
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SkillWrapper:
Generative Predicate Invention for
Skill Abstraction

Anonymous authors
Paper under double-blind review

Abstract

Generalizing from individual skill executions to solving long-horizon tasks remains
a core challenge in building autonomous agents. A promising direction is learning
high-level, symbolic representations of the low-level skills of the agents, enabling
reasoning and planning independent of the low-level state space. Recent advances
in foundation models have made it possible to generate symbolic predicates that
operate on raw sensory inputs—a process we call generative predicate invention—
to facilitate downstream representation learning. However, it remains unclear
which formal properties the learned representations must satisfy, and how they
can be learned to guarantee these properties. In this paper, we address both
questions by presenting a formal theory of generative predicate invention for skill
abstraction, resulting in symbolic operators that can be used for provably sound
and complete planning. Within this framework, we propose SkillWrapper, a
method that leverages foundation models to actively collect robot data and learn
human-interpretable, plannable representations of black-box skills, using only
RGB image observations. Our extensive empirical evaluation in simulation and on
real robots shows that SkillWrapper learns abstract representations that enable
solving unseen, long-horizon tasks in the real world with black-box skills.

1 Introduction

An autonomous agent operating in the real world must process low-level sensory and motor signals
while reasoning about high-level objectives (Doncieux et al., 2018; Konidaris, 2019). Analogous to
how humans can perform complex tasks, like cooking or cleaning, without reasoning about muscle-
level control, agents should have internal models of their skills that abstract away nuanced activities
on the lower level. Such models must capture the necessary conditions for a skill to be executed
(e.g., “pouring a teapot requires holding it first”) and the consequences of doing so (e.g., “pouring
a teapot leaves it empty”). These two properties, known as preconditions and effects in the AI
planning literature, enable compositional reasoning to identify long-horizon plans that can sequence
lower-level skills to solve a task. Typically, these models must be specified manually. However,
in real-world settings such skill representations may be nontrivial to acquire due to complex inter-
skill constraints specific to the agent’s embodiment. This calls for algorithms that learn symbolic
transition models of black-box skills without hand specification, enabling agents to directly utilize
those skills to solve long-horizon tasks with off-the-shelf AI planners.

Traditional approaches of skill abstraction often require factorizing the low-level state space to
learn classifiers for each symbolic representation, relying heavily on hand-collected transition
data (Konidaris et al., 2018). Recently, foundation models have enabled a new paradigm: gen-
erating semantically meaningful predicates directly from raw observations and directly evaluating
their truth values on low-level observations (e.g., RGB images)—a process we refer to as generative
predicate invention. Recent work has explored how foundation models can be used for predicate
invention, by generating Python code to implement predicates (Liang et al., 2025) or sampling large
predicate pools followed by sub-selection. However, these methods produce ad-hoc planning rep-
resentations that cannot be guaranteed to solve a given task, and leave core questions on predicate
invention unanswered: what properties should these learned abstractions satisfy, and how can they
be learned to achieve these properties?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Agents with Black-box Skills

Text

Pour

Stack

...

Wipe

Panda

Robotouille

Bimanual Kuka

Open

Spread

...

Scoop

Pick

Place

...

Cut

Learned Model

Symbolic State Representation

P
a

n
d

a

...

(LeftGripperEmpty ?r)

(RightGripperEmpty ?r)

(InRightGripper ?r ?o)

(UtensilOnTable ?u)

R
o

b
o

to
u

il
le

...

(LeftGripperEmpty ?r)

(RightGripperEmpty ?r)

(InRightGripper ?r ?o)

(UtensilOnTable ?u)

B
im

a
n

u
a

l
K

u
k

a

. . .

(LeftGripperEmpty ?r)

(RightGripperEmpty ?r)

(InRightGripper ?r ?u)

(UtensilOnTable ?u)
(InRightGripper ?r ?u)

Parameters: Robot, Utensil

Semantic Meaning: "the utensil is

 physically enclosed and held by

 the robot's right gripper."

(RightGripperEmpty ?r)

Parameters: Robot

Semantic Meaning: "the robot's

 right gripper is visibly

 not holding anything."

Skill Representation

P
a

n
d

a

PickLeft(?r, ?o)

PickRight(?r, ?u)

Drop(?r, ?obj)

. . .

R
o

b
o

to
u

il
le

PickLeft(?r, ?o)

PickRight(?r, ?u)

Drop(?r, ?obj)

. . .

B
im

a
n

u
a

l
K

u
k

a PickLeft(?r,?obj)

PickRight(?r,?obj)

Drop(?r,?obj)

. . .

Drop(?r, ?obj)

:parameters (?r - Robot ?u - Utensil)
:precondition(and
 (InRightGripper ?r ?u)
 (not (RightGripperEmpty ?r))
 (not (UtensilOnTable ?u))
)
:effect(and
 (not (InRightGripper ?r ?u))
 (RightGripperEmpty ?r)
 (UtensilOnTable ?u)
))

SKILLWRAPPER

1. Active Data

Gathering

3. Operator

Learning

2. Predicate

Invention Solution
T=N

.

T=0 T=k

.

.

 Planning Problem
Initial State

Goal State

Abstract Plan

Abstract State

Planner

Figure 1: Overview of SkillWrapper. For an agent equipped with black-box skills, SkillWrap-
per learns skill representations that are compatible with off-the-shelf planners. These representations
are comprised of predicates invented by the foundation model. Given a novel planning problem de-
scribed using the initial state and goal state as RGB images, a foundation model produces the
corresponding abstract states by applying the invented predicates to the low-level states. Skill-
Wrapper is agnostic to the agent, and we illustrate both real-world (robots) and simulated agents in
this figure.

Our answer is twofold. First, we develop a formal theory of generative predicate invention for skill
abstraction, precisely characterizing the conditions under which a learned skill representation will
be provably sound and complete with respect to downstream planning. Building on this foundation,
we introduce SkillWrapper, a method explicitly designed to guarantee these theoretical criteria.
SkillWrapper uses foundation models in three ways: interactively collecting data in the envi-
ronment, proposing predicates when the current model fails, and classifying predicate truth values
based solely on RGB image observations. Using these data and predicates, SkillWrapper learns
symbolic representations of black-box skills that are both human-interpretable and directly usable
for AI planning.

We highlight the following contributions: (1) A formal theory of generative predicate invention
for provably sound and complete skill abstraction; (2) SkillWrapper, a principled system built on
this framework that leverages foundation models to learn interpretable symbolic representations of
black-box skills; and (3) an extensive empirical evaluation of the system, demonstrating effectiveness
in simulation and on two real robots.

2 Problem Setting

In this section, we briefly discuss our problem setting while defining it formally in Appendix A.
We consider an agent equipped with a finite set of object-centric skills Ω, modeled as black-box
options (Sutton et al., 1999). The agent can execute any ω ∈ Ω and determine whether it succeeds,
but it does not possess a symbolic transition model of these skills. Without such a model, the agent
cannot plan over a long horizon without reasoning at the low-level state space S, which is continuous,
high-dimensional, and impractical for classical search. The goal of Skill Model Learning is to acquire
a symbolic abstraction of skills that enables efficient composition via classical planning.

Environment. An environment is a tuple (S, T ,Ω, T), where S is the continuous state space, T
is a finite set of object types, and Ω is the skill library. Each skill ω ∈ Ω is parameterized by object
types drawn from the set T . The environment dynamics are governed by an unknown transition
function T : S × Ω → S. A setting is defined as (s0,O), consisting of an initial state s0 ∈ S and a
set of typed objects O with τ(o) ⊆ T for each o ∈ O.

Black-box skills. A skill ω ∈ Ω is a tuple (Iω, πω, βω, θω), where Iω ⊆ S is the initiation set, πω

is the option policy, βω ⊆ S is the termination set, and θω = (τ1ω, . . . , τ
k
ω) are the type constraints

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on its k parameters. A skill instance ω = ω(o1, . . . , ok) is valid for oi ∈ O if τ iω ⊆ τ(oi) for all i.
Executing ω from s ∈ Iω terminates in some s′ ∈ βω , affecting only the state of the bound objects.

Symbolic predicates and operators. To enable abstract reasoning, we introduce a finite set of
predicates P . Each σ ∈ P is parameterized by T and has a classifier ϕσ : On × S ⇀ {0, 1} that
evaluates its truth value for arguments in a state. Grounding predicates with valid objects induces a
set of grounded predicates P̄ , and hence an abstract state space S̄ = 2P̄ . The abstraction function
Γ : S → S̄ maps each state to the set of grounded predicates true in that state, while the grounding
function G : S̄ → S maps an abstract state to the states in which its grounded predicates hold.

An operator a ∈ A is defined as (ωa, θa,Prea,Effa), where ωa ∈ Ω is the associated skill, θa are
typed operator parameters, Prea ⊆ P is the precondition set, and Effa = (Eff+a ,Eff−a) are the add
and delete effects. Grounding all operators a ∈ A with objects o ∈ O yields a set of abstract actions
ā ∈ Ā, each executable whenever its ground preconditions hold in the current abstract state.

Planning problems. Given an environment (S, T ,Ω, T), the agent’s objective is to learn an
abstract transition model M = (P,A), such that M is sufficient for planning with Ω. Formally, a
skill planning problem is (s0,O,Sg), where (s0,O) is a setting and Sg ⊆ S are goal states. The
corresponding abstract planning problem is (Γ(s0), Ā, S̄g), where S̄g = {s̄ ∈ S̄ | G(s̄) ∩ Sg ̸= ∅}.
An abstract plan π̄ = ⟨ā1, . . . , ān⟩ is valid if its execution under M yields an abstract trajectory
consistent with some feasible low-level trajectory under T , ending in a goal state.

Problem statement. The Skill Model Learning problem is: given experience in the form of
state–skill-instance–next-state tuples ⟨s, ω, s′⟩, learn a model M = (P,A) such that every plan
found by a complete symbolic planner over M corresponds to a feasible low-level skill plan.

3 SkillWrapper

In this section, we introduce SkillWrapper, a novel approach that autonomously learns symbolic
representations for black-box skills using the concepts defined in Appendix C. To produce a valid ab-
stract model that enables planning, SkillWrapper iterates through a three-step process: 1) actively
proposing and executing exploratory skill sequences to collect data on the initiation and termination
set of each skill, 2) incrementally building a set of predicates from scratch by contrasting positive
and negative examples, and then 3) constructing valid operators using these invented predicates,
from which further exploratory skill sequences can be proposed. This procedure is outlined in
Algorithm 1. As SkillWrapper continues to collect data, add predicates, and update its planning
model, it learns a progressively more accurate abstract transition model. The resulting skill repre-
sentations, or operators, can be used with an off-the-shelf classical planner to solve task planning
problems specified using RGB images. We delve into the core components of our system (lines 4–9
of Algorithm 1) in the following subsections. Lastly, we provide strong theoretical results for the
soundness and completeness of SkillWrapper in Section 3.4.

Algorithm 1 SkillWrapper
1: Input: Set of skills Ω, number of iterations m ∈ N1

2: Output: Abstract transition modelM = (P,A)
3: D,P,A ← ∅
4: for i ∈ {1, . . . ,m} do
5: ⟨ω1, . . . , ωk⟩ ← ProposeSkillSequence(Ω,D,P,A)
6: D ← D∥ExecuteSkills(ω1, . . . , ωk)
7: P ← InventPredicates(Ω,D,P,A)
8: A ← LearnOperators(D,P)
9: end for

10: returnM

3.1 Active Data Collection

To collect data for learning, our method commands the agent to execute its skills in the world and
then collects the resulting transitions. Each command is a sequence of skill instances ⟨ω1, . . . , ωk⟩.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

While executing these commands, the agent collects a dataset D of transitions of the form ⟨s, ω, s′⟩,
where s, s′ ∈ S. These transitions can answer two questions:

1. Executability: Can the skill instance ω be executed from state s?

2. Skill Dynamics: If s ̸= s′, what has changed in the environment due to executing ω?

We guide the exploration of skill preconditions and effects using a foundation model, which pro-
poses skill sequences in natural language. Rather than naively sampling these sequences from the
foundation model’s token distribution, we prompt the foundation model for a batch of candidate
skill sequences and apply two scoring functions to bias the system toward promising sequences that
explore novel skill instance pairs and keep a balance between success and failure executions (see
Appendix B.1 for details). SkillWrapper facilitates the efficient data collection process, which
results in a dataset D that is critical to downstream processes, such as guiding predicate inven-
tion with failure transitions, and improving the learned abstract model by eliminating unnecessary
preconditions, etc.

3.2 Predicate Invention

We now present our predicate invention algorithm, which, unlike prior work (Silver et al., 2023;
Liang et al., 2025), does not require an initial set of predicates to bootstrap the invention process.

Conditions for predicate invention. SkillWrapper identifies two conditions under which the
current predicate vocabulary is insufficient, based on the desired properties of soundness and com-
pleteness (discussed fully in Appendix C). In these cases, the system must invent new predicates
to resolve incongruities between the observed data and the current abstract transition model. We
illustrate how SkillWrapper can achieve the desired model properties in the Venn diagrams in
Appendix D.1.

To formally describe the conditions, we define two sets, αω and ζω , representing the states in which
the model predicts that the skill may either be initiated (when s ∈ αω) or terminated (when s ∈ ζω),
respectively. Both sets are derived from and defined with the learned operators, and their formal
definitions can be found in Appendix C.

The first condition arises when SkillWrapper detects that the symbolic vocabulary cannot express
a necessary precondition for a skill. Concretely, this occurs when two transitions involve instances
of the same skill, one successful and one failed, both satisfy the initiation condition of the skill under
the current predicates. Because the vocabulary cannot distinguish between these initial states, an
additional predicate is required. Formally, this condition is expressed as:

∃⟨si, ωi, s
′
i⟩, ⟨sj , ωj , s

′
j⟩ ∈ D s.t. si ∈ αωi

, sj ∈ αωj
, but si ∈ Iωi

while sj /∈ Iωj
.

