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Abstract

Bayesian optimisation for real-world problems is often performed interactively
with human experts, and integrating their domain knowledge is key to accelerate the
optimisation process. We consider a setup where experts provide advice on the next
query point through binary accept/reject recommendations (labels). Experts’ labels
are often costly, requiring efficient use of their efforts, and can at the same time be
unreliable, requiring careful adjustment of the degree to which any expert is trusted.
We introduce the first principled approach that provides two key guarantees. (1)
Handover guarantee: similar to a no-regret property, we establish a sublinear bound
on the cumulative number of experts’ binary labels. Initially, multiple labels per
query are needed, but the number of expert labels required asymptotically converges
to zero, saving both expert effort and computation time. (2) No-harm guarantee
with data-driven trust level adjustment: our adaptive trust level ensures that the
convergence rate will not be worse than the one without using advice, even if the
advice from experts is adversarial. Unlike existing methods that employ a user-
defined function that hand-tunes the trust level adjustment, our approach enables
data-driven adjustments. Real-world applications empirically demonstrate that
our method not only outperforms existing baselines, but also maintains robustness
despite varying labelling accuracy, in tasks of battery design with human experts.

1 Introduction

Bayesian optimisation (BO) [60, 65, 33] is a successful approach to black-box optimisation that has
been applied across a wide array of applications. BO is often praised for ‘taking the human out of
the loop’ [80] by automating laborious optimisation processes, such as hyperparameter optimisation
[29, 103] and neural architecture search [74, 99], thus relieving human users from these tasks.
Nonetheless, a growing trend involves the opposite direction, which brings humans back into the loop
and leverages human expertise as an adviser to the optimiser [7]. This human-in-the-loop approach
is particularly relevant to scientific and explorative tasks, such as materials discovery [24, 2] and
product design [48, 44, 7]. Experts have accumulated domain knowledge and should be helpful in
accelerating the optimisation process, yet their experience and knowledge are often qualitative—they
can struggle to express their knowledge in a functional form or to pinpoint the best candidates as
an absolute quantity [47]. At the forefront of science, experts are also in the middle of trial and
error; demanding well-defined and error-free inputs can limit the applicable range of BO. As such,
a human-AI collaborative setting in BO has emerged, driven by practical demands, and has been
gaining popularity in the literature [11, 43, 39, 50, 24, 7, 70, 12, 42].
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A prevalent issue in this domain is the lack of both shared assumptions and theoretical guarantees,
making fair comparisons challenging. Our community has yet to reach a consensus on acceptable
assumptions, particularly in the following areas. (a) The level of effectiveness of experts’ knowledge:
assuming near oracle-like knowledge, e.g. in [11, 39, 12], collaborative settings can significantly
surpass vanilla BO. However, if experts are entirely erroneous (yet confident)—which can happen
[43, 50, 24, 7]—overreliance on experts’ input cannot guarantee the global optimum convergence.
(b) Human interaction method: ideally, humans prefer minimising interaction with machines for
convenience. Minimising interaction leads to maximising the information at each query to human,
which often ends up requesting error-free and quantitative information for humans [82, 11, 43, 42].
However, accurate knowledge elicitation remains a long-standing quest [79, 68, 58]. Inversely, when
we assume human belief is also a black-box function and require the elicitation of the belief function
through statistical modelling, e.g. [73, 34, 7], we will demand excessive queries of the experts.

Contributions. We propose an expert-advised algorithm with the contributions summarised below:

1. Handover guarantee: we model the expert’s role as cognitively simple and qualitative—the
expert serves as a black-box classifier, providing binary labels on the desirability of the next
query location. Similar to the no-regret property, we establish a sublinear bound on the
cumulative number of binary labels needed. Initially, multiple labels per query are needed,
but the frequency of querying binary labels asymptotically converges to zero, thus saving
both expert effort and computation time.

2. No-harm guarantee: we show that the convergence rate of our expert-advised algorithm
will not be worse than that of vanilla BO (i.e. without expert advice), even if the advice
from experts is adversarial. Our convergence is achieved through data-driven trust level
adjustments, and is unlike existing methods that rely on hand-tuned user-defined functions.

3. Real-world contribution: empirically, our algorithm provides both fast convergence and
resilience against erroneous inputs. It outperformed existing methods in both popular
synthetic, and new real-world, tasks in designing lithium-ion batteries.

2 Problem Statement
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Figure 1: BO-expert collaboration framework:
The algorithm (red) decides if an expert’s (blue)
label is necessary. If rejected, it generates a dif-
ferent candidate; otherwise, it directly queries.

We address the black-box optimization problem,

x⋆ ∈ argmin
x∈X

f(x) , (1)

while collaborating with an expert, where X ⊂ Rd

and d is the dimension.

Expert labelling model. We model an expert as
a binary labeller (see Fig. 1). An expert labels
a point x ∈ X as either ‘accept’ or ‘reject’. An
‘accept’ label indicates that the point is worth sam-
pling, while ‘reject’ label indicates it is not. These
labels are binary, with 0 for ‘accept’ and 1 for
‘reject’. In practice, the labelling process can be
noisy, since humans may find some points hard to classify. Non-expert or incorrect belief may label
the optimum x⋆ ‘reject’. The distribution of the labels is determined by the expert’s prior belief
about the black-box function f , and we model the expert’s belief through another unknown black-box
function g.

Assumption 2.1. The notation x ≻g 0 denotes the event where x is labelled as ‘reject’, based on the
expert’s belief function g. Additionally, the random indicator 1x≻g0 ∈ {0, 1} takes value 1 if x ≻g 0
and 0 otherwise. The probability distribution of 1x≻g0 ∈ {0, 1} follows the Bernoulli distribution
with P(1x≻g0 = 1) = px≻g0 = S(g(x)), where S(u) = 1/(1+e−u) is the sigmoid function.

Example 2.2. Let us define an example ‘synthetic’ expert’s labelling response as px≻g0 =
S(aρ(f(x))), where a is the accuracy coefficient and ρ is the linear scaling function from bound
[minx∈X f(x),maxx∈X f(x)] to [−3, 3]. When a = 1, ρ(f(x∗)) = −3, S(−3) ≈ 0.05, resulting in
a Bernoulli distribution that yields an acceptance label of 0 with a 95% chance at the global minimum
x∗. In this case, the sharpness of the belief px≻g0 is influenced by both the shape of f(x) and a; if
f(x) is peaky or a≫ 1, the expert can nearly pinpoint x∗.
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However, in reality, the expert does not know the exact true f and therefore, we consider g to be a
‘subjective’ belief function representing f . This differs from a typical surrogate model f̂ of f , which
infers an ‘objective’ belief function from oracle queries. If g has better predictive ability than the
surrogate model f̂ , exploiting g can accelerate convergence; otherwise it may decelerate the process.
In the optimisation process, g may act as a regularizer function in addition to the objective function f .
For simplicity, we use this Ex. 2.2 as synthetic human feedback. Readers interested in other examples
are encouraged to refer to Appendix H.
Assumption 2.3. X is compact and non-empty.

Assumption 2.3 is reasonable because in many applications (e.g., continuous hyperparameter tuning)
of BO, we are able to restrict the optimisation into certain ranges based on domain knowledge.
Regarding the black-box function f and the function g, we assume that,
Assumption 2.4. f ∈ Hkf

, g ∈ Hkg
, where k : Rd × Rd → R, representing kf or kg, is a

symmetric, positive-semidefinite kernel function, and Hk is its corresponding reproducing kernel
Hilbert space (RKHS, see [77]). Furthermore, we assume ∥f∥kf

≤ Bf and ∥g∥kg
≤ Bg, where

∥ · ∥k is the norm induced by the inner product in the corresponding RKHS Hk. We use Bg to denote
the set

{
g̃ ∈ Hkg | ∥g̃∥kg ≤ Bg

}
.

Assumption 2.4 requires that the objective f and the function g are regular in the sense that they have
bounded norms in the corresponding RKHS, which is a common assumption.
Assumption 2.5. k(x, x′) ≤ 1, x, x′ ∈ X , and k(x, x′) is continuous on Rd × Rd.
Assumption 2.6. At step t, if query point xt is evaluated, we get a noisy evaluation of f (we refer to
an oracle query), yt = f(xt) + ξt , where ξt is i.i.d σ-sub-Gaussian noise with fixed σ > 0.

Notation. We refer to 1τ as data realisation of 1xτ≻g0 at step τ . We denote the following sequences
of steps: iterations as [t] := {1, 2, · · · , t}, f queries as Qf

t := {τ ∈ [t−1] | iff is queried in step τ},
and expert queries as Qg

t , respectively
(
t ≥ |Qg

t |, t ≥ |Qf
t |
)
. We use capitals, e.g. XQf

t
, for the set

(xτ )τ∈Qf
t

.

3 Confidence Set of the Surrogate Models

We introduce surrogate models for the objective f and the function g. We opted for a Gaussian
process (GP; [86, 100]) for f and the likelihood ratio model [67, 27] for g.

