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Abstract
Large language models (LLMs) have become001
increasingly prevalent in our daily lives, lead-002
ing to an expectation for LLMs to be trust-003
worthy —- both accurate and well-calibrated004
(the prediction confidence should align with005
its ground truth correctness likelihood). Nowa-006
days, fine-tuning has become the most pop-007
ular method for adapting a model to practi-008
cal usage by significantly increasing accuracy009
on downstream tasks. Despite the great accu-010
racy it achieves, we found fine-tuning is still011
far away from satisfactory trustworthiness due012
to " tuning-induced mis-calibration". In this013
paper, we delve deeply into why and how mis-014
calibration exists in fine-tuned models, and how015
distillation can alleviate the issue. Then we016
further propose a brand new method named017
EFfIcient TRustworthy DiSTillation (FIRST),018
which utilizes a small portion of teacher’s019
knowledge to obtain a reliable language model020
in a cost-efficient way. Specifically, we iden-021
tify the "concentrated knowledge" phenomenon022
during distillation, which can significantly re-023
duce the computational burden. Then we apply024
a "trustworthy maximization" process to opti-025
mize the utilization of this small portion of con-026
centrated knowledge before transferring it to027
the student. Experimental results demonstrate028
the effectiveness of our method, where better029
accuracy (+2.3%) and less mis-calibration (-030
10%) are achieved on average across both in-031
domain and out-of-domain scenarios, indicat-032
ing better trustworthiness.033

1 Introduction034

With the rapid development of large language mod-035

els (LLMs), many powerful models have been de-036

ployed into our daily lives for practical usage to037

help us make decisions (Yao et al., 2023; Sha et al.,038

2023; Zhao et al., 2024). This makes it urgent039

for us to know to what extent we can trust the040

outputs of the models. Calibration is one of the041

most important indicators beyond accuracy which042

Figure 1: A trustworthy model should be both accu-
rate (left) and well-calibrated (right). A well-calibrated
model should produce high probabilities for the correct
answer and low probabilities for the wrong answer.

provides a confidence measure to the model’s pre- 043

dictions (Guo et al., 2017; Hsieh et al., 2023). In 044

LLMs, confidence is exactly the probability for 045

each generated token. Therefore, a well-calibrated 046

model should align its prediction confidence with 047

its ground-truth correctness likelihood. As an ex- 048

ample, recent hallucination detection methods rely 049

on model prediction confidence as a significant 050

indicator of potential hallucination (Zhang et al., 051

2023; Varshney et al., 2023). If the model is inca- 052

pable of giving accurate confidence levels, people 053

may fail to detect hallucinations due to the model’s 054

over-confidence, or people may falsely identify hal- 055

lucinations due to the model’s under-confidence. 056

Mis-calibration brings significant challenges for the 057

deployment of LLMs in real-world applications. 058

Currently, there are two methods to obtain a lan- 059

guage model for practical usage. First, fine-tuning, 060

which fine-tunes pre-trained LLMs on specific 061

datasets by matching each token entry with a tar- 062

get ground truth token. Although fine-tuning can 063

consistently improve performance on downstream 064

tasks (Dodge et al., 2020; Sun et al., 2020; Ziegler 065

et al., 2020), we identify that the model obtained in 066

this way exhibits a nature of "tuning-induced mis- 067

calibration". Second, distillation-based methods 068
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transfer knowledge (e.g., soft labels) from larger069

