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ABSTRACT

Models leveraging both visual and textual data such as Contrastive Language-
Image Pre-training (CLIP), are the backbone of many recent advances in artifi-
cial intelligence. In this work, we show that despite their versatility, such mod-
els are vulnerable to what we refer to as fooling master images. Fooling master
images are capable of maximizing the confidence score of a CLIP model for a
significant number of widely varying prompts, while being either unrecognizable
or unrelated to the attacked prompt for humans. We demonstrate how fooling
master images can be mined using stochastic gradient descent, projected gradi-
ent descent, or gradient-free optimisation. Contrary to many common adversarial
attacks, the gradient-free optimisation approach allows us to mine fooling exam-
ples even when the weights of the model are not accessible. We investigate the
properties of the mined fooling master images, and find that images trained on a
small number of image captions potentially generalize to a much larger number of
semantically related captions. Finally, we evaluate possible mitigation strategies
and find that vulnerability to fooling master examples appears to be closely related
to a modality gap in contrastive pre-trained multi-modal networks.

1 INTRODUCTION

In recent years, contrastively trained multi-modal approaches such as Contrastive Language-Image
Pre-training (CLIP; |[Radford et al., [2021)) have increasingly gained importance and form the back-
bone of many recent advances in artificial intelligence. Among numerous useful applications, they
constitute a powerful approach to perform zero-shot learning and play an important role in state-
of-the-art text-to-image generators (Rombach et al., [2022). Yet, recent work raises the question of
robustness and safety of CLIP-trained models. For example, |Qiu et al.[(2022) find that CLIP and re-
lated multi-modal approaches are vulnerable to distribution shifts, and several research groups have
successfully mounted adversarial attacks against CLIP (Noever & Miller Noever, 2021 |Daras &
Dimakis, |2022; |Goh et al., 2021)). In this paper we show for the first time that, despite their power,
CLIP models are vulnerable towards fooling master images, or what we refer to as CLIPMaster-
Prints, and that this vulnerability appears to be closely related to a modality gap between text and
image embeddings (Liang et al., [2022).

CLIPMasterPrints are capable of maximizing the confidence score of a CLIP model for a broad
range of widely varying prompts, while for humans they appear unrecognizable or unrelated to the
prompt. This ability can effectively result in the master example being chosen over actual objects of
a class when being compared to each other by the attacked model. Thus a potential attacker needs
to only mine a single fooling image to target a significant range of classes and captions processed
by the attacked model. The existence of such images raises interesting questions on the efficacy and
safety of multi-modal approaches to zero-shot prediction.

Our contributions are as follows: we introduce fooling master examples for contrastive multi-modal
approaches and show that they can be mined using different techniques with different trade-offs: (1)
A stochastic gradient descent (SGD) approach, which is highly performant but requires knowledge
of the model weights. (2) A gradient-free approach based on the family of Latent Variable Evolu-
tion (LVE; Bontrager et al.l 2018} Volz et al.||2018) attacks, which does not have that limitation, but
operates on a reduced search space and requires more iterations to achieve good results. (3) As both
approaches can not be integrated into existing natural images, we also mine using a third approach
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Figure 1: Heatmap of CLIP-assigned cosine similarities of famous artworks and their titles, as well
as a random noise baseline (second from right) and our found fooling master images for SGD, LVE
and PGD approaches (marked with red frame) as returned by a pre-trained CLIP model. The mined
fooling examples outperform all artworks in terms of CLIP score and can therefore fool the model
for all targeted titles shown.

based on projected gradient descent (PGD; [Kurakin et al.| 2016b; Madry et al., 2017), which pro-

duces more natural-looking fooling images, but again requires the model’s weights. While all three
techniques have been used in variation in different contexts before, our emphasis in this work is on
the results and insights we obtain, and their subsequent analysis: We find that the mined fooling
examples tend to generalize to non-targeted prompts that are textually related to targeted prompts.
In connection with the wide application of CLIP models and the fact that we find more recent similar
approaches [Li et al.| (2022)); [Zhai et al.| (2023)) to be vulnerable as well, this generalization effect
adds to the gravity of the attack. Furthermore, we demonstrate that mitigating the modality gap in-
herent to contrastive multi-modal models is also an effective counter-strategy to
reduce the effectiveness of mined fooling master images. Consequentially, our results point towards
a strong connection between a vulnerability to fooling master images and a modality gap between
text and image embeddings and thus opens up interesting future research directions, in finding even
more effective mitigation strategies for both phenomena.

2 RELATED WORK

The notion of fooling examples was originally introduced by Nguyen et al.|(2015), in which the
authors generate fooling examples for individual classes for convolutional neural network (CNN)
classifiers using genetic algorithms and compositional pattern producing net-
works 2007). In later work, [Alcorn et al.| (2019) showed that CNNs can even be easily

fooled by familiar objects in different and out-of-distribution poses. The main difference to our
work is that the authors generate images that are misclassified as just one concrete class, while our
images fool the network with respect to many classes or prompts.