The second condition used by SkillWrapper to trigger predicate invention is based on inconsis-
tencies in observed skill effects. Specifically, this occurs when two transitions that involve instances
of the same skill produce identical abstract effects, despite one succeeding and the other failing. In
a deterministic setting, this reduces to a successful skill execution producing no effects, though the
condition naturally extends to stochastic settings with mid-execution failures. Formally, we express
the condition as:

∃⟨si, ωi, s
′
i⟩, ⟨sj , ωj , s

′
j⟩ ∈ D s.t. s′i ∈ ζωi

, s′j ∈ ζωj
, but si ∈ Iωi

and sj /∈ Iωj
.

Contrastive predicate proposal When a satisfying transition pair is identified under the condi-
tions of predicate invention, SkillWrapper prompts the foundation model with the two transitions
and their corresponding states (RGB images) to propose a candidate predicate that can potentially
distinguish the transition pair. The transition pair offers contrastive clues for the foundation model
to propose predicates that precisely resolve the incongruity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Example of Predicate Invention. The initial states of two transitions are both said
to satisfy the preconditions of certain operators learned from the same skill, while transition 1 is
successful, but transition 2 is not. In this case, the first condition (precondition) is triggered, and the
foundation model is prompted with both transitions to invent a new predicate.

Empirical predicate selection. Although foundation models provide a strong prior on which infor-
mation is skill-relevant for predicate construction, they may still produce errors and hallucinations.
To ensure robustness, we introduce a scoring function that estimates the usefulness of a candidate
predicate by adding it to the vocabulary and learning hypothetical operators. For each successful
transition in D, there must exist at least one operator with preconditions satisfied by the transition’s
initial state; for each failed transition, no such operator may exist. Effect evaluation follows the same
principle. After evaluating all transitions, we decide whether to add the candidate predicate based
on an empirical threshold (Details of Algorithm 6 can be found in the appendix.)

3.3 Operator Learning

Our operator learning procedure extends the associative model learning paradigm (Arora et al., 2018)
to the setting of skill abstraction.

Associative model learning. A single skill may induce multiple distinct abstract state changes
depending on the context of execution. To represent these conditional effects, SkillWrapper
clusters observed transitions based on their lifted (object-agnostic) effect sets, enabling it to learn a
single operator across distinct instantiations of a skill. The preconditions of each operator are then
computed as the intersection of all initial abstract states in the corresponding transitions, ensuring
that each operator is both minimal and consistent.

Multi-type object-centrism. In realistic domains, objects do not fit neatly into single type cate-
gories, but rather belong to multiple overlapping categories (e.g., a Cup is fillable, while a Bottle
is both fillable and openable). This complicates the process of generalizing grounded transi-
tions into lifted operators, because it may be ambiguous which object attribute enables successful
execution. We adopt a conservative strategy: SkillWrapper assigns arguments of each operator
using the lowest level of the type hierarchy consistent with the data, preventing over-generalization
while retaining compositional structure.

Predicate re-evaluation. Predicates are generated sequentially, and early inventions may bias later
stages if left unchecked. To mitigate this, SkillWrapper re-applies the scoring function to the entire
predicate set after each iteration of data collection. This allows spurious or redundant predicates to be
discarded as more data is collected. In addition, tautological predicates—those that are always true
or always false—are automatically filtered. As a result, the learned predicate set remains compact,
informative, and aligned with the most recent transition data.

3.4 Theoretical Analysis

We now provide theoretical guarantees for SkillWrapper. These results show that the learned
symbolic model is sound with respect to observed data and converges to a complete model with high
probability. Full proofs are deferred to Appendix D.
Theorem 1 (Soundness of SkillWrapper). Every operator a ∈ An in the model Mn learned by
SkillWrapper is supported by at least one observed transition ⟨s, ω, s′⟩ ∈ Bn. That is, s |= Prea
and s′ |= Effa.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Sketch. SkillWrapper constructs each operator directly from sampled transitions; thus no unsup-
ported operator can appear.
Lemma 1. For each ω ∈ Ω, the initiation set Iω and termination set βω inferred by SkillWrapper
match exactly the corresponding predicate sets αω and ζω derived from Bn, i.e. Iω = αω and
βω = ζω .

Sketch. Any mismatch would contradict the termination condition of SkillWrapper; thus initiation
and termination sets are consistent with observed data.
Theorem 2 (Probabilistic-completeness of SkillWrapper). Let M∗ be the true complete model.
With probability at least 1 − |H| exp(−nϵ), the model M̂n learned from n i.i.d. samples satisfies
dcompl(M̂n,M∗) ≤ ϵ, i.e. it misses fewer than an ϵ-fraction of feasible transitions.

Sketch. Since Êrr(M̂n) = 0 by construction, a Chernoff bound and union bound over the finite
hypothesis class imply that the true error is small with high probability.

Together, these results establish that SkillWrapper learns symbolic operators that are sound with
respect to observed transitions, consistent in their preconditions and effects, and probabilistically
complete relative to the true underlying model. These properties justify SkillWrapper as a reliable
model-learning procedure for planning. Next, we discuss empirical evaluation for SkillWrapper.

4 Experiments

For all experiments in this section, we consider images as fully observable state representations,
assuming that an abstract state can be inferred from an image without uncertainty. Both the initial
and goal states of each problem are specified using RGB images. These images may come from
diverse sources, including a top-down view of an animated game, a third-person camera observing
a robot, or the robot’s own egocentric perspective. All quantitative results reported in this section
are averaged over five independent runs for simulation experiments and three runs for real robot
experiments.

4.1 Implementation of Predicates

We employ foundation models (specifically vision-language models or VLMs) for both predicate
generation and evaluation:

• A foundation model gives us a string that can be used as a lifted predicate (generates
interpretable relational classifiers with a good heuristic).

• After grounding with valid parameters, the predicate can be prompted to the foundation
model again to acquire the truth value. In other words, a foundation model can be used as
a relational classifier.

With these two properties, we can use the VLM’s response in string form as a relational predicate,
and a grounded version of the predicate can be used as a classifier. We use GPT-5 (OpenAI, 2025)
for predicate generation and evaluation. In addition to the system performance reported in the main
paper, we also conducted comprehensive studies of the component-wise reliability of the VLM in
Appendix G.

4.2 Simulation

Figure 3: Screenshot of the
Robotouille environment.

We first conduct experiments in Robotouille (Gonzalez-Pumariega et al.,
2025), which is a simulated grid world kitchen domain with an agent
that has five high-level skills: Pick, Place, Cut, Cook, and Stack. In the
environment, there are several objects: a patty, lettuce, a top bun, and a
bottom bun; there is also a cutting board and a stove for cutting the lettuce
and cooking the patty, respectively. We design and categorize 50 abstract
planning problems: 20 easy problems, whose optimal solutions have no
more than 7 steps; 20 hard problems, whose optimal solutions have no
more than 15 steps; and 10 impossible tasks that cannot be realized in
the environment.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

For a complete evaluation of SkillWrapper, we compare SkillWrapper against four baselines:

• Expert Operators: A human expert who is familiar with PDDL is asked to interact with
the environment and manually write predicates with semantics and PDDL operators.

• System Predicates: This baseline directly uses the built-in predicate set of the simulator,
which is designed to define any possible simulated state unambiguously. In addition, instead
of getting the truth values through classification with foundation models, this baseline has
access to the exact abstract states of the simulator. However, predicate invention is disabled
in this environment.

• ViLa (Hu et al., 2023): This baseline is a closed-loop VLM-based approach that iteratively
prompts a foundation model for the next action until the goal state is reached, given an
image observation and the agent’s action history.

• Random Exploration: Instead of proposing skill sequences, this baseline randomly sam-
ples a skill and populates the arguments with valid objects. This baseline shares the same
predicate invention and operator learning algorithms as SkillWrapper.

• No Heuristic: This baseline is the same as SkillWrapper, except that skill sequences are
selected randomly from the foundation model’s output without applying the heuristics.

For each baseline that performs operator learning, we run the learning algorithm for five iterations,
with each iteration proposing and executing one skill sequence consisting of 15 steps as their
interaction budgets. We then evaluate each method on the evaluation set and report the average
results in Table 1, where Solved % is the percentage of the problem set that was successfully solved
or where impossible tasks were correctly identified by returning an empty plan, and PB stands for
planning budgets—the number of plans that were tried before solving the problem (adopted from
Liang et al. (2025)). We set a planning budget cap of 10 across all problems; if the planning budget
has been used up for a problem, it is considered a failure. Theoretically, PB is an adequate metric that
reflects the completeness of the learned model, and the impossible problems reflect its soundness.

As shown in the table, SkillWrapper outperforms all baselines that have no access to privileged
knowledge, and even surpasses the performance of the system predicates baseline (Sys Preds.) on
hard problems. Here we present the key insights, while leaving case studies, example operators, and
failure modes and analysis of SkillWrapper in Appendix F.

Table 1: Baseline Comparison in Robotouille Environment

Method Easy Hard ImpossibleSolved % ↑ PB ↓ Solved % ↑ PB ↓
Expert Ops. 81.0 ± 3.7 1.9 ± 0.4 58.1 ± 3.9 4.2 ± 0.4 100 ± 0.0
Sys Preds. 79.0 ± 3.7 2.6 ± 0.2 22.0 ± 12.9 7.8 ± 1.3 42.0 ± 7.5
ViLa 46.0 ± 16.2 - 13.9 ± 11.6 - 20.0 ± 10.9
Random Exp. 4.0 ± 2.0 9.6 ± 0.2 0 ± 0.0 10.0 ± 0.0 100 ± 0.0
No Heuristic 76.0 ± 4.9 2.5 ± 0.9 24.0 ± 19.6 7.8 ± 1.8 80 ± 20.9
Ours 74.0 ± 3.7 2.7 ± 0.4 40.0 ± 3.2 6.3 ± 0.4 100 ± 0.0

Compared to the expert-constructed operators, which serve as an approximate upper bound for
performance without privileged simulator access, SkillWrapper demonstrates competitive accuracy
while requiring only a small number of exploratory interactions. In particular, SkillWrapper
exhibits strong generalization from the easy to the hard set, indicating that the invented predicates
and learned operators capture meaningful abstractions rather than overfitting to specific training
traces. The gap between SkillWrapper and ViLa highlights the benefit of explicitly learning a
symbolic model instead of relying solely on open-loop prompting, while the poor performance of
Random Exploration underscores the importance of guided data collection in learning effective
operators, and the unstable performance of No Heuristic in hard problems shows the importance of a
sufficient predicate set and how SkillWrapper manages to reliably explore the state space and learn
it. These findings suggest that SkillWrapper achieves a favorable trade-off between data efficiency
and model soundness and completeness, which is crucial for scaling to larger domains.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 Real Robots

To demonstrate the applicability of SkillWrapper for real-world agentic settings, we designed two
sets of experiments with two robotic platforms: a Franka Emika Panda robot (Figures 4a and 4b) and
a bimanual platform with two Kuka iiwa robots (Figures 4c and 4d). For both robot experiments, we
assume that all skills are deterministic, which is a common assumption made by existing work (Silver
et al., 2023; Han et al., 2024; Liang et al., 2025; Athalye et al., 2025). We give SkillWrapper 15 steps
as its interaction budget per iteration. The supplementary material contains video demonstrations of
both experiments.

(a) Franka: Initial (b) Franka: Goal (c) Bimanual Kuka: Initial (d) Bimanual Kuka: Goal

Figure 4: Initial and Goal States for Real Robot Experiments.

Generalization of SkillWrapper. In this setting, a tabletop Franka Emika Research 3 (Panda)
manipulator has its skill set Ω consisting of five black-box skills: Pick, Place, Stack, Pour, and
Wipe. The object set O contains five objects: a mug, a teapot, a plate, a bowl, and a sponge. The
robotic agent can pick and place all objects except the mug and plate, pour ingredients from the
teapot into the mug, and use the sponge to wipe the plate if it is dirty. To validate the generalization
ability of the learned skill representations, we design three smaller training environments, such that
each environment only contains a subset of O, and thus only a subset of Ω are executable. Each
of the training environments contains fewer than 10 possible states. After running SkillWrapper
for exactly one iteration for each environment, we port the learned skill representations to the test
environment that contains all objects in O, which induces a state space of 34 possible abstract states.
To quantify this generalization process, we similarly prepare an evaluation problem set that consists
of five problems in the training environments, five problems in the test, and five Impossible problems
across the two environments. The results are shown in Table 2.

Table 2: Results of Generalization Experiment

Method In-domain Generalization ImpossibleSolved % ↑ PB ↓ Solved % ↑ PB ↓
Expert Ops. 66.7 ± 9.4 3.3 ± 0.9 53.3 ± 9.4 5.3 ± 0.9 46.7 ± 0.0
ViLa 46.7 ± 9.4 - 6.7 ± 9.4 - 6.7 ± 9.4
Ours 76.7 ± 9.4 2.7 ± 0.9 60.0 ± 0.0 4.0 ± 0.0 66.7 ± 9.4

Learning Curve of SkillWrapper. In this bimanual manipulation setting, a robot with two Kuka
iiwa arms is equipped with a skill set Ω containing six black-box skills: LeftArmPick, RightArmPick,
Open, Scoop, Spread, and Drop. The object set O consists of three objects: a peanut butter jar, a
knife, and a slice of bread. This robot can pick up the knife and jar, drop the knife, open the jar,
scoop peanut butter with the knife, and spread it on the bread. Notably, this environment contains
multiple dead ends, which would hinder the data gathering process. For example, the knife cannot
be picked up again once dropped, the jar cannot be released once picked up, and the bread and knife
cannot be cleaned once in contact with peanut butter. Moreover, the skills are heavily interdependent.
We designed the experiment in this way to investigate the learning process of SkillWrapper over
several iterations. Again, we compare the performance against two baseline methods, ViLa and
Expert Operators. An example of predictive truth value changes induced by a sequence is shown
as in Figure 5. We observe that performance improves as SkillWrapper progressively obtains
more transition data and invents more predicates, finally surpassing the baselines. The performance
improvement over iterations is shown in Figure 6.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Initial InLeftGripper(Jar) → T Closed(Jar) → F InRightGripper(Knife)
→ T

Coated(Knife) → T SpreadOn(Bread) → T

Figure 5: Sequence of Bimanual Robot Skill Execution with Predicate Value Changes

Predicates:

InLeftGripper
InRightGripper
RightGripperEmpty
LidOff

4 predicates,

4 operators

6 predicates,

4 operators

8 predicates,

6 operators

11 predicates,

6 operators

13 predicates,

6 operators

Figure 6: Bimanual Kuka Scenario Results over 5 iterations with invented predicate and learned
operator count. As the number of predicates and operators grows, SkillWrapper improves over the
baseline methods.