3.1 Surrogate Model of the Objective f : Gaussian Process

Definitions. We employ a zero-mean GP regression model, with predictive posterior f̃t | Df
t ∼

GP(µft , σ
2
ft
),

µft(x) = kf (XQf
t
, x)⊤

(
KQf

t
+ rI

)−1

YQf
t
, (2a)

σ2
ft (x) = kf (x, x)− kf (XQf

t
, x)⊤

(
KQf

t
+ rI

)−1

kf

(
XQf

t
, x
)
, (2b)

where KQf
t
=
(
kf (xτ1 , xτ2)

)
τ1,τ2∈Qf

t
, Df

t := (XQf
t
, YQf

t
), r is the regularisation term [61].2 The

maximum information gain [84] for the objective f is,

γf
|Qf

t |
:= max

X⊂X ; |X|=|Qf
t |

1

2
log
∣∣I + r−1Kf,X

∣∣ , where Kf,X := (kf (x, x
′))x,x′∈X . (3)

Lemma 3.1 (Theorem 2, [22]). Let Assumptions 2.3, 2.4 and 2.6 hold. For any δ ∈ (0, 1), with
probability at least 1− δ/2, the following holds for all x ∈ X and 1 ≤ t ≤ T , T ∈ N,

|µft(x)− f(x)| ≤ βftσft(x), βft :=

(
Bf + σ

√
2

(
γf
|Qf

t−1|
+ 1 + ln(2/δ)

))
,

where µft(x), σft(x) and γf
|Qf

t−1|
are as given in Eq. (2) and Eq. (3), and γf0 = 0.

2We follow the definition from [22].
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For brevity, we denote the lower/upper confidence bound (LCB/UCB) functions f
t
(x) and f̄t(x) as,

f
t
(x) = µft(x)− βftσft(x) , f̄t(x) = µft(x) + βftσft(x).

3.2 Surrogate Model of the Expert Function g: Likelihood Ratio Model

While a GP classifier [63] is a popular choice, we opted for likelihood ratio model [67, 27]. The
combination of a Gaussian prior with a Bernoulli likelihood in GP models presents challenges in
estimating the posterior confidence bound both theoretically and computationally. Moreover, GPs
assume strong rankability [38, 23], presuming humans can rank their preferences accurately in all
cases, which often leads to inconsistent results [20]. To address these issues, we drew inspiration from
classic expert elicitation methods using imprecise probability theory [10, 41]. Instead of estimating
the predictive distribution, we estimate the ‘interval’ of the worst-case prediction only. This approach
does not assume any distribution within the interval, thereby relaxing the rankability assumption
[78]. This method is particularly well-suited to the GP-UCB algorithm [83], which only requires a
confidence interval. We developed a kernel-based method to provably estimate the predictive interval.

Definitions. First, we introduce the function, pĝ(xτ ,1τ ) := 1τS (ĝ(xτ ))+ (1−1τ ) [1− S(ĝ(xτ ))],
which is the likelihood of ĝ over the event when 1xτ≻g0 = 1τ under the Assumption 2.1, and ĝ is an
estimate function of g ∈ Hkg

under the Assumption 2.4. We can then derive the likelihood function
of a fixed function ĝ over the historical dataset Dg

t := {(xτ ,1τ )}τ∈Qg
t
, which becomes the product,

Pĝ((xτ ,1τ )τ∈Qg
t
) :=

∏
τ∈Qg

t
pĝ(xτ ,1τ ). The log-likelihood (LL) function,

LL value: ℓt(ĝ) := logPĝ((xτ ,1τ )τ∈Qg
t
), (4)

reduces to ℓt(ĝ) =
∑

τ∈Qg
t
zτ1τ −

∑
τ∈Qg

t
log (1 + ezτ ), where zτ = ĝ(xτ ) (this equality can be

checked as correct for either 1τ = 1 or 1τ = 0). We then introduce the maximum likelihood estima-
tor (MLE), ĝMLE

t ∈ argmaxg̃∈Bg
logPg̃((xτ ,1τ )τ∈Qg

t
). Similar to [54, 27, 107], the confidence set

can be derived as shown in Lemma 3.2.
Lemma 3.2 (Likelihood-based confidence set). ∀ϵ, δ > 0, let,

Bt+1
g :=

{
g̃ ∈ Bg | ℓt(g̃) ≥ ℓt(ĝ

MLE
t )− α1(ϵ, δ, |Qg

t |, t)
}
,

where α1(ϵ, δ, |Qg
t |, t) :=

√
32|Qg

t |B2
g log

π2t2N (Bg,ϵ,∥·∥∞)
6δ + 2ϵt. We have,

P
(
g ∈ Bt+1

g ,∀t ≥ 1
)
≥ 1− δ.

The proof is in Appendix A. As introduced in Assumption 2.4, while the function g was originally in
a broader set of RKHS functions g ∈ Bg, it is now in a smaller set defined as g ∈ Bt+1

g conditioned
on the expert labels Dg

t . Intuitively, with limited data, the MLE may be imperfect. Hence, it is
reasonable to suppose that Bt+1

g , bounded by LL values ‘slightly worse’ than the MLE, contains the
ground truth with high probability.
Remark 3.3 (Choice of ϵ). In Lemma 3.2, α1(ϵ, δ, |Qg

t |, t) depends on a small positive value ϵ. It
will be seen that ϵ can be selected to be 1/T in Appendix B, where T is the running horizon of the
algorithm.
Remark 3.4 (Confidence bound). By Lemma 3.2, we define the pointwise confidence bound
for unknown g ∈ Hkg

, g
t
(x) ≤ g(x) ≤ ḡt(x), where g

t
(x) := inf g̃∈Bt

g
g̃(x) and ḡt(x) :=

supg̃∈Bt
g
g̃(x).

Remark 3.5 (Pointwise predictive interval estimation). At a given prediction point x, the predictive
interval

[
g
t
(x), ḡt(x)

]
can be estimated through two individual finite-dimensional optimisation

problems (See Appendix B.3 for details). Subsequently, applying the sigmoid function yields the
predictive interval in probability space

[
S(g

t
(x)), S(ḡt(x))

]
(see Fig. 2 for visualisation).

4 Algorithm and Theoretical Guarantees

4.1 Mixing Two Surrogate Models f and g via Primal-Dual Method

Primal dual. We introduce the following primal-dual problem (5) as our acquisition policy,

Primal : xct ∈ argmin
x∈X

f
t
(x) + λtgt(x), Dual : λt+1 = [λt + ζg

t
(xct)]

+, (5)
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Figure 2: Visual explanation: While the vanilla LCB returns xut , a far point from global minimum
x∗, expert-augmented LCB can successfully navigate to closer point xct by mixing ft and gt with
f
t
+ λtgt, where λt is the dual variable. In the figure, Df

t is the set of the sample points of the
objective function f and Dg

t is the set of human feedback.

where λt is the primal-dual weight at the t-th iteration and ζ is the step size for dual update. See Fig. 2
for the intuition: we prioritise the sample in the expert-preferred region (i.e., the region with small
g
t
(x)). The primal-dual method is a classical algorithm for constrained optimisation [64] and has

recently been applied to, for example, the constrained bandit problem [110]. In terms of constrained
optimisation, Prob. (5) can be understood as solving minx∈X f(x) s.t. g

t
(x) ≤ 0. Interestingly, the

primal-dual approach is also roughly analogous to Bayesian inference [25]. Just as the prior acts as
a regulariser to the LL maximiser [94], expert belief g

t
(x) regularises the f

t
(x) minimiser. More

specifically, the weight λt+1 increases when g
t
(xct) > 0; otherwise, λt+1 decreases. The condition

g
t
(xct) > 0 indicates that the primal solution xct is more likely to be rejected.3 Under such a risk of

rejection, increasing the weights λt+1 is natural because it more strongly regularises the f
t

minimiser
to enhance feasibility in the next round, and vice versa.

Level of trust. Note that the primal-dual method is not the primary reason we achieve the no-harm
guarantee. Indeed, its proof (detailed in Appendix B) does not rely on the primal-dual formulation.
Therefore, technically speaking, our algorithm could employ a more aggressive exploitation of gt
(e.g., simply minimising gt). Nevertheless, the primal-dual approach is our recommended policy
for generating the expert-augmented candidate xct to enhance resilience to erroneous inputs. The
initial level of trust on gt is determined by the initial weight λ0, where larger λ0 values correspond to
greater trust in the expert. We compared the effect of λ0 in the Fig. 3 of the experimental section.

Efficient computation. Leveraging the representer theorem [77, 107] due to the RKHS property, we
further reformulate Prob. (5) to a (|Qg

t |+ d+ 1)-dimensional, tractable optimisation problem (6).

min
ZQg

t
∈R|Qg

t |, z∈R, x∈X
f
t
(x) + λtz

subject to
[
ZQg

t

z

]⊤
K−1

Qg
t ,x

[
ZQg

t

z

]
≤ B2

g ,

ℓ(ZQg
t
| Dg

t ) ≥ ℓt(ĝ
MLE
t )− α1(ϵ, δ, |Qg

t |, t),

(6)

where KQg
t ,x

:= (kg(x̃, x̃
′))x̃,x̃′∈XQg

t
∪{x}, and ℓ(ZQg

t
| Dg

t ) =
∑

τ∈Qg
t
Zτ1τ −∑

τ∈Qg
t
log
(
1 + eZτ

)
is the LL value when ĝ(xτ ) = Zτ , ∀τ ∈ Qg

t . We update λt+1 = λt + ζz⋆,
where z⋆ = g

t
(xct) is the optimal z of Prob. (6).

Key hyperparameter estimation. A key hyperparameter in Prob. (6) is the norm bound Bg in the
first constraint. Another hyperparameter, α1, in the second constraint, also scales with Bg, (see
Lemma 3.2). However, Bg may be unknown in practice, and its mis-specification leads to mis-
calibrated uncertainty. We estimate Bg by starting with a small initial guess (e.g., 1) and doubling it
when the following condition is met based on newly observed expert labels: α1(ϵ, δ, |Qg

t |, t | 2B̂g) <

ℓt(ĝ
MLE
t|2B̂g

)− ℓt(ĝ
MLE
t|B̂g

), where B̂g is our current guess. Intuitively, if the new likelihood ℓt(ĝMLE
t|2B̂g

) is

3Recall that S(g(xc
t)) > S(0) = 0.5 implies a higher chance of rejection than random (=0.5).
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Algorithm 1 COllaborative Bayesian Optimization with Labelling Experts (COBOL).

