
Instant Video Models: Universal Adapters for
Stabilizing Image-Based Networks

Matthew Dutson, Nathan Labiosa, Yin Li, and Mohit Gupta
University of Wisconsin–Madison

{dutson,nlabiosa,yin.li,mgupta37}@wisc.edu

Abstract

When applied sequentially to video, frame-based networks often exhibit temporal
inconsistency—for example, outputs that flicker between frames. This problem is
amplified when the network inputs contain time-varying corruptions. In this work,
we introduce a general approach for adapting frame-based models for stable and
robust inference on video. We describe a class of stability adapters that can be
inserted into virtually any architecture and a resource-efficient training process that
can be performed with a frozen base network. We introduce a unified conceptual
framework for describing temporal stability and corruption robustness, centered
on a proposed accuracy-stability-robustness loss. By analyzing the theoretical
properties of this loss, we identify the conditions where it produces well-behaved
stabilizer training. Our experiments validate our approach on several vision tasks
including denoising (NAFNet), image enhancement (HDRNet), monocular depth
(Depth Anything v2), and semantic segmentation (DeepLabv3+). Our method
improves temporal stability and robustness against a range of image corruptions
(including compression artifacts, noise, and adverse weather), while preserving or
improving the quality of predictions.

1 Introduction

Video is often processed frame-wise—meaning images are passed one by one to a processing pipeline
or model, and each output is independent of the previous one. This design choice is often driven by
practical considerations: single-frame datasets are generally more diverse and accessible than video
datasets, training image-based models is far less demanding in terms of compute and memory, and
improvements in single-frame performance often carry over to video-based tasks.

Unfortunately, frame-wise processing faces the inherent challenge of temporal consistency, where
model predictions fluctuate over time (Figure 1 top-middle). This behavior is especially problematic
in tasks such as denoising or stylization, where temporal inconsistency can significantly reduce per-
ceptual quality. Even in applications where the model output is not intended for human consumption,
instability can impact downstream tasks. For example, inconsistent monocular depth estimates could
produce erratic behavior in a collision avoidance system. Moreover, instability can reduce perceived
reliability and thereby undermine user trust, regardless of objective performance.

Temporal consistency is closely related to corruption robustness. In field deployments, vision systems
often operate in non-ideal conditions. For example, an autonomous vehicle may encounter inclement
weather, sensor artifacts, or low-light noise; robustness in these circumstances is vital for safe system
operation. These real-world corruptions are often transient, with an appearance that changes between
frames (Figure 1 top-right). While it may be challenging to correct such degradations with a single
frame, we can often infer the underlying clean signal from recent context. In this case, we can view
robustness as a natural extension of temporal consistency.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Stability and robustness (input / unstabilized / stabilized)

Snow Rain Elastic deformation Impulse noise

Denoising (NAFNet) Denoising (NAFNet) Enhancement (HDRNet) Enhancement (HDRNet)

Frame-wise prediction

Independent

Unstable Non-robust

... Monocular depth with corruptionsDenoising (NAFNet)

...

...

Denoising Enhancement

Depth Segmentation

VersatilityInjecting stabilizers

... ...

Training loss

+

+

+

...

Frozen

...

Figure 1: Stabilizing image-based networks. (top) Applying single-image models sequentially to
the frames of a video can cause unstable predictions and failures under time-varying corruptions. In
the top-right example, we see that randomly dropping patches causes artifacts in monocular depth
estimates. (middle) We propose a method for injecting stabilizers into existing networks and for
training these stabilizers using a unified accuracy-stability-robustness loss. (bottom) We demonstrate
improvements in stability and robustness for various tasks, without modifying the original image-
based models. Image sources: [18, 56, 58, 75].

2

Several prior works have proposed video-centric models with improved temporal consistency [5,
44, 24, 74, 60, 72]. However, these methods are often narrowly designed for one or a few tasks and
require costly training on large-scale video datasets. Consequently, they lack the flexibility to leverage
the extensive ecosystem of frame-based imaging and perception models. Further, few explicitly
address robustness to transient corruptions or other challenging conditions.

In this work, we improve the temporal consistency and robustness of pre-trained, image-based
models across various tasks. One of our primary challenges is that increasing stability may result
in over-smoothing, which can, in turn, reduce accuracy. We conceptually explore the tradeoffs
between output quality, corruption robustness, and temporal consistency, and introduce a unified
accuracy-robustness-stability loss to balance these objectives. We provide a theoretical analysis of
this loss and identify strategies to avoid “over-smoothing reality,” such that there is no incentive for
predictions to be smoother than the true scene dynamics.

Guided by this analysis, we propose a class of versatile stabilization adapters (Figure 1 middle).
These adapters generate control signals, based on recent spatiotemporal context, that modulate
changes to the model’s features and output. By operating in both the feature and output spaces,
we allow the adapters to model stability wherever it exists in the visual hierarchy. This property is
important for high-level vision tasks, where stability is often best described in a feature space.

Our method offers several key benefits. First, our stabilization adapters are lightweight and modular,
and do not require modifying the original model parameters. Second, our adapters operate causally;
stabilized outputs depend only on current and past inputs—a feature that is critical for processing
streaming video in latency-sensitive applications. Third, our approach is compatible with both low-
level tasks, where stability can be described in terms of pixel values, and higher-level tasks, where
stability occurs at the level of scene semantics. Finally, our method naturally enhances robustness to
transient corruptions, without requiring explicit corruption modeling.

We evaluate our method on a range of tasks: denoising, image enhancement, monocular depth
estimation, and semantic segmentation (Figure 1 middle-right). We also demonstrate improved ro-
bustness against various transient corruptions, including noise, dropped patches, elastic deformations,
compression artifacts, and adverse weather (Figure 1 bottom). In most cases, these improvements do
not reduce accuracy—on the contrary, we often see significant improvements in task metrics. Overall,
our experiments establish the flexibility and practicality of our approach.

2 Related Work

Corruption robustness. Several prior works have addressed robustness against input corruptions.
Hendrycks and Dietterich [23] propose metrics for measuring the robustness of image classifiers
against common corruptions (e.g., compression artifacts or weather); their metrics inspire our
definitions in Section 3. In general, natural corruptions have received less attention [14] from the
vision community than adversarial corruptions [1, 19, 46, 48, 59, 61, 69, 71], although a handful of
methods and benchmarks exist [3, 34, 41, 47, 70]. Like these works, our paper emphasizes robustness
to naturally occurring corruptions rather than worst-case adversarial perturbations.

Consistent image enhancement. Frame-to-frame flickering is a significant problem for low-level
image enhancement models; as such, there have been several works that improve temporal consistency
for these tasks [5, 33, 37, 77, 80]. Blind video temporal consistency methods [5, 33, 37] treat the
frame-level model as a black box, which allows generalization across models and applications.
However, because they consider only the model input and output, these methods cannot model
higher-level (semantic) stability and are prone to instability when the input is impacted by transient
noise or corruptions. In contrast, we model stability in both the output space and the feature space,
improving robustness against corrupted inputs and supporting a wider range of tasks, including those
where stability is best described in semantic terms.

Task-specific video architectures. Many works propose video-optimized architectures for specific
tasks, with temporal consistency a stated priority in many cases. This problem has been widely studied
for ill-posed, low-level tasks where the output is intended for a human viewer; examples include
video colorization [36, 44, 64, 76, 79, 82, 83], stylization [7, 10, 11, 13, 16, 17, 21, 24, 39, 43, 53, 57,
67, 73], and inpainting [6, 30, 35, 65, 74, 78]. Temporal consistency is also a concern in higher-level
tasks, including segmentation [2, 51, 55, 60, 66], object detection [4, 26, 42, 63, 72, 84], and depth

3

estimation [27, 28, 32, 38, 45, 50, 68, 81]. Clockwork ConvNets [60] leverage the observation that
semantic content evolves more slowly and smoothly than pixel values; we share this motivation in
designing feature-domain stabilizers.

Our goal is not to design a task-specific method; in fact, we expect specialized architectures to
outperform our general approach on benchmarks. The appeal of our approach lies in its practicality
and versatility. Our method requires minimal training and no alterations to the original network, and
can be applied to a broad range of video inference tasks, including those where highly optimized
video architectures may not exist.

3 Defining Stability and Robustness

We start by defining temporal stability. Let fϕ : X → Y be a frame-wise predictor with parameters ϕ,
and let δ(y1,y2) be a metric defined on the space Y . We use ŷ to indicate the model output and y for
the target output (ground truth, or features from a reference model). We formulate our definition as
an expectation over data distribution D containing (x,y) sequences of duration τ indexed by discrete
time step t (the frame index). We define the stability S as the negative expected difference between
adjacent predictions, i.e.,

S = −E(x,y,τ)∼D

[
τ−1∑
t=1

δ(fϕ(xt), fϕ(xt+1))

]
. (1)

The negation is added such that stability increases as frame-to-frame variation decreases.

This notion of stability is closely related to robustness, i.e., the correctness of the model predictions
under input corruptions [23]. The same input corruptions can cause both temporal instability and
reduced prediction accuracy; examples include sensor noise, image or video compression artifacts,
rain, and snow. Hendrycks and Dietterich [23] define corruption robustness Rc as the expected
accuracy of a classifier under a distribution E of per-image perturbation functions. We extend their
definition to cover arbitrary metrics δ and time series of duration τ ,

Rc = −Eε∼E,(x,y,τ)∼D

[
τ∑

t=1

δ (fϕ(εt(xt)),yt)

]
, (2)

where εt is the per-frame perturbation at time t. Again, yt is the target output.

We define the corruption stability Sc similarly:

Sc = −Eε∼E,(x,y,τ)∼D

[
τ−1∑
t=1

δ(fϕ(εt(xt)), fϕ(εt+1(xt+1)))

]
. (3)

Both Rc and Sc include input perturbations ε. Rc measures how accurately a model f predicts the
target, while Sc captures the temporal smoothness of the model’s outputs. Notably, Rc and Sc can be
applied to both the intermediate features and the output of f .

4 Learning to Balance Stability and Robustness

We now combine Rc and Sc to form a unified accuracy-stability-robustness training loss Uc, and
analyze the conditions under which this loss leads to well-behaved training.

Unified accuracy-stability-robustness loss. We define the unified loss Uc as

Uc = −(Rc + λSc) (4)

= Eε∼E,(x,y,τ)∼D

[
τ∑

t=1

δ(fϕ(εt(xt)),yt) + λ

τ−1∑
t=1

δ(fϕ(εt(xt)), fϕ(εt+1(xt+1)))

]
, (5)

where λ is a constant that weights stability relative to accuracy.

Theoretical analysis. If δ can be expressed in terms of a norm on Y , we can derive two bounds on λ.
The first, λ < 1/2, which we call the oracle bound, defines the range of λ where the ground truth is

4

ŷ1
y2

Value of second prediction ŷ2

ŷ1

y3

V
al

ue
 o

f t
hi

rd
 p

re
di

ct
io

n
ŷ

3

No stability penalty, λ= 0

ŷ1
y2

Value of second prediction ŷ2

Below oracle bound, λ= 0.4

ŷ1
y2

Value of second prediction ŷ2

Above collapse bound, λ= 4

Figure 2: Unified loss for one-dimensional predictions. We consider a time series of duration τ = 3
consisting of one-dimensional predictions, with δ defined as the L1 distance. We assume that the first
prediction ŷ1 is fixed (cannot be modified by a stabilization adapter). We show the value of the second
prediction ŷ2 along the x-axis and the value of the third ŷ3 along the y-axis, with contours indicating
the value of the unified loss as these predictions vary. When λ = 0, the minimum occurs at the
ground truth ŷ2 = y2 and ŷ3 = y3. When λ is nonzero but below the oracle bound, the minimum still
occurs at the ground truth, but the loss increases more slowly in the direction of stabler predictions.
When λ exceeds the collapse bound, the global minimum is the collapse state ŷ3 = ŷ2 = y1.

the global minimizer of the loss in prediction space. Under this bound, a perfectly accurate (oracle)
model will never have an incentive to diverge from the correct prediction to increase stability. For
each training item x, the minimum loss occurs at the ground truth y, implying zero gradients with
respect to the prediction ŷ. See Appendix A for a proof of this and the following bound.