LLMs to smaller models (Gu et al., 2023). Al-070

though distillation shows better calibration than071

fine-tuning as it matches each token entry with a072

probability distribution instead of a hard label, we073

find it is still biased because of the mis-calibration074

nature of teacher models. In addition, distilla-075

tion faces the challenge of determining the opti-076

mal amount of knowledge to transfer. Transferring077

all the teacher’s knowledge leads to high compu-078

tational costs while transferring too little knowl-079

edge results in poor accuracy. Therefore, it is cru-080

cial to balance between trustworthiness (accuracy081

and well-calibration) and efficiency for distillation-082

based methods.083

To address the challenge of obtaining a trustwor-084

thy model, we propose eFfIcient tRustworthy085

disTillation (FIRST), aiming to efficiently utilize086

a relatively small amount of the teacher’s knowl-087

edge. Specifically, we first identify the "concen-088

trated knowledge" phenomenon, which shows that089

in the context of LLMs, the probability distribution090

of generated tokens is not uniform but rather con-091

centrated on a few high-probability tokens. Based092

on this finding, we propose to use the top-5 tokens093

as the knowledge to balance the trade-off between094

storage space and the amount of knowledge trans-095

ferred, achieving efficient distillation. Afterward,096

to eliminate the "tuning-induced mis-calibration"097

of the teacher model, we applied a "trustworthy098

maximization" to this portion of knowledge, en-099

suring that it maximizes the enhancement of the100

student model’s accuracy while also guaranteeing101

its well-calibration.102

We first validate our method in in-domain sce-103

narios, discovering that the models obtained by104

FIRST achieve excellent accuracy, even with the105

use of a relatively small amount of top-5 knowl-106

edge and the "trustworthy maximization" process107

can significantly enhance these models’ calibra-108

tion ability. Furthermore, we test our approach in109

out-of-domain settings, demonstrating that models110

obtained by FIRST still exhibit the best trustworthi-111

ness and hold generalization ability. This indicates112

that FIRST enables smaller models to genuinely113

learn the capability of being trustworthy, rather114

than being confined to in-domain scenarios.115

In summary, our key contributions include:116

(i) We discover that LLMs exhibit "concen-117

trated knowledge" and "tuning-induced mis-118

calibration" phenomena, providing insights 119

into obtaining trustworthy models. 120

(ii) We propose FIRST, which maximizes the ef- 121

fectiveness and trustworthiness of a relatively 122

small portion of knowledge transferred from 123

the teacher by "trustworthy maximization" to 124

obtain a trustworthy student model. 125

(iii) Extensive experiments demonstrate that mod- 126

els obtained using FIRST consistently achieve 127

the highest level of trustworthiness across dif- 128

ferent settings. 129

2 Related Work 130

2.1 Trustworthy Models 131

The current evaluation of LLMs predominantly fo- 132

cuses on accuracy, overlooking whether the mod- 133

els truly know the answer or are merely guess- 134

ing (i.e. trustworthy). Recent works (Sun et al., 135

2024; Steyvers et al., 2024) have demonstrated that 136

accurate LLMs may not necessarily be "trustwor- 137

thy" due to a significant calibration gap, so-called 138

mis-calibration. This gap prevents us from trust- 139

ing the output of the models, and it can further 140

cause LLMs to generate harmful content, especially 141

when subjected to adversarial attacks or jailbreak 142

prompts (Mo et al., 2024; Yao et al., 2024). Our 143

work further reveals how mis-calibration exists in 144

different tuning methods and proposes a new trust- 145

worthy evaluation metric that covers both accuracy 146

and calibration. 147

To achieve a well-calibrated LLM, recent work 148

shows soft-label distillation shows better calibra- 149

tion ability (Gu et al., 2023). However, it still suf- 150

fers from biased labels due to the mis-calibration 151

nature of the fine-tuned teacher model. Our work 152

is an improvement on this line of work by applying 153

"concentrated knowledge" and "trustworthy max- 154

imization", leading to better accuracy, efficiency, 155

and trustworthy. 156

2.2 Knowledge Distillation 157

Knowledge Distillation is a form of transfer learn- 158

ing that facilitates the transfer of knowledge from 159

a larger teacher model to a smaller student model. 160

The goal is to reduce the model size while main- 161

taining or even improving performance. Based on 162

whether we can access prediction probability, the 163

existing distillation methods can be categorized 164

into two types: Black-box Distillation and White- 165

box Distillation. 166
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Figure 2: The blue line with range shows the averaged
accumulated probability coverage for each token entry,
from Top-1 to Top-100. "Concentrated Knowledge"
: The red point represents accumulated probability for
Top-5 tokens already exceed 95%. The green line de-
scribes the disk usage if use Top-K token distribution
during distillation.

Black-box Distillation refers to distillation from167

models that we are unable to access the weight168

and prediction logits such as PaLM (Chowdhery169

et al., 2022). Recent studies have attempted to170

distill reasoning ability from GPT (Ho et al., 2023;171

Shridhar et al., 2023) or some emergent ability172

such as chain-of-thought (Hsieh et al., 2023; Li173

et al., 2023). However, these methods may still be174

categorized as the genre of data-augmentation-and-175

then-fine-tuning approaches.176

White-box Distillation means the teacher models177

are either fully open-sourced such as Llama (Tou-178

vron et al., 2023a) or they can return partial proba-179

bility distribution of the generated tokens, such as180

code-davinci-002. Instead of the hard token fine-181

tuning, white-box distillation typically uses more182

fine-grained signals by matching a distribution be-183

tween teachers and students (Gu et al., 2023; Latif184

et al., 2023; Agarwal et al., 2024). Further, in the185

field of white-box distillation, there are two dif-186

ferent ways: online distillation and offline distilla-187

tion. Onlin distillation (Gu et al., 2023; Zhou et al.,188

2023) needs to keep both the teacher model and189

the student model on the GPU simultaneously dur-190

ing training. On the other hand, offline distillation191

typically involves obtaining knowledge from the192

teacher model beforehand. Our work is an exten-193

sion of white-box offline distillation and focuses on194

how white-box offline distillation can be improved195

in terms of trustworthiness by re-calibrating the196

teacher distribution.197

Figure 3: "Tuning-Induced Mis-calibration":
Position-wise prediction probabilities with correspond-
ing actual accuracy of (a) fine-tuned teacher model and
(b) fine-tuned small model, (c) distilled model and (d)
model produced by FIRST.