1: Input and Initialization: function space ball Bg , trust weight η, and uncertainty threshold gthr.
2: Set B1

g = Bg , Qf
0 = ∅, and Qg

0 = ∅.
3: for t ∈ [T ] do
4: Solve Prob. (5) via Prob. (6) to generate xct . ▷ Expert-augmented LCB
5: Solve the unconstrained problem, xut ∈ argminx∈X f t(x). ▷ Vanilla LCB
6: if f

t
(xct) ≤ minx∈X f̄t(x) and σft(xut ) ≤ ησft(x

c
t) then ▷ No-harm guarantee

7: Set xt = xct .
8: if ḡt(xt)− g

t
(xt) > gthr then ▷ Handover guarantee

9: Query the expert’s label to get the feedback 1t.
10: Update Qg

t = Qg
t−1 ∪ {t} and the posterior confidence set Bt+1

g .
11: if 1t = 1 then
12: Set Qf

t = Qf
t−1, and continue the loop at line 4.

13: else
14: Set Qg

t = Qg
t−1, and xt = xut .

15: Evaluate the black-box function at the point xt, and set Qf
t = Qf

t−1 ∪ {t}.
16: Update the posterior mean/variance of the objective f .

significantly larger, then 2B̂g is more likely a valid bound. We iterate this estimation online during
optimisation and in pre-training with the initial dataset (see details in Appendix F).

4.2 Algorithm and Theoretical Guarantee

Algorithm. Our algorithm in Alg. 1 generates two candidates: the vanilla LCB xut and the expert-
augmented LCB xct . (See App. I.3 on extension to other acquisition functions.) Always selecting
the vanilla LCB guarantees no-harm but misses the chance to accelerate convergence using the
expert’s belief. Intuitively, this can be seen as a bandit problem regarding which arm to select. Line 8
corresponds to the handover guarantee, stating that our algorithm stops asking the expert once our
model g becomes more confident than the predefined gthr. Line 6 outlines the conditions for achieving
the no-harm guarantee by assessing the reliability of the expert-augmented candidate xct . The first
condition ensures xct is at least possibly better than the worst-case estimation of the optimal value.
The second condition acts as active learning of human belief, exploring uncertain points to avoid
inaccurate yet confident expert beliefs. The hyperparameter η ≥ 1 represents the initial level of trust
in the expert. A larger η indicates greater priority in exploring expert-preferred regions.

Theoretical guarantee. For Alg. 1, we mainly care about two metrics: cumulative regret RQf
T
:=∑

t∈Qf
T
(f(xt)− f(x∗)) and cumulative queries Qg

T := |Qg
T |. RQf

T
captures the cumulative regret

over the query points to the black-box function. Qg
T captures the number of queries to the expert.

Since intuitively each query to the expert causes inconvenience, ideally, the frequency of query to an
expert should be low (e.g., Qg

T grows sublinearly in T ).
Theorem 4.1. Under Assumptions 2.1 to 2.6, with probability at least 1− δ, Alg 1 satisfies,

RQf
T
≤ O

(
(2 + η)γf

|Qf
T |

√
|Qf

T |
)
, (7a) Qg

T ≤ O
(
(γgT )

2
log

TN (Bg, 1/T , ∥ · ∥∞)

δ

)
. (7b)

See Appendix B for the proof of Thm. 4.1. Intuitively, Eq. (7a) shows the no-harm guarantee,
since it provides a cumulative regret bound independent of the latent function g. Eq. (7b) shows
the handover guarantee, since the bound on cumulative queries to the expert is sublinear for
commonly-used kernel functions (See Table 1). This means that the frequency of querying the expert
asymptotically converges to zero. We do not query human label for xut to reduce human effort. Since
Qg

T ∪ Qf
T = [T ], |Qf

T | grows linearly in T . There is a trade-off in η selection. A larger η can
accelerate convergence when feedback is informative, but it may also cause the worse convergence
rate for adversarial feedback (see Appendix B, which includes an additional constant factor of (2+η)/4
compared to the original UCB). In practice, setting η = 3 is sufficiently effective (see Figure 3).
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Table 1: Kernel-specific bounds (fixed η is hidden) where ν is the smoothness parameter of the
Matérn kernel that is assumed to satisfy ν > d

4 (3 + d+
√
d2 + 14d+ 17) = Θ(d2).

Metric Linear Squared Exponential Matérn

RQf
T

O
(√

|Qf
T | log |Q

f
T |
)

O
(√

|Qf
T |(log |Q

f
T |)d+1

)
O
(
|Qf

T |
2ν+3d
4ν+2d log

2ν
2ν+d (|Qf

T |)
)

Qg
T O

(
(log T )3

)
O
(
(log T )3(d+1)

)
O(T

2d(d+1)
2ν+d(d+1)T

d
ν (log T )3)

By plugging in the maximum information gain bounds [84, 93] and covering number bounds [104,
105, 18, 109], we apply Thm. 4.1 to derive the kernel-specific bounds in Table 1. In practice, kernel
choice and scalability to high dimensions are common challenges for BO. Existing generic techniques,
such as decomposed kernels [49], can be applied in our algorithm to choose kernel functions and
achieve scalability in high-dimensional spaces.

4.3 Related Works

Human-AI Collaborative BO. There are two primary approaches: the first approach assumes that
human experts can express their beliefs through quantitative labels, such as well-defined distributions
[69, 52, 82, 43, 24, 42] or pinpoint querying locations [11, 39, 50, 12, 70]. While this strong
assumption is valid in specific cases, such as physics simulations [39], many experimental tasks—
such as chemistry, which lacks the consensus on numerical representations of, e.g. molecules—require
more relaxed assumptions [24, 46]. The qualitative approach, on the other hand, involves human
experts providing pairwise comparisons [7] or binary recommendations (ours). The algorithm trains
a surrogate model from experts’ labels, thereby expanding applicable scenarios. Ours is the first-of-
its-kind principled method with both no-harm and handover guarantee on a continuous domain.

Related BO tasks. Eliciting human preference from labels has been explored in preferential BO
[28, 37, 59, 91, 9, 107]. However, this approach treats human preference as the main objective of
BO, whereas our work uses experts’ belief as an additional information source. Constrained BO
[32, 35, 88, 87, 110, 106, 62, 44, 96, 57] is another line of research that investigates BO under
unknown constraints, placing another surrogate model on the constraint inferred from queried labels.
However, our approach does not treat human belief as a constraint that must be satisfied or a reward
to maximise, given that expert knowledge can sometimes be unreliable (see details in Appendix G).

5 Experiments

We benchmarked the performance of the proposed algorithm against existing baselines in a collab-
orative setting with human experts. We employed an ARD RBF kernel for both f and g. In each
iteration of the optimisation loop, the inputs were rescaled to the unit cube [0, 1]d, and the outputs
were standardised to have zero mean and unit variance. The initial datasets consisted of three random
data points sampled uniformly from within the domain, and in each iteration, one data point was
queried. Additionally, we collected initial expert labels by asking an expert to label ‘accept’ (= 0)
or ‘reject’ (= 1) for 10 uniformly random points. All experiments were repeated ten times with
different initial datasets and random seeds. We tuned hyperparameters online at each iteration. The
GP hyperparameters were tuned by maximising the marginal likelihood on observed datasets using a
multi-start L-BFGS-B method [53] (the default BoTorch optimiser [14]). The key hyperparameters of
the confidence set, Bg and α1, were optimised via the online method in Appendix F. Other hyperpa-
rameters were set as η = 3, λ0 = 1, and gthr = 0.1 by default throughout the experiments, with their
sensitivity discussed later in Fig. 3 (see also Appendix J.1). The constrained optimisation in Prob. (6)
was solved using the interior-point nonlinear optimiser IPOPT [95], which is highly scalable for
solving the primal problem, via the symbolic interface CasADi [8]. The unconstrained optimisation
(line 5) was solved using the default BoTorch optimiser [14]. More details for reproducing results
are available on GitHub.4 The models were implemented in GPyTorch [31]. All experiments were
conducted on a laptop PC.5 Computational time is discussed in Appendix J. In addition to cumulative
regret and queries, we also consider simple regret defined as SRt := minτ∈Qf

t
(f(xτ )− f(x⋆)).

4https://github.com/ma921/COBOL/
5MacBook Pro 2019, 2.4 GHz 8-Core Intel Core i9, 64 GB 2667 MHz DDR4
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Figure 4: Ablation study on five common synthetic functions with synthetic expert labels (a = 1).

Robustness and sensitivity. First, we tested the robustness of our algorithm to the accuracy of
the expert’s labels using the 4-dimensional Ackley function [1]. We modelled the synthetic agent
response according to Example 2.2. In particular, we examine the impact of feedback accuracy,
denoted as a. Fig. 3 illustrates the robustness of our algorithm. When labels are informative (a = 1, 2),
the convergence rate for both simple and cumulative regrets is accelerated in accordance with the
accuracy. Even if the feedback is completely random (a = 0) or adversarial (a = −1,−2), the
no-harm guarantee ensures that the algorithm converges at a rate on par with vanilla LCB by adjusting
the level of trust to be lower over iterations. Refer to Appendix J.2.3 for additional confirmation of the
no-harm guarantee based on more extensive experimental results. Handover guarantee ensures that our
algorithm stops seeking label feedback once sufficient information has been elicited, as indicated by
the plateau in the cumulative queries Qg

T . We also tested the sensitivity to the optimisation parameters
η, λ0, and gthr. The change in convergence at those parameters were varied mostly within the standard
error, indicating that our algorithm is insensitive to these hyperparameters and that feedback accuracy
is more dominant. For the primal-dual weight, λ0 = 0 corresponds to starting optimisation without a
primal-dual mixing objective, which performs worse than mixing cases (λ0 = 1, 2), demonstrating
the efficacy of incorporating the primal-dual mixing objective.