The second bound, λ > τ − 1, is the collapse bound, and gives the range of λ where the global
loss minimizer corresponds to exact repetition of the initial prediction, regardless of scene changes.
Unlike the global accuracy minimizer (the oracle state), which may be difficult or impossible to reach
with gradient descent, the collapse state is often easily achieved. For example, if there is an EMA
stabilizer (Section 5) on the output, we can achieve collapse simply by setting its decay to zero. In
our experiments, we confirm that setting λ above the collapse bound leads to prediction collapse,
provided the collapse state is representable in the stabilizer parameter space.

Example. In Figure 2, we plot the loss as a function of two one-dimensional predictions ŷ2 and ŷ3,
for several values of λ. When the stability penalty is introduced, the loss begins to tilt toward more
stable predictions. When λ is within the oracle bound, the global minimizer is unchanged. When it
exceeds the collapse bound, the global minimizer is a repeated prediction.

Note that the oracle state is mutually exclusive with the collapse state (unless the ground truth is itself
collapsed), as for any time series with τ > 1, we have τ − 1 > 0.5. Thus, we recommend training
with λ < 0.5 in general; doing so ensures non-collapse and yields the correct behavior in the limiting
case where the model is perfectly accurate.

5 Designing Stabilization Adapters

Our goal is to improve the temporal stability and robustness of a pre-trained, frame-wise predictor f
for video tasks. We assume f is realized using a deep neural network with pre-trained weights ϕ0.
While the unified loss Uc allows us to update ϕ0, this fine-tuning may be computationally expensive
or require substantial training data. Instead, we consider adaptation of f , where a task-specific,
lightweight adapter parametrized by ∆ϕ is learned to stabilize the intermediate features and outputs
of f . Under this formulation, we train only the parameters ∆ϕ of the adapter (i.e., the stabilizer), and
the original weights ϕ0 remain fixed.

Design principles. The following principles guide our stabilizer design. First, we consider only
causal stabilizers, where the stabilized outputs at time t are computed exclusively using information
from times ≤ t. This constraint is critical for processing streaming videos. Second, we stabilize both
network activations (features) and outputs. Output-only stabilization is sufficient for some low-level

5

Legend

Interpolation

Stabilization

Existing layer

Controller layer

...

...

...

Resize

... Fuse

...

Stabilizer 1

Resize

Fuse

...

Stabilizer 2

Figure 3: Stabilization controllers. Starting with the existing network (red), we add stabilizers
(yellow) to select layers. The degree of stabilization, i.e., the decay β, can be predicted by a
stabilization controller (blue). This controller consists of a shared backbone g and one head hi per
stabilized layer. Stabilizers can be added to both internal layers and the model output.

operations such as colorization. Feature-domain stabilization expands the potential scope of our
method to include higher-level tasks; for these tasks, the inherent stability of a scene is often best
described in feature space. Finally, we limit ourselves to designs that do not interfere with the existing
network architecture. Our stabilizers are layer-level adapters with independent parameters and are
designed to preserve the existing feature representation.

Exponential moving average (EMA) stabilizer. As a starting point, we consider a simple temporal
smoothing operation applied to individual feature values forming a one-dimensional time series.
Let zt denote an activation or feature value at time t, and let z̃t denote the corresponding stabilized
activation. The exponential moving average (EMA) stabilizer produces a linear combination of the
current unstabilized output and the previous stabilized output,

z̃t = βzt + (1− β)z̃t−1, (6)
where β ∈ [0, 1] is a decay-rate parameter. The recursive formulation here is equivalent to convolving
the input time series with an infinite exponentially decaying weight kernel. The EMA stabilizer is
memory-efficient (only z̃t−1 is retained) and differentiable with respect to β and z. We use the EMA
stabilizer as the basis for more sophisticated designs.

Stabilization controllers. Simple smoothing operations (like the EMA stabilizer) are limited in
both their spatial context and their ability to model complex changes in the scene. To address these
limitations, we propose a stabilization controller network, which considers prior context (e.g., the
current and previous input frames and feature maps) and predicts the amount of stabilization that
should be applied to each value.

Although the idea of controller-augmented stabilization can be applied to many stabilization mecha-
nisms, we focus here on the EMA stabilizer due to its differentiability and low memory requirements.
In this case, the controller predicts the decay β for each activation across layers. Our architecture,
as shown in Figure 3, consists of a shared backbone g and a stabilization head hi per stabilized
layer. Tog g compares the current and previous frames, offering a shortcut connection from frames to
features. h predicts the decay values based on the output of g (resized to match the layer resolution),
the current unstabilized features zt, and the previous stabilized and unstabilized features z̃t−1 and
zt−1. Together, the parameters of g and {hi} form ∆ϕ.

Formally, the stabilized feature tensor z̃i,t for layer i and time t is given by
z̃i,t = βi,t ⊙ zi,t + (1− βi,t)⊙ z̃i,t−1, (7)

βi,t = σ(hi(g(xt,xt−1), zi,t, z̃i,t−1, zi,t−1)), (8)
where ⊙ denotes an element-wise product and zi,t is the unstabilized feature tensor.

We note that our controller is conceptually similar to selective state space models [20], although
the design differs significantly. Equation 7 can be viewed as a linear dynamical system defined on
frame-level features with parameters conditioned on the input, current, and previous features.

6

20 25 30
Instability

28

29

30

31

32

33

PS
N

R

Moderate intensity (α= 0.5)

25 30 35 40
Instability

24

25

26

27

28
High intensity (α= 0.25)

Base model
Output fixed
Simple fixed
Simple learned
Controlled
Spatial

Figure 4: Image enhancement results. Introducing a controller and spatial fusion to the stabilizer
significantly improves the accuracy-stability tradeoff. The spatial-fusion stabilizer reduces frame-to-
frame variation by up to ≈ 35% while exceeding the quality of the base model. “Instability” here
refers to negative stability (−S); see Equation 1. The goal is to move toward −x (lower instability)
and +y (better image quality).

Controller with spatial fusion. Often, z takes the form of a 2D feature map. If g and h are
convolutional, the predicted decay β is informed by the frames and features within a local receptive
field. However, with Equation 8, the weighted fusion used to compute z̃ is still constrained to the
time axis. Extending the weighted fusion to a spatial neighborhood can improve stabilization in the
presence of motion by allowing translation of features from previous frames.

To perform spatial fusion, we modify the controller head h to predict a spatial decay kernel η at each
pixel rather than a single decay β. For a neighborhood that contains m locations (including the central
pixel), the kernel η contains m+ 1 elements. The first m elements weight the stabilized activations
from the previous time step (z̃t−1), for each location in the neighborhood. The (m+ 1)th element
weights the current unstabilized activation (zt) for the central pixel. The kernel is softmax-normalized.
The first m logits are predicted directly by the controller head, and the last is set to zero (when m = 1,
the softmax reduces to the sigmoid in Equation 8). See Section D.3 for more details.

The spatial fusion stabilizer can represent a recursive shift projection, where a feature vector is
translated on each frame by an amount corresponding to the object motion. The maximum trackable
motion in this case is determined by the spatial extent of the kernel η.

6 Experiments

In Sections 6.1 and 6.2, we test our approach on image enhancement and denoising, respectively. We
ablate the components of our method and explore the tradeoff between stability and accuracy. In
Section 6.3, we test our stabilizers in the presence of various image corruptions, evaluating image
enhancement, denoising, and depth estimation. In Section 6.4, we consider corruptions resulting
from adverse weather (rain and snow).

Some low-level details (e.g., training hyperparameters) are omitted here for brevity; see the appendices
for a more exhaustive description of experiment protocols. The appendices also include results for
semantic segmentation and an exploration of training-free stabilizer composition.

Variants and baselines. Across our experiments, we consider a common set of variations (ablations
of our approach) and baselines. The simple learned variant adds a simple EMA stabilizer (Equation 6)
to the output and features, with one learned β value per channel. The controlled variant adds a learned
controller that predicts the stabilizer decay according to Equation 8. Finally, the spatial variation
augments the controlled stabilizer by adding spatial fusion. As for baselines: the simple fixed method
applies a simple EMA stabilizer to internal features and the output, with one global, hand-tuned β;
the output fixed method applies a hand-tuned EMA stabilizer only to the model output.

6.1 Image Enhancement

Task, dataset, and base model. We first consider image enhancement, a task where perceptual
quality (including stability) is of primary importance. We use the HDRNet model [18], which can
be trained to reproduce many low-level image transformations. Specifically, we target the local

7

15 20 25
Instability

35.0

35.5

36.0

36.5

37.0

37.5

PS
N

R

Moderate noise (σ= 0.1)

15 20 25 30
Instability

32.5

33.0

33.5

34.0

34.5
Strong noise (σ= 0.2)

10 20 30 40
Instability

26.5

27.0

27.5

28.0

28.5

29.0

Extreme noise (σ= 0.6)

Base model
Output fixed
Simple fixed
Simple learned
Controlled
Spatial

Figure 5: Denoising results. Because it attempts to stabilize an iid noise residual, naive feature-space
stabilization leads to worse PSNR and worse stability. We achieve the best performance with a
controlled stabilizer, usually with spatial fusion.

Laplacian detail-enhancement operator [49], due to its known forward model and readily available
code. We consider two effect strengths: moderate (σ = 0.4 and α = 0.5) and strong (σ = 0.4 and
α = 0.25). We generate training pairs by applying the local Laplacian filter to each frame of the
Need for Speed (NFS) dataset [29]. NFS contains 100 videos (380k frames) collected at 240 FPS; we
randomly select 20 videos for validation and use the remaining 80 for training. Videos are scaled to
have a short-edge length of 360. We evaluate PSNR and instability (Equation 1) with δ = || · ||2.

Experiment protocol. We fine-tune the original HDRNet local_laplacian/strong_1024
weights for both effect strengths. After this fine-tuning, we attach a stabilizer to the output of
each convolution and the overall model output (because the HDRNet architecture is extremely
lightweight, this does not represent an unreasonable overhead). We then freeze the fine-tuned weights
and train the stabilizers using BPTT on short video snippets (τ = 8). We use the unified loss with
δ = || · ||2. We test several λ values—0.1, 0.2, 0.4, 0.8, and 8.0—for each effect strength and model
variation. The first three values are within the oracle bound, and the last exceeds the collapse bound.

Results. Figure 4 illustrates how PSNR and instability change as we vary the degree of stabilization
(λ for learned stabilizers, β for hand-tuned stabilizers). We observe that for static (non-controlled)
stabilizers, there is no benefit to stabilizing in feature space. For the static methods (output fixed,
simple fixed, and simple learned), increasing stability brings a reduction in quality as we begin
to over-smooth the output. In contrast, for the controlled and spatial stabilizers, there is a region
where both PSNR and stability are improved over the base model. Spatial fusion gives a significant
improvement in output quality—roughly 2 dB for the high-intensity effect. We suspect this is related
to the nature of the detail-enhancement task (its sensitivity to small-scale motion). Finally, we confirm
that setting λ = 8 > τ − 1 leads to prediction collapse (instability < 10−3, indicating a constant
prediction). This result confirms that the global collapse minimum is easily reached, despite the
non-convex nature of the optimization in general.