Discussion. Our results demonstrate that SkillWrapper is effective in real robot settings: our
method generalizes skill representations learned in restricted domains to richer environments and
progressively improves in more challenging scenarios with irreversible actions and interdependent
skills. By outperforming both expert-defined operators and baseline methods, SkillWrapper high-
lights the importance of predicate invention and iterative learning for scaling symbolic representations
to embodied tasks.

5 Related Works

Our work uses pre-trained foundation models for learning symbolic representations of black-box
robot skills useful to planning and close to human language and understanding. This work draws
ideas from different fields of research such as model learning, abstraction learning, and task and
motion planning (TAMP). Several methods have used foundation models (mainly LLMs) as high-
level planners (Ahn et al., 2022; Rana et al., 2023; Driess et al., 2023). Several approaches have used
foundation models as robot action models (Brohan et al., 2023; Shridhar et al., 2023) or to generate
reward functions for robot tasks (Wang et al., 2024b). Concurrent work has also explored how
representations can be learned directly from pixels (Athalye et al., 2025). Although these approaches
show promising results for short-horizon single-skill problems, they fail to scale to complex long-
horizon problems (Kambhampati et al., 2024). Lastly, multiple approaches (Han et al., 2024; Liang
et al., 2025) have used foundation models to learn symbolic representations of robot skills, but
require extensive feedback or prior knowledge from human experts. To the best of our knowledge,
our work is the first to use a foundation model to automatically learn the human-interpretable
symbolic characterization of robot skills with theoretical guarantees.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

TAMP has long been used to solve complex robot tasks (Dantam et al., 2018; Shah et al., 2020;
Garrett et al., 2021). However, these approaches require symbolic models of the robot skills for task
planning. Various approaches have been developed to learn such symbolic models compatible with
TAMP solvers from high-dimensional inputs (Konidaris et al., 2018; Silver et al., 2023; Shah et al.,
2024). Additionally, the abstract representations learned through these methods are not human-
interpretable. On the other hand, we explicitly design our approach to work with high-dimensional
inputs and generate human-interpretable abstractions using pre-trained foundation models. We
consider abstractions as human-interpretable if they are semantically meaningful and use informative
language descriptions. SkillWrapper also connects to other domains in robotics, and the full related
work can be found in Appendix I.

6 Conclusion

We characterize important properties of a learned symbolic model and present the first known
approach that employs off-the-shelf foundation models to invent symbolic representations for black-
box skills of an agent while providing strong guarantees of soundness and completeness of the
learned representations. By combining these theoretical guarantees with foundation model-driven
data collection and predicate evaluation, SkillWrapper produces interpretable operators directly
usable by classical planners. Empirical results in a simulated burger domain and on real robots
demonstrate that SkillWrapper enables efficient long-horizon planning without hand-engineered
abstractions, offering a principled path towards scalable skill reasoning.

7 Reproducibility Statement

To ensure reproducibility of our work, we provide source code and the prompts used in our exper-
iments as supplementary materials. Although the reproducibility of real-world robot experiments
is limited by hardware, simulation experiments run in Robotouille should be reliably reproduced,
granted that the checkpoints of the foundation model (i.e., OpenAI’s GPT-5 (OpenAI, 2025)) have
not been moved.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, et al. Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. In
Proceedings of the 6th Conference on Robot Learning (CoRL), pp. 287–318, 14–18 Dec 2022.

Michael Ahn, Debidatta Dwibedi, Chelsea Finn, Montserrat Gonzalez Arenas, Keerthana Gopalakr-
ishnan, Karol Hausman, Brian Ichter, et al. AutoRT: Embodied Foundation Models for Large Scale
Orchestration of Robotic Agents. In First Workshop on Vision-Language Models for Navigation
and Manipulation (VLMNM) at ICRA 2024, 2024.

Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie Pesty. A Review of
Learning Planning Action Models. The Knowledge Engineering Review, 33:e20, 2018.

Ashay Athalye, Nishanth Kumar, Tom Silver, Yichao Liang, Tomás Lozano-Pérez, and Leslie Pack
Kaelbling. Predicate Invention from Pixels via Pretrained Vision-Language Models. In AAAI
2025 Workshop on Language Models for Planning (LM4Plan), 2025.

Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen, Xionghui Chen, Zesen Cheng, Lianghao Deng,
Wei Ding, Chang Gao, Chunjiang Ge, Wenbin Ge, Zhifang Guo, Qidong Huang, Jie Huang, Fei
Huang, Binyuan Hui, Shutong Jiang, Zhaohai Li, Mingsheng Li, Mei Li, Kaixin Li, Zicheng
Lin, Junyang Lin, Xuejing Liu, Jiawei Liu, Chenglong Liu, Yang Liu, Dayiheng Liu, Shixuan
Liu, Dunjie Lu, Ruilin Luo, Chenxu Lv, Rui Men, Lingchen Meng, Xuancheng Ren, Xingzhang
Ren, Sibo Song, Yuchong Sun, Jun Tang, Jianhong Tu, Jianqiang Wan, Peng Wang, Pengfei Wang,
Qiuyue Wang, Yuxuan Wang, Tianbao Xie, Yiheng Xu, Haiyang Xu, Jin Xu, Zhibo Yang, Mingkun
Yang, Jianxin Yang, An Yang, Bowen Yu, Fei Zhang, Hang Zhang, Xi Zhang, Bo Zheng, Humen
Zhong, Jingren Zhou, Fan Zhou, Jing Zhou, Yuanzhi Zhu, and Ke Zhu. Qwen3-vl technical report.
arXiv preprint arXiv:2511.21631, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. RT-2: Vision-Language-Action
Models Transfer Web Knowledge to Robotic Control. In Proceedings of the 7th Conference on
Robot Learning, pp. 2165–2183, 06–09 Nov 2023.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brian Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei
Xia. SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 14455–14465, 2024.

William Chen, Oier Mees, Aviral Kumar, and Sergey Levine. Vision-Language Models Provide
Promptable Representations for Reinforcement Learning. Transactions on Machine Learning
Research (TMLR), 2025. ISSN 2835-8856.

Sijie Cheng, Zhicheng Guo, Jingwen Wu, Kechen Fang, Peng Li, Huaping Liu, and Yang Liu.
EgoThink: Evaluating First-Person Perspective Thinking Capability of Vision-Language Models.
In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14291–14302, 2024.

Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ Tedrake,
and Shuran Song. Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-
The-Wild Robots. In Proceedings of Robotics: Science and Systems (RSS) XX, 2024.

Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Lydia E Kavraki. An incremental
constraint-based framework for task and motion planning. The International Journal of Robotics
Research, 37(10):1134–1151, 2018.

S. Doncieux, D. Filliat, N. Dı́az-Rodrı́guez, T. Hospedales, R. Duro, A. Coninx, D.M. Roijers,
B. Girard, N. Perrin, and O. Sigaud. Open-ended learning: a conceptual framework based on
representational redescription. Frontiers in Neurorobotics, 12:59, 2018.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. PaLM-E: An Embodied
Multimodal Language Model. In Proceedings of the 40th International Conference on Machine
Learning (ICML), pp. 8469–8488, 23–29 Jul 2023.

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei-Fei. Adaptive Procedural Task Generation for
Hard-Exploration Problems. In Proceedings of the 9th International Conference on Learning
Representations (ICLR), 2021.

Kuan Fang, Toki Migimatsu, Ajay Mandlekar, Li Fei-Fei, and Jeannette Bohg. Active Task Ran-
domization: Learning Robust Skills via Unsupervised Generation of Diverse and Feasible Tasks.
Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1–8, 2022.

Kuan Fang, Fangchen Liu, Pieter Abbeel, and Sergey Levine. MOKA: Open-World Robotic Manip-
ulation through Mark-Based Visual Prompting. Proceedings of Robotics: Science and Systems
(RSS) XX, 2024.

Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated Task and Motion Planning. Annual Review of
Control, Robotics, and Autonomous Systems, 4:265–293, 2021.

Gonzalo Gonzalez-Pumariega, Leong Su Yean, Neha Sunkara, and Sanjiban Choudhury. Robotouille:
An Asynchronous Planning Benchmark for LLM Agents. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Jiayuan Gu, Devendra Singh Chaplot, Hao Su, and Jitendra Malik. Multi-skill Mobile Manipulation
for Object Rearrangement. In Proceedings of the 11th International Conference on Learning
Representations (ICML), 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Huy Ha, Pete Florence, and Shuran Song. Scaling Up and Distilling Down: Language-Guided
Robot Skill Acquisition. In Proceedings of the 7th Conference on Robot Learning (CoRL), pp.
3766–3777, 2023.

Muzhi Han, Yifeng Zhu, Song-Chun Zhu, Ying Nian Wu, and Yuke Zhu. InterPreT: Interactive
Predicate Learning from Language Feedback for Generalizable Task Planning. In Proceedings of
Robotics: Science and Systems (RSS) XX, 2024.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3D-LLM: Injecting the 3D World into Large Language Models. In Advances in Neural
Information Processing Systems (NeurIPS), volume 36, pp. 20482–20494, 2023.

Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look Before You Leap: Unveiling the
Power of GPT-4V in Robotic Vision-Language Planning. arXiv preprint arXiv:2311.17842, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language Models as Zero-Shot
Planners: Extracting Actionable Knowledge for Embodied Agents. In Proceedings of the 39th
International Conference on Machine Learning (ICML), pp. 9118–9147, 2022.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner Monologue: Embodied Reasoning
through Planning with Language Models. In Proceedings of the 6th Conference on Robot Learning
(CoRL), pp. 1769–1782, 2023.

Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li, Shubham Garg, Hooshang Nayyeri, Shen-
long Wang, and Yunzhu Li. RoboEXP: Action-Conditioned Scene Graph via Interactive Explo-
ration for Robotic Manipulation. In Proceedings of the 8th Conference on Robot Learning, pp.
3027–3052, 2025.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized Level Replay. In Proceedings
of the 38th International Conference on Machine Learning (ICML), pp. 4940–4950. PMLR, 2021.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual
Reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2901–2910, 2017.

Brendan Juba, Hai S. Le, and Roni Stern. Safe Learning of Lifted Action Models. In Proceedings
of the 18th International Conference on Principles of Knowledge Representation and Reasoning
(KR), pp. 379–389, 11 2021.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs Can’t Plan, But Can Help
Planning in LLM-Modulo Frameworks. In Proceedings of the 41st International Conference on
Machine Learning (ICML), 2024.

Michael Katz and Junkyu Lee. K* and partial order reduction for top-quality planning. In Proceedings
of the 16th Annual Symposium on Combinatorial Search (SoCS 2023). AAAI Press, 2023.

George Konidaris. On the Necessity of Abstraction. Current Opinion in Behavioral Sciences, 29:
1–7, 2019. ISSN 2352-1546.

George Konidaris and Andrew Barto. Skill Discovery in Continuous Reinforcement Learning
Domains using Skill Chaining. In Advances in Neural Information Processing Systems (NIPS),
volume 22, 2009.

George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Pérez. From Skills to Symbols: Learn-
ing Symbolic Representations for Abstract High-Level Planning. Journal of Artificial Intelligence
Research, 61:215–289, 2018.

Leonardo Lamanna, Luciano Serafini, Mohamadreza Faridghasemnia, Alessandro Saffiotti, Alessan-
dro Saetti, Alfonso Gerevini, and Paolo Traverso. Planning for Learning Object Properties. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 37(10):12005–12013, Jun. 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amber Li and Tom Silver. Embodied Active Learning of Relational State Abstractions for Bilevel
Planning. In Proceedings of The 2nd Conference on Lifelong Learning Agents (CoLLAs), pp.
358–375, 2023.

Zhaoyi Li, Kelin Yu, Shuo Cheng, and Danfei Xu. LEAGUE++: Empowering Continual Robot
Learning via Guided Skill Acquisition with Large Language Models. In ICLR 2024 Workshop on
Large Language Model (LLM) Agents, 2024.

Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum, Tom Silver, Joao F.
Henriques, and Kevin Ellis. VisualPredicator: Learning Abstract World Models with Neuro-
Symbolic Predicates for Robot Planning. In Proceedings of the 13th International Conference on
Learning Representations (ICLR), 2025.

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, Karmesh Yadav, Qiyang Li,
Ben Newman, Mohit Sharma, Vincent Berges, Shiqi Zhang, Pulkit Agrawal, Yonatan Bisk,
Dhruv Batra, Mrinal Kalakrishnan, Franziska Meier, Chris Paxton, Alexander Sax, and Aravind
Rajeswaran. OpenEQA: Embodied Question Answering in the Era of Foundation Models. In
Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 16488–16498, 2024.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The Neuro-
Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision.
In Proceedings of the 7th International Conference on Learning Representations (ICLR), 2019.

D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL – The Planning Domain Definition Language. Technical report, CVC TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Control, 1998.

