28 × 28 pixels in size. Every image in MNIST is assigned a label
yi ∈ 0, 1, · · · , 9. For this dataset, the parameters for the imbalanced NN approach shown in Fig. 2
are set as follows: m = 784, a = 500, b = 1000, B = 9, and L = 10. To train the neural networks,
we utilize the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 0.01, a batch size
of 128, a weight decay of 0.0001, and a momentum of 0.9. The network is trained over 50 epochs.

Table 4 shows the test classification error rate on MNIST when d = 9 under different dimensionality
reduction algorithms (imbalanced NN, PCA, and LDA) and different classification algorithms (DNN,
RF, and KNN). The mean and standard deviation values are derived from five independent runs for
each simulation. We can observe that, regardless of the classification algorithm used, the average
error rate when employing our proposed imbalanced NN approach is significantly lower than those
associated with PCA and LDA.

Fig. 6 shows the test classification error rate on MNIST for d ∈ {3, 5, 7, 9, 15, 20}, with DNN
classification algorithm. Note that LDA requires d < L = 10, so it cannot be applied when d = 15 or
d = 20. We can observe that the error rate decreases as d increases for each curve. Moreover, given
the same value of d, the imbalanced NN outperforms PCA and LDA in terms of the test error rate.

Dimensionality Classification Algorithm
Reduction DNN RF KNN

Imbalanced-NN (3.92, 0.14) (4.90, 0.12) (3.81, 0.46)
PCA (7.15, 0.23) (9.86, 0.12) (8.35, 0.00)
LDA (8.05, 0.22) (8.57, 0.11) (8.00, 0.00)

Table 4: Test error rate on MNIST when d = 9 un-
der different dimensionality reduction algorithms.
Data format: (mean (%), standard deviation).

Activation Classification Algorithm
Function DNN RF KNN

No activation (3.92, 0.14) (4.90, 0.12) (3.81, 0.46)
GELU (4.68, 0.18) (5.35, 0.22) (4.47, 0.19)
ReLU (4.56, 0.22) (5.27, 0.12) (4.37, 0.17)

Sigmoid (4.74, 0.31) (4.60, 0.19) (4.24, 0.19)

Table 5: Test error rate on MNIST when d =
9 for Imbalanced NN with different activation
functions. Data format: (mean (%), standard
deviation).

13

Under review as a conference paper at ICLR 2024

5 10 15 20

d

0

10

20

30

40

50

T
e
s
t
E

rr
o
r

R
a
te

 (
%

) PCA

LDA

Imbalanced NN

Figure 6: Test error rate on MNIST under differ-
ent d’s with DNN classification algorithm. Every
curve is the median of 5 independent runs.

3 5 7 9

d

0

10

20

30

40

50

T
e
s
t
E

rr
o
r

R
a
te

 (
%

) PCA

LDA

NCA

Imbalanced NN

Figure 7: Test error rate on Small-MNIST under
different d’s with KNN classification algorithm.
Every curve is the median of 5 independent runs.

Table 4 presents the test error rate on the MNIST dataset for the imbalanced NN approach using
different activation functions: no activation, GELU, ReLU, and Sigmoid, with a dimensionality of
d = 9. The lowest mean error rate is achieved when no activation function is applied, validating
Proposition 1.

Our attempt to train NCA on the complete MNIST dataset (containing 60,000 images) resulted in a
memory overflow due to its substantial space complexity. Therefore, to evaluate NCA’s performance,
we select a subset of 10,000 images from the MNIST dataset as the training set (termed as Small-
MNIST) and use the original test set (comprising 10,000 images).

Fig. 7 illustrates the test classification error rate on Small-MNIST under different dimensions
d ∈ 3, 5, 7, 9, employing the KNN classification algorithm. Although NCA outperforms both PCA
and LDA, our proposed imbalanced NN approach shows a slight edge over NCA. Considering that
NCA was originally developed for KNN classification, it is notable that the imbalanced NN approach
slightly outperforms NCA in its area of specialization.

14

	Introduction
	System Model and Problem Statement
	Single-Device Case: An Imbalanced NN-Based Solution
	Imbalanced NN-Based Approach: Basic Framework
	Global Optimality
	Comparison with Matrix Decomposition Based Approaches
	Comparison with Distance-Metric Based Learning Approaches

	Multi-Device Case: A Distributed Approach
	Numerical Results
	Experiment Setup
	Results for Single-Device Case
	Results for Multiple-Device Case

	Conclusion
	Appendix
	Proof of Theorem 1
	Proof of Proposition 1
	Examples for Suboptimality of PCA and LDA
	Numerical Results for MNIST Dataset