Synthetic dataset. We compared our algorithm against five common synthetic functions [89] (see
details in Appendix J.2), using simple baselines for an ablation study: random sampling, vanilla LCB
(unconstrained optimisation), and expert sampling. Expert sampling involves direct sampling from
the expert belief distribution px≻g0. We employ rejection sampling by generating a uniform random
sample over the domain and then accepting it with the probability 1− px≻g0. We fixed the feedback
accuracy at a = 1 (as in Example 2.2.). The efficacy of expert labels is roughly estimated by how
much faster expert sampling converges compared to random sampling. In all synthetic experiments,
our algorithm outperformed the baselines. While expert sampling is at least more effective than
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Figure 5: Real-world experiments with four human experts of lithium-ion batteries.

random sampling, it is not always better than vanilla LCB. For functions with a very sharp global
optimum, such as Rosenbrock [71], px≻g0 nearly pinpoints the global minimum. Still, our algorithm
performs slightly better than expert sampling. See Appendix J.2.2 for computation time and query
frequency. The overhead of our algorithm is comparable to that of other baselines.

Real-world experiments with human experts. We conducted real-world experiments in collabora-
tion with four human experts who possess post-doctoral level knowledge on lithium-ion batteries. In
this experiment, human labelling costs vary among experts but typically range from a few seconds
to several minutes. In the real-world development of lithium-ion batteries, creating and testing a
prototype cell requires at least a week, making the labelling cost negligible by comparison.

Lithium-ion batteries are crucial for realising a green society, a rapidly growing field where knowledge
is continuously updated at an unprecedented rate. This field typically suffers from data scarcity
[46] due to the ongoing development of new materials synthesised by chemists. Consequently,
transfer learning approaches, e.g., [90, 101, 30, 21], are not effective in this setting. We prepared
four cases for the experiments: the first is a standard task where we optimise the standard electrolyte
composition [26, 36], and the second involves a slight modification of the first setup by changing one
solvent material [56].6 We expect the experts to have informative knowledge on these two tasks. The
remaining two cases involve emerging new categories of materials: one is a polymer-nanocomposite
electrolyte [108], and the other is an ionic liquid [72]. We anticipate that the experts’ knowledge on
these new materials will not be as effective as in the first two tasks (see more details in Appendix J.3).
Given the scarcity of real experts, we conducted a pre-experimental step to elicit their knowledge for
a fair baseline comparison. We asked them to label 50 random points uniformly from the domain,
for all experiments before seeing the results. Then we fit the confidence set model to these results
and used ĝMLE

t as the estimated human response. Additionally, we asked the participants to manually
select the next query point without any assistance from BO, which we refer to as ‘expert sampling’ in
the baseline. We also compared against state-of-the-art algorithms [11, 50, 7]. These methods have
predefined levels of trust, roughly ranked from strong to weak: [11] → [7] → [50]. Ours can adjust
the level of trust based on data, so we expect it to perform well in both effective and ineffective cases.

Fig. 5 summarises the results. For the first two tasks, our algorithm outperformed all baselines.
Particularly in the second task, human sampling was better than vanilla LCB, indicating that we
should trust their advice aggressively. Our algorithm can adapt to trust them over time, resulting
in significantly accelerated convergence. On the other hand, expert sampling for the new materials
tasks was, although unintentionally, worse than random, thereby discouraging trust. While trustful
algorithms [11, 7] struggled to converge, the distrustful algorithm [50] was able to converge on par
with vanilla LCB. Our no-harm guarantee worked in this situation, gradually equating to LCB, and
showed identical performance to the distrustful algorithm [50]. See also Appendix J.4.1 for the
complete experimental results on the number of queries and computation time.

6 Discussion

Feedback form. Other forms of feedback, such as pairwise comparisons [7] or preferential rankings
[12], can be incorporated into our algorithm with slight modifications. However, we empirically

6This slight change makes optimal design challenging enough [36]. See Appendix J.4 for details.
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found that the binary labelling approach performs best (see Fig. 5), and therefore, we recommend
using binary feedback as the primary choice. For those interested in using alternative feedback forms,
detailed instructions on how to adapt them to our algorithm are provided in Appendix H.

Time-varying human knowledge. We assume that expert knowledge is stationary, although it can
be time-varying, e.g., experts’ knowledge often evolves as more data is gathered. A simple extension
to accommodate this is the use of windowing, where past queried data is forgotten. This can be easily
implemented in our algorithm by removing old data beyond a predefined iteration window. However,
our initial trials did not show significant performance gains from this approach, so it was not included
in the main text. We suggest a dynamic model as a potential future direction, which is discussed
in Appendix I.1 with additional experimental results. Similarly, we kept the trust weight η fixed
throughout the optimization process. Since human knowledge can improve over time, an adaptive η
could be employed to enhance both convergence and robustness. Nevertheless, our no-harm guarantee
remains valid even without this adaptation. Further details are provided in Appendix I.2.

Acceleration vs. Robustness. One might seek to derive a theoretical guarantee on the acceleration
of convergence when the feedback is helpful. However, we want to emphasize that theoretically
guaranteeing both acceleration and robustness may be incompatible. From a theoretical perspective,
they are in a trade-off relationship [92]. This can be intuitively explained by the no-free-lunch
theorem [102]: if algorithm A outperforms B, it does so by exploiting ‘biased’ information. The
‘bias’ inherent in the acceleration is contradictory to robustness. Our setting is unbiased, meaning
we do not have prior knowledge of helpful or adversarial human expert. Therefore, we must make a
design choice between prioritizing robustness or acceleration as a theoretical contribution, depending
on whether we assume that expert input can be adversarial (weak bias) or that it will always be
helpful (strong bias). Indeed, there are lower bound results for the average-case regret of Bayesian
optimization in the literature (e.g., see [76]). GP-UCB is already nearly rate-optimal in achieving
this lower bound. This means theoretical acceleration is obtained in the price of worse robustness.
In Appendix E, we present a slightly modified version, Algorithm 2, which offers an improvement
guarantee based on strong bias. Our Algorithm 1 can be seen as a relaxed version of this algorithm
(soft constraint), which helps explain the empirical success in accelerating convergence.

7 Conclusion

Our algorithm, with its data-driven adjustment of the level of trust, successfully accelerated conver-
gence from effective advice while ensuring a no-harm guarantee from unreliable inputs. The handover
guarantee also ensures that the BO can automate the optimisation process without assistance from
human experts at a later stage. These features are particularly valuable for scientific applications,
where researchers often face trial and error, making it challenging to determine the effectiveness of
their prior knowledge before starting experiments. Our flexible and robust framework is also expected
to be effective in collaboration with large language models (LLMs), which demonstrate remarkable
sample-efficient performance by exploiting encoded priors [55, 75, 66], and can be regarded as
‘expert knowledge’. Our safeguard features would be particularly effective for shared challenges,
such as difficulty in eliciting knowledge [45, 16] and varying accuracy of advice due to hallucinations
[81, 98, 85]. Although ours is the first-of-its-kind algorithm with a general theoretical guarantee in the
expert-collaborative setting, it is still based on the GP-UCB algorithm 7 and shares its limitations (e.g.,
high dimensionality). One future direction is combining our approach with the high-dimensional BO
methods [97, 51]. Additionally, our current setting does not consider the batch setting, yet one can
easily extend with existing approaches, e.g. [4, 6, 3, 5]. Multiple expert scenario is also a promising
future extension. While a simple expert aggregation approach (e.g., majority vote, adding multiple
experts g) could work without modifications to the current algorithm, more advanced methods, such
as choice functions [15], present promising directions for future work. Explainability is also key.
[7] showed that Shapley value-based explanations improve human feedback accuracy, and this can
be easily integrated into our framework. Our method can positively influence human experts by
empirically demonstrating the value of their expertise, even amidst concerns about job security in the
AI era [13]. On the negative side, more powerful LLMs may eventually replace the expert role in our
algorithm in areas where data is sufficiently shared on websites or in papers, such as hyperparameter
tuning [55].

7Maximization formulation is adopted in GP-UCB paper [84], while we consider minimization. So LCB in
our paper essentially corresponds to UCB in GP-UCB algorithm.
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A Proof of Lem. 3.2

To prepare for the proof of the lemma, we first prove several preliminary lemmas.

Lemma A.1. For any fixed ĝ ∈ Bg , we have,

P
(
logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
8|Qg

t |B2
f log

1

δt

)
≥ 1− δt. (8)
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Proof. We use uτ to denote g(xτ ), zτ to denote ĝ(xτ ), and pτ to denote S(g(xτ )).