Toki Migimatsu and Jeannette Bohg. Grounding Predicates through Actions. In Proceedings of the
2022 International Conference on Robotics and Automation (ICRA), pp. 3498–3504, 2022.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. EmbodiedGPT: Vision-Language Pre-Training via Embodied Chain
of Thought. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, 2024.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie,
Danny Driess, Ayzaan Wahid, Zhuo Xu, Quan Vuong, Tingnan Zhang, Tsang-Wei Edward Lee,
Kuang-Huei Lee, Peng Xu, Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman, Nicolas
Heess, Chelsea Finn, Sergey Levine, and Brian Ichter. PIVOT: Iterative Visual Prompting Elicits
Actionable Knowledge for VLMs. In Proceedings of the 41st International Conference on Machine
Learning (ICML), 2024.

OpenAI. Introducing GPT-5, 2025. URL https://openai.com/index/
introducing-gpt-5/. Accessed: December 4, 2025.

Shreyas Sundara Raman, Vanya Cohen, Ifrah Idrees, Eric Rosen, Ray Mooney, Stefanie Tellex,
and David Paulius. CAPE: Corrective Actions from Precondition Errors using Large Language
Models. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 14070–14077, 2024.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
SayPlan: Grounding Large Language Models using 3D Scene Graphs for Scalable Robot Task
Planning. In Proceedings of the 7th Conference on Robot Learning (CoRL), volume 229, pp.
23–72, 06–09 Nov 2023.

Allen Z. Ren, Jaden Clark, Anushri Dixit, Masha Itkina, Anirudha Majumdar, and Dorsa Sadigh.
Explore until Confident: Efficient Exploration for Embodied Question Answering. In Proceedings
of Robotics: Science and Systems (RSS) XX, 2024.

Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan,
Christine Chan, Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi, et al. RoboVQA:
Multimodal Long-Horizon Reasoning for Robotics. In Proceedings of the 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 645–652. IEEE, 2024.

13

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Naman Shah, Deepak Kala Vasudevan, Kislay Kumar, Pranav Kamojjhala, and Siddharth Srivastava.
Anytime Integrated Task and Motion Policies for Stochastic Environments. In Proceedings of the
2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9285–9291. IEEE,
2020.

Naman Shah, Jayesh Nagpal, Pulkit Verma, and Siddharth Srivastava. From Reals to Logic and
Back: Inventing Symbolic Vocabularies, Actions and Models for Planning from Raw Data. arXiv
preprint arXiv:2402.11871, 2024.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-Actor: A Multi-Task Transformer for
Robotic Manipulation. In Proceedings of the 6th Conference on Robot Learning, volume 205, pp.
785–799, 14–18 Dec 2023.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-Pérez, Leslie Kael-
bling, and Joshua B. Tenenbaum. Predicate Invention for Bilevel Planning. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(10):12120–12129, Jun. 2023.

Theodore Sumers, Kenneth Marino, Arun Ahuja, Rob Fergus, and Ishita Dasgupta. Distilling
Internet-Scale Vision-Language Models into Embodied Agents. In Proceedings of the Fortieth
International Conference on Machine Learning (ICML), pp. 32797–32818, 2023.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. ViperGPT: Visual Inference via Python Execution
for Reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 11888–11898, October 2023.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimı́r Vondruš, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira,
Vladlen Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training Home
Assistants to Rearrange their Habitat. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, pp. 251–266, 2021.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
Planning Abilities of Large Language Models - A Critical Investigation. In Advances in Neural
Information Processing Systems (NeurIPS), volume 36, pp. 75993–76005, 2023.

Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava. Discovering User-Interpretable
Capabilities of Black-Box Planning Agents. In Proceedings of the 19th International Conference
on Principles of Knowledge Representation and Reasoning (KR), volume 19, pp. 362–372, 2022.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models.
Transactions on Machine Learning Research (TMLR), 2024a. ISSN 2835-8856.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired Open-Ended Trailblazer
(POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and
Their Solutions. arXiv preprint arXiv:1901.01753, 2019.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback. In
Proceedings of the 41st International Conference on Machine Learning, volume 235, pp. 51484–
51501, 21–27 Jul 2024b.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Zack-
ory Erickson, David Held, and Chuang Gan. RoboGen: Towards Unleashing Infinite Data for
Automated Robot Learning via Generative Simulation. In Proceedings of the 41st International
Conference on Machine Learning (ICML), 2024c.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. FoundationPose: Unified 6D Pose Estimation
and Tracking of Novel Objects. In Proceedings of the 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 17868–17879, 2024.

Kai Xi, Stephen Gould, and Sylvie Thiébaux. Neuro-Symbolic Learning of Lifted Action Models
from Visual Traces. Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), 34(1):653–662, May 2024.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Haoran Tan, Chencheng Jiang, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied Vision-Language Programmer
from Environmental Feedback. In Proceedings of the 2024 European Conference on Computer
Vision (ECCV), pp. 20–38, 2024.

Naoki Yokoyama, Alex Clegg, Joanne Truong, Eric Undersander, Tsung-Yen Yang, Sergio Arnaud,
Sehoon Ha, Dhruv Batra, and Akshara Rai. ASC: Adaptive Skill Coordination for Robotic Mobile
Manipulation. IEEE Robotics and Automation Letters, 9(1):779–786, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Appendix

A Formal Framework

We consider a problem setting in which an agent is equipped with a set of predefined, “black-box”
skills. The agent can evaluate whether a skill is executable in the current state, but it does not have
a complete transition model of the skills a priori, and therefore cannot compose its skills to solve
long-horizon problems without considering low-level details. However, if the agent were to learn
symbolic models of its skills, it could use classical planning to efficiently compose them to solve
new tasks. In this section, we formalize this setting as the problem of Skill Model Learning.

A.1 Preliminaries

Environment Model. We define an environment as a tuple (S, T ,Ω, T), where the state space S
is assumed to be high-dimensional, continuous, and fully observable; the type set T enumerates the
possible object types; and the skills Ω are object-centric, such that each ω ∈ Ω is parameterized by
object types drawn from the type set T . The transition function T : S × Ω → S characterizes the
environment dynamics but is unknown to the agent. For example, Pour(?teapot, ?mug) may
be used to pour tea from a teapot into a mug. However, certain environmental aspects (e.g., which
mugs are available to pour into) may differ between settings during learning. We therefore define a
specific setting by the tuple (s0,O), specifying an initial state s0 ∈ S and a set of typed objects O,
where the type(s) of object o ∈ O are denoted by to ⊆ T .

Black-box Skills. We model skills as object-centric options (Sutton et al., 1999) with discrete,
object-typed parameters. Formally, a skill ω ∈ Ω is defined by a tuple (Iω, πω, βω,Θω), where the
initiation set Iω ⊆ S contains states from which the skill may be executed; the policy πω controls the
agent during the skill; the termination set βω ⊆ S is the set of states at which the skill immediately
terminates; and the skill parameters Θω = (θ1ω, . . . , θ

k
ω) specify type constraints tθi

ω
⊆ T for valid

skill arguments. Specifically, a skill ω ∈ Ω may be instantiated to create a skill instance ω using
objects o1:k ∈ Ok if and only if for 1 ≤ i ≤ k, tθi

ω
⊆ toi . We assume that executing a skill only

affects the state of objects passed as arguments.1

Symbolic Abstractions. Because the agent must evaluate Iω on individual states, it cannot distin-
guish essential skill information from irrelevant details, making long-horizon planning combinato-
rially difficult. However, each skill affects only a few objects at once, leaving the rest of the world
unchanged. The agent can exploit this property by instead learning a factored state representation—
formalized here as first-order logic models in PDDL (McDermott et al., 1998)—providing an abstract
transition model of its skills. Such abstractions enable the agent to use classical planning to compose
its skills and accomplish unseen, long-horizon goals.

We use symbolic predicates P to express abstract relations between objects. Each predicate σ ∈ P is
a tuple (Cσ,Θσ), where the predicate classifier Cσ tests whether the predicate holds in a state, given
a binding of objects to the predicate parameters Θσ = (θ1σ, . . . , θ

n
σ). Each parameter θiσ specifies

a type constraint tθi
σ
⊆ T on corresponding object arguments. Formally, the partial function2

Cσ : On ⇀ (S → {0, 1}) is defined on objects o1:n ∈ On if and only if tθi
σ
⊆ toi for 1 ≤ i ≤ n.

In such cases, we say that the objects o1:n are valid arguments for σ.

By observing different effects, the agent must construct a set of operators A that define abstract
transition models for the agent’s skills. We define each operator a ∈ A by (ωa,Θa,Pre,Eff+,Eff−),
where ωa ∈ Ω is the corresponding skill; the operator parameters Θa = (θ1a, . . . , θ

m
a) impose type

constraints tθi
a
⊆ T on operator arguments; the preconditions Pre are a conjunction of literals over

P defining the conditions necessary to apply the operator; and the add and delete effects, Eff+ and
Eff−, are the subsets of P that become true and false, respectively, after the operator is applied.

Grounded Abstractions. To apply an abstract transition model to a real-world setting, the agent
must map the low-level state to an abstract state, which requires grounding the known predicates

1We do not, however, assume that a skill necessarily affects the state of all objects passed in as arguments.
2We denote a partial function using f : X ⇀ Y .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

using concrete objects so that their truth value may be determined. A predicate σ ∈ P may
only be grounded using valid arguments, inducing a grounded predicate σ = σ(o1:n). Given
a low-level state, the classifier Cσ : S → {0, 1} tests whether the predicate holds for the object
arguments. We define the set of grounded predicates for a setting (s0,O) under predicates P as
P = {σ(o1:n) : σ ∈ P, o1:n ∈ On,

∧n
i=1 tθi

σ
⊆ toi}, inducing an abstract state space S = 2P

where each abstract state corresponds to a specific combination of grounded relations.

Given a set of operators A in a setting (s0,O), the abstract action space A is the set of all valid
groundings of the operators using objects from O. Each abstract action (i.e., grounded operator) is
defined as a = a(o1:m), where a ∈ A, o1:m ∈ Om, and for 1 ≤ i ≤ m, tθi

a
⊆ toi . Grounding

an operator induces ground preconditions Pre, which are a conjunction of ground literals over P;
ground add effects Eff+ ⊆ P; and ground delete effects Eff− ⊆ P .

The grounding function G : P → 2S maps each grounded predicate to its grounding set G(σ) ⊆ S,
defined as G(σ) = {s ∈ S : Cσ(s) = 1}. We overload this notation for abstract states s ∈ S so that
G(s) =

⋂
σi∈s G(σi). Conversely, the abstraction function Abstract : S → S maps each low-level

state s ∈ S to the abstract state s ∈ S defined by Abstract(s) = {σ ∈ P : Cσ(s) = 1}.

A.2 Problem Definition

Definition 1. Given an environment (S, T ,Ω, T) containing settings {(s0,O)}Ni=1, we define a Skill
Model Learning problem as learning an abstract transition model M = (P,A) for the skills Ω.

After a period of continual learning in one or more settings, an agent may be evaluated on an skill
planning problem p = (s0,O,Sg), where Sg ⊆ S is the set of goal states to be reached. Given a
model M = (P,A), a classical planner can be used to search for an abstract plan [a1, . . . , an] that
solves the abstract planning problem p = (s0,O,Sg).
Definition 2. An abstract plan [a1, . . . , an] is called a solution for skill planning problem
p = (s0,O,Sg) iff for 1 ≤ i ≤ n, si = T (si−1, ωi), si−1 ∈ Iωi

, and sn ∈ Sg, where ωi = ωai
.

In Sec. 3, we describe how SkillWrapper constructs M from raw skill executions.

B Algorithms

B.1 Skill Sequence Proposal

Each skill sequence σ = [ω1, . . . , ωm] (Section 3.1) proposed by the foundation model is scored
using two heuristics: coverage (C) and chainability (Ch). This section provides more details on how
these heuristics are computed and algorithmically used to assign scores to each sequence.

Overview. We prompt a foundation model is provided with the agent’s skill set Ω and the current
set of abstract predicates P to generate and propose sequences of skills σ, with which the agent
collects a dataset of transitions D. The skill sequence proposal procedure (Algorithm 2) assigns a
score tuple (C,Ch) to all sequences and maintains a subset of pareto-front sequences that cannot
strictly dominate another sequence, i.e., (Ci < Cj) ∨ (Chi < Chj) ∨ (Ci ≤ Cj ∧ Chi ≤ Chj)
where i ̸= j. An output skill sequence is finally chosen from this pareto-front subset.

Coverage (C). Coverage (Algorithm 3) evaluates the information gain on all possible pairs of
consecutively executed skills over existing transitions after executing a new skill sequence. Specifi-
cally, the information gain is measured by the increase in Shannon entropy (Shannon, 1948) over the
distribution of all consecutive skill pairs resulting from executing the proposed skill sequence

C =
Q′

ΣQ′ × log(
Q′

ΣQ′)−
Q
ΣQ

× log(
Q
ΣQ

) (1)

where Q and Q′ are matrices that tabulate the number of pairs of consecutively executed skills
that occur before and after executing a new skill sequence, respectively. Maximizing coverage
encourages the generation of proposed skill sequences that contain the least explored skill pairs.
More importantly, this would allow our method to uncover a larger set of interdependencies across
the preconditions and effects of all skills.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Chainability (Ch). Chainability predicts the ratio of successful to failed pairs of consecutively
executed skills. By computing chainability, we estimate the degree to which the preconditions of
operators learned in each iteration are satisfied, and executability can be inferred from the estimated
symbolic states and the operators. With an appropriate chainability score, the collected dataset
of skill execution traces maintains a balance between number of successful executions and failure
executions, which is ideal for identifying possible mismatched pairs and thus inventing predicates.