3 Preliminaries 198

3.1 Concentrated Knowledge 199

In the process of searching for a suitable trade- 200

off between the amount of knowledge to transfer 201

from the teacher model and efficiency, we begin 202

by visualizing the probability distribution for each 203

token entry. As illustrated in Figure 2, the blue 204

line with range describes how averaged accumu- 205

lated probabilities increase when we select more 206

tokens (ranked from highest probability to lowest 207

probability in one entry). The trend clearly shows 208

a few top-position tokens take most of the proba- 209

bility information of a token entry. To be specific, 210

the accumulated probabilities of Top-5 tokens can 211

occupy over 95% probabilities while the remain- 212

ing 49995 (i.e. a model with vocab. size of 50k) 213

tokens have nearly 0 probability. We named this 214

phenomenon "Concentrated Knowledge" as almost 215

full knowledge of a token entry is stored in its top-k 216

tokens where the remaining tokens have negligible 217

information. 218

3.2 Tuning-Induced Mis-calibration 219

In the context of LLMs, mis-calibration can be 220

divided into two types: over-confidence and under- 221

confidence. Over-confidence occurs when the pre- 222

dicted probability of a token is higher than its actual 223

accuracy, while under-confidence takes place when 224
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the predicted probability is lower than the actual225

accuracy.226

During the fine-tuning process of LLMs, cross-227

entropy loss is commonly employed, which en-228

courages the models to assign a probability of 1229

to one token and 0 to all other tokens based on230

the ground-truth token. This training nature results231

in 1.) an over-estimation of the ground truth to-232

ken’s probability and 2.) an under-estimation of all233

other token’s probability. As shown in Figure 3 (a)234

and (b), it is observed that both fine-tuned LLMs235

exhibit over-confidence in their top-1 token pre-236

dictions, while demonstrating under-confidence in237

the subsequent tokens. This phenomenon, which238

we call "tuning-induced calibration", highlights the239

untrustworthy nature of fine-tuned models.240

Since fine-tuned teacher models suffer from this241

tuning-induced mis-calibration, if the knowledge242

from the mis-calibrated teacher models is directly243

used in traditional distillation-based methods, the244

student models are very likely to inherit the same245

mis-calibration nature as depicted in Figure 3 (c).246

Motivated by the tuning-induced mis-calibration,247

our proposed method incorporates a "trustworthy248

maximization" procedure to re-calibrate the knowl-249

edge derived from the teacher models. This enables250

us to obtain a genuinely trustworthy student model.251

3.3 Expected Calibration Error252

To measure calibration in the context of LLMs, we253

adapt the expected calibration error (ECE) to the254

free-text generation task by treating the generation255

of a single token as a classification task. In this256

adaptation, we restrict the model to generate only257

one token from a set of candidate choices (e.g.,258

A/B/C/D). For each token, we obtain the highest259

probability choice using argmaxi∈C P (i), where260

C represents the set of candidates. The probability261

of the chosen token is taken as the predicted confi-262

dence, and we calculate the accuracy by comparing263

the predicted choice to the ground truth. Then we264

utilize a total M probability interval as bins and265

categorize each chosen token into m-th bin accord-266

ing to the predicted confidence. The ECE can be267

computed as follows:268

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (1)269

Here, M is the number of bins. Bm represents the270

set of predictions in bin m, |Bm| is the number271

of prediction instances in bin m, and n is the to- 272

tal number of predictions. acc(Bm) is the average 273

accuracy of predictions in bin m, and conf(Bm) 274

is the average confidence of predictions in bin m. 275

A lower ECE value indicates that the model’s pre- 276

dicted probabilities are more consistent with actual 277

outcomes, meaning the model is better calibrated. 278

3.4 Trustworthy Score 279

In evaluating the trustworthiness of a model, it is 280

essential to consider both high accuracy and ef- 281

fective calibration. Existing benchmarks primarily 282

focus on accuracy, assuming that higher accuracy 283

implies greater trustworthiness. However, our dis- 284

covery of the widespread issue of "tuning-induced 285