P
(
logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤ ξ

)
(9)

=P

∑
τ∈Qg

t

((zτ − uτ )1τ − log(1 + ezτ ) + log(1 + euτ )) ≤ ξ

 (10)

=P

∑
τ∈Qg

t

(zτ − uτ )1τ −
∑
τ∈Qg

t

(zτ − uτ )pτ ≤ ξ′

 (11)

where the probability P is taken over the randomness from the feedback expert/oracle and the
randomness from the algorithm, and ξ′ = ξ +

∑
τ∈Qg

t
log (1 + ezτ ) −

∑
τ∈Qg

t
log (1 + euτ ) −∑

τ∈Qg
t
(zτ − uτ )pτ . Let the function ψτ (zτ ) := log (1 + ezτ ) − log (1 + euτ ) − (zτ − uτ )pτ . It

can be checked that ψ
′′

τ (zτ ) = ezτ/(1+ezτ )2 ≥ 0,∀zτ ∈ R and ψ
′

τ (uτ ) = 0. Therefore, ψτ is a
convex function and achieves the optimal value at the point uτ . Hence, ψτ (zτ ) ≥ ψτ (uτ ) = 0, which
implies ξ′ ≥ ξ. Therefore,

P

∑
τ∈Qg

t

(zτ − uτ )1τ −
∑
τ∈Qg

t

(zτ − uτ )pτ ≤ ξ′

 ≥ P

∑
τ∈Qg

t

(zτ − uτ )1τ −
∑
τ∈Qg

t

(zτ − uτ )pτ ≤ ξ

 .

(12)
Furthermore, it is easy to see that (zτ − uτ )1τ ∈ [−2Bg, 2Bg], and thus, by applying Azuma-
Hoeffding inequality, we have,

P

∑
τ∈Qg

t

(zτ − uτ )1τ −
∑
τ∈Qg

t

(zτ − uτ )pτ ≤ ξ

 ≥ 1− exp

{
− ξ2

8|Qg
t |B2

g

}
(13)

Let exp
{
− ξ2

8|Qg
t |B2

g

}
≤ δt, we need,

ξ ≥
√
8|Qg

t |B2
g log

1

δt
. (14)

It is sufficient to pick ξ =
√
8|Qg

t |B2
g log

1
δt

. Therefore,

P
(
logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
8|Qg

t |B2
g log

1

δt

)

≥P

∑
τ∈Qg

t

(zτ − uτ )1τ −
∑
τ∈Qg

t

(zτ − uτ )pτ ≤
√

8|Qg
t |B2

g log
1

δt


≥1− δt,

where the first inequality follows by combining Eq. (11) and Eq. (12).

We then have the following high probability confidence set lemma.

Lemma A.2. For any fixed ĝ that is independent of ((xτ ,1τ )τ∈Qg
t
), we have, with probability at

least 1− δ, ∀t ≥ 1,

logPĝ((xτ ,1τ )τ∈Qg
t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
8|Qg

t |B2
g log

π2t2

6δ
. (15)
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Proof. We use Et to denote the event logPĝ((xτ ,1τ )τ∈Qg
t
) − logPg((xτ ,1τ )τ∈Qg

t
) ≤√

8|Qg
t |B2

g log
1
δt

. We pick δt = (6δ)/(π2t2) and have,

P
(
logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
8|Qg

t |B2
g log

1

δt
,∀t ≥ 1

)
=1− P

(
∩∞
t=1Et

)
=1− P

(
∪∞
t=1Et

)
≥1−

∞∑
t=1

P
(
Et
)

=1−
∞∑
t=1

(1− P (Et))

=1−
∞∑
t=1

(
1− P

(
logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
8|Qg

t |B2
g log

1

δt

))

≥1−
∞∑
t=1

δt

=1− 6δ

π2

∞∑
t=1

1

t2

=1− δ.

We then have a lemma to bound the difference of log likelihood when two functions are close in
infinity-norm sense.
Lemma A.3. ∀ϵ > 0, ∀g1, g2 ∈ Bg that satisfies ∥g1 − g2∥∞ ≤ ϵ, we have,

logPg1((xτ ,1τ )τ∈Qg
t
)− logPg2((xτ ,1τ )τ∈Qg

t
) ≤ 2ϵ|Qg

t |. (16)

Proof.

logPg1((xτ ,1τ )τ∈Qg
t
)− logPg2((xτ ,1τ )τ∈Qg

t
)

≤
∑
τ∈Qg

t

((z1,τ − z2,τ )1τ − log(1 + ez1,τ ) + log(1 + ez2,τ ))

≤ϵ|Qg
t |+

∑
τ∈Qg

t

max
z∈[−Bg,Bg ]

|∇z log (1 + ez)| |z1,τ − z2,τ |

≤ϵ|Qg
t |+

∑
τ∈Qg

t

ϵ

≤2ϵ|Qg
t |,

where z1,τ = g1(xτ ) and z2,τ = g2(xτ ).

We use N (Bg, ϵ, ∥ · ∥∞) to denote the covering number of the set Bg , with (gϵi )
N (Bg,ϵ,∥·∥∞)
i=1 be a set

of ϵ-covering for the set Bg. Set the ‘δ’ in Lem. A.2 as δ/N (Bg,ϵ,∥·∥∞) and applying the probability
union bound, we have, with probability at least 1− δ, ∀gϵi ,

logPgϵ
i
((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
8|Qg

t |B2
g log

π2t2N (Bg, ϵ, ∥ · ∥∞)

6δ
. (17)

By the definition of ϵ-covering, there exists j ∈ [N (Bg, ϵ, ∥ · ∥∞)], such that,

∥ĝMLE
t+1 − gϵj∥∞ ≤ ϵ. (18)
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Hence, with probability at least 1− δ,

logPĝMLE
t+1

((xτ ,1τ )τ∈Qg
t
)− logPg((xτ ,1τ )τ∈Qg

t
)

= logPĝMLE
t+1

((xτ ,1τ )τ∈Qg
t
)− logPgϵ

j
((xτ ,1τ )τ∈Qg

t
) + logPgϵ

j
((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
)

≤2ϵ|Qg
t |+

√
8|Qg

t |B2
g log

π2t2N (Bg, ϵ, ∥ · ∥∞)

6δ
,

where the inequality follows by Lem. A.3 and Lem. A.2.

B Proof of Thm. 4.1

B.1 Bound Error over Historical Evaluations

Lem. 3.2 gives a high confidence set based on the likelihood function. The following Lem. B.1 further
gives error bound over the historical sample points. Lem. B.1 highlights that with high probability,
all the functions in the confidence set have values over the historical sample points that lie in a ball
with the ground-truth function value as the center and

√
α(ϵ, δ/2, |Qg

t |, t) as the radius. Before we
proceed, we first introduce several constants that we will use,

S̄ := max
u∈[−Bg,Bg]

S(u) =
1

1 + e−Bg
, S := min

u∈[−Bg,Bg ]
S(u) =

1

1 + eBg
. (19)

S′ := min
u∈[−Bg,Bg]

S′(u) =
1

eBg + e−Bg + 2
, S̄′ := max

u∈[−Bg,Bg ]
S′(u) =

1

4
. (20)

HS :=
1

2S̄2
, Bp =

S(Bg)

S(−Bg)
− S(−Bg)

S(Bg)
. (21)

Lemma B.1. For any estimate ĝt+1 ∈ Bt+1
g that is measurable with respect to the filtration Ft, we

have, with probability at least 1− δ/2, ∀t ≥ 1,∑
τ∈Qg

t

(ĝt+1(xτ )− g(xτ ))
2 ≤ α(ϵ, δ/2, |Qg

t |, t), (22)

and
g ∈ Bt+1

g , (23)

where α(ϵ, δ/2, |Qg
t |, t) = S′2

HS
(α2(ϵ, δ/2, |Qg

t |, t) + 2α1(ϵ, δ/2, |Qg
t |, t)) =

O
(√

|Qg
t | log

tN (Bg,ϵ,∥·∥∞)
δ + ϵt+ ϵ2t

)
, with α2(ϵ, δ, |Qg

t |, t) = 8HSS̄′2ϵ2t + 4ϵt +√
8|Qg

t |B2
p log

π2t2N (Bg,ϵ,∥·∥∞)
3δ .

Proof. For any fixed function ĝ, we have,

logPĝ((xτ ,1τ )τ∈Qg
t
)− logPg((xτ ,1τ )τ∈Qg

t
)

=
∑
τ∈Qg

t

(logPĝ((xτ ,1τ ))− logPg((xτ ,1τ )))

=
∑
τ∈Qg

t

(1τ (log p̂τ − log pτ ) + (1− 1τ ) (log (1− p̂τ )− log(1− pτ ))) ,

where p̂τ = S(ĝ(xτ )) and pτ = S(g(xτ )). We have,

log y ≤ log x+
1

x
(y − x)−HS(y − x)2,∀x, y ∈ [S, S̄], (24)
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where HS = 1
2S̄2 . Hence,

logPĝ((xτ ,1τ )τ∈Qg
t
)− logPg((xτ ,1τ )τ∈Qg

t
)

=
∑
τ∈Qg

t

(1τ (log p̂τ − log pτ ) + (1− 1τ ) (log (1− p̂τ )− log(1− pτ )))

≤
∑
τ∈Qg

t

(
1τ

(
p̂τ − pτ
pτ

−HS (p̂τ − pτ )
2

)
+ (1− 1τ )

(
pτ − p̂τ
1− pτ

−HS (p̂τ − pτ )
2

))

Rearrangement gives,

HS

∑
τ∈Qg

t

(p̂τ − pτ )
2
+ logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
)

≤
∑
τ∈Qg

t

(
1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

)
.