Algorithm 2 Propose Skill Sequences
1: Input: Skill set Ω, skill execution traces D, predicate set P , operator set A, batch size n
2: Output: Proposed skill sequence σ
3: seq batch← GenerateSkillSequences(Ω, n) ▷ Propose a batch of skill sequences with FM
4: Scores← {}
5: for ⟨ω1, . . . , ωk⟩ in seq batch do
6: cov← Coverage(D, ⟨ω1, . . . , ωk⟩)
7: chain← Chainability(A, ⟨ω1, . . . , ωk⟩)
8: Scores[⟨ω1, . . . , ωk⟩]← (cov, chain)
9: end for

10: return ParetoOptimal(Scores)

Algorithm 3 Coverage
1: Input: Skill execution traces D, proposed skill sequence ⟨ω1, . . . , ωk⟩
2: Output: Coverage score C
3: Q ← zero matrix of size |Ω| × |Ω| ▷ Construct a matrix of skill-pair counts
4: for ⟨si, ωi, s

′
i⟩, ⟨si+1, ωi+1, s

′
i+1⟩ in D do ▷ Iterate over all consecutive pairs of transitions

5: Q[ωi, ωi+1] = Q[ωi, ωi+1] + 1
6: end for
7: Q

′
← Q ▷ New skill-pair count initialized

8: for ⟨ωi, ωi+1⟩ in ⟨ω1, . . . , ωk⟩ do
9: Q

′
[ωi, ωi+1] = Q

′
[ωi, ωi+1] + 1

10: end for
11: cov← Coverage(Q′)− Coverage(Q) ▷ Compute coverage score using Eq. 1
12: return cov

Algorithm 4 Chainability
1: Input: Operator set A, Proposed skill sequence ⟨ω1, . . . , ωk⟩
2: Output: Chainability score chain
3: exec count← 0 ▷ Total number of executable skills
4: sequence length← Length(⟨ω1, . . . , ωk⟩)
5: seq← [s0] ▷ Store the trace of after-execution state
6: for ωi in ⟨ω1, . . . , ωk⟩ do
7: for a ∈ Aωi do
8: if Γ(seq[−1]) |= Prea then ▷ Successful execution predicated by the current model
9: exec count = exec count + 1

10: break
11: end if
12: end for

snew ← ApplyOperator(seq[−1].a) ▷ Calculate the abstract state after execution
13: seq← seq ∥ G(snew) ▷ Append current low-level state to the trace
14: end for
15: chain← |exec count/sequence length− 0.5|
16: return chain

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 Predicate Invention

Algorithm 5 Invent Predicates
1: Input: Skill set Ω, skill execution traces D(ω) = {⟨s, ω, s′⟩}ω , predicate set P , operator set A.
2: Output: Predicate set P
3: for ω ∈ Ω do
4: while ∃⟨si, ωi, s

′
i⟩, ⟨sj , ωj , s

′
j⟩ ∈ D s.t. si ∈ αωi

, sj ∈ αωj
, but si ∈ Iωi

, sj /∈ Iωj
do

5: σ ← NewPredicate
6: P ← P ∥σ if ScorePrecond(σ,P, ω,D)
7: end while
8: while ∃⟨si, ωi, s

′
i⟩, ⟨sj , ωj , s

′
j⟩ ∈ D s.t. s′i ∈ ζωi

, s′j ∈ ζωj
, but si ∈ Iωi

, sj /∈ Iωj
do

9: σ ← NewPredicate
10: P ← P ∥σ if ScoreEff(σ,P, ω,D)
11: end while
12: end for
13: return P

Algorithm 6 Scoring Functions for Invented Predicates
1: Input: New predicate σ, existing predicate set P , skill ω, and skill execution traces D.
2: Parameters: Threshold h

3: ScorePrecond:
4: P ′ ← P ∪ {σ}
5: A′ ← LearnOperators(D,P ′) ▷ Hypothetical operators after including σ
6: total← 0
7: valid← 0
8: for ⟨s, ω, s′⟩ ∈ D do
9: if ∃ a′ ∈ A′,o ⊆ O , s.t. s ∈ Prea′ , and s ∈ Iω then

10: valid = valid + 1
11: end if
12: total = total + 1
13: end for
14: return valid/total > h

15: ScoreEff:
16: P ′ ← P ∪ {σ}
17: A′ ← LearnOperators(D,P ′)
18: total← 0
19: valid← 0
20: for ⟨s, ω, s′⟩ ∈ D do
21: if ∃ a′ ∈ A′,o ⊆ O , s.t. ΓP′(s′) \ ΓP′(s) = Effa′ , and s ∈ Iω then
22: valid = valid + 1
23: end if
24: total = total + 1
25: end for
26: return valid/total > h

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 Operator Learning

Algorithm 7 Learn Operators
1: Input: Skill execution traces D(ω) = {⟨s, ω, s′⟩}ω , predicate set P
2: Output: Operator set A
3: eff dict← defaultdict() ▷ Store clustered effects
4: for ⟨s, ω, s′⟩ ∈ D do
5: eff ← Γ(s′) \ Γ(s)
6: eff dict[eff]← eff dict[eff] ∥ (s, s′)
7: end for
8: A ← []
9: for eff ∈ eff dict do

10: execution list← eff dict[eff]
11: precond← Π⟨s,ω,s′⟩ ∈execution listΓ(s)
12: A ← A∥ [precond, eff]
13: end for
14: return A

C Properties of Learned Symbolic Models

Relational predicates are the basic units of the abstract representation of the low-level state space.
In this section, we characterize the conditions of the learned representations of a finite set of skills
using relational predicates to support high-level planning, in the context of model learning. From
here, chaining the skills is enabled by applying predicates from the representation of each low-level
skill to others for clustering (described in Section 3.3).

Effective skill planning requires an accurate abstract model and grounding function. All forms of
abstractions are typically lossy, i.e., while learning an abstract transition model, certain low-level
environment details may not be captured. Conversely, the learned model must accurately retain
the information needed to produce sound and complete plans. In this section, we characterize the
conditions under which an abstract model facilitates exact, sound, and/or complete planning, for the
purpose of constraining how we can construct such a model.

To begin formalizing the relationship between a skill ω ∈ Ω and some abstract model M = (P,A),
we define two sets, αω and ζω , representing the states in which the model predicts that the skill may
either be initiated (when s ∈ αω) or terminated (when s ∈ ζω), respectively.
Definition 3. Given a skill instance ω ∈ Ω and abstract model M = (P,A), we define αω and ζω
as follows:

αω =
⋃

a∈Aω

G(Prea) (2)

ζω =
⋃

a∈Aω

G((Prea \ Eff−a) ∪ Eff+a) (3)

For a non-instantiated skill ω ∈ Ω, we define αω = ∪ωαω and ζω = ∪ωζω .

We define an exact abstract model as one that perfectly captures the initiation set and termination set
of all skills. Although such a representation is infeasible to learn in practice, its properties provide
an “ideal case” from which other definitions can weaken assumptions.
Definition 4 (Exact Model). Let M = (P,A) be a model for environment (S, T ,Ω, T) and the set
of skills Ω, and let αω and ζω be the approximate initiation and termination sets (Def. 3). The model
M is an exact model iff:

∀ω ∈ Ω, s ∈ S : s ∈ Iω ⇐⇒ s ∈ αω and βω(s) = 1 ⇐⇒ s ∈ ζω. (4)

An exact planning model supports accurate planning as it precisely characterizes skills’ initiation
and termination sets. However, this accuracy comes at the cost of practical feasibility, as any exact
model achieves very little in terms of abstraction: it must express the full initiation and termination

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

sets of each skill. Therefore, in many settings, alternative model properties that approximate the
exactness of the learned model, namely soundness, suitability, and correctness, may be preferred as
objectives for model learning. We now define these properties.

A symbolic model is sound if it correctly predicts the effects of a plan: whenever a complete
and sound planner predicts that a sequence of skills will reach some abstract state, executing the
corresponding skills in the environment truly leads there. Soundness rules out spurious symbolic
transitions that do not correspond to realizable outcomes. Formally, we define soundness as follows:
Let M = (P,A) denote a symbolic planning model, where P is a finite set of predicates defining
an abstract state space S̄, and A is a set of abstract actions (skills) with preconditions and effects
expressed in terms of P . Each abstract state s̄ ∈ S̄ is obtained by a learned grounding function
Γ : S → S̄ that maps low-level agent states s ∈ S to truth assignments over P .
Definition 5 (Soundness). The model M is sound iff, for any valid plan π produced by a complete
symbolic planner over M and for all task instances pi ∈ P,

Γ(T (π, s0)) = T̄M(π,Γ(s0)) ,

where s0 is the initial state, T (π, s0) is the set of states reachable by executing π from s0, and
T̄M(π,Γ(s0)) is the abstract state predicted by M after executing π from Γ(s0).

A symbolic model is complete if it never omits real solutions: whenever the environment admits a
way to solve a task, the planner can find a corresponding abstract plan in the model. Completeness
rules out gaps in symbolic coverage that would make feasible problems appear unsolvable.
Definition 6 (Completeness). The model M = (P,A) is complete if, for any task instance pi ∈ P
and any sequence of low-level actions that achieves the goal from an initial state s0, there exists a
symbolic plan π over M such that

Γ(T (π, s0)) |= Gi,

where Gi is the goal condition of pi.

A symbolic model is suitable if it correctly characterizes when a skill can be applied, meaning the
symbolic preconditions predicted by the model align with the skill’s real initiation conditions. A
skill is applicable in an abstract state iff it is applicable in the corresponding grounded state.
Definition 7 (Suitability). The model M is suitable if, for any valid plan π produced by a complete
symbolic planner and for all task instances pi ∈ P,

Γ
(
T (ai, s0)

)
∈ Īai+1 ⇐⇒ T (ωi, s0) ∈ Iωi+1 , ∀a ∈ A,∀ω ∈ Ω

where s0 is an initial agent state, T (π, s0) is the state reached by executing π from s0, and Īa is the
abstract initiation set of abstract skill a.

The minimum requirement for a model M to solve abstract planning problems is that it is suitable
and complete, such that an abstract plan can always be found, and that it is always executable, if there
exists a skill plan as a solution. Although methods for constructing such models exist and have been
investigated in previous work, they do not provide these guarantees.

D Proofs

Lemma 2 (Predicate invention). Let D be the set of transition tuples ⟨s, ω, s′⟩ with s, s′ ∈ S and
ω ∈ Ω. Let Bn be a buffer of n i.i.d. samples from D, each labeled with outcome and containing
at least one successful and one failed transition. Let Mn = (Pn,An) be the model learned by
SkillWrapper from Bn, where each operator in An corresponds to some skill ω ∈ Ω. Then, for
every ω ∈ Ω appearing in Bn,

Iω △ αω = ∅, (5)
βω △ ζω = ∅, (6)

where αω =
⋃

a∈Aω
n
G(Prea), ζω =

⋃
a∈Aω

n

(
G(Prea) \ G(Eff−a)

)
∪ G(Eff+a), and △ is the

symmetric difference.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof sketch. Suppose for contradiction that ∃⟨s, ω, s′⟩ ∈ Bn with s ∈ Iω△αω . Two cases arise:

(i) False positive. s /∈ Iω but s ∈ αω . By construction of αω , there must also exist sj ∈ Iω ∩ αω .
Thus 1αω (s) = 1αω (sj) while Iω(s) ̸= Iω(sj), contradicting the update rule.

(ii) False negative. s ∈ Iω but s /∈ αω . Then some sj /∈ Iω ∩ αω must also exist, yielding the same
contradiction.

Hence, no such s exists, and Eq. (6) holds. The proof for Eq. (7) is identical, replacing αω with ζω
defined from operator effects.

Theorem 3 (Probabilistic-completeness of SkillWrapper). Let M∗ be a Complete Model for
a set of skills Ω, where each ω ∈ Ω has initiation set Iω ⊆ S and termination set βω ⊆ S. Let
µ be a probability distribution over S × A × S. Consider a finite hypothesis class H, where
each M ∈ H assigns a learned initiation set Îω =

⋃
a∈Aω

G(Prea) and termination set β̂ω =⋃
a∈Aω

(
G(Prea) \ G(Eff−a)

)
∪ G(G+

a) to each ω ∈ Ω.

For any M ∈ H, define

dcompl(M,M∗) = Pr
(s,ω,s′)∼µ

[
(s ∈ Îω△Iω) ∨ (s′ ∈ β̂ω△βω)

]
.

Let n i.i.d. samples {(si, ωi, s
′
i)}ni=1 be drawn from µ. Then, for every ϵ > 0,

Pr
[
dcompl

(
M̂n,M∗) ≤ ϵ

]
≥ 1− |H| e−nϵ,

i.e., with high probability, M̂n misses fewer than an ϵ-fraction of feasible transitions under µ.

Proof sketch. For M ∈ H, define the true error
Err(M) = dcompl(M,M∗),

and the empirical error

Êrr(M) =
1

n

n∑
i=1

1
[
(si ∈ Îω△Iω) ∨ (s′i ∈ β̂ω△βω)

]
.

By Lemma 2, Êrr(M̂n) = 0. Suppose some M ∈ H satisfies Err(M) ≥ ϵ. Then each sample has
probability at least ϵ of revealing an error. The chance of seeing none in n i.i.d. draws is at most
e−nϵ (by Hoeffding/Chernoff).

Applying a union bound over all M ∈ H,

Pr
[
∃M ∈ H : Err(M) ≥ ϵ ∧ Êrr(M) = 0

]
≤ |H| e−nϵ.

Since M̂n has Êrr = 0, the event Err(M̂n) ≥ ϵ is contained in this bound. Thus, with probability
at least 1− |H|e−nϵ, dcompl(M̂n,M∗) ≤ ϵ.

Theorem 4 (Soundness of SkillWrapper). Let T be the set of transition tuples ⟨s, ω, s′⟩ with
s ∈ S and ω ∈ Ω. Let Bn be an experience buffer of n samples drawn from T , each labeled with
outcome. Suppose SkillWrapper learns a model

Mn = (Pn,An),

where each a ∈ An corresponds to some skill ω ∈ Ω. Then, for every operator a ∈ An associated
with ω, there exists a real transition ⟨s, ω, s′⟩ ∈ Bn such that

s |= Prea and s′ |= Effa.