Adversarial examples and adversarial learning (Chakraborty et al.,[2018;[Ozdag}, 2018}, [Akhtar et al.}
2021)) are closely related to generating fooling examples, where usually adversarial examples can
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be disguised as regular images. The gradient-based approaches we apply in this paper are related
to a number of popular gradient-based adversarial attacks, foremost the fast gradient sign and PGD
methods (Goodfellow et al., 2014bj [Kurakin et al.| |2016ajb; [Madry et al.l [2017)). Contrary to how
these attacks are usually applied though, we optimize a loss function targeting many classes/prompts
in parallel by minimizing an extremum objective (the negative minimum cosine similarity), and our
maximally permitted adversarial perturbations are significantly higher than common for adversarial
attacks since our proposed attack is intrinsically an off-manifold attack.

A similar objective in an adversarial context is minimized by |Enevoldsen et al.[(2023), who optimize
the maximum logit of a neural classifier to generate adversarial examples for False Novelty and False
Familiarity attacks in open-set recognition. Contrary to our work though, the aim of the optimization
process is to increase or decrease the score of individual classes rather than many classes at once.

Bontrager et al.[(2018) introduced the concept of latent variable evolution (LVE). The authors use
the Covariance Matrix Adaption Evolution Strategy (CMA-ES) to perform stochastic search in the
generator latent space of a Generative Adversarial Network (GAN) Goodfellow et al.|(2014a; [2020)
to create deep master prints. Deep master prints are synthetic fingerprint images which match large
numbers of real-world fingerprints, thus undermining the security of fingerprint scanners. Contrary
to the approach of [Bontrager et al.|(2018), we use the decoder of a variational autoencoder (VAE)
Kingma & Welling|(2013)) to generate images from latents.

A number adversarial attacks by means of text patches and adversarial pixel perturbations have
been performed on contrastively pre-trained multi-modal networks (Noever & Miller Noever, |2021};
Daras & Dimakis| [2022; [L1 et al., [2021}; |Goh et al.| [2021) Attacks on the text encoding were in-
vestigated by Daras & Dimakis| (2022)), where the authors show that one is able to generate images
using nonsense-phrases in DALL-E 2. We believe this phenomena to be related to the issue of the
modality gap between text and image embeddings, upon which our work builds. This modality gap
in contrastively pre-trained multi-modal approaches has been documented originally by [Liang et al.
(2022), showing that the gap is caused by the inductive bias of the transformer architecture and
reinforced by training a contrastive loss. While Liang et al.| (2022) explicitly do not classify modal-
ity gaps as either beneficial or detrimental to a models performance, in our work we find that with
respect to the vulnerability to off-manifold attacks, the modality gap should be mitigated. Nukrai
et al.| (2022)) come to a similar conclusion upon finding that the modality gap causes instability when
training a text decoder from CLIP embeddings.

Finally, in terms of the robustness of multi-modal neural networks |Qiu et al| (2022) conducted
an extensive evaluation of CLIP and CLIP-based text-to-image systems, where they come to the
conclusion that CLIP and its derivatives are not robust with respect to distribution shifts.

3 APPROACH: CLIPMASTERPRINTS

We generate fooling images for a given model Cy, which has been trained using CLIP, to indicate
how well a prompt or image caption c describes the contents of an image x. For each caption-image
pair (¢, x), Cp extracts a pair of corresponding vector embeddings (f(c), g(x)) and computes their
cosine similarity:

g7 f(o)

s(x,c) =Co(x,¢) = 7 —— 1
B =GB = gl T W
where a cosine similarity of 1 between f(c) and g(x) indicates an excellent match between prompt
c and image x. In practice it has been found though, that such large scores are hardly achieved, and
for well-fitting text-image pairs s(x, ¢) &~ 0.3 (Schuhmann et al., 2021; Liang et al., 2022). On the
other hand, s(x, ¢) & 0 indicates that prompt and image are unrelated.

In the latent space of Cy, we aim to find an embedding g(Xo01) corresponding to a fooling master
image X0 for a number of matching text-image pairs (¢1,X1), (¢2,X2), . - . (¢n, X5) such that:

g(xroo)T  flew) _ glxw)T ~ flex)
lg(eroo) [l MIE(cr)ll ~ Gl IE(ex)ll

for ke [l,n].

The observation that for most matching text-image-pairs s(x,c¢) & 0.3 indicates that there is a
limit on how well the CLIP-trained model Cy can align g(xy), which is extracted from a vector
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on the image manifold xj, to f, the models vector embedding of text prompt ¢ (Liang et al., [2022}
Schuhmann et al., [ 2021)).

We hypothesize that this apparent limit for vectors on the image manifold implies that if one were to
search for vectors X, off manifold, one might find a vector that aligns better (and thus has a better
cosine similarity score s) to all the captions ci, co, ..., c,, than any of the matching vectors on the
image manifold X1, Xs, ..., Xp.