mis-calibration" has highlighted the inadequacy of 286

relying solely on accuracy for a comprehensive 287

evaluation of model reliability. To address this lim- 288

itation, we propose Trust Score metric to quantify a 289

model’s trustworthiness, which quantifies the trust- 290

worthiness of a model by considering two key as- 291

pects: its ability to provide accurate answers (mea- 292

sured by Acc) and its capacity to align predicted 293

confidences with actual accuracies (measured by 294

ECE). The Trust Score is defined as follows: 295

Trust = Acc− ECE (2) 296

By incorporating the Trust Score, we achieve a 297

more balanced evaluation of trustworthiness, taking 298

into account both accuracy and calibration. 299

4 Efficient Trustworthy Distillation 300

In this section, we introduce eFfIcient tRustworthy 301

disTillation (FIRST), which can be divided into 302

three parts. Firstly, we select Top-5 tokens as 303

knowledge for transfer (Efficient Knowledge Se- 304

lection) in Sec.4.1. Then, we adjust the knowledge 305

for trustworthiness to ensure that the subsequent 306

smaller models can maximize its utility (Knowl- 307

edge Trustworthy Maximization) in Sec.4.2. Fi- 308

nally, we describe the learning process of the stu- 309

dent model (Knowledge Matching) in Sec.4.3. 310

4.1 Efficient Knowledge Selection 311

Transferring knowledge directly from teachers to 312

students can be computationally costly and storage- 313

intensive. For example, if we consider a vocabu- 314

lary size of 50,000 tokens, retrieving the complete 315

probability distribution from a dataset of 100,000 316

samples, with an average length of 2,048, would 317

require a staggering 120 TB of storage, which is 318

impractical. 319
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Based on the discovery of "concentrated knowl-320

edge" in teacher LLMs, we observe that the ma-321

jority of knowledge is concentrated within a small322

portion of top-position tokens, as elaborated in Sec-323

tion §3.1. Therefore, considering that both com-324

putation and disk space increase linearly with the325

number of selected token entries, we argue that it326

is not necessary to use the complete probability dis-327

tribution. Instead, by selecting a small amount of328

top-position tokens that contain majority of knowl-329

edge, we can strike the optimal balance between330

computational overhead and effectiveness. As de-331

picted in figure 2, accumulated probability of Top-5332

token entries occupy more than 95% probabilities333

while reducing storage from 120 TB to 1.2 GB.334

4.2 Trustworthy Maximization335

Once the top-5 tokens and their corresponding prob-336

abilities are collected from the teacher model, it is337

crucial to subject this knowledge to further pro-338

cessing to ensure proper calibration, as teacher339

models can also suffer from "tuning-induced Mis-340

calibration" due to fine-tuning (as we elaborate in341

Sec. §3.2). This additional calibration step ensures342

that the student model improves in both accuracy343

and trustworthiness.344

Label Smoothing. We first attempted to ad-345

dress tuning-induced mis-calibration" by applying346

a smoothing coefficient, denoted as δ, to mitigate347

the teacher model’s over-confidence in its top-1 to-348

ken predictions while alleviating under-confidence349

in other predicted tokens as follows:350 {
PT (i) := PT (i)− δ if i = 1

PT (i) := PT (i) +
δ
4 if 2 ≤ i ≤ 5

(3)351

Here, T denotes the teacher model, PT (i) repre-352

sents the probability of the i-th top token. While353

label smoothing can effectively mitigate over-354

confidence in top-1 token predictions, we have iden-355

tified significant drawbacks associated with this ap-356

proach. Firstly, directly applying label smoothing357

may compromise the preservation of token rank-358

ings, particularly between the top-1 and top-2 to-359

kens. This can lead to a decline in model perfor-360

mance in certain cases. Secondly, label smoothing361

uses a constant probability, disregarding the vary-362

ing levels of over-confidence or under-confidence363

in different token entries. Consequently, this can364

result in a transition from under-confidence to over-365

confidence among the top 2-5 tokens, making it366

challenging to achieve a balanced calibration across 367

all of them. 368

Temperature Scaling. Subsequently, we explore 369

another approach using a temperature scaling tech- 370

nique to re-calibrate the probabilities: 371

PT (i) =
exp(PT (i)/c)∑
j exp(PT (j)/c)