6.2 Denoising

Task, dataset, and base model. Next, we evaluate image denoising under AWGN. Denoising
highlights the utility of our method when the input is itself unstable. We use the NAFNet model [9],
which employs a U-Net architecture with modified convolutional blocks (NAFBlocks). We again
use the NFS dataset, with the same train/validation split as in Section 6.1. We evaluate three noise
levels: moderate (σ = 0.1, for float images ∈ [0, 1]), strong (σ = 0.2), and extreme (σ = 0.6). See
Appendix F.4 for additional results on the DAVIS [52] dataset.

Experiment protocol. We start by fine-tuning the unstabilized model for each dataset and noise
level, initializing with the nafnet_sidd_width32 weights published by the model authors. We then
attach a stabilizer to the output of each NAFBlock and to the model output. As before, we freeze the
fine-tuned weights and train only the stabilizer parameters, using the unified loss with δ = || · ||2 and
sweeping out λ = 0.1, 0.2, 0.4, 0.8, and 8.0.

Results. Figure 5 shows PSNR and instability across noise levels. The “simple fixed” stabilizer
gives a somewhat surprising result: adding stabilization worsens both PSNR and instability. The
reason is that the network backbone predicts a noise residual, which is completely uncorrelated

8

Enhancement Denoising Depth estimation

Corruption Method PSNR Instability PSNR Instability AbsRel (↓) Delta-1.25 (↑) Instability

Patch drop Base model 17.43 164.6 18.93 151.4 0.070 0.948 9.89
Ours 31.39 30.36 35.46 20.42 0.070 0.956 4.73

Elastic distortion Base model 24.00 64.23 27.99 47.31 0.052 0.968 7.76
Ours 26.63 24.97 30.78 21.04 0.057 0.967 4.75

Frame drop Base model 28.65 94.04 33.42 113.5 0.065 0.936 14.17
Ours 31.69 29.14 27.34 20.56 0.050 0.974 4.91

JPEG artifacts Base model 24.85 42.06 29.01 39.71 0.057 0.964 7.32
Ours 26.46 23.58 32.19 20.49 0.065 0.961 4.92

Impulse noise Base model 14.28 217.8 24.65 62.10 0.047 0.974 6.83
Ours 27.37 30.90 32.04 19.73 0.056 0.972 4.98

Table 1: Corruption robustness. Our method significantly improves stability while preserving
or improving prediction quality. The only notable exception is reduced PSNR for denoising with
dropped frames. However, we note that PSNR (averaged over frames) does not capture the jarring
perceptual effect of dropped frames; thus, the high PSNR of the base model is somewhat deceptive.

between frames. Over-smoothing this residual inhibits the noise removal, which worsens PSNR
and increases frame-to-frame variation due to unremoved noise. Fortunately, this behavior does not
exist for the learned or controlled stabilizers, as they target only those features that exhibit some
temporal smoothness. Controlled stabilizers improve both stability and PSNR when λ ≤ 0.4. We
again confirm that setting λ = 8 > τ − 1 leads to prediction collapse, i.e., instability < 10−3.

In most cases, we find that the spatial fusion stabilizer outperforms the non-spatial controlled stabilizer.
However, there is a notable exception in the case of extreme noise, where the spatial fusion stabilizer
is about 6 dB worse than other methods (these points are outside the range of the plot in Figure 5 but
are included in Table 7). Intriguingly, this quality gap only appears when evaluating long sequences
(hundreds of frames) and shrinks as we reduce τ . In Appendix F.6, we show that this problem can be
at least partially mitigated by increasing τ during training.

The supplementary material includes video files comparing the stabilized and unstabilized outputs. We
encourage the reader to watch these videos for a clear qualitative comparison (temporal inconsistency
is much more obvious in videos than in side-by-side static frames).

6.3 Corruption Robustness

Tasks, datasets, and base models. We again consider HDRNet for image enhancement and NAFNet
for denoising. We also include results for depth estimation with Depth Anything v2 [75]. Depth
Anything is notable for the scale of data used in its training; it would be costly to develop a new
video architecture from scratch, making Depth Anything a good candidate for our approach. See
Appendix F.2 for results on semantic segmentation with DeepLabv3+.

For depth training, we use the VisionSim framework [25] (Blender) to generate a dataset of simulated
videos with ground-truth depth. The dataset consists of 50 indoor scenes containing ego motion and
is rendered at 50 FPS. We randomly select 10 scenes for validation and use the rest for training. See
Appendix E for further details on this dataset.

Experiment protocol. For HDRNet and NAFNet, we train spatial-fusion stabilizers using the same
settings as in Sections 6.1 and 6.2. We train HDRNet for the moderate effect strength (α = 0.5),
and NAFNet for moderate noise (σ = 0.1) on NFS. Unlike other models, we do not fine-tune the
base Depth Anything model; we found that naive fine-tuning on a small dataset like ours quickly
led to overfitting. We add controlled stabilizers to instances of DepthAnythingReassembleLayer,
DepthAnythingFeatureFusionLayer, and the model output.

We train and evaluate stabilized models for each of the following corruptions: (1) randomly zeroing
each 8×8 patch with probability 0.1, (2) elastic deformation, see Appendix E for details, (3) randomly
zeroing each frame with probability 0.1, (4) applying JPEG compression at quality 10/100, and (5)
adding impulse noise to each channel with probability 0.05 for both salt and pepper. We set λ = 0.2
when training stabilizers for corruption robustness.

9

Rain Snow

Stabilized? Unfrozen? PSNR SSIM Instability PSNR SSIM Instability

× × 21.43 0.617 151.76 18.62 0.577 262.48
✓ × 28.63 0.880 57.88 31.34 0.914 59.31
× ✓ 32.19 0.937 70.84 34.33 0.950 66.57
✓ ✓ 32.61 0.938 58.30 35.20 0.956 58.98

Table 2: Adverse weather robustness on RobustSPRING. Training stabilizers with a frozen base
model gives substantial improvement over the unstabilized model. We obtain the best overall results
by jointly training stabilizers with the base parameters.

Results. Table 1 shows accuracy and stability with and without stabilizers. Adding stabilizers leads to
significant reductions in instability and, in most cases, improvements in per-frame accuracy metrics.
See Appendix Figures 10, 11, and 12 for qualitative results.

6.4 Adverse Weather Robustness

Task, dataset, and base model. We now evaluate robustness under adverse weather conditions.
Specifically, we consider the rain and snow corruptions from the RobustSpring [58] dataset. These
corruptions differ from those in Section 6.3 in their spatial complexity and temporal dynamics
(raindrops and snowflakes follow continuous paths, unlike simpler corruptions such as randomly-
dropped patches). RobustSpring contains 10 rendered sequences (2000 total frames), each with left-
and right-frame variants. Clean ground-truth frames are provided for all sequences. We randomly
select 2 videos for validation and use the remaining 8 for training. Videos are downsized to 720p. We
evaluate NAFNet denoising [9] with σ = 0.1, adding noise after weather effects.

Experiment protocol. We fine-tune the original nafnet_sidd_width32 weights with noise, but
not weather corruptions. Following Section 6.2, we then append a spatial-fusion stabilizer to each
NAFBlock and the model output. We train these stabilizers under noise + weather using λ = 0.2.
Consistent with our other experiments, we train stabilizers with a frozen base model.

In addition, we consider two variants with an unfrozen base model. In the first variant, we fine-tune
the base model on noise + weather without stabilizers. In the other, we unfreeze the base model when
training on noise + weather, jointly training the stabilizer and base parameters. For both variants, we
use the same hyperparameters as the frozen stabilizer training.

Results. See Table 2 and Appendix Figure 14 for results. Compared to the unstabilized baseline,
stabilizers substantially improve image quality and stability. Likewise, fine-tuning the original
weights (without stabilizers) with weather corruptions gives a significant improvement. Compared to
stabilization, fine-tuning gives better single-image quality but higher instability. We obtain the best
overall results by combining fine-tuning with stabilization. In general, we expect this joint training
approach to be the best choice for small- to medium-sized models. For larger models where training
the base model is infeasible, training only the stabilizers still gives reasonable results.

7 Discussion

Limitations. The bounds in Section 4 assume that the distance δ can be expressed in terms of a norm
on the prediction space Y . This condition excludes many widely used loss functions, especially more
sophisticated, multi-component losses. Nonconforming δ may still work in practice, although they
may require more careful tuning of λ due to the lack of theoretical guarantees.

We had some difficulty with sim-to-real generalization when training stabilizers for Depth Anything.
We conjecture that real video contains subtle corruptions not present in simulated video—for example,
sensor noise, compression artifacts, or optical phenomena. These “baseline corruptions” could explain
some of the temporal instability we see when using apparently clean input video.

Alternate metrics. In all of our experiments, we use a simple Euclidean norm for δ. However, other
metrics may be a better choice, depending on the task. For example, a variant of the Wasserstein
metric may give improved results for two-dimensional outputs and feature maps, due to its ability to
account for the spatial structure of the tensor. See Appendix B for further discussion.

10

Acknowledgments and Disclosure of Funding

Thanks to Sacha Jungerman for helping us generate VisionSim sequences for the depth estimation
experiments. This research was supported by NSF CAREER award 1943149, NSF CPS grant
2333491, ARL under contract number W911NF-2020221, and the Wisconsin Alumni Research
Foundation via a Research Forward Initiative.

References
[1] Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. Advances in adversarial attacks and

defenses in computer vision: A survey. IEEE Access, 9:155161–155196, 2021.

[2] Aharon Azulay, Tavi Halperin, Orestis Vantzos, Nadav Bornstein, and Ofir Bibi. Temporally stable video
segmentation without video annotations. In Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), pages 3449–3458, January 2022.

[3] Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization for
improving corruption robustness. In Proceedings of the Winter Conference on Applications of Computer
Vision (WACV), pages 494–503, January 2021.

[4] Gedas Bertasius, Lorenzo Torresani, and Jianbo Shi. Object detection in video with spatiotemporal
sampling networks. In Proceedings of the European Conference on Computer Vision (ECCV), September
2018.

[5] Nicolas Bonneel, James Tompkin, Kalyan Sunkavalli, Deqing Sun, Sylvain Paris, and Hanspeter Pfister.
Blind video temporal consistency. Transactions on Graphics (TOG), 34(6), 2015.

[6] Ya-Liang Chang, Zhe Yu Liu, Kuan-Ying Lee, and Winston Hsu. Learnable gated temporal shift module
for deep video inpainting. arXiv, 2019.

[7] Dongdong Chen, Jing Liao, Lu Yuan, Nenghai Yu, and Gang Hua. Coherent online video style transfer. In
Proceedings of the International Conference on Computer Vision (ICCV), October 2017.

[8] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution
for semantic image segmentation. arXiv, 2017.

[9] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration. In
Proceedings of the European Conference on Computer Vision (ECCV), pages 17–33, 2022.

[10] Tian Qi Chen and Mark Schmidt. Fast patch-based style transfer of arbitrary style. arXiv, 2016.

[11] Xinghao Chen, Yiman Zhang, Yunhe Wang, Han Shu, Chunjing Xu, and Chang Xu. Optical flow distillation:
Towards efficient and stable video style transfer. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 614–630, 2020.

[12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benen-
son, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes dataset for semantic urban scene
understanding. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[13] Yingying Deng, Fan Tang, Weiming Dong, Haibin Huang, Chongyang Ma, and Changsheng Xu. Arbitrary
video style transfer via multi-channel correlation. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 1210–1217, May 2021.

[14] Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath. A systematic review of robustness in
deep learning for computer vision: Mind the gap? arXiv, 2022.

[15] Gongfan Fang. Pretrained DeepLabv3 and DeepLabv3+ for Pascal VOC and Cityscapes. https://
github.com/VainF/DeepLabV3Plus-Pytorch, 2022.

[16] Chang Gao, Derun Gu, Fangjun Zhang, and Yizhou Yu. ReCoNet: Real-time coherent video style transfer
network. In Proceedings of the Asian Conference on Computer Vision (ACCV), pages 637–653, 2019.