To test this hypothesis, we employ a number of different iterative optimization approaches for con-
structing Xoo1. In order to find an image that maximizes s(Xool, ;) for a set of n different image
captions C' = {c1, ¢a, . .., ¢, } we minimize the loss function:

L(x) = — min s(x, ). 2)

To favor solutions where x matches all captions well, we use the min-operator over all ¢; rather
than a sum or average. Our intention here is to avoid poor local minima, where x poses an excellent
match for a small subset of captions and performs poor on the remaining ones.

Stochastic gradient descent (SGD). The most straight-forward approach to mine a fooling example
Xrool 18 stochastic gradient descent (SGD) (and variants thereof) on equation[2} While mining fool-
ing examples using SGD variants is a proven and well-understood method (Nguyen et al.l [2015),
contrary to our approach, common approaches usually seek to increase or decrease the model’s
confidence w.r.t. a single particular class rather than targeting many classes at once.

Latent Variable Evolution. SGD bears the practical limitations of a whitebox-attack, i.e. the
model’s weights need to be known. As a complementary method, we also mine CLIPMasterPrints
by means of a Latent Variable Evolution (LVE) approach (Bontrager et al., | 2018; Volz et al.l 2018]).
While the input dimensions of state-of-the-art neural networks are too large to be searched by a
black-box evolutionary strategy (ES) on its own, in LVE, one searches the latent space of a gen-
erative model using ES. The latents found by the ES are then used to generate fooling example
candidates, which are presented to the model under attack. From the model output, we compute
the loss function in equation [2] and feed it back to the ES, which in turn creates new candidates.
To evolve new solutions, we use the CMA-ES (Hansen & Ostermeier, 2001)), a highly efficient and
robust stochastic search method taking estimated second order information into account. We adapt
the original LVE approach in two ways: First, by minimizing equation [2] we ensure that the mined
image matches all targeted captions sufficiently well. Second, rather than using a custom-trained
GAN to generate fooling examples, we evolve our solution in the latent space of a pretrained VAE
(Kingma & Welling} 2013). In more detail, we use decoder of StableDiffusion V1 (Rombach et al.,
2022) to translate candidate latents into image space. Note that we do not apply any diffusion in this
process, the VAE is in principle exchangeable with any other strong VAE. An overview of the ap-
proach is shown in Fig.[2] with Algorithm|[T]in the Appendix detailing how to mine fooling examples
with our LVE approach.

caption
]
CMA-ES ——> VAE-DECODER [—> CLIP
latent image
vector
CLIP-loss
(cosine similarity)

Figure 2: CLIPMasterPrints Latent Variable Optimization. CMA-ES is used to generate image
candidates in the latent space of a pre-trained VAE. The generated latent vector is passed through
the VAE’s decoder and scored w.r.t. how well it fits to the caption using CLIP. The returned cosine
similarity is thereafter fed back to CMA-ES.

Projected gradient descent (PGD). Finally, while CLIPMasterprints is essentially an off-manifold
attack, we also evaluated projected gradient descent (PGD) (Kurakin et al., [2016b; Madry et al.,
2017) as a mining approach in order to investigate if it is also possible to mine fooling examples
which are, to humans, much more similar to actual images. We take an existing image %oz and
iteratively mine CLIPMasterPrints using the loss in equation [2]as well as the PGD update rule

X?(j(_)ll = onrig+€(x]t§ool - asign(V/j(xﬁool))), (3)
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starting from X9 | = Xorig, Where the image xt ; € [0,255]% is optimized in discrete representa-
tion, « is the discrete stepsize, € is the size of the adversarial perturbation and I, .(a) is defined
as a element-wise clipping operation clipping each pixel a; ; of the input image a into the range
[xorigyi’j — €, Torig,i,j T €] w.r.t the original image Torig- We permit for larger adversarial perturba-
tion than commonly used in PGD attacks. We find that the approach does not work for too small
adversarial perturbations, which again underlines the off-manifold-nature of the attack.

The CLIP models used in the experiments in this paper are pre-trained ViT-L/I4 and ViT-
L/14@336px models (Radford et al., [2021]).

4 RESULTS

4.1 EXPERIMENTAL SETUP

Generating fooling master images. We test our approach to finding master images for both fooling
CLIP on famous artworks and on ImageNet (Russakovsky et al., 2015) classes. For the artworks,
we train a fooling master image to obtain a high matching score on the ViT-L/I4@336px CLIP
model (Radford et al., 202 1)) for 10 different text prompts, consisting of the titles of famous artworks
and their authors. Famous artworks and their corresponding titles and artists were chosen for their
familiarity: On the one hand, due to being widely known and therefore likely in the training data
of the model, this approach ensures that CLIP scores between corresponding artwork-title pairs will
be easily matched to each other, resulting in high cosine similarities obtained from the model for
matching pairs. On the other hand, due to the uniqueness and distinctiveness of most images in both
motive and style, it is unlikely that any two artworks will be confused by the model, resulting in low
cosine similarities for image-text pairs that do not match.