Since E
[
1τ

p̂τ−pτ

pτ
+ (1− 1τ )

pτ−p̂τ

1−pτ
|Fτ−1

]
= E

[
pτ

p̂τ−pτ

pτ
+ (1− pτ )

pτ−p̂τ

1−pτ
|Fτ−1

]
= 0 and with

probability one,

∣∣∣∣1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

∣∣∣∣ ≤ 1τ

∣∣∣∣ p̂τ − pτ
pτ

∣∣∣∣+ (1− 1τ )

∣∣∣∣pτ − p̂τ
1− pτ

∣∣∣∣ (25)

= 1τ

∣∣∣∣ p̂τpτ − 1

∣∣∣∣+ (1− 1τ )

∣∣∣∣1− p̂τ
1− pτ

− 1

∣∣∣∣ (26)

≤ S(Bg)

S(−Bg)
− S(−Bg)

S(Bg)
= Bp. (27)

By Azuma–Hoeffding inequality, we have, ∀ξ > 0,

P

∑
τ∈Qg

t

(
1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

)
≤ ξ

 ≥ 1− exp

{
− 2ξ2

|Qg
t |B2

p

}
. (28)

We set exp
{
− 2ξ2

|Qg
t |B2

p

}
= δt > 0, and derive

P

HS

∑
τ∈Qg

t

(p̂τ − pτ )
2
+ logPĝ((xτ ,1τ )τ∈Qg

t
)− logPg((xτ ,1τ )τ∈Qg

t
) ≤

√
|Qg

t |B2
p log

1
δt

2


(29)

≥P

∑
τ∈Qg

t

(
1τ
p̂τ − pτ
pτ

+ (1− 1τ )
pτ − p̂τ
1− pτ

)
≤

√
|Qg

t |B2
p log

1
δt

2

 (30)

≥1− δt. (31)
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We use Et to denote the event HS

∑
τ∈Qg

t
(p̂τ − pτ )

2 ≤ logPg((xτ ,1τ )τ∈Qg
t
) −

logPĝ((xτ ,1τ )τ∈Qg
t
) +

√
|Qg

t |B2
p log 1

δt

2 . We pick δt = (6δ)/(π2t2). We have,

P

HS

∑
τ∈Qg

t

(p̂τ − pτ )
2 ≤ logPg((xτ ,1τ )τ∈Qg

t
)− logPĝ((xτ ,1τ )τ∈Qg

t
) +

√
|Qg

t |B2
p log

1
δt

2
,∀t ≥ 1


=1− P

(
∩∞
t=1Et

)
=1− P

(
∪∞
t=1Et

)
≥1−

∞∑
t=1

P
(
Et
)

=1−
∞∑
t=1

(1− P (Et))

=1−
∞∑
t=1

1− P

HS

∑
τ∈Qg

t

(p̂τ − pτ )
2 ≤ logPg((xτ ,1τ )τ∈Qg

t
)− logPĝ((xτ ,1τ )τ∈Qg

t
) +

√
|Qg

t |B2
p log

1
δt

2


≥1−

∞∑
t=1

δt

=1− 6δ

π2

∞∑
t=1

1

t2

=1− δ.

Resetting the ‘δ’ to be δ/N (Bg,ϵ,∥·∥∞), we can guarantee the inequality (32) holds for all the functions
in an ϵ-covering of Bg .

For any ĝt+1 ∈ Bt+1
g , there exists ĝ in the ϵ-covering of Bg , such that ∥ĝt+1 − ĝ∥∞ ≤ ϵ. We use the

notations p̂t+1
τ = ĝt+1(xτ ), and p̂τ = ĝ(xτ ). Thus, we have,

HS

∑
τ∈Qg

t

(
p̂t+1
τ − pτ

)2
=2HS

∑
τ∈Qg

t

(
p̂t+1
τ − p̂τ

)2
+ 2HS

∑
τ∈Qg

t

(p̂τ − pτ )
2

=2HSS̄′2
∑
τ∈Qg

t

(
ĝt+1(xτ )− ĝ(xτ )

)2
+ 2HS

∑
τ∈Qg

t

(p̂τ − pτ )
2

≤8HSS̄′2
∑
τ∈Qg

t

ϵ2 + 2HS

∑
τ∈Qg

t

(p̂τ − pτ )
2

≤8HSS̄′2
∑
τ∈Qg

t

ϵ2 + 2HS

∑
τ∈Qg

t

(p̂τ − pτ )
2

≤8HSS̄′2ϵ2|Qg
t |+

√
2|Qg

t |B2
p log

π2t2N (Bg, ϵ, ∥ · ∥∞)

6δ
+ 2

(
logPg((xτ ,1τ )τ∈Qg

t
)− logPĝ((xτ ,1τ )τ∈Qg

t
)
)

≤C(ϵ, δ, |Qg
t |, t) + 2

(
logPĝMLE

t+1
((xτ ,1τ )τ∈Qg

t
)− logPĝt+1((xτ ,1τ )τ∈Qg

t
)
)

+ 2
(
logPĝt+1((xτ ,1τ )τ∈Qg

t
)− logPĝ((xτ ,1τ )τ∈Qg

t
)
)

≤C(ϵ, δ, |Qg
t |, t) + 4ϵt+ 2α1(ϵ, δ, |Qg

t |, t)
=α2(ϵ, δ, |Qg

t |, t) + 2α1(ϵ, δ, |Qg
t |, t),

where C(ϵ, δ, |Qg
t |, t) = 8HSS̄′2ϵ2t +

√
2|Qg

t |B2
p log

π2t2N (Bg,ϵ,∥·∥∞)
6δ and α2(ϵ, δ, |Qg

t |, t) =

C(ϵ, δ, |Qg
t |, t) + 4ϵt.
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Furthermore,

t∑
τ=1

(
p̂t+1
τ − pτ

)2 ≥
t∑

τ=1

(
S′)2 (ĝt+1(xτ )− g(xτ )

)2
.

The conclusion then follows.

B.2 Bound Point-Wise Error

Lemma B.2 (Point-wise Error Bound). For any estimate g̃ ∈ Bt+1
g measurable with respect to Ft,

we have, with probability at least 1− δ, ∀t ≥ 1, x ∈ X ,

∣∣g̃(x)− g(x)
∣∣ ≤ 2

(
2Bg + r−

1/2
√
α(ϵ, δ/2, |Qg

t |, t)
)
σgt+1(x). (32)

where σgt+1(x) =
√
kg(x, x)− kg(XQg

t
, x)⊤(KQg

t
+ rI)−1kg(XQg

t
, x).

Proof. We use ϕ(x) to denote the function kg(x, ·), where ϕ : Rd → Hkg maps a finite dimensional
point x ∈ Rd to the RKHS Hkg

. For notation simplicity, we set k(·, ·) = kg(·, ·) in this proof. For
simplicity, we use h⊤1 h2 to denote the inner product of two functions h1, h2 from the RKHS Hkg

.
Therefore, h(x) = ⟨h, k(x, ·)⟩kg

= h⊤ϕ(x) and kg(x, x′) = ⟨kg(x, ·), kg(x′, ·)⟩ = ϕ(x)⊤ϕ(x′),
∀x, x′ ∈ X . We can introduce the feature map

Φt :=
[
ϕ(xτ )

⊤]⊤
τ∈Qg

t
,

we then get the kernel matrix Kt = ΦtΦ
⊤
t , kt(x) = Φtϕ(x) for all x ∈ X and hQg

t
= Φth.

Note that when the Hilbert space Hkg
is a finite-dimensional Euclidean space, Φt is interpreted as

the normal finite-dimensional matrix. In the more general setting where Hkg can be an infinite-
dimensional space, Φt is the evaluation operator Hkg → R|Qg

t | defined as Φth = [h(xτ )]
⊤
τ∈Qg

t
,∀h ∈

H, with Φ⊤
t as its adjoint operator.

Since the matrices (Φ⊤
t Φt + rI) : Hkg

→ Hkg
and (ΦtΦ

⊤
t + rI) : R|Qg

t | → R|Qg
t | are strictly

positive definite and

(Φ⊤
t Φt + rI)Φ⊤

t = Φ⊤
t (ΦtΦ

⊤
t + rI),

we have

Φ⊤
t (ΦtΦ

⊤
t + rI)−1 = (Φ⊤

t Φt + rI)−1Φ⊤
t . (33)

Also from the definitions above (Φ⊤
t Φt + rI)ϕ(x) = Φ⊤

t kt(x) + rϕ(x), and thus from Eq. (33) we
deduce that

ϕ(x) = Φ⊤
t (ΦtΦ

T
t + rI)−1kt(x) + r(Φ⊤

t Φt + rI)−1ϕ(x), (34)

which gives

ϕ(x)⊤ϕ(x) = kt(x)
⊤(ΦtΦ

⊤
t + rI)−1kt(x) + rϕ(x)⊤(Φ⊤

t Φt + rI)−1ϕ(x). (35)

This implies

rϕ(x)⊤(Φ⊤
t Φt + rI)−1ϕ(x) = k(x, x)− kt(x)

⊤(Kt + rI)−1kt(x), (36)
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which is by definition the posterior variance (σgt+1(x))
2. Now we can observe that

|g(x)− kt(x)
⊤(Kt + rI)−1gQg

t
|

=|ϕ(x)⊤g − ϕ(x)⊤Φ⊤
t (ΦtΦ

⊤
t + rI)−1Φtg|

=|ϕ(x)⊤g − ϕ(x)⊤(Φ⊤
t Φt + rI)−1Φ⊤

t Φtg|
=|ϕ(x)⊤(Φ⊤

t Φt + rI)−1(Φ⊤
t Φt + rI)g − ϕ(x)⊤(Φ⊤

t Φt + rI)−1Φ⊤
t Φtg|

=|rϕ(x)⊤(Φ⊤
t Φt + rI)−1g|

≤
∥∥r(Φ⊤

t Φt + rI)−1ϕ(x)
∥∥
kg

∥g∥kg

= ∥g∥kg

√
rϕ(x)⊤(Φ⊤

t Φt + rI)−1rI(Φ⊤
t Φt + rI)−1ϕ(x)

≤Bg

√
rϕ(x)⊤(Φ⊤

t Φt + rI)−1(Φ⊤
t Φt + rI)(Φ⊤

t Φt + rI)−1ϕ(x)