(4) 372

This method offers several advantages. First, it 373

allows for a more fine-grained adjustment of the 374

probability distribution by controlling the tempera- 375

ture scaling parameter c, which can be optimized to 376

achieve the lowest ECE values. Second, unlike la- 377

bel smoothing, temperature scaling can effectively 378

balance the confidence levels of both top-1 and 379

subsequent tokens, reducing both over-confidence 380

and under-confidence issues. This results in a more 381

consistent and reliable calibration across all tokens, 382

thereby enhancing the overall trustworthiness of the 383

knowledge. Additionally, we find that selecting the 384

optimal c parameter on the validation set to maxi- 385

mize the knowledge significantly enhances the ef- 386

fectiveness of transferring trustworthy knowledge. 387

The knowledge processed by using this c yields 388

the best results for the student model (detailed in 389

Sec. §5.5). Due to the low cost of selecting c on 390

the validation set, we can tailor different c values 391

for different tasks. This demonstrates "temperature 392

scaling" excellent scalability and flexibility. 393

4.3 Knowledge Matching 394

After obtaining the re-calibrated probability data 395

PT that contains PT (1), PT (2), . . . , PT (5), we 396

use the same training data to train the student 397

model. Instead of utilizing language modeling 398

loss on hard labels, the probabilities of the 5 to- 399

kens that correspond to the teacher’s top-5 of the 400

student model are retrieved as PS which contains 401

PS(1), PS(2), ..., PS(5). Kullback–Leibler diver- 402

gence is then used to measure the loss between the 403

teacher model and the student model: 404

Loss(y1:N ) =
N∑
t=1

DKL(PT ||PS) (5) 405

5 Experiment 406

5.1 Experimental Settings 407

Our experiments focus on both In-Domain and Out- 408

of-Domain settings to ensure generalization abil- 409

ities. In the In-Domain setting, we utilize Com- 410

monsenseQA (CSQA) (Talmor et al., 2019) and 411

5



IN-DOMAIN OUT-OF-DOMAIN
CSQA BoolQ CSQA OBQA

ECE ↓ Acc ↑ Trust ↑ ECE ↓ Acc ↑ Trust ↑ ECE ↓ Acc ↑ Trust ↑ ECE ↓ Acc ↑ Trust ↑

LLAMA 1 : 33B → 7B

Teacher 33B 10.2 82.4 72.2 7.7 89.7 82 18.6 69.2 50.6 20.2 64.4 44.2
Fine-tune 7B 11.8 79.9 68.1 6.5 82.5 76 12.5 48.2 35.7 21.9 43.4 21.5

Distill 7B 9.4 78.9 69.5 4.0 85.3 81.3 5.3 43.1 37.8 18.1 39.8 21.7
Distill 7B w/ LS 9.1 78.1 69 19.0 85.3 66.3 5.2 43.9 38.7 19.0 37.6 18.6
FIRST 7B w/ TS 2.9 80.8 77.9 4.0 85.7 81.7 4.6 50.0 45.4 7.1 47.2 40.1

FIRST to Fine-tune ↑8.9 ↑0.9 ↑9.8 ↑2.5 ↑3.2 ↑5.7 ↑7.9 ↑1.8 ↑8.7 ↑14.8 ↑3.8 ↑18.6
LLAMA 2 : 13B → 7B

Teacher 13B 12.0 81.6 69.6 6.8 89.7 82.9 20.8 65.7 44.9 28.7 58.3 29.9
Fine-tune 7B 14.0 76.8 62.8 8.4 87.5 79.1 21.2 50.0 28.8 30.1 45.6 15.5

Distill 7B 10.9 80.0 69.1 4.0 85.3 81.3 7.7 50.9 43.2 12.5 46.6 34.1
Distill 7B w/ LS 10.3 80.4 70.1 3.9 87.5 83.6 7.5 51.1 43.6 16.2 47.6 31.4
FIRST 7B w/ TS 6.3 80.3 74 1.4 87.9 86.5 5.5 51.4 45.9 8.1 49.5 41.4

FIRST to Fine-tune ↑7.7 ↑3.5 ↑11.2 ↑7 ↑0.4 ↑7.4 ↑15.7 ↑1.4 ↑17.1 ↑22 ↑3.9 ↑25.9
OPENLLAMA : 13B → 7B

Teacher 13B 13.2 78.5 65.3 7.5 87.6 80.1 16.7 49.5 32.8 13.4 50.0 36.6
Fine-tune 7B 10.5 75.0 64.5 3.6 81.5 77.9 21.6 28.3 6.7 16.1 30.4 14.3

Distill 7B 9.2 75.2 66 6.2 83.8 77.6 9.7 27.7 18 13.7 29.8 16.1
Distill 7B w/ LS 9.6 74.5 65.9 3.3 83.3 80 4.1 29.2 25.1 14.2 29.8 15.6
FIRST 7B w/ TS 5.0 77.2 72.2 2.7 84.7 82 2.9 30.5 27.6 8.2 30.8 22.6

FIRST to Fine-tune ↑5.5 ↑2.2 ↑7.7 ↑0.9 ↑3.2 ↑4.1 ↑18.7 ↑2.2 ↑20.9 ↑7.9 ↑0.4 ↑8.3

Table 1: Smaller models obtained by our method FIRST consistently achieves high accuracy Acc across various
scenarios while maintaining a low expected calibration error ECE (see Eq. 1). The higher trust scores Trust
(see Eq. 2), the more trustworthy models are. Note that in the out-of-domain setting, we only obtain smaller
models by fine-tuning or distilling on Alpaca, with CSQA and OBQA being unseen in this context, validating the
generalizability of our approach. ↑ represents the larger the better while the ↓ means the smaller the better. Bold
represents the best.