We create one fooling master example for each mining approach introduced in Section[3} SGD is
applied to a single randomly initialized image and optimize for 1000 iterations using Adam (Kingma
& Ba,2015) (81 = 0.9, B2 = 0.999, ¢ = 10~®) at a learning rate of 0.1.

In our black-box approach, we search the latent space of the stable diffusion VAE (Rombach et al.,
2022) for fooling master images using CMA-ES for 18000 iterations. We flatten its 4 feature maps
into a vector. Since images are encoded in this latent space with a downsampling factor of 8, our
336 x 336 images result in a d = % - 336 .4 = 7056 dimensional search space. We initialize
CMA-ES with a random vector sampled from a zero-mean unit-variance Gaussian distribution and
choose o = 1 as initial sampling variance. We follow the heuristic suggested by [Hansen| (2016) and

sample 4 + 3 - log(d) = 4 4 3 - log(7056) ~ 31 candidates per iteration.

Finally, for our PGD approach, we start from an existing image and again optimize for 1000 itera-
tions using a stepsize of & = 1 and a maximal adversarial perturbation of € = 15.

For generating fooling master images for ImageNet classes, we create a fooling master image for
25, 50, 75 and 100 randomly selected ImageNet classes. To show that the approaches work indepen-
dently of the chosen model weights and to speed up the more extensive experiments on ImageNet,
the ViT-L/14 model (Radford et al.,[2021) was chosen, with a slightly smaller input pixel size of 224
x 224 pixels. For the SGD and PGD approaches, the parameters are identical as in the previous
experiments. Our blackbox-LVE approach mines for 50,000 iterations. The remaining parameters
are the same as in the previous experiment, except since smaller images with a resolution 224 x 224
pixels were generated, the corresponding search space consists of % . % -4 = 3136 dimensions.
This yields a population size of 4 + 3 - log(3136) ~ 28 candidates per iteration.

Mitigation by bridging the modality gap. As a mitigation approach, we attempt to bridge the
modality gap of the ViT-L/I4 model by shifting the centroids of image and text embeddings as
suggested in|Liang et al.|(2022). In more detail, |Liang et al.|(2022) decrease the gap between image
and text vectors by moving them toward each other along a so-called gap vector

Agap:f‘_g 5 €]

where f and g are the centroids of image and text embeddings, respectively. We extract f and g for
the ImageNet training data and labels. We attempt to bridge the model’s modality gap by computing

Xi/ = Xj — /\Agap (5)
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Figure 3: (a) Cosine similarity of three trained fooling images for 25 targeted classes using SGD,
LVE and PGD approaches respectively, as well as similarities for ImageNet validation set images of
the same classes. With a few exceptions, each CLIPMasterPrint fooling image outperforms all im-
ages in terms of CLIP score for the targeted text labels. Note that the same fooling image is used for
all class label categories. (b) Average cosine similarity between ImageNet class captions and fool-
ing image as a function of the number of classes considered during optimization for SGD, LVE and
PGD methods. Average similarity score between captions and images in the ImageNet validation set
labelled with targeted class labels for comparison. Score remains stable up to 75 targeted classes,
after which it gracefully declines. A possible explanation could be CLIPMasterPrints generalizing
to semantically related non-targeted labels. (c) Generalization of LVE-mined image targeting 25
ImageNet classes. The mined CLIPMasterPrint achieves high CLIP scores even for ImageNet class
labels which have not been explicitly targeted. Examples of unrecognizable (d) and recognizable
images (e) created by SGD and PGD, respectively.

and

Yil =Yyi+ )\Agapa (6)
as shifted image and text embeddings, respectively. A = 0.25 is a hyperparameter chosen such that
the model retains its original accuracy as much as possible while bridging the gap. In addition to the
approach above, a second mitigation approach is discussed in the appendix in Section[A2]

Fig. [T shows the cosine similarities between titles and artists of famous artwork and the actual art-
work as well as a baseline image and our generated fooling master images (denoted by red frames).
All artworks are assigned their correct titles by the CLIP model: artworks and their respective titles
exhibit a significantly higher cosine similarity (of about 0.3) than randomly paired titles and paint-
ings. Our noise baseline exhibits scores between 0.13 and 0.18 for all title-captions, but interestingly
at times shows higher scores compared to artworks with mismatched captions. All mined CLIPMas-
terPrints yield cosine similarities > 0.33 and consequentially outperform the original artwork for
each title-caption. Yet, we find large differences in-between the performance of samples mined with
different approaches.