Proof sketch. By construction, SkillWrapper derives each operator a ∈ An from transitions in Bn

through its wrapper procedure. If a is associated with skillω, then its preconditions Prea are obtained
from the abstract representation of some observed s, and its effects Effa from the corresponding s′.
Hence there must exist ⟨s, ω, s′⟩ ∈ Bn such that s |= Prea and s′ |= Effa.

If no such transition existed, then awould be unsupported by data and would not have been generated.
Thus every operator in An corresponds to at least one valid observed transition, proving soundness.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof (by Contradiction). Assume, for contradiction, that there is an operator a ∈ An for which
no transition ⟨s, ω, s′⟩ ∈ Bn supports it. That would mean:

(1) a is in the learned model,

(2) a has no real sample ⟨s, ω, s′⟩ ∈ Bn s.t. s |= Prea ∧ s′ |= Effa.

However, SkillWrapper introduces or refines operators only in response to observed transitions
⟨s, ω, s′⟩ that cannot be explained by any existing operator in An. Therefore, if a exists in the final
model, it must have been created when the system encountered a transition ⟨s, ω, s′⟩ with s and s′

not accounted for by any previously existing operator. That transition becomes the “anchor” for a’s
preconditions and effects.

Hence, there must be at least one real transition ⟨s, ω, s′⟩ ∈ Bn matching the preconditions and
effects of a, contradicting assumption (2). Consequently, our assumption is false, and each operator
indeed has a supporting transition in Bn. This completes the proof.

D.1 Illustration of Predicate Invention in Low-level Space

Following the last section, we illustrate how SkillWrapper invents new predicates under all cir-
cumstances with guarantees using the condition. We discuss the case of precondition here, and
guarantees of effect follow the same logic.

U

Iω

s1

s2

By assumption, there exist two transitions:
⟨s1, ω, s′1⟩, ⟨s2, ω, s′2⟩ such that s1 ∈ Iω, s2 /∈ Iω
initially.

There are three possible circumstances of the resulting learning model from ⟨s1, ω, s′1⟩ and
⟨s2, w, s′2⟩. For each of them, we discuss all possible cases of more transitions with the starting state
falling into each section of the state space.

(1). The learned model has Iω ⊂ α. Then, for each section that initial states of new transitions can
fall in:

Iω

U

s1

s2

a

b
c

• (a): a /∈ α, a /∈ Iω .
Thus, ∄ ⟨s, ω, s′⟩ such that 1α(a) =
1α(s) while Iω(a) ̸= Iω(s). No addi-
tional predicate need to be invented.

• (b): b ∈ α, a /∈ Iω .
Thus, 1α(b) = 1α(s1) while Iω(a) ̸=
Iω(s). New predicate will be invented.

• (c): a ∈ α, a ∈ Iω .
Thus, ∄ ⟨s, ω, s′⟩ such that 1α(a) =
1α(s) while Iω(a) ̸= Iω(s). No addi-
tional predicate need to be invented.

(2). The learned model has α ⊂ Iω . Then, for each section that initial states of new transitions can
fall in:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Iω

U

s1

s2

a

b

c

• (a): a /∈ α, a /∈ Iω .
Thus, ∄ ⟨s, ω, s′⟩ such that 1α(a) =
1α(s) while Iω(a) ̸= Iω(s). No addi-
tional predicate need to be invented.

• (b): b /∈ α, a ∈ Iω .
Thus, 1α(b) = 1α(s1) while Iω(a) ̸=
Iω(s). New predicate will be invented.

• (c): a ∈ α, a ∈ Iω .
Thus, ∄ ⟨s, ω, s′⟩ such that 1α(a) =
1α(s) while Iω(a) ̸= Iω(s). No addi-
tional predicate need to be invented.

(3). The learned model has α ∩ Iω ̸= ∅, α ⊈ Iω, Iω ⊈ α. Then, for each section that initial states of
new transitions can fall in:

Iω

U

s1

s2

a

b c
d

• (a): a /∈ α, a /∈ Iω .
Thus, ∄ ⟨s, ω, s′⟩ such that 1α(a) =
1α(s) while Iω(a) ̸= Iω(s). No addi-
tional predicate need to be invented.

• (b): b /∈ α, a ∈ Iω .
Thus, 1α(b) = 1α(s1) while Iω(a) ̸=
Iω(s). New predicate will be invented.

• (c): a ∈ α, a ∈ Iω .
Thus, ∄ ⟨s, ω, s′⟩ such that 1α(a) =
1α(s) while Iω(a) ̸= Iω(s). No addi-
tional predicate need to be invented.

• (d): d ∈ α, a /∈ Iω .
Thus, 1α(d) = 1α(s1) while Iω(d) ̸=
Iω(s). New predicate will be invented.

So far, we have discussed all possible cases where initial states of new transitions can fall in, and the
predicate invention condition is proven to handle all cases.

E Additional Details on the Hypothesis Class and Sample Complexity

Recall that our learned symbolic model has the form

M = (P,A),

where P is a set of predicates and A =
⋃

ω∈Ω Aω is a set of abstract operators, with Aω the set of
operators associated with skill ω ∈ Ω.

Each operator a ∈ Aω is defined by its preconditions and add/delete effects:

a ≡
(
ω,Θa,Prea,Eff+a ,Eff−a

)
, Prea,Eff+a ,Eff−a ⊆ P.

In our implementation, the number of VLM calls is finite, and the resulting models use a small
number of predicates in environments with finitely many objects. For the theoretical analysis, we
make this implicit resource bound explicit:

• Let Pmax denote a fixed maximum number of predicates that SkillWrapper is allowed to
invent.

• Let µmax denote the maximum arity of any predicate σ ∈ P .

Because SkillWrapper learns one operator per lifted effect cluster, we can derive an upper bound
on the number of operators per skill ω ∈ Ω based on the number of possible effect sets. For any
operator a ∈ Aω and predicate σ ∈ P , there are three possible cases: σ ∈ Eff+a , σ ∈ Eff−a , or
σ /∈ Eff−a ∪ Eff+a . Because the upper bound of possible instances of p is |O|µmax , we can express
the maximum number of operators as

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Amax = 3Pmax·|O|µmax

We therefore define the hypothesis class analyzed in Theorem 2 as

H =
{
(P,A)

∣∣∣ |P| ≤ Pmax, |Aω| ≤ Amax ∀ω ∈ Ω
}
. (7)

Predicate re-evaluation and removal during learning do not expand H; they only move the learned
model within this resource-bounded class by altering which predicates and operators are actively
used.

E.1 Upper Bound on |H|

We now derive a practical upper bound on the size of H in equation 7.

Fix a predicate set P with |P| ≤ Pmax. For each operator α, its symbolic definition is given by three
subsets of P:

Prea, Eff+a , Eff−a ⊆ P.

We consider negative precondition, so there are three possibilities for one predicate p: p ∈ Prea,
−p ∈ Prea, and p /∈ Prea. Since Eff+a and Eff−a are considered in Amax, a single operator has at
most

3Pmax·|O|µmax (8)
distinct configurations of preconditions.

For a fixed skill ω ∈ Ω, we allow at most Amax operators. Treating each of the Amax operator “slots”
as independently choosing one of the 3Pmax|O|µmax possible configurations in equation 8, the total
number of operator-sets Aω for that skill is bounded by(

3Pmax·|O|µmax)Amax
= 3PmaxAmax|O|µmax

. (9)

Across all skills ω ∈ Ω, we obtain the bound

|H| ≤
∏
ω∈Ω

3PmaxAmax|O|µmax
= 3PmaxAmax|Ω||O|µmax

. (10)

E.2 Sample Complexity for a Target (ϵ, δ)

Theorem 2 states that, for any ϵ > 0,

Pr
[
dcompl

(
M̂n,M∗) > ϵ

]
≤ |H| e−nϵ, (11)

where M̂n is the model returned by SkillWrapper after observing n i.i.d. transitions, and dcompl

is the completeness distance defined in the main text (probability of a “missed feasible” event under
the transition distribution).

Substituting the bound on |H| from equation 10 into equation 11 yields

Pr
[
dcompl

(
M̂n,M∗) > ϵ

]
≤ 3PmaxAmax|Ω||O|µmax

e−nϵ. (12)

To guarantee that this probability is at most δ ∈ (0, 1), it suffices that

3PmaxAmax|Ω||O|µmax
e−nϵ ≤ δ,

which is equivalent to

n ≥ 1

ϵ

(
PmaxAmax|Ω||O|µmax ln 3 + ln 1

δ

)
. (13)

Thus, the number of transitions required to ensure

dcompl

(
M̂n,M∗) ≤ ϵ with probability at least 1− δ

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

is
n = O

(
PmaxAmax|Ω||O|µmax + log(1/δ)

ϵ

)
. (14)

In our experiments, the arity and realized numbers of predicates are small. Setting Pmax to match
the practical budget yields numerical values in equation 13 for the regimes we study. Our theoretical
result therefore formalizes how increasing the capacity of the symbolic model (via larger Pmax)
trades off against the number of transitions needed to achieve a desired completeness level.

F Learned Operators, Case Studies, and Example Tasks

F.1 Learned Operators

Example Learned Predicate and Operator of Burger domain

Predicate
name: cut_into_pieces
types:
- cuttable
semantic: "the cuttable appears as at least two non-touching visible pieces (has multiple
disconnected regions), indicating it is cut rather than a single intact piece."

Operator
(:action Cut_7
:parameters (?cuttable_p0 - cuttable

?pickupable_p1 - pickupable
?pickupable_p2 - pickupable
?pickupable_p6 - pickupable
?robot_p5 - robot
?station_p4 - station)

:precondition (and
(not (= ?pickupable_p1 ?pickupable_p2))
(not (= ?pickupable_p1 ?pickupable_p6))
(not (= ?pickupable_p2 ?pickupable_p6))
(gripper_empty ?robot_p5)
(on_cutting_board ?cuttable_p0)
(on_station ?cuttable_p0 ?station_p4)
(top_most ?cuttable_p0)
(not (cut_into_pieces ?cuttable_p0))
(not (holding ?robot_p5 ?cuttable_p0))
(not (holding ?robot_p5 ?pickupable_p1))
(not (holding ?robot_p5 ?pickupable_p2))
(not (stacked_on ?pickupable_p6 ?cuttable_p0)))

:effect (and
(cut_into_pieces ?cuttable_p0)))

Example Learned Predicate and Operator of Franka domain

Predicate
name: plate_is_dirty
types:
- plate
semantic: the specified plate’s upper surface contains visible food traces whose appearance
differs from the plate’s base surfac (visible residue to be wiped).

Operator
(:action Stack_5
:parameters (?pickupable_p0 - pickupable

?pickupable_p1 - pickupable
?pickupable_p3 - pickupable
?plate_p4 - plate
?robot_p2 - robot)

:precondition (and
(not (= ?pickupable_p0 ?pickupable_p1))
(not (= ?pickupable_p0 ?pickupable_p3))
(not (= ?pickupable_p1 ?pickupable_p3))
(holding ?robot_p2 ?pickupable_p1)
(plate_top_unoccupied ?plate_p4)
(not (gripper_empty ?robot_p2))
(not (holding ?robot_p2 ?pickupable_p0))
(not (holding ?robot_p2 ?pickupable_p3))
(not (plate_is_dirty ?plate_p4))
(not (stacked_on ?pickupable_p1 ?plate_p4)))

:effect (and

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(gripper_empty ?robot_p2)
(stacked_on ?pickupable_p1 ?plate_p4)
(not (holding ?robot_p2 ?pickupable_p1))
(not (plate_top_unoccupied ?plate_p4))))

Example Learned Predicate and Operator of Bi-manual Kuka domain

Predicate
name: Coated
types:
- utensil
semantic: a visible layer or clump of material adheres to the utensil’s working end (e.g.,
the blade shows a smear that was absent before).

Operator
(:action Scoop_156
:parameters (?openable_p0 - openable

?robot_p1 - robot
?utensil_p2 - utensil)

:precondition (and
(HeldByRobot ?robot_p1 ?openable_p0)
(InLeftGripper ?robot_p1 ?openable_p0)
(InRightGripper ?robot_p1 ?utensil_p2)
(LidOff ?openable_p0)
(not (Closed ?openable_p0))
(not (Coated ?utensil_p2))
(not (InContainer ?utensil_p2))
(not (LeftGripperEmpty ?robot_p1))
(not (OpenableOnTable ?openable_p0))
(not (RightGripperEmpty ?robot_p1))
(not (UtensilOnTable ?utensil_p2)))

:effect (and
(Coated ?utensil_p2)))

Additionally, we present here a predicate and an operator written by the PDDL expert:
Predicate and Operator Written by PDDL Expert

Predicate
name: is_on_station
types:
- pickupable
- station
semantic: "A ‘pickupable‘ object is on top of a ‘station‘."

Operator
(:action Cut
:parameters (?robot - robot

?cuttable - cuttable
?board - cuttingboard)

:precondition (and
(hand_empty)
(obj_free ?cuttable)
(is_on_station ?cuttable ?board)
(not (is_cut ?cuttable)))

:effect (and
(is_cut ?cuttable)))

F.2 Result Analysis of Robotouille

We here present case studies of the failure modes of SkillWrapper and the baselines. One common
failure mode is misclassifications during inference time, where we abstract low-level states specified
in raw images into symbolic states using the predicates in the learned model. Since our contributions
are more on the theory and algorithm design, we did not explore various potential techniques, such
as ViperGPT (Surı́s et al., 2023), that can possibly mitigate this issue.

