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Abstract

Simultaneous Neural Machine Translation
(SimulNMT) generates the output before the
entire input sentence is available and only uses
the unidirectional attention from left-to-right
so that its decoding highly relies on future fore-
cast according to word ordering rules. How-
ever, it is utopian that the word order strictly
obeys the grammar rules in a language, espe-
cially in oral. To address the mismatch be-
tween SimulNMT expecting strict word order
and free word order in real scenario, we pro-
pose a bidirectional modeling. In detail, we
train another backward model where the input
sentence is from right-to-left and keep the tar-
get sentence from left-to-right. Then we join
this backward model into the standard forward
SimulNMT model during decoding. This strat-
egy enhances the robustness of SimulNMT
and empowers the model to be more adaptable
for the inconstant word ordering phenomenon.
Experiments show that our method brings im-
provement over the strong baselines.

1 Introduction

Neural Machine Translation (NMT), built on
the encoder-decoder framework has achieved ad-
vanced translation performance in recent years
other than the traditional statistical machine transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). Inside an NMT model, the
encoder encodes a source input sentence, and the
decoder generates the target language sentence by
iteratively predicting the output token according to
the entire input with the partially decoded output
so far. However, these offline models mentioned
above are not well adaptable for real-time speech-
to-speech interpretation, such as international con-
ferences, symposiums, and business. Thus, online
(or simultaneous) NMT is quite desirable for such
scenarios, which starts the decoding process right

after reading the first few words of the source sen-
tence instead of waiting for the end.

SimulNMT has caused widespread concern in
the NMT community recently (Cho and Esipova,
2016; Jaitly et al., 2016; Dalvi et al., 2018; Ma
et al., 2019; Zheng et al., 2019a; Zhang et al., 2019;
Arivazhagan et al., 2019; Ma et al., 2020; Ren et al.,
2020; Elbayad et al., 2020). Ma et al. (2019) pro-
pose a popular wait-k decoding algorithm where
the decoding process is always k words after the
source input instead of single read-writes. This
simple approach guarantees the translation quality
and controls the translation delay at the same time.
For dynamic online decoding, reinforcement learn-
ing (RL) and imitation learning (IL) are also used
to optimize the read/write policy (Grissom II et al.,
2014; Luo et al., 2017; Gu et al., 2017; Press and
Smith, 2018; Zheng et al., 2019b).

However, all of the methods are decoded from
left-to-right without the future information, ignor-
ing that word order is flexible so that the resulting
translations cannot always obey the grammar rules
in practical use, especially in oral. The SimulNMT
performance may be greatly hindered by the mis-
match about the word order forecast between the
requirement of SimulNMT and the actual scenario
in linguistics..

To address such a mismatch issue in the current
SimulNMT, we propose a bidirectional modeling
strategy in this work. In detail, we train another
backward model, in contrast to the forward model
shown in the Figure 1, which inputs the source
sentence from right-to-left and keeps the target
sentence left-to-right order. Then we joint this
backward model into the forward model during
decoding. This decoding policy enhances the ro-
bustness of SimulNMT and allows the model to
be more adaptable for the inconstant word order
phenomenon. Experiments show that our method
significantly improves the translation performance
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... 我们      工作     中           的         这些   难以置信    的           选择  自由 ...*wait 3 words*

Forward model:

Unidirectional att.:

Backward model:

Translation sentence:
Wǒmen             gōngzuò          zhōng                    de                     zhèxiē            nányǐzhìxìn                de                        xuǎnzé         zìyóu

Our                     work                                         of                        this                 incredible                                            choice       freedom

we        have    with          respect        to     work   ...

choice  of         freedom   incredible   this   ...

... this   incredible   freedom   of       choice

...  work   to     respect        with         have   we      

Figure 1: The example for forward model and backward model

over the strong baselines.

2 Backward Modeling as Future
Forecasting

2.1 Problem Formalization
Given a source sentence x = {x1, ..., xi, ..., xLx}
in the document to be translated and a target sen-
tence y = {y1, ..., yi, ..., yLy}, we denote x≤t as
the a substring of x containing words {x1, ..., xt},
and similarly for y≤t and y<t. The NMT model
computes the probability of translation from the
source sentence to the target sentence word by
word:

P (y|x) =
Ly∏
t=1

P (yt|y<t,x), (1)

In this paper, we focus on the SimulNMT model
based on the Transformer (Vaswani et al., 2017)
which contains an encoder and a decoder and re-
spectively processes the source and target sen-
tences. Both are composed of a stack of N (usually
equal to 6) identical layers. The critical component
is multi-headed attention, which concatenates the
outputs from multiple attention heads.