[17] Wei Gao, Yijun Li, Yihang Yin, and Ming-Hsuan Yang. Fast video multi-style transfer. In Proceedings of
the Winter Conference on Applications of Computer Vision (WACV), March 2020.

[18] Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasinoff, and Frédo Durand. Deep bilateral
learning for real-time image enhancement. Transactions on Graphics (TOG), 36(4), July 2017.

11

https://github.com/VainF/DeepLabV3Plus-Pytorch
https://github.com/VainF/DeepLabV3Plus-Pytorch

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv, 2015.

[20] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First
Conference on Language Modeling, 2024.

[21] Agrim Gupta, Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Characterizing and improving stability in
neural style transfer. In Proceedings of the International Conference on Computer Vision (ICCV), October
2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[23] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

[24] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao Jiang, Xiaolong Zhu, Zhifeng Li, and Wei
Liu. Real-time neural style transfer for videos. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

[25] Sacha Jungerman. VisionSim: A modular and extensible framework for distributed simulations with rich
pixel-perfect ground truth annotations and realistic sensor emulation. https://visionsim.readthedocs.io,
2025. Accessed 2025-05-15.

[26] Kai Kang, Hongsheng Li, Tong Xiao, Wanli Ouyang, Junjie Yan, Xihui Liu, and Xiaogang Wang. Object
detection in videos with tubelet proposal networks. In Proceedings of the Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[27] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth transfer: Depth extraction from video using non-
parametric sampling. Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 36(11):2144–
2158, 2014.

[28] Bingxin Ke, Dominik Narnhofer, Shengyu Huang, Lei Ke, Torben Peters, Katerina Fragkiadaki, Anton
Obukhov, and Konrad Schindler. Video depth without video models. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (CVPR), pages 7233–7243, June 2025.

[29] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva Ramanan, and Simon Lucey. Need for Speed:
A benchmark for higher frame rate object tracking. In Proceedings of the International Conference on
Computer Vision (ICCV), October 2017.

[30] Dahun Kim, Sanghyun Woo, Joon-Young Lee, and In So Kweon. Recurrent temporal aggregation
framework for deep video inpainting. Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
42(5):1038–1052, 2020.

[31] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2017.

[32] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In Pro-
ceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages 1611–1621, June
2021.

[33] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and Ming-Hsuan Yang.
Learning blind video temporal consistency. In Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[34] Alfred Laugros, Alice Caplier, and Matthieu Ospici. Are adversarial robustness and common perturbation
robustness independant attributes? In Proceedings of the International Conference on Computer Vision
(ICCV) Workshops, October 2019.

[35] Sungho Lee, Seoung Wug Oh, DaeYeun Won, and Seon Joo Kim. Copy-and-paste networks for deep video
inpainting. In Proceedings of the International Conference on Computer Vision (ICCV), October 2019.

[36] Chenyang Lei and Qifeng Chen. Fully automatic video colorization with self-regularization and diversity.
In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[37] Chenyang Lei, Yazhou Xing, and Qifeng Chen. Blind video temporal consistency via deep video prior. In
Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), volume 33, pages
1083–1093, 2020.

12

[38] Siyuan Li, Yue Luo, Ye Zhu, Xun Zhao, Yu Li, and Ying Shan. Enforcing temporal consistency in video
depth estimation. In Proceedings of the International Conference on Computer Vision (ICCV) Workshops,
pages 1145–1154, October 2021.

[39] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang. Learning linear transformations for fast image
and video style transfer. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[40] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc
Van Gool. VRT: A video restoration transformer. Transactions on Image Processing (TIP), 33:2171–2182,
2024.

[41] Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He,
Hui Xue, and Shibao Zheng. A comprehensive study on robustness of image classification models:
Benchmarking and rethinking. International Journal of Computer Vision (IJCV), 133:567–589, 2025.

[42] Mason Liu and Menglong Zhu. Mobile video object detection with temporally-aware feature maps. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[43] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian Li, and
Errui Ding. AdaAttN: Revisit attention mechanism in arbitrary neural style transfer. In Proceedings of the
International Conference on Computer Vision (ICCV), pages 6649–6658, October 2021.

[44] Yihao Liu, Hengyuan Zhao, Kelvin C. K. Chan, Xintao Wang, Chen Change Loy, Yu Qiao, and Chao Dong.
Temporally consistent video colorization with deep feature propagation and self-regularization learning.
Computational Visual Media, 10:375–395, 2024.

[45] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video depth
estimation. Transactions on Graphics (TOG), 39(4), August 2020.

[46] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. In Proceedings of the International Conference on
Learning Representations (ICLR), 2018.

[47] Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision. arXiv, 2019.

[48] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. Rethinking softmax cross-
entropy loss for adversarial robustness. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

[49] Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. Local Laplacian filters: edge-aware image processing
with a Laplacian pyramid. In SIGGRAPH, 2011.

[50] Vaishakh Patil, Wouter Van Gansbeke, Dengxin Dai, and Luc Van Gool. Don’t forget the past: Recurrent
depth estimation from monocular video. Robotics and Automation Letters, 5(4):6813–6820, 2020.

[51] Federico Perazzi, Anna Khoreva, Rodrigo Benenson, Bernt Schiele, and Alexander Sorkine-Hornung.
Learning video object segmentation from static images. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017.

[52] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[53] Gilles Puy and Patrick Perez. A flexible convolutional solver for fast style transfers. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[54] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 44(3):1623–1637, 2022.

[55] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr,
Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas
Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer. SAM 2: Segment
anything in images and videos. arXiv, 2024.

[56] Stephan Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for benchmarks. In Proceedings of the
International Conference on Computer Vision (ICCV), pages 2232–2241, October 2017.

13

[57] Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style transfer for videos. In Proceedings of
the German Conference on Pattern Recognition, pages 26–36, 2016.

[58] Jenny Schmalfuss, Victor Oei, Lukas Mehl, Madlen Bartsch, Shashank Agnihotri, Margret Keuper, and
Andrés Bruhn. RobustSpring: Benchmarking robustness to image corruptions for optical flow, scene flow
and stereo. arXiv, 2025.

[59] Sanchari Sen, Balaraman Ravindran, and Anand Raghunathan. EMPIR: Ensembles of mixed precision
deep networks for increased robustness against adversarial attacks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2020.

[60] Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor Darrell. Clockwork Convnets for video semantic
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, pages
852–868, 2016.

[61] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv, 2014.

[62] Matias Tassano, Julie Delon, and Thomas Veit. FastDVDnet: Towards real-time deep video denoising
without flow estimation. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[63] Subarna Tripathi, Zachary C. Lipton, Serge Belongie, and Truong Nguyen. Context matters: Refining
object detection in video with recurrent neural networks. arXiv, 2016.

[64] Ziyu Wan, Bo Zhang, Dongdong Chen, and Jing Liao. Bringing old films back to life. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), pages 17694–17703, June 2022.

[65] Chuan Wang, Haibin Huang, Xiaoguang Han, and Jue Wang. Video inpainting by jointly learning temporal
structure and spatial details. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pages 5232–5239, July 2019.

[66] Hao Wang, Weining Wang, and Jing Liu. Temporal memory attention for video semantic segmentation. In
Proceedings of the International Conference on Image Processing (ICIP), pages 2254–2258, 2021.

[67] Wenjing Wang, Shuai Yang, Jizheng Xu, and Jiaying Liu. Consistent video style transfer via relaxation
and regularization. Transactions on Image Processing (TIP), 29:9125–9139, 2020.

[68] Yiran Wang, Min Shi, Jiaqi Li, Zihao Huang, Zhiguo Cao, Jianming Zhang, Ke Xian, and Guosheng Lin.
Neural video depth stabilizer. In Proceedings of the International Conference on Computer Vision (ICCV),
pages 9466–9476, October 2023.

[69] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving adversarial
robustness requires revisiting misclassified examples. In Proceedings of the International Conference on
Learning Representations (ICLR), 2020.

[70] Eric Wong and J. Zico Kolter. Learning perturbation sets for robust machine learning. arXiv, 2020.

[71] Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-winners-take-all. In
Proceedings of the International Conference on Learning Representations (ICLR), 2020.

[72] Fanyi Xiao and Yong Jae Lee. Video object detection with an aligned spatial-temporal memory. In
Proceedings of the European Conference on Computer Vision (ECCV), September 2018.

[73] Kai Xu, Longyin Wen, Guorong Li, Honggang Qi, Liefeng Bo, and Qingming Huang. Learning self-
supervised space-time cnn for fast video style transfer. Transactions on Image Processing (TIP), 30:2501–
2512, 2021.

[74] Rui Xu, Xiaoxiao Li, Bolei Zhou, and Chen Change Loy. Deep flow-guided video inpainting. In
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[75] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao.
Depth Anything V2. In Proceedings of the Conference on Neural Information Processing Systems
(NeurIPS), volume 37, pages 21875–21911, 2024.

[76] Yixin Yang, Jinshan Pan, Zhongzheng Peng, Xiaoyu Du, Zhulin Tao, and Jinhui Tang. BiSTNet: Semantic
image prior guided bidirectional temporal feature fusion for deep exemplar-based video colorization.
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 46(8):5612–5624, 2024.

14

[77] Chun-Han Yao, Chia-Yang Chang, and Shao-Yi Chien. Occlusion-aware video temporal consistency. In
Proceedings of the International Conference on Multimedia, pages 777–785, 2017.

[78] Yanhong Zeng, Jianlong Fu, and Hongyang Chao. Learning joint spatial-temporal transformations for
video inpainting. In Proceedings of the European Conference on Computer Vision (ECCV), pages 528–543,
2020.

[79] Bo Zhang, Mingming He, Jing Liao, Pedro V. Sander, Lu Yuan, Amine Bermak, and Dong Chen. Deep
exemplar-based video colorization. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[80] Fan Zhang, Yu Li, Shaodi You, and Ying Fu. Learning temporal consistency for low light video enhance-
ment from single images. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4967–4976, June 2021.

[81] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao, Yu Liu, and Youliang Yan. Exploiting temporal
consistency for real-time video depth estimation. In Proceedings of the International Conference on
Computer Vision (ICCV), October 2019.

[82] Yuzhi Zhao, Lai-Man Po, Kangcheng Liu, Xuehui Wang, Wing-Yin Yu, Pengfei Xian, Yujia Zhang,
and Mengyang Liu. SVCNet: Scribble-based video colorization network with temporal aggregation.
Transactions on Image Processing (TIP), 32:4443–4458, 2023.

[83] Yuzhi Zhao, Lai-Man Po, Wing-Yin Yu, Yasar Abbas Ur Rehman, Mengyang Liu, Yujia Zhang, and
Weifeng Ou. VCGAN: Video colorization with hybrid generative adversarial network. Transactions on
Multimedia, 25:3017–3032, 2023.

[84] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature aggregation for video
object detection. In Proceedings of the International Conference on Computer Vision (ICCV), October
2017.

15

A Proofs

This section contains proofs of the oracle and collapse bounds from Section 4.

A.1 Oracle Bound

We assume that δ takes the form δ(a, b) = ζ(a− b) where ζ is a norm on Rd. We define

u(ŷ,y) =

τ∑
t=1

δ(ŷt,yt) + λ

τ−1∑
t=1

δ(ŷt, ŷt+1) (9)

=

τ∑
t=1

ζ(ŷt − yt) + λ

τ−1∑
t=1

ζ(ŷt − ŷt+1) (10)

as the bracketed expression in Equation 4, using the shorthand ŷt = f(εt(xt)). Our objective is to
show that for any ŷ ̸= y, there exists some y† ̸= ŷ such that u(y†,y) < u(ŷ,y).

There are two possible cases: (1) ŷt ̸= yt for at least one of the endpoints, meaning ŷ1 ̸= y1 or
ŷτ ̸= yτ ; and (2) ŷt = yt at both endpoints.