BoolQ (Clark et al., 2019) for both training and test-412

ing. In the Out-of-Domain setting, we fine-tune413

and distill smaller models on a commonly used414

instruction-following dataset, Alpaca (Taori et al.,415

2023), while, testing the models’ performance over416

unseen task CommonsenseQA (CSQA) and Open-417

Book QA (OBQA) (Mihaylov et al., 2018). This418

approach allows us to assess the generalization abil-419

ities of the smaller models on unseen tasks, sim-420

ulating real-world scenarios where these models421

need to perform on unfamiliar tasks.422

To ensure the practicality of our approach, we se-423

lect three widely used model families for our exper-424

iments: Llama-1 (Touvron et al., 2023a), Llama-2425

(Touvron et al., 2023b), and OpenLlama (Geng426

and Liu, 2023). In our experiments, we test four427

types of smaller models obtained through different428

methods:429

1) Fine-tune 7B: Obtained by using fine-tuning430

with hard labels.431

2) Distill 7B: Obtained by distillation methods with-432

out "knowledge trustworthy maximization". For a433

fair comparison with our approach, we also use the434

top-5 tokens as knowledge in the latter comparison.435

3) FIRST 7B w/TS: Obtained by our proposed436

method, primarily using temperature scaling (TS, 437

see Eq. 4) within the trustworthy maximization 438

phase. 439

4) Distill 7B w/ LS: We also explore the use of label 440

smoothing (LS, see Eq. 3) to show why we ulti- 441

mately adopt TS over LS in "knowledge trustwor- 442

thy maximization". In the latter experiments, we 443

pick up the popular smoothing coefficient 0.1 fol- 444

low previous works (Müller et al., 2020). Addition- 445

ally, we also provide the performance of Teacher 446

models. For further implementation details, please 447

refer to the Appendix. 448

5.2 Experiment Results 449

Based on the results shown in Table 1, we draw the 450

following conclusions: 451

• Fine-tuning lead to catastrophic mis- 452

calibration: We observed that although fine-tuned 453

smaller models achieve relatively high accuracy 454

in both in-domain and out-of-domain settings, 455

their ECE values are notably high, resulting in 456

overall low trust scores and lower reliability. 457

This mis-calibration phenomenon is particularly 458

pronounced in out-of-domain scenarios. For 459

instance, we observe that the ECE of the model 460

fine-tuned on OpenLllama 7B in the out-of-domain 461

CSQA task reaches 21.6%, while its accuracy 462
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is only 28.3%, indicating that smaller models463