2.2 Simultaneous Neural Machine
Translation (SimulNMT)

SimulNMT starts decoding the translation before
the entire input sentence is available. Formally, we
use zt to represent the number of source tokens
read when decoding yt. In the SimulNMT model,
the decoder predicts yt by considering the first zt
source states, and each source state only encodes
the information from the zt−1 source tokens read
so far.

Unidirectional Transformer Encoder In the
most encoder-decoder model, encoding the source
tokens at a given position includes information
from the past and future time-steps. However, the

encoder has to be recomputed when the new source
token is inputted. To reduce the cost of re-encoding
the source sequence, Elbayad et al. (2020) propose
unidirectional encoders for SimulNMT by masking
the self-attention and only consider the previous
time-steps. In this way, source sentences are en-
coded once without updating the encoder states at
each time step.

Wait-k Strategy Human simultaneous interpre-
tation usually starts translating a few seconds after
the speakers’ speech and finishes a few seconds
accordingly after the speaker finishes. Inspired
by this, Ma et al. (2019) present a wait-k policy,
which first waits for the k source tokens and then
translates simultaneously with the rest of the source
sentence. When k =∞, the full source sentence is
read before decoding. For a wait-k decoding path,
zt = min{k + t− 1, Lx}. The SimulNMT model
computes the probability with regard to the single
wait-k decoding path zk:

P (y|x, zk) =
Ly∏
t=1

P (yt|y<t,x≤zkt
, zk<t) (2)

The wait-k strategy is most effective when trained
for the specific k (Zheng et al., 2019b). However,
it requires training models individually for each
potential value of k for translation.

2.3 Backward Modeling
Current SimulNMT methods translate the output
tokens word by word from left to right, which is de-
noted as forward model. Considering the flexible
word order phenomenon, we train another back-
ward model by the contrast, which takes the source
sentence as input from right to left, and keeps the
target sentence in standard left-to-right order il-
lustrated in Figure 2. It is worth noting that we
adopt unidirectional self-attention in the forward
modeling as in the standard SimulNMT, but a bidi-
rectional self-attention in the backward modeling.
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Task wait-k Zheng et al. Elbayad et al. This work
IWSLT14 En→De 26.74 − 26.40 27.39 (↑0.65)
IWSLT14 De→En 30.15 30.17 30.48 32.13 (↑1.65)
IWSLT15 En→Vi 28.31 − 29.19 29.98 (↑0.79)
IWSLT15 Vi→En 21.89 − 22.32 23.20 (↑0.88)

Table 1: The results of our proposed models for ktrain = keval = 7.

x1

source:

target:

forward model

backward model

target:

x2

y1

y2

y’2

y1 y’’2

x3 x4 x5

……

……

xLx

source:

xLx-1 xLx-2 xLx-3 xLx-4

En
se

m
bl

e
*wait k words*

*wait k words*

Figure 2: The framework of our proposed model using
wait-k strategy and k = 3

On the one hand, backward modeling allows the
whole to be exposed to a new order, and on the
other hand, bidirectional modeling can bring more
comprehensive features as an aid to normal forward
SimulNMT. The probability of the translation in
the backward model is calculated as follows:

P ′(y|x, zk) =
Ly∏
t=1

P (yt|y<t,x>(Lx−zkt )
, zk<t)

(3)
Then we train an ensemble model to joint this back-
ward model output into the forward model during
decoding.

Pensemble = w1⊗Pbackward+w2⊗Pforward (4)

where w1 and w2 respectively mean the weights
of the backward and the forward models. In our
work, we set w1 = 0.1 and w2 = 1.0 based on the
preliminary experiments.

3 Experiments

We briefly denote English, German, Vietnamese as
En, De, and Vi respectively and conduct our simul-
NMT experiments on two small-scale datasets:
IWSLT14 En↔De (Cettolo et al.) and IWSLT15
En↔Vi (Luong et al., 2015)1, and a large-scale

1The tokenized data is downloaded from https://nlp.
stanford.edu/projects/nmt/

dataset: WMT15 En→De translation. We train
a forward and backward models individually for
each language pair.