System Predicates (Sys Preds.) are designed in a way such that every possible state can be
specified with a compact set of eight predicates, as shown in the experiments. However, this is
proven insufficient to describe the model dynamics. For example, the predicate clear above or its
semantic equivalent is necessary for describing the precondition of all operators learned from the
Pick skill, such that the model can express “Picking an item with another item on top will fail.” Since
predicate invention is disabled in Sys Preds., it often returns invalid plans that attempt to pick objects

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

that are underneath a stack. As a result, the lack of soundness induces a low solved rate for hard and
impossible problems of System Predicates.

Random exploration is heavily limited by inefficient data gathering. However, if we take a closer
look at the operators it learns, they are of good quality, which is the benefit of sharing the same
predicate invention algorithm of SkillWrapper. In fact, one frequent failure mode under this
randomness is that the baseline may never execute the skills with complex preconditions successfully.
For example, in the Robotouille setting, the Cook action requires the item to be on the stove and the
agent’s hand to be empty. Since the same predicate invention algorithm with SkillWrapper is being
used, it can only learn operators for the skills that have been successfully executed in the observed
transitions. As a result, it only learns operators for skills that are usually executable, such as Pick,
and it thus can only solve the simplest pick and stack tasks. Additionally, random exploration also
achieves 100% on Impossible, yet because the learned model is not plannable.

No Heuristic shares a similar failure mode as System Predicates—achieves good performance
in Easy problems but degrades significantly in Hard. With further investigation, we found that
the baseline generally invents fewer predicates than SkillWrapper, which results in occasionally
missing critical ones (two out of the five total runs). This observation explains the large variances in
Hard and Impossible problems, and also indicates that Easy problems could be solved even with an
incomplete predicate set, which aligns with our findings in System Predicate. In turn, it supports the
usefulness of the two engineered heuristics for skill sequence proposal. We believe improving the
exploration strategy is a promising direction for future work. Another point we want to note is that
either the solved rate or the planning budget only evaluates the learned operators from the planning
outcome, while better metrics are needed for evaluating the exploration efficiency.

SkillWrapper’s failure mode is similar to the case of Random exploration. Comparing the poorly
performing PDDL operators learned by SkillWrapper to Expert Operators, the model only contains
one extra predicate, on cutting board(item), which divides the previous cluster that shares the
same effect into even smaller clusters. Then, the transition data in these smaller clusters cannot
support the model learning algorithm to effectively eliminate spurious preconditions. This case
study points out that the balance between predicate invention and data gathering is a critical factor
in the learning process: if too many predicates are invented without adequate transition data, the
resulting operators could possibly contain spurious preconditions, such that it cannot generalize at
all. In SkillWrapper, the balance is controlled by empirically tuning the threshold of the scoring
function and the length of each skill sequence proposed. Another sub-optimality is that our algorithm
does not filter invented predicates that are semantic synonyms or antonyms to existing predicates,
which increases the classification burden of the foundation model. Though these redundant predicates
are usually well handled by the foundation model, a smarter prompting system could be designed to
mitigate this issue and improve computation efficiency.

F.3 Example Tasks

Here, we provide additional examples of the tasks, using planning problem from the evaluation data.
Specifically, Robotouille tasks use images generated by the simulator, Franka tasks use images taken
by a fixed camera in front of the robot, and Bimanual Kuka tasks use images taken by its egocentric
camera.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) Initial state (b) Goal state

Figure 7: Example task in Robotouille.

(a) Initial state (b) Goal state

Figure 8: Example task in Franka.

(a) Initial state (b) Goal state

Figure 9: Example task in Bimanual Kuka.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G VLM Reliability Study
G.1 Classification Accuracy

We here analyze the classification accuracy of the vision-language model (VLM) used in both robotic
experiments. Since the predicates are generated on the fly by the VLM, we do not have the ground
truth values for them, and thus we must verify if the truth values match the images manually.

Per-predicate Classification Evaluation. Since predicates are originally lifted and can be
grounded with different combinations of objects, we first define a classification over a low-level
state of a grounded predicate as correct if (1) all parameters appear in the scene (if the predicate is
not nullary) and (2) the truth value of the predicate match the low-level state specified by the image
input. Then, we define a classification of a lifted predicate over a low-level state as correct if all of
its grounded instances are classified correctly over that state.

Results and Analysis. Over all predicates, the classification accuracy is 86.7% for the Franka
experiment, and 98.5% for the bimanual Kuka experiment. Compared to the planning performance
reported for both experiments, the classification accuracy is generally much higher. One reason for
this mismatch is that, due to the rigidity of symbolic planning, even flipping the truth value of a single
predicate can lead to a planning failure. To support this claim, we found specific poorly performing
predicates that hinder the planning task the most, and we provide more quantitative results in the
next paragraph.

Per-predicate Accuracy. The learned symbolic model of the Franka experiment contains 6 pred-
icates, which have 11 possible grounded instances. The learned symbolic model of the bimanual
Kuka experiment contains 12 predicates, which have 13 possible grounded instances. We evaluate
per-predicate accuracy for both in Table 3 and Table 4. From the results of the Franka experiment,
we identify the two predicates, gripper empty and holding, that caused all planning failures, and
they fail almost simultaneously due to their semantic correlation. With further investigation, we
found that the misclassifications were induced by a single object, Sponge, which is possibly due to
the color of the object and the background being too similar. In the bimanual Kuka experiment, it is
coated (if the knife has peanut butter on it) that caused most of the planning failure, likely caused
by the lighting conditions. These observations suggest the accuracy of VLM is a limiting factor, and
resolving them poses a promising path to improving the performance of SkillWrapper.

Table 3: Per-predicate accuracy of Franka.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
Accuracy (%) 60.0 60.0 100.0 100.0 100.0 100.0

Table 4: Per-predicate accuracy of Bimanual Kuka.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 98.3

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

Accuracy (%) 96.7 100.0 88.3 98.3 100.0 100.0

(a) ×holding(Sponge) = F (b) ×coated(Knife) = T

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G.2 Real-world Robustness

To evaluate the real-world robustness of the VLM, we additionally conduct experiments to investigate
factors such as viewpoints, lighting conditions, or domain shifts. For each of them, we collect a
held-out set of images by varying these factors. We report per-predicate accuracy, and all numbers
are averaged across three individual runs.

Viewpoints. We collect visual observation data from two viewpoints and sample five configurations
for each viewpoint. From the results of Franka experiments, we observe that the classification
accuracies of certain predicates are higher from the viewpoint closer to the corresponding objects:
at viewpoint #1, all predicates can be perfectly classified, while predicates involving gripper or mug,
such as gripper empty, holding and mug full, are significantly lower from viewpoint #2, which
is farther from the objects. In bimanual Kuka experiments, the result is mostly stable across different
viewpoints and generally better than in the Franka environment, which is possibly due to fewer
background distractions. Though the accuracy varies across viewpoints, its performance remains
reliable as long as the full observability assumption still holds.

Table 5: Per-predicate accuracy of Franka at Viewpoint #1.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

Table 6: Per-predicate accuracy of Franka at Viewpoint #2.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
Accuracy (%) 80.0 80.0 90.0 100.0 100.0 100.0

(a) ✓holding(Sponge) = T (b) ×holding(Sponge) = F

Table 7: Per-predicate accuracy of Bimanual Kuka at Viewpoint #1.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

Table 8: Per-predicate accuracy of Bimanual Kuka at Viewpoint #1.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 93.3

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) ✓UtensilOnTable(Knife) = T (b) ×UtensilOnTable(Knife) = F

Lighting conditions. We collect visual observation data under two lighting conditions and sample
five configurations for each one. We find that the VLM is generally robust to different lighting
conditions, except for several extremely hard ones, such as under lighting condition #2 in Bimanual
Kuka, where the objects are heavily shadowed.

Table 9: Per-predicate accuracy of Franka under Lighting Condition #1.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
Accuracy (%) 90.0 90.0 100.0 96.7 100.0 100.0

Table 10: Per-predicate accuracy of Franka under Lighting Condition #2.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
Accuracy (%) 90.0 90.0 100.0 98.3 100.0 100.0

(a) ✓stacked on(Teapot, Plate) = T (b) ✓stacked on(Teapot, Plate) = T

Table 11: Per-predicate accuracy of Bimanual Kuka under Lighting Condition #1.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 12: Per-predicate accuracy of Bimanual Kuka under Lighting Condition #2.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

Accuracy (%) 100.0 80.0 80.0 100.0 100.0 73.3

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

Accuracy (%) 100.0 100.0 100.0 86.7 100.0 100.0

(a) ✓RightGripperEmpty() = T (b) ×RightGripperEmpty() = F

Domain shift. SkillWrapper relies entirely on semantics to prompt the VLM, abstracting raw
states into symbolic states without using visual features. The only requirement for generalizing to
novel objects is that the VLM can correctly identify the object referents in the image based on their
type information provided in the language prompt. To evaluate this generalization capability, we
collected visual observation data (five images per environment) under domain shift by swapping
objects with new instances and sampling two configurations. From this observation, we found that
the only failure mode introduced by domain shifts occurs when the VLM cannot recognize an object
because its visual appearance does not align with the semantics. For example, a plate that is too
small might be misclassified as a saucer, leading to incorrect symbolic states.

Table 13: Per-predicate accuracy of Franka under Domain Shift.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
Accuracy (%) 90.0 90.0 100.0 100.0 73.3 100.0

(a) ✓stacked on(Teapot, Plate) = T (b) ×stacked on(Teapot, Plate) = F

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 14: Per-predicate accuracy of Bimanual Kuka under Domain Shift.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

(a) ✓coated(Knife) = T (b) ✓coated(Knife) = T

G.3 Other VLMs

We further examine the possibility of using open-source VLMs as alternatives for SkillWrapper.
We choose Qwen3-VL-235B (Bai et al., 2025) for comparison. To evaluate its capability, we conduct
two sets of preliminary experiments: predicate classification and predicate invention.

Predicate Classification. We collected a subset of images (five from Franka and ten from Bimanual
Kuka) and evaluated the truth values of each predicate with the two models. From the result, we
observed that the two models have different failure patterns, and a prominent one is that Qwen3 can
reliably detect if the gripper is holding an object, except for occasional classification errors on the
objects being held. In general, we found two models perform on par with each other, and thus we
believe they can be used interchangeably for predicate classification.

Table 15: Per-predicate accuracy of Franka.

gripper empty holding mug full plate top unoccupied stacked on plate is dirty
GPT-5 Acc. (%) 60.0 60.0 100.0 100.0 100.0 100.0
Qwen3 Acc. (%) 100.0 80.0 100.0 100.0 100.0 80.0

Table 16: Per-predicate accuracy of Bimanual Kuka.

InLeftGripper InRightGripper RightGripperEmpty LeftGripperEmpty LidOff InContainer

GPT-5 Acc. (%) 100.0 100.0 100.0 100.0 100.0 100.0
Qwen3 Acc. (%) 100.0 100.0 100.0 100.0 100.0 100.0

OpenableOnTable Closed Coated SpreadOn HeldByRobot UtensilOnTable

GPT-5 Acc. (%) 100.0 100.0 100.0 100.0 100.0 100.0
Qwen3 Acc. (%) 100.0 100.0 90.0 80.0 100.0 100.0

Predicate Invention. We qualitatively compare the performance of both models on inventing
predicates by reasoning over contrastive pairs of transitions. For each environment, we curated two
contrastive pairs, and each model is prompted by the same input to invent one new predicate. A

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

predicate is considered correct if it is a semantic synonym or antonym of the target predicate. From
the result, we can conclude that GPT-5 is much more reliable in reasoning over the transitions for
predicate invention, and thus Qwen3 cannot be used as an alternative for this specific task. (We
omitted ? robot from all predicates’ arguments for simplicity.)

(a)
✓PickUp(Bowl)

(b)×PickUp(Teapot)

GPT-5
✓ gripper is empty()

✓ gripper is empty()

✓ gripper is free()

Qwen3
✓ gripper free()

✓ gripper free()

✗
is visible(?pickupable)

Figure 17: Predicate Invention Case #1 in Franka. Target predicate: GripperEmpty(
Existing predicates: ∅

(a)
✓Stack(Bowl, Plate)

(b)×Stack(Bowl, Plate)

GPT-5
✓
plate top empty(?plate)

✓
plate is clean(?plate)

✓
plate is clean(?plate)

Qwen3
✗ stacked on
(?pickupable, ?plate)

✗ on center of
(?pickupable, ?plate)

✗ is fully supported
(?pickupable, ?plate)

Figure 18: Predicate Invention Case #2 in Franka. Target predicate: PlateIsDirty(? plate)
Existing predicates: GripperEmpty(), Holding(? pickupable)

(a)
✓Scoop(Knife, Jar)

(b)
✗Scoop(Knife, Jar)

GPT-5
✓ Open(?openable)

✓ Open(?openable)

✓ Open(?openable)

Qwen3
✗ UtensilInOpenable

(?utensil, ?openable)

✗ UtensilInOpening

(?utensil, ?openable)

✗ UtensilInOpenable

(?utensil, ?openable)

Figure 19: Predicate Invention Case #1 in Bi-Kuka. Target predicate: LidOff(? openable)
Existing predicates:InLeftGripper(? openable), InRightGripper(? utensil)

(a)
✓Open(Jar)

(b)×Open(Jar)

GPT-5
✓RightHandEmpty()

✓RightHandEmpty()

✗
LidAttached(?openable)

Qwen3
✗ FullyEnclosedByLeftGripper

(?openable)

✗ FullyEnclosedByLeftGripper

(?openable)

✗ FullyEnclosedByLeftGripper

(?openable)

Figure 20: Predicate Invention Case #2 in Bi-Kuka. Target predicate: RightGripperEmpty()
Existing predicates:InLeftGripper(? openable), LidOff(? openable)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

H Implementation Details
H.1 Planner and Planning Time

We use K* planner (Katz & Lee, 2023) to generate top K optimal plans, where K in practice is
the maximum planning budget. We use an i9-13900F CPU for running all the planning tasks. On
average, each planning problem takes 0.0599 seconds. Specifically, in Robotouille experiments,
easy problems take 0.0549 seconds, hard problems takes 0.0583 seconds, and impossible problems
take 0.0565 seconds per problem; in Franka experiments, in-domain problems take 0.0529 seconds,
generalization problems take 0.5175 seconds, and impossible tasks take 0.0516 seconds per problem;
in Bimanual Kuka experiments, all problems take 0.0553 seconds on average.