We start with the first case. We assume that ŷ1 ̸= y1, with the proof being symmetric for ŷτ ̸= yτ .
We propose y† where y†

1 = y1 and y†
t = ŷt for t > 1. Starting with the definition of u,

u(y†,y) = ζ(y1 − y1) + λζ(y1 − ŷ2) + . . . (11)
= λζ(y1 − ŷ2) + . . . (12)

u(ŷ,y) = ζ(ŷ1 − y1) + λζ(ŷ1 − ŷ2) + . . . (13)

By the triangle inequality and absolute homogeneity of ζ,

u(y†,y) = λζ(y1 − ŷ2) + . . . (14)
= λζ((y1 − ŷ1) + (ŷ1 − ŷ2)) + . . . (15)
≤ λζ(y1 − ŷ1) + λζ(ŷ1 − ŷ2) + . . . (16)
= λζ(ŷ1 − y1) + λζ(ŷ1 − ŷ2) + . . . (17)

Assume that λ < 1. Then,

u(y†,y) ≤ λζ(ŷ1 − y1) + λζ(ŷ1 − ŷ2) + . . . (18)
< ζ(ŷ1 − y1) + λζ(ŷ1 − ŷ2) + . . . (19)
= u(ŷ,y). (20)

Therefore, u(y†,y) < u(ŷ,y).

To summarize, we have shown that if λ < 1, any ŷ where ŷ1 ̸= y1 cannot minimize u. The same is
true for ŷτ ̸= yτ .

Now we consider the second case, where ŷ ̸= y but their endpoints are the same. In this case, we
must have ŷs ̸= ys for some 1 < s < τ . We propose y†

s = ys and y†
t = ŷt for t ̸= s. Starting again

with the definition of u,

u(y†,y) = · · ·+ λζ(ŷt−1 − yt) + ζ(yt − yt) + λζ(yt − ŷt+1) + . . . (21)
= · · ·+ λζ(ŷt−1 − yt) + λζ(yt − ŷt+1) + . . . (22)

u(ŷ,y) = · · ·+ λζ(ŷt−1 − ŷt) + ζ(ŷt − yt) + λζ(ŷt − ŷt+1) + . . . (23)

By the triangle inequality and absolute homogeneity of ζ,

u(y†,y) = · · ·+ λζ(ŷt−1 − yt) + λζ(yt − ŷt+1) + . . . (24)
= · · ·+ λζ((ŷt−1 − ŷt) + (ŷt − yt)) + λζ((yt − ŷt) + (ŷt − ŷt+1)) + . . . (25)
≤ · · ·+ λζ(ŷt−1 − ŷt) + λζ(ŷt − yt) + λζ(yt − ŷt) + λζ(ŷt − ŷt+1) + . . . (26)
= · · ·+ λζ(ŷt−1 − ŷt) + 2λζ(ŷt − yt) + λζ(ŷt − ŷt+1) + . . . (27)

16

Assume that λ < 1/2. Then,

u(y†,y) ≤ · · ·+ λζ(ŷt−1 − ŷt) + 2λζ(ŷt − yt) + λζ(ŷt − ŷt+1) + . . . (28)
< · · ·+ λζ(ŷt−1 − ŷt) + ζ(ŷt − yt) + λζ(ŷt − ŷt+1) + . . . (29)
= u(ŷ,y) (30)

Therefore, u(y†,y) < u(ŷ,y).

We have now shown that if λ < 1/2, any ŷ where ŷs ̸= ys for 1 < s < τ cannot minimize u.
Combining this with the result from the first case, we have shown that for λ < 1/2, ŷ = y is the
unique global minimizer of u. □

A.2 Collapse Bound

To prove the collapse bound, we first prove the convexity of u. We then show that, if ŷ1 is fixed
(cannot be modified by the stabilizer), ŷs = ŷ1 for 1 < s ≤ τ is a local minimizer of u for λ > τ − 1.
Because u is convex, this makes ŷs = ŷ1 the global minimizer.

Define q as the concatenation (ŷ,y), i.e., the vector input to u. Consider two such inputs q and q†. u
satisfies the triangle inequality;

u(q + q†) =

τ∑
t=1

ζ(ŷt − yt + ŷ†
t − y†

t) + λ

τ−1∑
t=1

ζ(ŷt − ŷt+1 + ŷ†
t − ŷ†

t+1) (31)

≤
τ∑

t=1

ζ(ŷt − yt) + λ

τ−1∑
t=1

ζ(ŷt − ŷt+1) +

τ∑
t=1

ζ(ŷ†
t − y†

t) + λ

τ−1∑
t=1

ζ(ŷ†
t − ŷ†

t+1) (32)

= u(q) + u(q†), (33)

and is absolutely homogeneous;

u(cq) =

τ∑
t=1

ζ(cŷt − cyt) + λ

τ−1∑
t=1

ζ(cŷt − cŷt+1) (34)

= |c|
τ∑

t=1

ζ(ŷt − yt) + |c|λ
τ−1∑
t=1

ζ(ŷt − ŷt+1) (35)

= |c|u(q), (36)

implying u is convex;

u(rq + (1− r)q†) ≤ u(rq) + u((1− r)q†) (37)

= |r|u(q) + |1− r|u(q†) (38)

= ru(q) + (1− r)u(q†). (39)

where 0 ≤ r ≤ 1. Because u is jointly convex on q, it is also convex with respect to (ŷ2, . . . , ŷτ)
when y and ŷ1 are fixed.

Our goal is now to show that, assuming y and ŷ1 are fixed, ŷs = ŷ1 for 1 < s ≤ τ is a local
minimizer of u. That is, we want to find the λ regime where any small movement away from this
point increases the value of u. Assume a perturbed prediction

y† = (ŷ1 + p1, ŷ1 + p2, . . . , ŷ1 + pτ), (40)

17

where p1 = 0. Starting with the definition of u,

u(ŷ,y) =

τ∑
t=1

ζ(ŷ1 − yt) + λ

τ−1∑
t=1

ζ(ŷ1 − ŷ1) (41)

=

τ∑
t=1

ζ(ŷ1 − yt) (42)

u(y†,y) =

τ∑
t=1

ζ(ŷ1 + pt − yt) + λ

τ−1∑
t=1

ζ((ŷ1 + pt)− (ŷ1 + pt+1)) (43)

=

τ∑
t=1

ζ(ŷ1 + pt − yt) + λ

τ−1∑
t=1

ζ(pt − pt+1) (44)

Let
θ = argmax

t∈1:τ
ζ(pt) (45)

be the time step with the largest-magnitude perturbation, and let ϕ = ζ(pθ) be the magnitude of
this perturbation. Applying the reverse triangle inequality to the first summation in Equation 44 (the
accuracy term), we have

τ∑
t=1

ζ(ŷ1 + pt − yt) =

τ∑
t=1

ζ((ŷ1 − yt)− (−pt)) (46)

≥
τ∑

t=1

[ζ(ŷ1 − yt)− ζ(−pt)] (47)

=

τ∑
t=1

ζ(ŷ1 − yt)−
τ∑

t=1

ζ(pt) (48)

=

τ∑
t=1

ζ(ŷ1 − yt)−
τ∑

t=2

ζ(pt) (49)

≥
τ∑

t=1

ζ(ŷ1 − yt)− (τ − 1)ϕ (50)

So, introducing the perturbation reduces the accuracy term by at most (τ − 1)ϕ. Now considering the
second summation (the stability term),

λ

τ−1∑
t=1

ζ(pt − pt+1) ≥ λ

θ∑
t=1

ζ(pt − pt+1) (51)

≥ λζ(p1 − pθ) (52)
= λζ(pθ) (53)
= λϕ. (54)

That is, introducing the perturbation increases the stability term by at least λϕ.

Therefore, if λ > τ − 1, the overall change in u is positive, and we have shown that ŷs = ŷ1 for
1 < s ≤ τ is a local minimizer of u. By convexity of u, this point is also a global minimizer. □

B Transport Metric

In this section, we propose an alternate metric for use with our unified loss. Specifically, we describe
a variant of the Wasserstein metric that accounts for the spatial structure of an image or feature tensor.

Let z1, z2 ∈ Rh×w be two image or feature map channels, and let a = z1 − z2. We define
the transport distance T (a) = ζ(a) = δ(z1, z2) as the minimum cost of a linear optimization.
Intuitively, this optimization finds the shortest correspondence from m to zero. The correspondence

18

can employ three mechanisms: (1) mass movement from a positive region to a negative region, with
cost proportional to mass and distance, (2) mass destruction, with cost proportional to mass, and (3)
mass creation, also with cost proportional to mass. The cost to create or destroy a unit of mass is γ.

Formally, we solve the following optimization:

T (a) = min
m,p,c

∑
i,j

dijmij + γ
∑
i

(pi + ci)

 (55)

subject to

ai + pi − ci −
∑
j

mij = 0 ∀i (56)

pi > 0 ∀i (57)
ci > 0 ∀i (58)

mij > 0 ∀i, j (59)
where dij is the distance (Euclidean) from pixel i to pixel j, mij is the mass moved from pixel i to
pixel j, and pi and ci are the mass production and consumption at pixel i. Both i and j are in the
range 1 . . . h× w.

At first glance, this problem may seem computationally infeasible because the number of dij pa-
rameters equals the number of pixels squared, e.g., a trillion parameters for a one-megapixel image.
Fortunately, we can reduce the number of parameters to ∼ (h × w) by pruning all edges where
dij > 2γ. Intuitively, if dij > 2γ, the cost to destroy a unit of mass at location i and recreate it at
location j is less than the cost to move it from i to j.

Despite pruning, this optimization remains somewhat impractical. Finding a solution takes ∼seconds
using the open-source solvers available in SciPy. These runtimes make loss evaluation the primary
bottleneck during training. We might be able to reduce runtime using other solvers—either general-
purpose commercial solvers or specialized optimal transport solvers. We leave this as future work.

C Composing Stabilizers

Often, a deployed model will be faced with several simultaneous corruptions. One option in this
scenario is to train a single stabilizer on the expected combination of corruptions. However, doing so
requires full knowledge of the corruptions at training time. In this section, we explore an alternate
approach: composing (fusing) single-purpose stabilizers without additional training.

We consider controlled stabilizers without spatial fusion. Assume we have two single-corruption
stabilizers, denoted by superscripts 1 and 2. The output z̃i,t of the fused stabilizers at layer i is

z̃i,t = β2
i,t ⊙ z̃1

i,t + (1− β2
i,t)⊙ z̃i,t−1, (60)

z̃1
i,t = β1

i,t ⊙ zi,t + (1− β1
i,t)⊙ z̃1

i,t−1, (61)

β1
i,t = σ(h1

i (g
1(xt,xt−1))), (62)

β2
i,t = σ(h2

i (g
2(xt,xt−1))). (63)

Note that we have removed the feature-space inputs zt, z̃t−1, and zt−1 to the stabilization heads. In
experiments, we found this was necessary to prevent unintended interactions between the stabilizers.

The above formulation is roughly equivalent to applying a single stabilizer with decay β1
i,t ⊙ β2

i,t.
We can modify the method slightly to make this strictly true, thereby obtaining a commutative
composition. We replace z̃1

i,t−1 in Equation 61 with z̃i,t−1, obtaining

z̃i,t = β2
i,t ⊙ (β1

i,t ⊙ zi,t + (1− β1
i,t)⊙ z̃i,t−1) + (1− β2

i,t)⊙ z̃i,t−1, (64)

= β2
i,t ⊙ β1

i,t ⊙ zi,t + (β2
i,t − β2

i,t ⊙ β1
i,t + 1− β2

i,t)⊙ z̃i,t−1, (65)

= β2
i,t ⊙ β1

i,t ⊙ zi,t + (1− β2
i,t ⊙ β1

i,t)⊙ z̃i,t−1. (66)
Intuitively, the fused stabilizer retains the current features zt,i only if both decays are near one; this
indicates that neither controller backbone detected corruption-induced instability.