3.1 Setup

Datasets For IWSLT14 En↔De, following
(Edunov et al., 2018), we train on 160K pairs
and randomly selected 7K sentences for valida-
tion and held-out from the training corpus, and the
test set is the concatenation of dev2010, dev2012,
tst2010, tst2011 and tst2012 of 6,750 pairs sim-
ilar to the validation set. For IWSLT15 En↔Vi,
like (Ma et al., 2020), we train on 133K pairs and
use tst2012 (1,553 pairs) as the validation set and
tst2013 (1,268 pairs) as the test set. All data is
tokenized, lower-cased, and segmented with a byte-
pair encoding (BPE) of 10K types (Sennrich et al.,
2016).

Models Both forward model and backward
model are based on Transformer. For IWSLT14
En↔De and IWSLT15 En↔Vi, in the Transformer,
we set the embedding dimension, feed-forward
layer dimension, number of layers as 512, 1024,
and 6, respectively.

Evaluation We evaluate the translation quality
of all models by the tokenized word-level BLEU
score (Papineni et al., 2002).

We also use Average Proportion (AP) (Ma et al.,
2019) and Average Lagging (AL) (Cho and Es-
ipova, 2016) to evaluate the translation delay. AP
means the average proportion of source tokens re-
quired for translation, and AL means the average
number of the delayed words.

3.2 Main Results and Analysis

We first evaluate models trained with different
wait-k decoding paths on the IWSLT14 En↔De
datasets. Figure 3 presents the performance of
the models trained with ktrain ∈ {1, 3, 5, 7, 9}
on these two datasets. Each curve with specified
color represents each trained model, which is eval-
uated across different wait-k decoding paths with

https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/
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(d) BLEU-AL, De→En

Figure 3: BLEU-AP and BLEU-AL curve on IWSLT14 De↔En.

k = 3 k = 5 k = 7
BLEU AP AL BLEU AP AL BLEU AP AL

Our model 23.59 0.66 3.46 26.34 0.73 5.17 27.39 0.79 7.01
- only with forward model 23.45 0.65 3.43 26.26 0.71 5.09 26.68 0.78 6.99
- only with backward model 8.54 0.66 2.91 7.11 0.73 4.42 8.57 0.78 6.02
- with two different forward model 22.68 0.65 3.40 25.78 0.71 5.13 27.3 0.79 6.96

Table 2: Ablation Study in IWSLT14 En→De

keval ∈ {1, 3, 5, 7, 9}. The results show that mod-
els trained on wait-7 (i.e. ktrain = 7) generalize
well on other evaluation paths. Like most simul-
NMT models using wait-k policy, the performance
drops when far from the training path, for example,
when ktrain = 1 and keval = 9.

We also compare our method with the related
work on IWSLT datasets when ktrain = keval = 7.
As shown in Table 1, our proposed method achieves
the highest BLEU scores than the baselines and
related works. Especially on IWSLT14 En→De,
we perform better by a great margin. The evalua-
tion results on multiple benchmarks show that our
approach can obtain better scores than the base-
line, and the latency is not affected much. This
shows that the performance of SimulNMT mod-
els can be effectively improved through additional
model design. We empirically verified that using
our proposed bidirectional modeling is simple and
effective.

4 Ablation Study

To investigate the importance of the forward model
and backward model, we provide three groups of
ablation study: (1) only with the forward model, (2)
only with the backward model, and (3) the ensem-
ble model with two forward models with a different
seed. We work on the IWSLT14 En→De task and
study the effect to wait-{3, 5, 7}. The results are
shown in Table 2, and the latency metrics (AP and

AL) are not significantly influenced. The BLEU
score drops when removing any feature, which in-
dicates that they all benefit the model. Specifically,
the forward model plays the most critical role in
our model. This reveals that due to the use of uni-
directional attention in the forward modeling of
SimulNMT, although real-time efficiency is sat-
isfied, translation quality suffers from a negative
impact. And with an additional feature from back-
ward modeling added for enhancing the forward
modeling, it indeed enhances the model’s ability
to adapt to the flexible order without affecting the
latency.

5 Conclusion

In this work, we proposed a bidirectional modeling
strategy for simultaneous neural machine transla-
tion. Motivated by the observation that the word
order is free in practical use, while SimulNMT
expects strict word order, we train a backward de-
coding model to let wait-k forecast the future in-
formation. Then we fuse the backward model into
the forward model for ensemble decoding. Experi-
ments on four translation tasks indicate the effec-
tiveness of our model design. Experimental results
demonstrate that this method is simple and effec-
tive. For future work, we will enhance this model
performance by jointing more considerable auxil-
iary models besides the backward model.
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