=Bg σgt+1(x),

where the second equality uses Eq. (33), the first inequality is by Cauchy-Schwartz and the final
equality is from Eq. (36). We define ϵQg

t
= g̃Qg

t
− gQg

t
, where g̃τ = g̃(xτ ). We have,

|kt(x)⊤(Kt + rI)−1ϵQg
t
|

=|ϕ(x)⊤Φ⊤
t (ΦtΦ

⊤
t + rI)−1ϵQg

t
|

=|ϕ(x)⊤(Φ⊤
t Φt + rI)−1Φ⊤

t ϵQg
t
|

≤
∥∥∥(Φ⊤

t Φt + rI)−1/2ϕ(x)
∥∥∥
kg

∥∥∥(Φ⊤
t Φt + rI)−1/2Φ⊤

t ϵQg
t

∥∥∥
kg

=
√
ϕ(x)⊤(Φ⊤

t Φt + rI)−1ϕ(x)
√

(Φ⊤
t ϵQg

t
)⊤(Φ⊤

t Φt + rI)−1Φ⊤
t ϵQg

t

=r−1/2σgt+1
(x)
√
ϵ⊤Qg

t
ΦtΦ⊤

t (ΦtΦ⊤
t + rI)−1ϵQg

t

=r−1/2σgt+1(x)
√
ϵ⊤Qg

t
Kt(Kt + rI)−1ϵQg

t

≤r−1/2σgt+1
(x)
√
ϵ⊤Qg

t
ϵQg

t

≤r−1/2α
1/2
t σgt+1

(x),

where the second equality is from Eq. (33), the first inequality is by Cauchy-Schwartz and the last
inequality follows by Eq. (22) and αt = α(ϵ, δ/2, |Qg

t |, t).

|g̃(x)− g(x)|
≤
∣∣(kt(x)⊤(Kt + rI)−1(g̃Qg

t
− gQg

t
)
)
−
(
g(x)− kt(x)

⊤(Kt + rI)−1gQg
t

)
+
(
g̃(x)− kt(x)

⊤(Kt + rI)−1g̃Qg
t

)∣∣
≤|kt(x)⊤(Kt + rI)−1(g̃Qg

t
− gQg

t
)|+ |g(x)− kt(x)

⊤(Kt + rI)−1gQg
t
|+ |g̃(x)− kt(x)

⊤(Kt + rI)−1g̃Qg
t
|

≤σgt+1
(x)
(
2Bg + r−1/2α

1/2
t

)
.

B.3 Efficient Computations of Confidence Range for the Latent Expert function g

Leveraging the representer theorem [77, 107] thanks to the RKHS property, the MLE problem
and confidence range computation problem can be reduced to an O(|Qg

t |)-dimensional, tractable
optimisation problem (37), problem (38) and problem (39).

ℓt(ĝ
MLE
t ) = min

ZQg
t
∈R|Qg

t |

∑
τ∈Qg

t

Zτ1τ −
∑
τ∈Qg

t

log
(
1 + eZτ

)
subject to ZQg

t
K−1

Qg
t
ZQg

t
≤ B2

g ,

(37)

where KQg
t
:= (kg(xτ1 , xτ2))τ1,τ2∈Qg

t
.
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ḡt(x) = max
ZQg

t
∈R|Qg

t |, z∈R, x∈X
z

subject to
[
ZQg

t

z

]⊤
K−1

Qg
t ,x

[
ZQg

t

z

]
≤ B2

g ,

ℓ(ZQg
t
| Dg

t ) ≥ ℓt(ĝ
MLE
t )− α1(ϵ, δ, |Qg

t |, t),

(38)

where KQg
t ,x

:= (kg(x̃, x̃
′))x̃,x̃′∈XQg

t
∪{x}, and ℓ(ZQg

t
| Dg

t ) =
∑

τ∈Qg
t
Zτ1τ −∑

τ∈Qg
t
log
(
1 + eZτ

)
is the LL value when the function value at xτ is Zτ .

g
t
(x) = min

ZQg
t
∈R|Qg

t |, z∈R, x∈X
z

subject to
[
ZQg

t

z

]⊤
K−1

Qg
t ,x

[
ZQg

t

z

]
≤ B2

g ,

ℓ(ZQg
t
| Dg

t ) ≥ ℓt(ĝ
MLE
t )− α1(ϵ, δ, |Qg

t |, t),

(39)

where KQg
t ,x

:= (kg(x̃, x̃
′))x̃,x̃′∈XQg

t
∪{x}, and ℓ(ZQg

t
| Dg

t ) =
∑

τ∈Qg
t
Zτ1τ −∑

τ∈Qg
t
log
(
1 + eZτ

)
is the LL value when the function value at xτ is Zτ .

B.4 Bound Cumulative Standard Deviation over Sample Trajectory

Lemma B.3 (Lemma 4, [22]8).

∑
t∈Qf

T

σft (xt) ≤
√
4(|Qf

T |+ 2)γf
|Qf

T |
= O

(√
|Qf

T |γ
f

|Qf
T |

)
. (40)

Similarly, we have,

∑
t∈Qg

T

σgt (xt) ≤
√

4(|Qg
T |+ 2)γg|Qg

T | = O
(√

|Qg
T |γ

g
|Qg

T |

)
. (41)

B.5 Bound Cumulative Regret

We can then analyze the regret of our algorithm. We use CT to denote the set {t ∈ [T ]|xt = xct}.

RQf
T
=
∑
t∈Qf

T

[f(xt)− f(x⋆)]

=
∑

t∈Qf
T∩CT

[f(xt)− f(x⋆)] +
∑

t∈Qf
T \CT

[f(xt)− f(x⋆)]

=
∑

t∈Qf
T∩CT

[f(xct)− f(x⋆)] +
∑

t∈Qf
T \CT

[f(xut )− f(x⋆)]

8Appears in the arXiv version: https://arxiv.org/pdf/1704.00445.
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For the first part, we have,∑
t∈Qf

T∩CT

[f(xct)− f(x⋆)]

=
∑

t∈Qf
T∩CT

[f(xct)− f
t
(xct) + f

t
(xct)− f(x⋆)]

≤
∑

t∈Qf
T∩CT

[f(xct)− f
t
(xct) + f

t
(xct)− f

t
(x⋆)]

=
∑

t∈Qf
T∩CT

[f(xct)− f
t
(xct) + f

t
(xct)− f

t
(xut ) + f

t
(xut )− f

t
(x⋆)]

≤
∑

t∈Qf
T∩CT

2βftσft(xt) +
∑

t∈Qf
T∩CT

[f
t
(xct)− f

t
(xut )]

≤2βfT
∑

t∈Qf
T∩CT

σft(xt) +
∑

t∈Qf
T∩CT

[f
t
(xct)− f

t
(xut )],

where σft is as given in Eq. (2b), the first inequality follows by Lem. 3.1, the second inequality
follows by Lem. 3.1 and the line 5 of Alg. 1.

Furthermore, we have, ∑
t∈Qf

T∩CT

[f
t
(xct)− f

t
(xut )] (42)

≤
∑

t∈Qf
T∩CT

[f̄t(x
u
t )− f

t
(xut )] (43)

≤
∑

t∈Qf
T∩CT

2βftσft(x
u
t ) (44)

≤
∑

t∈Qf
T∩CT

2βftησft(x
c
t) (45)

=
∑

t∈Qf
T∩CT

2βftησft(xt) (46)

where the first inequality follows by the condition in line 6 of the Alg. 1, the second inequality follows
by the Lem. 3.1, and the third inequality follows by the condition in line 6 of the Alg. 1.

For the second part, we have, ∑
t∈Qf

T \CT

[f(xut )− f(x⋆)] (47)

=
∑

t∈Qf
T \CT

[f(xut )− f
t
(xut ) + f

t
(xut )− f(x⋆)] (48)

≤
∑

t∈Qf
T \CT

[f(xut )− f
t
(xut ) + f

t
(xut )− f

t
(x⋆)] (49)

≤
∑

t∈Qf
T \CT

2βftσft(xt) (50)

≤2βfT
∑

t∈Qf
T \CT

σft(xt), (51)

where the first inequality follows by that f(x⋆) ≥ f
t
(x⋆), the second inequality follows by the

optimality of xut for the problem in line 5 and the Lem. 3.1, and the third inequality follows by the
monotonicity of βft in t.
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Hence,

RQf
T
≤2(2 + η)βfT

∑
t∈Qf

T

σft(xt)

≤2(2 + η)βfT

√
4(|Qf

T |+ 2)γf
|Qf

T |

=O
(
γf
|Qf

T |

√
|Qf

T |
)
.

B.6 Bound Cumulative Queries to Labeler

We can then analyze the cumulative queries to the expert. We notice that, ∀t ∈ Qg
T ,

ḡt(xt)− g
t
(xt) ≥ gthr (52)

Meanwhile, by Lem. B.2,

ḡt(xt)− g
t
(xt) ≤ 4

(
2Bg + r−

1/2√αt

)
σgt(x). (53)

Hence,
gthr ≤ 4

(
2Bg + r−

1/2√αt

)
σgt(x). (54)

Therefore,

Qg
T =|Qg

T | (55)

=
∑
t∈Qg

T

1 (56)

≤ 1

gthr

∑
t∈Qg

T

gthr (57)

≤ 1

gthr

∑
t∈Qg

T

4
(
2Bg + r−

1/2√αt

)
σgt(xt) (58)

≤ 4

gthr

(
2Bg + r−

1/2√αT

) ∑
t∈Qg

T

σgt(xt) (59)

=O
(√

αT γ
g
|Qg

T ||Q
g
T |
)
. (60)

Dividing by
√
|Qg

T |, we obtain, √
|Qg

T | = O(
√
αT γ

g
|Qg

T |). (61)

Hence,

Qg
T = |Qg

T | = O(αT γ
g
|Qg

T |). (62)

By setting ϵ = 1
T , we have

αT = O

(√
|Qg

T | log
TN (Bg, 1/T , ∥ · ∥∞)

δ

)
. (63)

Hence, dividing by
√
|Qg

T | on Eq. (62) again, we obtain,

Qg
T = |Qg

T | = O
((

γg|Qg
T |

)2
log

TN (Bg, 1/T , ∥ · ∥∞)

δ

)
≤ O

(
(γgT )

2
log

TN (Bg, 1/T , ∥ · ∥∞)

δ

)
.