The fooling image mined through SGD (Fig. [Bd) performs best, likely due to the largely uncon-
strained optimization process, followed by PGD, which, despite superficial unnatural patterns,
clearly resembles a natural image more closely (Fig. [3¢). LVE performs least well, while requir-
ing a significantly higher number of iterations. However, it still outperforms the original artworks.
A likely explanation can be found in the smaller and therefore more constrained optimization space
of the VAE latents as well as the absence of gradient information. All three fooling master exam-
ples achieve a higher score than all actual artworks and would be chosen over these images when
prompting the model to identify any of the targeted artworks next to the fooling examples.

Our results for ImageNet labels are similar. Fig. 32 shows the CLIP-returned cosine similarities
of the fooling master image trained on 25 ImageNet labels as a point plot for both gradient-based
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(SGD, PGD) and blackbox (LVE) approaches. The cosine similarities of the images of the respective
labels found in the ImageNet validation set have been added for reference. For almost all classes, the
two images mined with SGD and PGD outperform the entirety of the images within the respective
class in terms of the similarity score. The black-box LVEimage on the other hand, while performing
somewhat worse, still outperforms the entirety of images for most classes.

As a performance measure over all optimized classes, we compute the percentage of outperformed
images (PO, i.e. the percentage of images in targeted classes in the validation set with a lower CLIP
score than the fooling image) for all three fooling images. We find that our SGD and PGD images
exhibit an accuracy of 99.92% and 99.76%, respectively, while the LVE images achieve an accuracy
of 97.92% which is in line with our observations from Fig. [3a]

These results demonstrate that CLIP models ViT-L14 and ViT-L14@ 336px can be successfully fooled
on a wider range of classes using only a single image.

4.2 GENERALIZATION TO SEMANTICALLY RELATED PROMPTS AND LABELS

To investigate whether the mined images also generalize to semantically related classes that were
not directly considered in the optimization process, we also visualized the estimated distributions
of CLIP similarity scores per class for both targeted and untargeted classes (Figure [3¢). While the
distribution of cosine similarities over all classes in the ImageNet validation set (left) is long-tailed,
presumably due to a few mislabeled images or very hard examples, the distribution for scores of
LVE-mined CLIPMasterPrint for targeted classes is confined to a small interval around 0.30, which
is also the score achieved on targeted labels as seen in Fig.[3a] Considering the distribution of scores
for the fooling image on all 975 not targeted classes, we see that while the distribution is long-tailed
as well, most values seem to be confined to the range between 0.2 and 0.3, with a mean around
approx 0.27. Computing the POI for the 975 untargeted classes in the ImageNet validation paints a
similar picture. We find that our SGD, LVE and PGD mined fooling images score-wise outperform
87.3,74.02 and 88.63% of images averaged over the 975 classes, respectively. These results indicate
that there seems to exist a certain generalization effect: the fooling images achieve moderate to high
scores on untargeted class labels, which are semantically related to their targeted labels. A potential
explanation is that the classes of the ImageNet dataset have been derived as a subset from tree-
like structures in WordNet (Miller; [1995)), where many class labels are also member of a common
super-class of semantically related objects, such as animals, household appliances etc.

4.3 PERFORMANCE AS NUMBER OF TARGETED PROMPTS INCREASES

Our results demonstrate that CLIP models are vulnerable to fooling master images, and that fooling
effects appear to generalize to a degree. We thus investigate how the average cosine similarity on
targeted classes deteriorates, as the number of targeted class labels increases. Fig. shows the
average CLIP score targeting 50, 75, and 100 randomly sampled ImageNet classes versus the total
number of targeted labels for all evaluated approaches. For all approaches, the average score exhibits
an initial decrease around 50 classes after which it slightly rises for 75 and then slightly decreases
for 100 classes again. A possible explanation may be found in the generalization effects observed
above: assuming that subsets of the targeted labels or prompts are sufficiently semantically related,
due to the generalization of the fooling example, the achieved average score remains robust, even if
more related labels are added.

4.4 MITIGATION

Shifting centroids of image and text embeddings along a computed gap vector on the other hand
(Eq. [} [Bland [6)), appears to be an effective countermeasure against newly mined CLIPMasterPrints
while preserving CLIP performance. Table |l|shows the percentage of outperformed images (POI)
for CLIPMasterPrints mined both with and without shifting embeddings in the model. Not only
fooling examples mined on the regular model (Rows 1, 2 and 3 for SGD, LVE and PGD respectively)
do not work anymore on the model with shifted embeddings (the POI drops dramatically), but also
newly mined examples from a model with shifted embeddings (Rows 4, 5 and 6) show a significant
drop of roughly 35 to 55 percentage points in POI. Shifting embeddings therefore can be considered
an effective mitigation strategy. When considering the scores of the different images mined on the
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Table 1: Pct. of outperformed images for different optimization approaches on the validation set.