In our experiments, we use the initial non-commutative version (it was slightly easier to implement).
However, we expect the two formulations to give similar results in general.

19

D Method Details

This section provides further details of our method and implementation, including the particular
architecture we use for the controller, our approach for training initialization, and a more formal
definition of the spatial fusion mechanism.

D.1 Controller Architecture

The controller backbone uses a simple convolutional architecture with 7 layers. The backbone has 32
channels for HDRNet and NAFNet, and 16 channels for Depth Anything. Controller heads have 4
layers. The number of channels in the last head layer depends on the shape of z and the size of the
fusion kernel. For other head layers, we use 64 channels for HDRNet and NAFNet, and 32 channels
for Depth Anything. All convolutions use a 3×3 kernel, and all except the head outputs are followed
by a leaky ReLU with negative slope 0.01.

D.2 Initialization

When training, we initialize such that the predicted β values are near 1. This corresponds to a rapid
decay of the past state and less stabilization; i.e., the stabilizers are initialized close to an identity.
For controlled stabilizers, this can be achieved by adding a final bias to h (before the sigmoid) and
initializing this bias to a sufficiently positive value v. For the simple learned stabilizer (without a
controller), the trained parameters are logit values l used to generate a decay ∈ [0, 1] via β = σ(l).
Again, we initialize these logits to a positive value v. For both the simple learned and controlled
variants, we find that v = 4 (resulting in β ≈ 0.98) works well.

D.3 Spatial Fusion

Let N be a spatial neighborhood around the pixel to be stabilized. Let c denote the channel index, j
the index of the stabilized pixel, k ∈ N the neighbor pixel index, and l ∈ 1 : m an index into the
kernel η. The output z̃t,c,j of the spatial fusion stabilizer is given by

z̃t,c,k = ηt,c,m+1zt,c,j +
∑

(k,l)∈(N ,1:m)

ηt,c,lz̃t,c,k (67)

ηt,c = Softmax([h(g(xt,xt−1), zt, zt − 1)]cm:cm+m−1, 0), (68)

The summation iterates over locations in the neighborhood, with the kernel index l always corre-
sponding to the neighbor index k. The indexing on the output of h extracts the m channels needed to
construct the kernel ηt,c. Note that we have dropped the layer index i here for brevity.

E Experiment Details

This section contains experiment details and hyperparameter values.

E.1 Image Enhancement

Base model fine-tuning. We train for 80 epochs (2k iterations per epoch), using the Adam opti-
mizer [31], an MSE loss, and batches of 8 randomly sampled frames. The learning rate is initially set
to 10−4 and is scaled by 0.1 after epochs 40 and 60.

Stabilizer training and evaluation. Each training batch consists of one randomly sampled video
snippet containing τ = 8 consecutive frames. Gradients are computed using BPTT. Stabilizers are
trained for 20 epochs (4k iterations per epoch) using the Adam optimizer and our unified loss with
δ = || · ||2. The learning rate is initialized to 10−3 for the simple learned stabilizer and 10−4 for
other variants, and is reduced by a factor of 10 after epochs 10 and 15. We evaluate stabilizers on the
validation set, processing each video in a single pass per video (i.e., τ ≫ 8 at evaluation).

20

Figure 6: VisionSim sequences. Showing scenes bachelors-quarters, classroom, library-homeoffice,
and restaurant. For each, we show frames 10, 110, 210, 310, 410, and 510.

E.2 Video Denoising

Base model fine-tuning. Each batch consists of 8 randomly sampled, randomly cropped patches of
size 256×256. We train for 20 epochs (2k steps per epoch) with Adam and an MSE loss. We set the
initial learning rate to 10−4, scaling by 0.1 after epochs 10 and 15.

Stabilizer training and evaluation. Each batch consists of one randomly sampled, randomly cropped
video snippet of size 256×256 containing τ = 8 consecutive frames. We train for 20 epochs (2k
steps per epoch) using Adam and the unified loss with δ = || · ||2. The initial learning rate is set to
10−2 for the simple learned stabilizer and 10−4 for the controlled and spatial variants. In all cases,
we scale the learning rate by 0.1 after epochs 10 and 15. We evaluate stabilizers on the validation set
in a single pass per video (τ ≫ 8).

E.3 Corruption Robustness

Depth training dataset. We use the VisionSim [25] framework to generate a dataset with ground-
truth depth labels, according to the instructions provided at the following URL:
https://visionsim.readthedocs.io/en/latest/tutorials/large-dataset.html
The resulting dataset contains 50 scenes with 59950 total frames and resolution 800×800. All scenes
are indoor and exclusively contain ego-motion. See Figure 6 for several representative sequences.

Depth metrics. Depth Anything predicts relative disparity (inverse depth), which requires an affine
alignment to the ground truth before computing metrics (see [54] for details). After this alignment,
we evaluate the standard AbsRel and Delta–1 (δ > 1.25) metrics. We exclude outliers by clipping the
aligned depth to a maximum of 200. It is critical to measure instability after alignment; otherwise,
the network can achieve arbitrarily low instability without harming AbsRel and Delta–1 by scaling
predictions to a small range around zero.

Depth stabilizer training. We train Depth Anything stabilizers on randomly sampled snippets of
length τ = 8, randomly cropped to size 512×512. We train using Adam for 20 epochs (4k iterations

21

https://visionsim.readthedocs.io/en/latest/tutorials/large-dataset.html

Figure 7: Elastic transform. A dummy image before and after applying the elastic transform, using
the same parameters as our experiments (magnitude α = 50.0 and smoothness σ = 5.0). The image
size is 256×256, and the lines have width 16.

per epoch) with a batch size of one. The learning rate is initialized to 10−4 and reduced by 0.1 after
epochs 10 and 15. We evaluate the unified loss (δ = || · ||2) after affine alignment.

Image corruptions. We generate elastic distortions using the Torchvision ElasticTransform class
with default settings (magnitude α = 50.0 and smoothness σ = 5.0). See Figure 7 for a visualization
of the elastic transform.

For image denoising, we add all corruptions after Gaussian noise. For example, dropped frames
contain zeros, not zero-mean Gaussian noise.

E.4 Adverse Weather Robustness

Base model fine-tuning. We use the same schedule and hyperparameters as in Section E.2. Each
epoch consists of 1k training steps.

Stabilizer training and evaluation. We again use the same schedule and hyperparameters as in
Section E.2. The initial learning rate is set to 10−4, and each epoch consists of 800 steps.

E.5 Compute Requirements

We train and evaluate on a compute cluster largely using RTX A4500 GPUs. Fine-tuning and
stabilizer training take 1–2 days on a single GPU, and full evaluation takes 1–3 hours.

F Additional Results

F.1 Stabilizer Composition

We evaluate composed stabilizers (Appendix C) on the NFS denoising task (σ = 0.1) using the
NAFNet model. We train single-purpose corruption stabilizers using the same hyperparameters as
other experiments, then evaluate composition under all possible two-corruption pairings. Results are
shown in Table 3. Generally, stabilizer composition is effective if the second corruption does not
significantly change the appearance of the first. For example, JPEG → impulse works better than
impulse → JPEG. JPEG compression obscures high-frequency impulse noise, thereby interfering
with the impulse noise controller backbone. This limitation could likely be addressed through data
augmentation during stabilizer training, which would make the backbones more robust to changes in
corruption appearance.

F.2 Semantic Segmentation

Task, dataset, and base model. In this subsection, we analyze a higher-level prediction task:
semantic segmentation. We use the DeepLabv3+ model [8]—specifically, the MobileNet variant
published by [15]. We train and evaluate on the VIPER dataset [56], which contains video sequences
captured in a game engine (GTA V) and automatically labeled for various vision tasks. The predefined

22

Ours (stabilized) Base model (unstabilized)

First corruption Second corruption PSNR SSIM Instability PSNR SSIM Instability

Patch drop Elastic distortion 29.53 0.838 22.64 18.56 0.660 152.40
Patch drop Frame drop 33.88 0.919 19.15 17.47 0.658 218.69
Patch drop JPEG artifacts 29.07 0.845 31.67 18.51 0.637 152.60
Patch drop Impulse noise 24.83 0.769 60.89 17.49 0.367 153.96
Elastic distortion Patch drop 29.93 0.850 19.24 18.42 0.657 155.24
Elastic distortion Frame drop 28.01 0.780 17.79 25.65 0.769 129.61
Elastic distortion JPEG artifacts 29.11 0.842 18.46 25.94 0.759 53.75
Elastic distortion Impulse noise 27.20 0.785 16.22 22.95 0.480 69.70
Frame drop Patch drop 33.84 0.916 19.79 17.50 0.659 218.18
Frame drop Elastic distortion 29.67 0.844 18.69 25.65 0.768 130.22
Frame drop JPEG artifacts 25.99 0.737 17.59 26.56 0.720 124.21
Frame drop Impulse noise 28.95 0.807 57.28 23.14 0.467 103.00
JPEG artifacts Patch drop 30.55 0.857 21.88 18.41 0.638 154.20
JPEG artifacts Elastic distortion 29.19 0.844 18.16 25.81 0.755 54.48
JPEG artifacts Frame drop 25.87 0.737 17.16 26.56 0.720 124.21
JPEG artifacts Impulse noise 28.40 0.810 19.74 23.93 0.475 65.24
Impulse noise Patch drop 30.14 0.831 24.61 16.98 0.351 163.34
Impulse noise Elastic distortion 26.73 0.790 17.86 23.38 0.600 62.01
Impulse noise Frame drop 28.94 0.794 21.21 22.66 0.460 138.58
Impulse noise JPEG artifacts 25.25 0.599 39.47 21.55 0.352 89.25

Table 3: Stabilizer composition. The effectiveness of composing stabilizers for different combina-
tions and orderings of input corruptions. Results are for NAFNet on the NFS dataset with moderate
noise (σ = 0.1). The base model evaluated without corruptions achieves PSNR 36.6, SSIM 0.945,
and instability 26.2.

training and validation splits contain 77 sequences (134097 frames) and 47 sequences (49815 frames),
respectively. We measure prediction quality using pixel accuracy and mIoU on the predefined
validation set. Due to the discrete nature of predictions, we report categorical instability—the fraction
of pixels whose category changes between frames (equivalent to || · ||0).

Experiment protocol. We fine-tune the unstabilized model, starting with the Cityscapes [12] weights
published by [15]. A 1×1 convolution is applied to the output logits to adapt the number of classes
for VIPER. We fine-tune for 60 epochs (1925 batches per epoch), using a batch size of 16 and a
cross-entropy loss. Adam was used with an initial learning rate of 10−4, scaled by 0.1 after epochs
20 and 40.

After fine-tuning, stabilizers are attached to the model input, the model output, each InvertedResidual
layer, the aspp block, the project block, and the classifier block. We then freeze the fine-tuned
weights and train stabilizers on snippets of length τ = 8 with λ = 0.4. Here we tried both || · ||2
and cross-entropy for δ. Cross-entropy gave slightly better results, despite not satisfying the formal
criteria in Section 4 (e.g., it is not symmetric). Therefore, we report results with cross-entropy in the
remaining experiments.

When training stabilizers, each batch consists of one snippet of length τ = 8 frames. We train for 60
epochs (3080 steps per epoch), using Adam with the same learning rate schedule as in fine-tuning.

Results. The unstabilized model achieves categorical instability 0.079, mIoU 0.406, and pixel
accuracy 0.900. After adding stabilizers, we obtain instability 0.059, mIoU 0.411, and pixel accuracy
0.901. Similar to other tasks, there is a significant improvement in stability, along with an increase in
accuracy (mIoU).