obtained through fine-tuning tend to be unreliable464

on tasks they have not been trained on. In465

real-world scenarios, when smaller models are466

privately deployed, they will inevitably encounter467

tasks they have not been trained for. In such468

cases, there would be a mismatch between their469

confidence and true likelihood. They might470

confidently provide incorrect answers and even471

continuously emphasize their incorrect responses,472

thereby misleading users. This clearly does not473

meet the criteria of a trustworthy model.474

• Distillation brings bad calibration as well: Fur-475

thermore, distilled models without "Knowledge476

Trustworthy Maximization" show relatively bad477

calibration ability. For in-domain tasks, the dis-478

tilled Llama-1 7B and Llama-2 7B have ECE val-479

ues of 9.4% and 10.9% on CSQA, a mis-calibration480

level similar to fine-tuned models. And distilled481

model of OpenLlama shows even worse calibration482

than fine-tuned models on BoolQ. While for accu-483

racy, it generally has an improvement over standard484

fine-tuning, but on some settings such as Llama-1485

on CSQA, it also shows worse performance than486

fine-tuning. This suggests that direct distillation487

without further process the knowledge does not488

consistently lead to better calibration and perfor-489

mance.490

• Temperature Scaling outperforms Label491

Smoothing: Here, we compare the results of dif-492

ferent methods used in the "Knowledge Trust-493

worthy Maximization" phase. It is evident that494

FIRST7B w/ TS performs significantly better than495

Distill7B w/ LS. In the In-domain setting of BoolQ,496

the ECE values of FIRST7B w/ LS astonishingly497

reached 19.0%, significantly worse than Distill7B,498

which does not apply any additional processing to499

the knowledge. This highlights that LS cannot de-500

liver stable performance across all scenarios. In501

contrast, FIRST7B w/ TS consistently achieves lower502

ECE in both in-domain and out-of-domain scenar-503

ios. Additionally, they attain better accuracy in504

most cases, resulting in the highest Trust scores.505

5.3 Reliability Analysis506

Reliability Diagrams. To enhance our analysis507

and facilitate better comparisons, we employ reli-508

ability diagrams in addition to metric-based eval-509

uations. As depicted in Figure 4, the reliability510

diagrams are divided into 10 bins based on the511

model’s confidence. The bars represent the ex-512

pected accuracy within each bin, and the colors 513

indicate whether the model is under-confident (red) 514

or over-confident (green) within each bin. A per- 515

fectly calibrated model would have a straight diag- 516

onal line from the bottom left to the top right of 517

such a diagram, indicating that the confidence level 518

is exactly consistent with expected accuracy. 519

The Fine-tune7B model exhibits catastrophic 520

mis-calibration, primarily characterized by over- 521

confidence in its predictions. This means that the 522

model tends to assign higher confidence levels to 523

its predictions than what is justified by their actual 524

accuracy. Although the Teacher33B model also suf- 525

fers from over-confidence, its overall high accuracy 526

results in a much higher trust score. Additionally, 527

the Distill7B model demonstrates slightly improved 528

calibration compared to the Fine-tune7B model. Re- 529

markably, our FIRST7B model outperforms the 530

other models, including the teacher model. It ex- 531

hibits noticeably less under-confidence and over- 532

confidence, as indicated by the smaller areas of the 533

red and green bars, respectively, and its proximity 534

to the perfect calibration line. 535

5.4 Analysis of Top-5 Selection. 536

Figure 2 illustrates the disk space usage and cumu- 537

lative probability coverage for knowledge selection 538

ranging from the top-1 to the top-100 tokens. The 539

blue line represents the average accumulated proba- 540

bilities, while the shaded area indicates the range of 541

probabilities. The green line shows the correspond- 542

ing disk space required. The reasons we finally 543

adopted top-5 are as follows: 544

1. Efficient Probability Coverage: The figure 545

demonstrates that selecting the top-5 tokens 546

covers over 95% of the total probability. This 547

high coverage ensures that the majority of 548

relevant knowledge is captured, making the 549

distillation process effective. 550

2. Minimal Disk Space Usage: The green line 551

indicates the disk space required for storing 552

the selected tokens. By selecting only the 553

top-5 tokens, we significantly reduce the stor- 554

age requirements compared to selecting more 555

tokens. This efficiency is crucial for offline 556

distillation, where disk space can be a limiting 557

factor. 558

3. Balancing Trade-offs: The Top-5 selection 559

strikes a balance between maximizing prob- 560

ability coverage and minimizing disk space 561

7



Figure 4: Reliability diagrams based on Llama-1 reveal the mis-calibration of various models on the CSQA dataset.
In these diagrams, the X-axis is confidence divided into 10 bins, representing the model’s confidence levels for each
question’s answer tokens. The Y-axis represents the accuracy within each bin. The red bar represents the degree to
which the actual accuracy is higher than perfect calibration (under-confident), while the green bar means that the
actual accuracy is lower than perfect calibration (over-confident).

Figure 5: Left shows the comparison of different
smoothing coefficients on the validation set, while the
right part demonstrates its corresponding calibration ef-
fect on the test set.

usage. This balance ensures that the distilled562

knowledge is both comprehensive and storage-563

efficient, enabling practical implementation in564

various scenarios.565

4. Scalability: Our method exhibits strong scal-566

ability. It is naturally extendable to distilla-567

tion from models such as the GPT-3 series568

(text-davinci-003), which can only return top-569

5 token probabilities. This increases the range570

of LLMs that can be used as teacher mod-571

els, allowing student models to be effectively572

trained even in semi-black box scenarios.573

5.5 Temperature Scaling Parameter Analysis574

As described in the section on Knowledge Trust-575

worthy Maximization (Sec. §4.2), we employ a576

temperature scaling parameter to optimize the ECE577

(Expected Calibration Error) value on the valida-578

tion set, as illustrated in the left part of Figure 5.579

We first divide the interval from 0 to 1 into steps580

of 0.1 and select the coefficient with the smallest581

ECE value. A larger coefficient results in all Top-5582

tokens converging to the same probabilities, specif-583

ically 0.2. When the coefficient is set to 1, the584

probability of the top-1 token is dramatically com-585

pressed, while the probabilities of the other tokens 586

are enlarged accordingly. Conversely, a coefficient 587

of 0.1 can even amplify the probabilities of over- 588

confident tokens, leading to even worse calibration. 589

To further refine the search for the optimal smooth- 590

ing coefficient, we narrow down the interval and 591

use a smaller step size of 0.02. This allows us to 592

pinpoint the best smoothing coefficient more pre- 593

cisely. Additionally, we compare the performance 594

of FIRST using the selected optimal smoothing 595

coefficient with other different smoothing coeffi- 596

cients as shown in the right part of Figure 5. FIRST 597

with optimal smoothing coefficient do outperform 598

those with other levels of smoothing coefficient 599

with a large margin, indicating the effectiveness of 600

selecting such optimal smoothing coefficient. 601

6 Conclusion 602

In conclusion, our proposed method, eFfIcient 603

tRustworthy diSTillation (FIRST), effectively en- 604

hances both accuracy and calibration in large lan- 605

guage models. By applying "trustworthy maximiza- 606

tion", FIRST efficiently transfers the minimal yet 607

most effective knowledge from teacher to student 608

models. Experimental results show that FIRST 609

consistently improves trustworthiness across vari- 610

ous scenarios, demonstrating its potential to create 611

reliable language models for practical applications. 612

7 Impact Statement 613

This paper presents work whose goal is to advance 614

the field of Machine Learning. We address the 615

critical issue of catastrophic mis-calibration in cur- 616

rent training pipelines (supervised fine-tuning and 617

knowledge distillation) and propose a pipeline to 618

efficiently obtain a more trustworthy model. There 619

are many potential societal consequences of our 620
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work, none of which we feel must be specifically621