Method POLA=0 POLA=0.25
SGD 99.92% 3.2%
LVE 97.92% 1.28%
PGD 99.76% 1.92%
SGD,

A=0.25 76.64% 63.2%
LVE,

A=0.25 48.56% 38.64%
PGD,

A=0.25 52.88% 44.64%

shifted model, we find the the SGD image performs best, followed by the PGD image, with the LVE
approach performing least well. One may expect the PGD image to perform best under a mitigated
modality gap, since it is closest to a natural image. Yet, when we compute the cosine similarity
between the latent of the original image Xz and the mined image xpgp, we find that

g(xorig)T ) g(XPGD)

g (orig) | [l (xpap) |
Despite its similarity to Xog, the mined adversarial image therefore is not located on the image
manifold in the models latent space. Further we find that when mining CLIPMasterPrints by means
of PGD, an adversarial perturbation ¢ = 10 — 15 pixels to be necessary, as lower values yield
poor results, which seems to imply that CLIPMasterPrints need to be located off the models latent
image manifold. In summary, we argue that these results support our original hypothesis that the
vulnerability of a CLIP model to CLIPMasterPrints is closely related to the modality gap.

=0.29.

4.5 ATTACKING DIFFERENT ARCHITECTURE AND TRAINING APPROACHES

To demonstrate that CLIPMasterPrints are not an isolated phenomenon limited to the investigated
architecture or training approach, we mine additional CLIPMasterPrints on a further CLIP-trained
model using an ensemble of 64 ResNet50 networks to as an image encoder (CLIP-RN50x64). Fur-
thermore we do the same for models trained on recently proposed improvements or CLIP, namely
BLIP [Li et al.| (2022) and SigLIP Zhai et al.| (2023). Figure [Z_f] shows the results. All evaluated
models remain vulnerable to CLIPMasterPrints: The CLIP-model using ResNet image encoding
(CLIP-RN50x64) seems to be somewhat less vulnerable than the transformer-based CLIP ViT-L/14,
but is still on par with the ImageNet baseline. For both newer approaches, BLIP-384 and ViT-L-16-
SigLIP-384, the PGD-mined CLIPMasterPrints outperform the ImageNet baselines significantly,
which adds support to our hypothesis, that not just CLIP, but all contrastively trained approaches
exhibiting a modality gap are vulnerable to CLIPMasterPrints.

5 POTENTIAL ATTACK SCENARIOS

As emphasised by Radford et al.|(2021)), next to zero-shot-prediction, a highly relevant application
of CLIP is zero-shot image retrieval, which offers plenty of attack surface by means of CLIPMas-
terPrints. In more detail, inserting a single CLIPMasterprint into an existing database of images
could potentially disrupt the system’s functionality for a wide range of search terms, as for each
targeted search term the inserted fooling master image is likely to be the top result. When inserting
several CLIPMasterPrints into the database, even the top n results could consist entirely of these
adversarial images rather than the true results. While this is also possible when inserting “regular”
adversarial examples, the amount of examples needed for an attack using fooling master images is
orders of magnitude lower than for regular adversarial examples. Practical malicious applications of
this vulnerability could be 1) censorship of images related to a list of censored topics, 2) adversarial
product placement: targeting a variety of searched brands to advertise a different product as the top
result, or 3) disruption of service: introducing a larger number of unrecognizable CLIPMasterPrints
for a wide range of topics, resulting in unintelligible results for many queries, reducing the quality
of service of an image retrieval system.
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Figure 4: Performance of CLIPMasterPrints mined using PGD on CLIP-RN50x64, BLIP-384 and
VIT-L-16-SigLIP-384 for 25, 50, 75 and 100 ImageNet classes respectively, CLIP-ViT-L/14 and Im-
agenet baselines for comparison. Models that use ResNet rather than visual transformers as well as
newer models improving upon CLIP are nevertheless vulnerable to CLIPMasterPrints.

Mechanisms of introducing CLIPMasterPrints into a database depend on the application, but could
be as simple as putting images online to be crawled by search engines or uploading them through
webforms.

6 DISCUSSION AND FUTURE WORK

This paper demonstrated that CLIP models can be successfully fooled on a wide range of diverse
captions by mining fooling master examples. Images mined through both gradient-based (SGD,
PGD) as well as gradient-free approaches (LVE) result in high confidence CLIP scores for a sig-
nificant number of diverse prompts, image captions or labels. While the gradient-free approach
performed slightly worse, it does not require access to gradient information and therefore allows for
black-box attacks.

We found that the modality gap in contrastively pre-trained multimodal networks (i.e. image and text
embeddings can only be aligned to a certain degree in CLIP latent space) plays a central role with
respect to a model’s vulnerability to the introduced attack. Low cosine similarity scores assigned to
well-matching text-image pairs by a vulnerable model imply that off-manifold images, which align
better with a larger number of text embeddings, can be found. PGD-mined images, while being
appearing meaningful to humans, are nevertheless found to be off the latent image manifold of the
attacked model. The off-manifold nature of the attack is also supported by the observation that
information in fooling examples is distributed throughout the whole image for all targeted prompts,
rather than locally at different places for each prompt (see Section[A.3]in the Appendix), making the
mined images vulnerable to occlusion and cropping.