H.2 API Call

For running the experiments, we made roughly 9300 calls to GPT-5, which cost $96.59 in total.

H.3 Hyperparameters

We here report and summarize all hyperparameters of SkillWrapper used for the experiment to
provide better reproducibility. For all experiments, we set the batch size of skill sequence proposal
to be 5 and interaction budget per iteration to be 15, and we run SkillWrapper for 5 iterations.
For Robotouille experiments, we set the threshold h to be 0.6. For Franka and bimanual Kuka
experiments, we set the threshold h to be 0.5.

H.4 Robot Experiments

Single-Arm Manipulation. We employ a Franka Emika Research 3 robotic arm equipped with
a UMI gripper (Chi et al., 2024). The workspace is observed by a single Intel RealSense D455
exocentric RGB-D camera, oriented to capture both the tabletop scene and the robot. The RGB data
from this camera are used for learning symbolic models, while the depth information supports object
pose estimation. Object poses are estimated using FoundationPose (Wen et al., 2024), which leverages
high-fidelity 3D scanned models of the target objects. System-level communication and coordination
are implemented in ROS 2 (Humble), which interfaces with motion planning, perception, and control
modules. This setup supports five parameterized skills: Pick, Place, Stack, Pour, and Wipe. The
first four skills (Pick, Place, Stack, and Pour) are executed through motion planning with the MoveIt
framework, conditioned on both the end-effector and object poses. The Wipe skill is implemented
by replaying a teleoperated trajectory.

Bimanual Manipulation. We use a robot with two horizontally mounted KUKA LBR iiwa 7 R800
manipulators, one with a BarrettHand BH8-282 gripper, and the other with a Schunk Dextrous Hand
2.0 gripper. The robot collects RGB data used for learning symbolic models with a MultiSense S7
camera mounted on a Pan-Tilt unit, while using an Intel RealSense D455 camera for RGB-D data
used in pose estimation (Wen et al., 2024) of the objects in the scene. We use ROS 1 and KUKA FRI
to communicate with the robot and utilize the built-in joint impedance control with position target as
the low-level controller. At the high level, we create collision models of all objects in the scene and
use a task and motion planner to generate motion plans for each skill. The Pick skills (compatible
with knife and peanut butter jar) are implemented using motion planning. The OpenJar, Scoop, and
Spread skills are implemented using a combination of motion planning and pre-defined trajectory
playback.

H.5 Language Model Prompts

In this section, we provide the prompts used for the core components of SkillWrapper (specifically
skill sequence proposal, predicate invention, and predicate evaluation) as well as the ViLA (Hu
et al., 2023) baseline. For predicate evaluation (Appendix H.8), we empirically observed that it is
more accurate when evaluation is done in batches, where the truth values of multiple predicates are
evaluated at once rather than one at a time. In addition, when asking for a fixed and structured
output, the accuracy is significantly lower than a free-form output. Therefore, we adopt a two-stage
evaluation process: in the first stage, the foundation model generates a response in any format, and
in the second stage, it provides a summary of the output from the previous step.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

H.6 Skill Sequence Proposal

System Prompt

<AGENT DESCRIPTION> is attempting to learn the preconditions and
effects for a finite set of skills by executing exploratory skill
sequences and exploring the environment.

Skill Sequence Proposal Prompt

Propose a set of skill sequences for a robot to execute. The robot
is attempting to learn the preconditions and effects for a finite
set of operators. The robot can navigate the environment freely
but only has one gripper. The robot has access to the following
skills with their associated arguments:

[SKILL PROMPT]

The list of objects the robot has previously encountered in the
environment are:

[OBJECT IN SCENE]
[ENV DESCRIPTION]

The pairs of consecutive skills (skill1, skill2) that have been
least explored are: [[LEAST EXPLORED SKILLS]]. Certain skills
have similar names and arguments, but different preconditions and
effects. Using the list of objects and the skill preconditions /
effects learned, generate 5 skill sequences and their sequence of
skills such that:
(1) the skill sequences should violate their preconditions
occasionally.
(2) at least 1 unexplored skill pair is used in each skill
sequence.
(3) all skill sequences have at least 15 skills in sequence.
(4) there are no same skills with same arguments consecutively in
the sequence.

Output only the sequence of skills to execute, ensuring to follow
the naming/syntax/arguments for skills provided. Output 1 skill
every new line, following the format below:

Skill Sequence 1:
GoTo(CounterTop)
PickUp(Apple, CounterTop)

Skill Sequence 2:

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

H.7 Predicate Invention

Predicate Invention Prompt

[AGENT DESCRIPTION]

The robot has been programmed with the skill [LIFTED SKILL]
two times. In the first execution, the grounded skill
[GROUNDED SKILL 1] [SUCCESS 1], and in the second execution,
[GROUNDED SKILL 2] [SUCCESS 2]. The difference in outcomes suggests
that the existing predicate set is insufficient to fully capture
the preconditions for successful execution of this skill.

Your task is to propose a single new high-level predicate and its
semantic meaning based on the visual comparison of the two input
images taken before each execution.

Predicates should meet these criteria:
- The predicate must be grounded in visual state only (e.g.,
"gripper is open," "object is above table," "arm is holding
object").
- Describe object state or spatial relations relevant to task
success (e.g., gripper open/closed, object on left/right of
gripper, object touching/supporting another object, etc.)
- Do not infer properties like affordances (is graspable), alignment
with grippers, or success likelihood that are vaguely defined and
cannot be clearly determined visually.
- Avoid using concept like grasping zone or robot’s reachability to
define the predicate since they are not defined by common sense.
- Use at most 2 parameters (e.g., predicate(x), predicate(x,
y), predicate()), where robot arm must be included for any
robot-environment relation.
- Avoid predicates that assume internal properties like
is graspable, is properly aligned, or any accessibility/reachability
reasoning that cannot be determined visually.
- The semantic meaning should be a grounded and objective
description of the predicate in terms of the physical scene (e.g.,
"the object is fully enclosed by the robot’s gripper"), not about
execution success or skill dynamics.
- The parameters of the predicate must be subset of the parameters
of the skill.

Format your output as follows:
‘predicate name(parameters)‘: semantic meaning.

for example:
‘CloseTo(arm, location)‘: the robot arm is close to the location.

Current predicates: [PRED LIST]

Previously proposed but rejected predicates: [TRIED PRED]

Avoid duplicates or near-duplicates of existing predicates and
rejected predicates. Reason over using a paragraph and generate
the predicate and the semantic meaning in the given format in a
separate line.

One new predicate candidate for improving the representation of the
precondition for [LIFTED SKILL] (Don’t use any parameter other than
[PARAMETERS]):

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

H.8 Predicate Evaluation

Predicate Evaluation Prompt: Step 1

Given the current observation of the simulated kitchen domain,
the object types, and the list of predicates, what are the true
grounded predicates?

[ENVIRONMENTAL DESCRIPTION]

Objects:
[OBJECTS]

Predicates:
[PREDICATES]

Predicate Evaluation Prompt: Step 2

Summarize what the true grounded predicates are from this response,
and list them in the format of predicate name(arg1, arg2, ...) in
separate lines with no any formatting. If the response contains
typos of object names or redundant indices, you should correct
them. Correct object names are: [OBJECT NAMES]. If the response
include redundant predicates that are not in this list, you should
filter them. Correct predicates are: [PRED NAMES]. The response
is:

"""
[RESPONSE]
""

H.9 ViLa

ViLA Prompt

You are [AGENT DESCRIPTION]. As a robot, you are able to execute the
following skills:
[SKILLS]

Here are the objects and their types that are compatible with your
skills:
[OBJECTS]

You are given two images: The first one captures your current
observation, and the second one specifies your goal. Given both
images, your job is to generate a plan starting from the *current
state* to the goal state. You should first reason about the goal
of the task and how the skills can be chained to solve it in the
first paragraph. After the reasoning, return the plan from the
current state in a new paragraph by listing skills in separate
lines with no additional explanation, header, or numbering.
Use "Done" in the skill list to indicate the task is complete,
and report if the task is impossible to solve by simply returning
"Impossible".

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

I Related Works

Skill Abstraction. There has been a long track of works focusing on building hierarchies that
abstract away high-dimensional details with low-dimensional abstractions for planning (Konidaris
& Barto, 2009; Konidaris et al., 2018; Shah et al., 2024), and those applied to robotics are usually
connected to task and motion planning (TAMP) (Shah et al., 2020; Garrett et al., 2021). These
approaches, however, are incapable of handling high-dimensional sensory-motor signals (such as
images) as input. Research on action model learning (Xi et al., 2024; Juba et al., 2021) learn
symbolic action models for input skills. However, unlike our method, these approaches require
symbols to be provided as input. Similar to our system’s integration of self-play and focus on
uncovering skill conditions, Verma et al. (2022) focus on assessing capabilities of black-box agents
for grid world-like tasks while assuming that the agent is an oracle. A tangential research effort on
chaining various skills in novel environments involves training extra models (Yokoyama et al., 2024)
and STRIPS task planner with action primitives (Gu et al., 2022; Szot et al., 2021).

Predicate Learning for Robotic Tasks. Predicates provide a convenient way to abstract away low-
level details of the environment and build efficient and compact representations. Prior to foundation
models, previous attempts to build classifiers for predicates from raw image inputs originated from
the neuro-symbolic domain (Johnson et al., 2017; Mao et al., 2019), and their initial application
for robotics took a similar supervised learning approach with labeled demonstrations (Migimatsu
& Bohg, 2022) or generated tasks (Lamanna et al., 2023). After the emergence of foundation
models, recent works guide skill learning with predicates generated by LLM or together with human
interaction. Li et al. (2024) invents symbolic skills for reward functions used for RL training but
cannot generalize to skills learned through latent objectives, which is more commonly seen in
imitation learning. Li & Silver (2023) and Han et al. (2024) leverage human experts to provide
feedback to the LLM to help it improve the learned predicates and skills.

Task Generation for Robotics. The approach of automatically proposing tasks has been studied
for active learning and curriculum learning in grid worlds and games (Wang et al., 2019; Jiang et al.,
2021) to robotic domains (Fang et al., 2021; 2022). Lamanna et al. (2023) generates tasks in PDDL
as training sets to learn classifiers for object properties in predicates format, while they assume the
action operators are given. With the commonsense reasoning ability of foundation models, recent
works have applied the idea of automatic task proposing and self-playing for exploration (Nasiriany
et al., 2024; Ren et al., 2024), data collection (Wang et al., 2024c; Yang et al., 2024; Ahn et al.,
2024), boosting skills learning (Ha et al., 2023; Wang et al., 2024a), and scene understanding (Jiang
et al., 2025). These works indicate a promising direction for generating robotic data and scaling
up. Following the idea, we equipped our system with a task-proposing module for generating
skill sequences specific to skills and predicates, which serves the idea of both data collection and
exploration.

Embodied Reasoning with Foundation Models. There has been a track of work on leveraging
large language models (LLMs) for embodied decision-making (Huang et al., 2022; Raman et al.,
2024) and reasoning (Huang et al., 2023), while vision-language models (VLMs) are often considered
to have limited embodied reasoning ability due to their pre-training corpora that focus primarily on
language generation (Valmeekam et al., 2023). Common ways of addressing this issue include fine-
tuning on datasets from a specific domains (Hong et al., 2023; Mu et al., 2024; Chen et al., 2024) or
knowledge distillation (Sumers et al., 2023; Yang et al., 2024). Meanwhile, many works manage to
leverage preexisting models without further training from direct visual observation (Fang et al., 2024;
Nasiriany et al., 2024) to complete robotic tasks (Jiang et al., 2025). In these works, the embodied
reasoning ability of the foundation models serves as the central part of the systems. However, most
benchmarking works evaluate the embodied reasoning ability of the models in a question-answering
fashion (Sermanet et al., 2024; Majumdar et al., 2024; Cheng et al., 2024; Chen et al., 2025), where
it remains unclear whether they are capable of solving robotic tasks.

J Use of Large Language Models

Our work incorporates language models as part of SkillWrapper, particularly for the three important
components of our system discussed in Section 3. We utilize OpenAI’s GPT-5 (OpenAI, 2025) as

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

our foundation model of choice. We acknowledge that all the content of the manuscript has been
generated by the authors. However, we have used LLMs for basic editing, polishing, and grammar
checking.

41

	Introduction
	Problem Setting
	SkillWrapper
	Active Data Collection
	Predicate Invention
	Operator Learning
	Theoretical Analysis

	Experiments
	Implementation of Predicates
	Simulation
	Real Robots

	Related Works
	Conclusion
	Reproducibility Statement
	Formal Framework
	Preliminaries
	Problem Definition

	Algorithms
	Skill Sequence Proposal
	Predicate Invention
	Operator Learning

	Properties of Learned Symbolic Models
	Proofs
	Illustration of Predicate Invention in Low-level Space

	Additional Details on the Hypothesis Class and Sample Complexity
	Upper Bound on |H|
	Sample Complexity for a Target (ε,δ)

	Learned Operators, Case Studies, and Example Tasks
	Learned Operators
	Result Analysis of Robotouille
	Example Tasks

	VLM Reliability Study
	Classification Accuracy
	Real-world Robustness
	Other VLMs

	Implementation Details
	Planner and Planning Time
	API Call
	Hyperparameters
	Robot Experiments
	Language Model Prompts
	Skill Sequence Proposal
	Predicate Invention
	Predicate Evaluation
	ViLa

	Related Works
	Use of Large Language Models