highlighted here.622

8 Limitations623

It is shown that our efficient trustworthy distillation624

(FIRST) demonstrates superior calibration ability625

and performance over direct distillation and stan-626

dard fine-tuning methods. However, despite these627

exciting results, there are still some limitations to628

our current work, as well as potential opportunities629

for future research.630

Extend to Large Teacher Model : Due to the631

resource limitation, our largest teacher model is632

Llama 33B which is not very large but already633

achieving exciting results by distillation to a 7B634

student model. We expect that employing a large635

teacher model such as 70B can lead to better cali-636

bration ability and performance since a large model637

learns a better distribution. However, we are unable638

to explore how very large teachers perform due to639

resource limitations.640

Top-K Chosen in Offline Distillation: Another641

limitation of this work is that it does not provide642

a rigorous study on how many token probabilities643

to choose for one entry is optimal for knowledge644

distillation in large language models. Currently, we645

consistently choose the top-5 token probability to646

retrieve because of the reasons stated in §5.4. How-647

ever, how much token probability to use is optimal648

could be an important area for further exploration649

and development.650
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STANDARD FINE-TUNING DIRECT DISTILLATION FIRST

Question Which city is farther north, Oslo or Helsinki?

Correct Answer Helsinki

Generated Oslo is farther north than Helsinki. Oslo is farther north than Helsinki. Oslo is farther north than Helsinki.
Confidence 0.92 → over-confident 0.83 → over-confident 0.52

Question Is Donald Trump a Neo-con American politician and businessman for the Republicans, with a long and varied career?

Correct Answer No

Generated Yes. Yes. Yes.
Confidence 0.91 → over-confident 0.85 → over-confident 0.54

Table 2: A case study on how fine-tuned model and direct distilled model tend to over-confident on the wrong
answer with high confidence. While FIRST though outputs a wrong answer, it produces low confidence to show its
uncertainty.

A Detailed Experimental Setting 839

A.1 Implementation Details 840

We train our models on 8 GPU (RTX A6000 48G) using the Adam optimizer with beta set to be [0.9, 841

0.999] and epsilon fixed to be 1e-6 and cosine annealing scheduler with a warm-up ratio of 0.03. For 842

fine-tuning, we utilize LMFlow (Diao et al., 2023) package to obtain a well fine-tuned model by a standard 843

3-epoch training and control the batch size to be 32 on each GPU and the learning rate for teacher models 844

to be 2e-5. For question-answering tasks, we follow Shum et al. (2023)’s format and fine-tune the model 845

in a zero-shot setting. For out-of-domain tasks, we directly follow Alpaca’s (Taori et al., 2023) setting to 846

obtain the fine-tuned model. In both settings, we make use of the next token strategy for inferencing and 847

answer generation. Finally, for distillation, the batch size is set to 32 on each GPU and we train our model 848

for 3 epochs, the last checkpoint is used for evaluation since it has the best performance. 849

B Additional Analysis 850

B.1 Case Study 851

We further conduct a case study to see whether FIRST indeed helps mitigate mis-calibration in real-world 852

question answering. As shown in Table 2, we ask the models of three different tuning methods on Alpaca 853

to answer the question: which city is farther north, Oslo or Helsinki? The correct answer is 854

Helsinki and the wrong answer is Oslo. 855

From the output confidence, we can see that standard fine-tuned models and direct distillation give high 856

confidence in the wrong answer, which is far from satisfactory for trustworthy in real-world settings, 857

especially when additional post-processing procedures were expected to be applied to filter wrong answers 858

by identifying unconfident responses. In comparison, FIRST greatly mitigates this mis-calibration by 859

producing a confidence of around 50% which indicates the model is not sure about the generated answer, 860

allowing systems to filter those undesirable answers by a hard confidence threshold. 861

11


	Introduction
	Related Work
	Trustworthy Models
	Knowledge Distillation

	Preliminaries
	Concentrated Knowledge
	Tuning-Induced Mis-calibration
	Expected Calibration Error
	Trustworthy Score

	Efficient Trustworthy Distillation
	Efficient Knowledge Selection
	Trustworthy Maximization
	Knowledge Matching

	Experiment
	Experimental Settings
	Experiment Results
	Reliability Analysis
	Analysis of Top-5 Selection.
	Temperature Scaling Parameter Analysis

	Conclusion
	Impact Statement
	Limitations
	Detailed Experimental Setting
	Implementation Details

	Additional Analysis
	Case Study