Further, our results demonstrate that the effects of fooling master images on the model can be miti-
gated by closing the gap between centroids of image and text embeddings respectively. While|Liang
et al|(2022) do not explicitly classify modality gaps as either beneficial or detrimental to a models
performance, our results support the hypothesis that the modality gap leaves CLIP models vulner-
able towards fooling master images. Thus efforts to mitigate modality gaps even further, while
preserving model performance, is a critical future research direction.

Finally, our mined fooling master images seem to not only affect the prompts they target, but also
generalize to semantically related prompts. In combination with the observation that recent im-
provements to CLIP such as BLIP and SigLIP are vulnerable as well, this generalization effect
greatly increases the impact of the introduced attack. In conclusion, further research on effective
mitigation strategies is needed.
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REPRODUCIBILITY STATEMENT

We supply our code with instructions on how to reproduce our experiments as supplementary mate-
rial.

ETHICS STATEMENT

The approaches introduced in this paper could be used to mount attacks that misdirect CLIP models
in production. For instance, an attacker could manipulate the rankings of a CLIP-based image
retrieval system resulting in injected CLIPMasterPrints being the top result for a wide range of
search terms. This could exploited in malicious ways for censorship, adverserial marketing and
disrupting the quality of service of image retrieval systems (for details see Section 5. Nevertheless,
we argue that publishing this work is a necessary step towards understanding the risks of using
CLIP-trained models in real-world applications. We also propose and evaluate mitigation strategies
and hope that our work will inspire others to build on those to make them even more effective in the
future.
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A APPENDIX

A.1 MINED FOOLING IMAGES

Figure [5]shows a selection of mined fooling images in good quality.

A.2 OTHER MITIGATION APPROACHES

As an additional mitigation approach, we explored making the ViT-L/I4 model robust by adding
fooling images to the train set.

Experiment setup. First, we refine the model on the ImageNet train set, where we add for every
batch presented to the network, both a random noise image as well as an LVE fooling example. Both
the noise image and the fooling example get labeled with a special <off-manifold>-token in order
to have the model bind off-manifold inputs to that token rather than any valid ImageNet label. At
every forward step of the model, we generate a new random noise image by feeding zero-mean unit-
variance Gaussian Noise into the decoder part of our generating autoencoder. The fooling example
on the other hand is generated by running CMA-ES in the loop with the training process. We start
out with the best-found previous solution and run one iteration of CMA-ES for every forward step
to update the fooling example to the changed training weights of the model. This setup creates
a similar optimization process as found in GANs where both models attempt to outperform each
other. We refine the model for 1 epoch using Adam at a learning rate of 107 and a batch size of
20. We regularize the model with a weight decay of v = 0.2 and set Adam momentum parameters
as described in (Radford et al., [2021): 8; = 0.9, By = 0.98, ¢ = 10~%. Furthermore, we utilize
mixed-precision training Micikevicius et al.[(2017). Hyperparameters for CMA-ES are identical to
the ones used to mine the original fooling image. Finally, after refining the model, we mine a new
fooling example from scratch for the updated model. We do so to test the model’s robustness not
only to the original fooling images, but fooling images in general.

Results. Fig. [6] shows the CLIP scores of our refined model, which has been trained to align off-
manifold vectors to a special token, in order to mitigate the model’s vulnerability to fooling master
examples.

Shown are the average CLIP score on the ImageNet validation set, the CLIP score for the original
fooling example, the score for a fooling example trained after refinement, as well as the score of

12
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(e) PGD, optimi

zed on artworks for ViT-L/14

(f) PGD, optimized on artworks for ViT-L/14@336px

Figure 5: Examples of CLIPMasterPrint images mined through SGD (a,b), LVE (c, d) and PGD (e,
f). The complementary approaches are able to produce fooling images unrecognizable to humans
(a—d) and images that resemble natural images but that display some artefacts perceptible to human
eyes (e, f).
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Figure 6: CLIP scores for fooling examples mined before and after refinement with off-manifold
token. While mapping existing fooling examples to special tokens can mitigate their impact, the
model is still vulnerable to new fooling images

a random noise image for each targeted ImageNet label respectively. Due to the newly introduced
<off-manifold>-token, both noise and the original fooling examples are suppressed by the model
and score significantly lower as the mean label score on the ImageNet validation set.

The newly mined fooling example on the other hand has not been suppressed at all by the refined
model and exhibits scores similar to the ImageNet mean for all labels. The results suggest that our
mitigation strategy is sufficient to mitigate existing fooling examples, yet fails to be effective as new
fooling examples are mined from the updated model.