F.3 Segmentation Robustness

Task, dataset, and base model. In this subsection, we evaluate the DeepLabv3+ segmentation
model against the five corruptions from Section 6.3 (patch drop, elastic distortion, frame drop, JPEG
artifacts, and impulse noise). We use the same dataset (VIPER) and metrics as in Section F.2.

Experiment protocol. We follow the same protocol as in Section F.2 when training and evaluating
corruption stabilizers.

23

Corruption Method mIoU Accuracy Instability

Patch drop Base model 0.060 0.164 0.454
Ours 0.405 0.896 0.064

Elastic distortion Base model 0.377 0.888 0.090
Ours 0.403 0.898 0.064

Frame drop Base model 0.369 0.829 0.209
Ours 0.406 0.898 0.063

JPEG artifacts Base model 0.109 0.313 0.216
Ours 0.337 0.862 0.066

Impulse noise Base model 0.051 0.300 0.312
Ours 0.399 0.894 0.065

Table 4: Segmentation robustness. For all corruptions, our method simultaneously improves mIoU,
pixel accuracy, and instability. The improvement is largest for corruptions that significantly change
the appearance of the input, e.g., impulse noise.

Results. See Table F.3 for metric values, and Figure 13 for sample predictions. Our method improves
both task metrics and stability across all corruptions. For patch drop, JPEG artifacts, and impulse
noise, adding stabilizers allows the model to recover from catastrophic prediction failures.

F.4 DAVIS Denoising

Task, dataset, and base model. In addition to NFS, we evaluate NAFNet denoising on the standard
DAVIS benchmark [40, 52, 62]. DAVIS contains 50 videos (3455 frames) collected at 24 FPS. We
use the dataset’s predefined train/validation split and scale images to a short edge length of 480 [62].
Following from prior work [40, 62], we evaluate with a noise level of 40/255 ≈ 0.16.

Experiment protocol. We fine-tune the base model and train stabilizers following the same procedure
as for NFS (see Sections 6.2 and E.2). Fine-tuning epochs contain 3k steps, and stabilizer training
epochs contain 2.4k steps.

Results. See Figure 8 and Table 7 for results. Overall, the behavior is similar to the NFS results
in Section 6.2. However, the “win-win” region (where both accuracy and stability are improved) is
smaller for DAVIS. This is likely caused by DAVIS’s 10× lower frame rate, which corresponds to
higher inter-frame motion and lower frame-to-frame correlation.

F.5 Adversarial Robustness

In addition to natural corruptions, we evaluate our method in the presence of adversarial corruptions.
We consider a setting where the attacker has knowledge of the base model and its parameters, but not
of the stabilizers. We reason that because the stabilizers have fewer parameters than the base model
and can be trained more quickly, a defender could update the stabilizer parameters after a weight leak
rather than retrain the entire model.

Task and model. We evaluate adversarial robustness on a binary classification task derived from
the DAVIS dataset. Frames are processed by tightly cropping around an object’s segmentation mask,
treating individual instances as separate images, and labeling each crop as human or nonhuman. As
our backbone, we use ResNet-50 [22] pre-trained on ImageNet. We replace the original 1000-class
output layer with a two-class linear layer.

Experiment protocol. We freeze all pre-trained weights except those in the final residual block
(layer4) and the new classification head. We fine-tune these parameters for 100 epochs on the binary
classification task. We start with a learning rate of 10−2, decreasing it by a factor of 0.1 at epochs 40
and 80, and employ frame-level data augmentation consisting of random rotation, horizontal flip, and
color jitter. To preserve temporal context for future stabilizers, each training sample consists of a
sequence of eight consecutive frames.

Then, we generate adversarial examples using the iterative Fast Gradient Sign Method (I-FGSM)
with an overall perturbation bound ε = 0.1 and 20 iterations per image [19]. As the attacker does
not know the ground-truth class, for each image, we randomly apply either the sign of the gradient
step or its negation. We selected these hyperparameters because they produce a substantial drop in

24

80 100 120
Instability

27

28

29

30

31

32

PS
N

R

Base model
Output fixed
Simple fixed
Simple learned
Controlled
Spatial

Figure 8: DAVIS denoising. We obtain the best quality/stability tradeoff when using a stabilization
controller (“controlled” and “spatial”). On DAVIS, spatial fusion does not offer a significant advantage
compared to a basic controlled stabilizer. DAVIS has relatively high inter-frame motion, which often
exceeds the size of the spatial kernel (i.e., the maximum translation achievable with spatial fusion).

baseline accuracy, creating a clear opportunity for the stabilizers to improve performance. Then, to
defend against the attack, we add controlled stabilizers to each bottleneck block of the ResNet model.
All original ResNet parameters are frozen, and only stabilizers are trained for 20 epochs under the
same I-FGSM attack settings as above. The stabilizer training uses an initial learning rate of 10−4,
reduced by a factor of 0.1 after epochs 1 and 10, and each batch consists of two sequences of eight
frames to ensure well-defined gradients. No additional augmentations are applied during this phase.

Results. Under our adversarial setup, the ResNet-50 fine-tuned baseline achieves 77.0% accuracy,
while our stabilizer-augmented model reaches 88.8%, an absolute improvement of 11.8%. These
results demonstrate that the proposed stabilizer modules can significantly improve resilience to
adversarial attacks without requiring complete retraining.

F.6 Spatial Fusion Failures

Discussion. In the denoising experiments (Section 6.2), we observed a significant PSNR reduction
when using the spatial fusion method under extreme noise. This reduction only appears when
evaluating on long sequences.

A closer examination of the outputs reveals blurring/ghosting artifacts that appear after some time has
passed. These artifacts look like hard edges “bleeding out” into the surrounding regions. We believe
these failures are related to the spatial fusion stabilizer on the output layer. Without this stabilizer,
the network output is biased toward the current input frame (due to the network architecture, which
predicts a noise residual). Adding a spatial fusion stabilizer to the output provides an independent
mechanism for information to flow between pixels, thereby weakening this bias.

Experiment protocol. We ran an experiment to determine whether spatial fusion failures can be
mitigated by training on longer sequences. We trained the spatial fusion stabilizer under extreme
noise on sequences of length τ = 8 (the default in our other experiments) and τ = 16. We reduced
the training patch size from 256×256 to 180×180 to compensate for increased training memory
requirements on longer sequences. For τ = 8, we doubled the number of iterations per epoch due to
the lower number of frames in each iteration. We evaluated the resulting models on the full validation
set containing long sequences.

Results. Training with τ = 8 gave validation PSNR 22.70 and instability 11.04, whereas training
with τ = 16 gave PSNR 23.80 and instability 10.16. We expect this trend of improvement to hold as
we further increase the training sequence length.

F.7 Uncertainty Estimate

Experiment protocol. To estimate uncertainty in our results, we train and evaluate the spatial fusion
stabilizer eight times with different random seeds. We consider image enhancement (HDRNet) for the
moderate-strength local Laplacian operator (α = 0.25). The random seed determines the stabilizer
weight initialization and the training data shuffle. The training and evaluation protocol is identical to
that in Sections 6.1 and E.1.

25

U
n
st

ab
il

iz
ed

S
ta

b
il

iz
ed

U
n
st

ab
il

iz
ed

S
ta

b
il

iz
ed

Input

Input

Figure 9: Denoising under extreme noise. As we increase the level of image noise, frame-wise
temporal inconsistency becomes more severe, to the point that it becomes apparent when comparing
static images. In the top sequence, we see shifting texture in the duck’s head in the unstabilized
features. In the jellyfish sequence, the denoiser hallucinates inconsistent spatial structure between
frames. In both cases, adding a stabilizer noticeably improves temporal consistency. We encourage
the reader to view the corresponding video files included with the supplement.

Results. PSNR ranges from a minimum of 32.17 to a maximum of 32.32, with a mean of 32.25.
SSIM has range 0.926–0.929 (mean 0.927), and instability has range 28.61–28.80 (mean 28.71). For
all metrics, variations around the mean are < 0.5%.

F.8 Figures

Figure 9 shows example sequences denoised under extreme Gaussian noise (σ = 0.6). We highlight
regions of the image where instability is especially prominent. Differences are more noticeable in
videos; we encourage the reader to view the video files included with the supplementary material.

Figures 10, 11, 12, and 13 contain examples of corruption robustness for image enhancement,
denoising, depth estimation, and segmentation, respectively. Figure 14 illustrates improved weather
robustness for denoising on RobustSpring 14.

F.9 Tables

Table 5 provides complete results for image enhancement (Figure 4). Tables 6 and 7 contain complete
results for denoising (Figures 5 and 8).

26

Unstabilized StabilizedInput

P
at

ch
 d

ro
p

E
la

st
ic

 d
is

to
rt

io
n

F
ra

m
e

d
ro

p
JP

E
G

 a
rt

if
ac

ts
Im

p
u
ls

e
n
o
is

e

Figure 10: Image enhancement robustness. The effect of stabilization for image enhancement
(HDRNet) under various image corruptions. See Section 6.3.

27

Input Unstabilized

P
at

ch
 d

ro
p

E
la

st
ic

 d
is

to
rt

io
n

F
ra

m
e

d
ro

p
JP

E
G

 a
rt

if
ac

ts
Im

p
u
ls

e
n
o
is

e

Stabilized

Figure 11: Denoising robustness. The effect of stabilization for denoising (NAFNet) under various
image corruptions. See Section 6.3.

28

Input Unstabilized

P
at

ch
 d

ro
p

E
la

st
ic

 d
is

to
rt

io
n

F
ra

m
e

d
ro

p
JP

E
G

 a
rt

if
ac

ts
Im

p
u
ls

e
n
o
is

e

Stabilized

Figure 12: Depth estimation robustness. The effect of stabilization for depth estimation (Depth
Anything v2) under various image corruptions. Improvements are most prominent for the patch drop,
elastic distortion, and frame drop corruptions. The base model already has reasonable robustness to
JPEG artifacts and noise. See Section 6.3.

29

Unstabilized StabilizedInput

P
at

ch
 d

ro
p

E
la

st
ic

 d
is

to
rt

io
n

F
ra

m
e

d
ro

p
JP

E
G

 a
rt

if
ac

ts
Im

p
u
ls

e
n
o
is

e

Figure 13: Segmentation robustness. The effect of stabilization for segmentation (DeepLabv3+)
under various image corruptions. See Section F.2. Note that the method we use to generate the color
map may cause color-class correspondences to vary across rows.

R
ai

n
S

n
o
w

Input Unstabilized Stabilized

Figure 14: Adverse weather robustness. The effect of stabilization for denoising (NAFNet) under
weather corruptions on the RobustSpring dataset. See Section 6.4.

30

Moderate intensity (α = 0.5) High intensity (α = 0.25)

Method Strength Instability PSNR SSIM Instability PSNR SSIM

Gaussian µ = 0.50 29.46 30.70 0.917 36.26 25.73 0.852
Gaussian µ = 1.00 22.23 29.26 0.894 27.20 24.90 0.824
Gaussian µ = 2.00 16.49 27.38 0.848 19.99 23.65 0.773
Gaussian µ = 3.00 13.34 26.18 0.811 16.09 22.79 0.732
Gaussian µ = 4.00 11.29 25.33 0.782 13.57 22.15 0.700
Gaussian µ = 6.00 8.76 24.18 0.739 10.49 21.26 0.654

Output fixed β = 0.99 32.74 30.92 0.919 40.38 25.84 0.856
Output fixed β = 0.98 32.42 30.91 0.919 39.99 25.83 0.856
Output fixed β = 0.95 31.50 30.87 0.919 38.82 25.81 0.855
Output fixed β = 0.90 30.00 30.76 0.917 36.94 25.76 0.852
Output fixed β = 0.80 27.16 30.40 0.912 33.37 25.57 0.846
Output fixed β = 0.60 21.80 29.26 0.893 26.65 24.91 0.824

Simple fixed β = 0.99 32.81 30.92 0.919 40.64 25.84 0.856
Simple fixed β = 0.98 32.55 30.90 0.919 40.47 25.83 0.855
Simple fixed β = 0.95 31.61 30.82 0.918 39.67 25.77 0.853
Simple fixed β = 0.90 29.76 30.59 0.914 37.59 25.62 0.848
Simple fixed β = 0.80 25.88 29.90 0.903 32.57 25.20 0.833
Simple fixed β = 0.60 19.28 28.10 0.865 23.85 23.99 0.788

Simple learned λ = 0.1 32.44 30.92 0.920 39.58 25.84 0.856
Simple learned λ = 0.2 31.34 30.87 0.919 37.64 25.79 0.854
Simple learned λ = 0.4 28.96 30.66 0.917 33.74 25.60 0.849
Simple learned λ = 0.8 23.60 29.75 0.903 26.43 24.90 0.825

Controlled λ = 0.1 31.78 31.25 0.922 38.31 26.26 0.865
Controlled λ = 0.2 30.57 31.13 0.920 36.11 26.11 0.859
Controlled λ = 0.4 28.00 30.86 0.917 31.98 25.92 0.855
Controlled λ = 0.8 21.79 29.85 0.901 24.64 25.17 0.824

Spatial λ = 0.1 32.38 32.81 0.934 40.32 27.97 0.891
Spatial λ = 0.2 31.29 32.70 0.933 38.29 27.79 0.890
Spatial λ = 0.4 28.66 32.30 0.928 34.22 27.45 0.881
Spatial λ = 0.8 22.31 31.00 0.910 25.61 26.27 0.849

Table 5: Image enhancement results. These results correspond to the experiments in Section 6.1
(Figure 4). We additionally include results for simple Gaussian smoothing of the output, where µ is
the standard deviation of the smoothing kernel.

31

NFS moderate (σ = 0.1) NFS strong (σ = 0.2)

Method Strength Instability PSNR SSIM Instability PSNR SSIM

Gaussian µ = 0.50 22.87 36.77 0.945 24.50 33.52 0.903
Gaussian µ = 1.00 16.33 35.41 0.940 16.67 33.10 0.904
Gaussian µ = 2.00 11.90 32.96 0.920 11.77 31.64 0.889
Gaussian µ = 3.00 9.63 31.31 0.900 9.45 30.43 0.874
Gaussian µ = 4.00 8.18 30.15 0.883 8.01 29.50 0.860
Gaussian µ = 6.00 6.39 28.60 0.857 6.25 28.17 0.837

Output fixed β = 0.99 25.93 36.67 0.943 28.18 33.30 0.900
Output fixed β = 0.98 25.64 36.70 0.943 27.83 33.33 0.900
Output fixed β = 0.95 24.79 36.76 0.944 26.81 33.40 0.901
Output fixed β = 0.90 23.43 36.79 0.945 25.20 33.50 0.902
Output fixed β = 0.80 20.91 36.58 0.945 22.22 33.54 0.904
Output fixed β = 0.60 16.37 35.34 0.940 16.97 33.07 0.903

Simple fixed β = 0.99 27.40 35.95 0.927 32.19 32.22 0.847
Simple fixed β = 0.98 30.21 34.67 0.885 39.59 30.51 0.741
Simple fixed β = 0.95 40.44 31.30 0.734 63.31 26.52 0.491
Simple fixed β = 0.90 53.94 28.14 0.565 91.84 23.11 0.322
Simple fixed β = 0.80 65.09 25.62 0.437 114.95 20.51 0.226
Simple fixed β = 0.60 56.70 24.89 0.405 100.92 19.83 0.205

Simple learned λ = 0.1 22.98 36.82 0.947 22.34 33.58 0.908
Simple learned λ = 0.2 21.80 36.74 0.947 20.58 33.51 0.908
Simple learned λ = 0.4 19.46 36.36 0.946 17.63 33.21 0.907
Simple learned λ = 0.8 15.38 35.00 0.939 13.48 32.24 0.898

Controlled λ = 0.1 22.21 37.51 0.952 21.41 34.36 0.916
Controlled λ = 0.2 21.28 37.41 0.951 20.21 34.30 0.915
Controlled λ = 0.4 19.01 37.00 0.949 17.24 33.93 0.912
Controlled λ = 0.8 14.61 35.76 0.942 12.95 33.05 0.903

Spatial λ = 0.1 22.13 37.65 0.953 21.08 34.52 0.917
Spatial λ = 0.2 21.10 37.57 0.952 19.80 34.45 0.917
Spatial λ = 0.4 18.94 37.15 0.950 16.99 34.06 0.913
Spatial λ = 0.8 14.25 34.94 0.931 11.84 32.53 0.895

Table 6: Denoising results, part 1/2. These results correspond to the experiments in Section 6.2
(Figure 5). We additionally include SSIM and results for simple Gaussian smoothing of the output,
where µ is the standard deviation of the smoothing kernel. See Table 7 for the second half of the data.

32

NFS extreme (σ = 0.6) DAVIS (σ = 40/255)

Method Strength Instability PSNR SSIM Instability PSNR SSIM

Gaussian µ = 0.50 30.23 27.98 0.794 105.62 30.67 0.864
Gaussian µ = 1.00 18.55 28.26 0.804 70.68 26.18 0.795
Gaussian µ = 2.00 11.82 28.02 0.803 45.38 23.22 0.717
Gaussian µ = 3.00 9.12 27.59 0.797 34.27 21.92 0.677
Gaussian µ = 4.00 7.59 27.17 0.790 27.95 21.15 0.653
Gaussian µ = 6.00 5.84 26.45 0.778 21.01 20.25 0.626

Output fixed β = 0.99 35.64 27.72 0.787 121.46 31.65 0.873
Output fixed β = 0.98 35.13 27.75 0.788 119.95 31.64 0.872
Output fixed β = 0.95 33.65 27.83 0.790 115.50 31.48 0.871
Output fixed β = 0.90 31.30 27.94 0.793 108.36 30.96 0.867
Output fixed β = 0.80 26.98 28.12 0.798 94.92 29.54 0.853
Output fixed β = 0.60 19.53 28.27 0.804 70.52 26.60 0.810

Simple fixed β = 0.99 45.83 26.35 0.616 120.92 31.14 0.844
Simple fixed β = 0.98 64.92 24.36 0.415 121.40 30.05 0.777
Simple fixed β = 0.95 119.74 20.09 0.191 130.25 26.85 0.581
Simple fixed β = 0.90 180.81 16.56 0.105 148.51 23.76 0.415
Simple fixed β = 0.80 230.73 13.86 0.067 164.16 21.26 0.309
Simple fixed β = 0.60 205.99 12.97 0.059 137.79 20.09 0.270

Simple learned λ = 0.1 20.24 28.29 0.812 118.48 31.63 0.873
Simple learned λ = 0.2 17.73 28.27 0.813 114.84 31.49 0.871
Simple learned λ = 0.4 14.25 28.13 0.812 107.17 30.94 0.865
Simple learned λ = 0.8 10.21 27.69 0.806 80.09 27.89 0.821

Controlled λ = 0.1 19.47 29.22 0.824 117.58 31.85 0.876
Controlled λ = 0.2 17.26 29.15 0.824 113.44 31.69 0.873
Controlled λ = 0.4 13.67 28.92 0.822 104.21 31.02 0.864
Controlled λ = 0.8 10.12 28.45 0.813 77.15 27.86 0.815

Spatial λ = 0.1 15.20 22.00 0.665 117.57 31.86 0.876
Spatial λ = 0.2 16.55 21.73 0.637 113.49 31.70 0.874
Spatial λ = 0.4 9.09 22.28 0.692 104.26 31.05 0.865
Spatial λ = 0.8 11.66 22.45 0.669 81.86 28.15 0.824

Table 7: Denoising results, part 2/2. These results correspond to the experiments in Section 6.2
(Figure 5). We additionally include SSIM and results for simple Gaussian smoothing of the output,
where µ is the standard deviation of the smoothing kernel. See Table 6 for the first half of the data.

33

G Licenses and Copyright

Code. We use our own implementation of HDRNet. For NAFNet, we use the authors’ code
(https://github.com/megvii-research/NAFNet, MIT license). For Depth Anything, we use
the depth-anything/Depth-Anything-V2-Small-hf HuggingFace module (available under an
Apache 2.0 license). VisionSim is released under the MIT license. All scenes are licensed under a
Creative Commons variant; see this Google Drive folder for attributions and further license details:
https://drive.google.com/drive/folders/1gRxhL3rbGDTfgKytre8WkbBu-QDJFy15

Datasets and assets. We were unable to find license information for the Need for Speed dataset.
DAVIS uses the BSD license. We use frames from the following YouTube videos in our figures:

• https://www.youtube.com/watch?v=ANeMCOpx_84
• https://www.youtube.com/watch?v=HZ8VF0EdITk
• https://www.youtube.com/watch?v=MPZb9EQ3Wjs
• https://www.youtube.com/watch?v=obSH5F2DYvk

34

https://github.com/megvii-research/NAFNet
https://drive.google.com/drive/folders/1gRxhL3rbGDTfgKytre8WkbBu-QDJFy15
https://www.youtube.com/watch?v=ANeMCOpx_84
https://www.youtube.com/watch?v=HZ8VF0EdITk
https://www.youtube.com/watch?v=MPZb9EQ3Wjs
https://www.youtube.com/watch?v=obSH5F2DYvk

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide proofs for theoretical claims in Appendix A. We show empirical
results on three tasks: image enhancement, image denoising, and monocular depth estimation.
Our method is designed to be compatible with a wide range of tasks—however, we do not
make strong claims about the empirical performance on untested tasks. We mention some
limitations around sim-to-real generalization in the discussion section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include a limitations paragraph in the discussion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

35

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Complete proofs are included in Appendix A. Proofs state the necessary
assumptions (δ must expressible in terms of a norm on Y , and the stabilizer must not modify
the first time step’s prediction).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose complete architectural details and training hyperparameters in
Appendix E. We will release our code at publication, including configuration files and shell
scripts for reproducing our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

36

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: At publication we will release our code with a detailed README. We use
publicly-available datasets and well-documented open-source tools. Our codebase includes
shell scripts for downloading and preparing the required datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We list all hyperparameters and other experiment details in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not have the computational resources to estimate error bars using, e.g.,
cross-validation.
Guidelines:

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include information on compute requirements in Appendix E.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and are in compliance with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

38

https://neurips.cc/public/EthicsGuidelines

Justification: We believe that the potential societal impact is minimal. The applications of
our work are in general-purpose tasks such as image denoising and depth estimation where
there is no clear avenue for misuse.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not propose any high-risk models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have provided attribution for all code, models, and datasets. We include
detailed license and copyright information in Appendix G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

39

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have generated a simulated monocular depth dataset as part of our experi-
ments. The tools for generating this data are publicly available; rather than distributing the
data, we will provide instructions for regenerating it.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We have not performed any research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We have not performed any research with human subjects.

40

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We have not used LLMs in any significant capacity.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Defining Stability and Robustness
	Learning to Balance Stability and Robustness
	Designing Stabilization Adapters
	Experiments
	Image Enhancement
	Denoising
	Corruption Robustness
	Adverse Weather Robustness

	Discussion
	Proofs
	Oracle Bound
	Collapse Bound

	Transport Metric
	Composing Stabilizers
	Method Details
	Controller Architecture
	Initialization
	Spatial Fusion

	Experiment Details
	Image Enhancement
	Video Denoising
	Corruption Robustness
	Adverse Weather Robustness
	Compute Requirements

	Additional Results
	Stabilizer Composition
	Semantic Segmentation
	Segmentation Robustness
	DAVIS Denoising
	Adversarial Robustness
	Spatial Fusion Failures
	Uncertainty Estimate
	Figures
	Tables

	Licenses and Copyright