A.3 ANALYSIS OF INFORMATION DISTRIBUTION IN FOOLING MASTER IMAGES

To understand how information is distributed in the found fooling master examples, we create occlu-
sion maps (Zeiler & Fergus}, 2014} [Selvaraju et al., 2017) of the fooling master example trained on
the titles of famous artworks (Fig.[/). As we blur 75 x 75 rectangles of the fooling master image in a
sliding-window-manner with a 2 pixel stride and a large (o = 75) Gaussian blur kernel, we measure
the change in cosine similarity as returned by the ViT-L14@336px model. As a reference, the same
procedure is performed on a number of artworks the fooling image is intended to mimic. Blurring
any part of fooling master images results in a significant decrease (between 0.1 and 0.2) of the re-
sulting cosine similarity of the model, where the LVE-optimized image seems to be more robust
to occlusions than images obtained by SGD and PGD methods (likely due to the more prominent
generated patterns in the LVE image). The individual increases and decreases for actual artworks on
the other hand are much more moderate and vary based on the location in the image.

For the Random noise image prompt, which has been excluded from optimization, blurring parts
of the image results in significantly less pronounced changes in model output score. Interestingly,
the mined fooling images react differently to occlusion based on the used optimization approach.
For the SGD image, blurring different regions of the image affects the score to varying degrees,
possibly due to residual noise introduced at initialization of the mining process. For the LVE image,
blurring does not result in improving scores, but again, different regions respond differently to the
noise prompt. Finally, for large parts of the PG image, blurring improves the score. This effect could
be explained by the fact that blurring natural image structures can result in more noise-like images.

In summary, we conclude that information from fooling examples resulting in high CLIP confidence
scores is spread throughout the image for all captions, and is quite sensitive to occlusions and crop-
ping. While CLIP has likely learned to deal with blurring and occlusions on the image manifold
due to a large variety of training data, blurring parts of the image off-manifold likely results in a
significant misalignment of the resulting vector in relation to the text vectors it has been targeting.

A.4 PSEUDOCODE FOR BLACK-BOX MINING OF CLIPMASTERPRINTS

Algorithm [T]illustrates our black-box approach to mining CLIPMasterPrints as pseudocode listing.

14



Under review as a conference paper at ICLR 2024

Prompt: "The Scream" by Edvard Munch
Munch Vermeer Random noise SGD LVE

PGD

I T T T T T 1 T I 1 T 1 T T T 1 T 1
—0.025 0.000 0.025 —0.02 0.00 0.02 —0.02 0.00 0.02 -0.2 0.0 0.2 -0.1 0.0 0.1 -0.2 0.0 0.2

Prompt: "Girl with a pearl earring" by Johannes Vermeer
Munch Vermeer Random noise SGD LVE

T T T I T I T T T I T T I T T
-0.02 0.00 0.02 -0.05 0.00 0.05 —0.025 0.000 0.025 -0.2 0.0 0.2 -0.1 0.0 0.1

Prompt: Random noise image
Munch Vermeer Random noise SGD LVE

T T I e T — T T  E— I T T
—0.0250.000 0.025 —0.025 0.000 0.025 —0.025 0.000 0.025 -0.02 0.00 0.02 —0.02 0.00 0.02 -0.02 0.00 0.02
Figure 7: Occlusion maps for famous artworks, random noise baseline, and mined fooling master
images for different prompts. Note that, while each row shows the same fooling master images,
occlusion maps vary for different prompts. Increases in cosine similarities when blurring out a
certain part of the image are denoted in red, decreases are shown in blue. Information in the fooling
master images is distributed over the whole image; no individual regions in the image that can be
mapped to a particular prompt.

Algorithm 1 Black-box approach to find CLIPMasterPrints

Input: initial vector hy ~ A(0, 1),
list of objective prompts ¢y, ca, . . ., Cp,
number of to-be-run iterations 7,4,
pre-trained CLIP model Cy,
pre-trained image decoder Dy,
Initialize CMA-ES with hg
fori=1to iy, do
Generate candidates hy,hs, ..., h, using CMA-ES mutation
Decode images X1, Xa,...,Xy, from hy, hy, ..., h,, using Dy,
for all x; inx;, X3, ...,X%, do
Set Sj,min = OO
forallc;incy,co,...,c, do
Set s; 1, = Co, (x5, ck)
if S5,k < S min then
Set Sjmin = Sj,k
end if
end for
end for
Update CMA-ES statistics With $1 min, $2,min> - - - » Sn,min
end for

15



	Introduction
	Related work
	Approach: CLIPMasterPrints
	Results
	Experimental Setup
	Generalization to semantically related prompts and labels
	Performance as number of targeted prompts increases
	Mitigation
	Attacking different architecture and training approaches

	Potential Attack Scenarios
	Discussion and Future Work
	Appendix
	Mined fooling images
	Other mitigation approaches
	Analysis of information distribution in fooling master images
	Pseudocode for black-box mining of CLIPMasterPrints