(64)
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C Detailed Discussions on The Significance of Thm 4.1

Order-wise improvement can not be attained under current mild assumption. g may contain
no information (e.g., g = 0) or even adversarial. Even if human expertise is helpful, we can not
guarantee an order-wise improvement either. For example, consider the following g,

g(x) =

{
f(x⋆) + c, if f(x)− f(x⋆) ≤ c,

f(x) otherwise,

where c > 0 is a positive constant. In practice, such a scenario means the human expert has some
rough idea in a near-optimal region but not exactly sure where the exact optimum is. This is common
in practice. In this case, human expert is helpful in identifying the region with f(x) ≤ f(x⋆) + c but
no longer helpful for further optimization inside the region {x ∈ X |f(x) ≤ f(x⋆) + c}. However,
convergence rate is defined in the asymptotic sense. Hence, an order-wise improvement can not be
guaranteed.

Assumption becomes unrealistic if we really want it. Some papers that show theoretical superiority
[2, 6], yet the assumptions are unrealistic. For example, [6] assumed that the human knows the true
kernel hyperparameters while GP is misspecified, and [2] assumed the human belief function g has
better and tighter confidence intervals over the entire domain. We can derive the better convergence
rate of our algorithm than AI-only ones if we use [2] assumption, but this is unlikely to be true in
reality. In fact, our method outperforms these method empirically (see Figure 5). This supports the
superiority based on unrealistic conditions is not meaningful in practice.

Empirical success can be achieved without order-wise improvement on worst-case convergence.
Our assumption is more natural; following [37], we posit humans have better prior knowledge than
GP and are only useful at the beginning as a warm starter. This assumption is widely accepted by
the community and practitioners, which leads to real-world impact (e.g. Nature [42]). The warm-
starting-based papers [36, 37, 44] have been published in reputable venues without such a theory.
In our manuscript, real-world applications also empirically demonstrate that our method not only
improves the convergence of BO, but also maintains robustness despite varying labelling accuracy.

Worst-case convergence and hand-over guarantees matter. We believe that the value of theory
is the worst-case guarantee. To be clear, starting point of human-AI collaborative BO is that the
experts are not currently using BO. The scientific experts do very expensive tasks, which often cost
millions of dollars and weeks to months to test one design (e.g. battery design). They are reluctant to
employ BO due to its opaque and untrustworthy nature. The experts want to be involved in the AI
decision-making process, otherwise they are forced to work as a robot feeding experimental results
to the AI. But, they are also in the middle of trial and error, so their advice is not always reliable.
Our worst-case guarantee assures that at least their involvement does not harm the AI-only results,
and also assures the automation in the later round. Thus, we believe our approach can extend the
applicable range of BO to high-stakes optimisation tasks. Furthermore, our handover guarantee
assures that only limited human labeling effort is needed, which is also meaningful because the
motivation to use BO is to alleviate the tedious human effort in the first place.

D Proof of the Kernel-Specific Bounds in Tab. 1

For the cumulative regret part, we have,

• If the kernel function is linear, γf
|Qf

T |
= O(log |Qf

T |), and thus R|Qf
T | =

O
(√

|Qf
T | log |Q

f
T |
)

.

• If the kernel function is squared exponential, γf
|Qf

T |
= O((log |Qf

T |)d+1), RQf
T

=

O(
√
|Qf

T |(log |Q
f
T |)d+1).

• If the kernel function is Mátern, γf
|Qf

T |
= O

(
|Qf

T |
d

2ν+d log
2ν

2ν+d (|Qf
T |)
)
(
(
ν > d

2

)
),

RQf
T
= O

(
|Qf

T |
2ν+3d
4ν+2d log

2ν
2ν+d (|Qf

T |)
)

.
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To bound the cumulative queries, we have,

1. kg is a linear kernel, then logN (Bg, T
−1, ∥ · ∥∞) = O

(
log 1

ϵ

)
= O (log T ). By Thm. 5

in [84],
γgT = O(log T ).

Hence,
Qg

T = O
(
(log T )2 log T

)
= O

(
(log T )3

)
.

2. kg is a squared exponential kernel, then logN (Bg, T
−1, ∥ · ∥∞) = O

(
(log 1

ϵ )
d+1
)
=

O
(
(log T )d+1

)
(Example 4, [109]). By Thm. 4 in [49], we have,

γgT = O((log T )d+1).

Hence,
Qg

T = O
(
(log T )2(d+1)(log T )d+1

)
= O

(
(log T )3(d+1)

)
.

3. kg is a Matern kernel, then logN (Bg, T
−1, ∥ · ∥∞) = O

(
( 1ϵ )

d/ν log 1
ϵ

)
=

O
(
T d/ν log T

)
(by Thm. 5.1 and Thm. 5.3 in [105]). By Thm. 4 in [49], we have,

γgT = O
(
T

d(d+1)
2ν+d(d+1) log T

)
.

Hence,

Qg
T = O

(
T

2d(d+1)
2ν+d(d+1) (log T )2T

d
ν log T

)
= O(T

2d(d+1)
2ν+d(d+1)T

d
ν (log T )3),

where ν >
d(d+3+

√
d2+14d+17)
4 .

E Theoretical improvement of convergence rate

Algorithm 2 COllaborative Bayesian Optimization with Helpful Labelling Experts (COBOHL).

1: Input and Initialization: function space ball Bg , and uncertainty threshold gthr.
2: Set B1

g = Bg , Qf
0 = ∅, and Qg

0 = ∅.
3: for t ∈ [T ] do
4: Generate xt by solving the constrained auxiliary optimization problem

minx∈X f t(x) subject to g
t
(x) ≤ 0. ▷ Expert-constrained LCB

5: if ḡt(xt)− g
t
(xt) > gthr then ▷ Handover guarantee

6: Query the expert’s label to get the feedback 1t.
7: Update Qg

t = Qg
t−1 ∪ {t} and the posterior confidence set Bt+1

g . Set Qf
t = Qf

t−1.
8: else
9: Evaluate the black-box function at the point xt, and set Qf

t = Qf
t−1 ∪ {t}. Set Qg

t =
Qg

t−1.
10: Update the posterior mean/variance of the objective f .

Here, we give the analysis on the regret of COBOHL,∑
t∈Qf

T

(f(xt)− f(x⋆)) =
∑
t∈Qf

T

(f(xt)− f
t
(xt) + f

t
(xt)− f

t
(x⋆) + f

t
(x⋆)− f(x⋆)) (65)

≤
∑
t∈Qf

T

(f(xt)− f
t
(xt)) (66)

≤
∑
t∈Qf

T

2βftσft(xt) (67)

≤ 2βfT
∑
t∈Qf

T

σft(xt) (68)

= O
(
γf,X

g

|Qf
T |

√
|Qf

T |
)
, (69)
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Table 2: Comparisons between our algorithm with the existing baseline methods.

baselines blackbox
human model?

no-rankability
assumption?

continuous
guarantee?

no-harm
guarantee?

data-driven
trust?

handpver
guarantee?

AV et al. (2022) [11] ✓ ✗ ✗ ✗ ✗ ✗
Hvarfner et al. (2022) [43] ✗ ✗ ✓ ✓ ✗ ✗
Gupta et al. (2023) [39] ✓ ✗ ✓ ✗ ✗ ✗
Khoshvishkaie et al. (2023) [50] ✓ ✗ ✗ ✗ ✗ ✗
Cisse et al. (2023) [24] ✗ ✗ ✗ ✗ ✗ ✗
Adachi et al. (2023) [7] ✓ ✗ ✗ ✓ ✗ ✗
Rodemann et al. (2024) [70] ✓ ✗ ✗ ✗ ✗ ✗
AV et al. (2024) [12] ✓ ✗ ✗ ✗ ✗ ✗
Hvarfner et al. (2024) [42] ✗ ✗ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

where the first inequality follows by the feasibility of xt in the expert-constrained LCB problem and
f
t
(x⋆) ≤ f(x⋆), the maximum information gain is defined over the set X g := {x ∈ X |g(x) ≤ gthr}.

Meanwhile, the regret bound of vanilla LCB has a similar form of O
(
γf,X
|Qf

T |

√
|Qf

T |
)

. Notably,

the regret bound for vanilla LCB has a maximum information gain defined over the region X . For
commonly used kernel functions, the maximum information gain is proportional to the volume of the
set. Since X g ⊂ X , vol(X g) ≤ vol(X ) and the maximum information gain gets reduced by a ratio
of vol(Xg)

vol(X ) . Therefore, the regret bound gets improved by a ratio of vol(Xg)
vol(X ) .

F Estimating norm bound online

By Assumption 2.4, there exists a large enough constant Bg that upper bounds the norm of the
ground-truth latent black-box function g. However, a tight estimate of this upper bound may be
unknown to us in practice, while the execution of our algorithm explicitly relies on knowing a bound
Bg (in Prob. (6), Bg is a key parameter).

So it is necessary to estimate the norm bound Bg using the online data. Suppose our guess is B̂. It is
possible that B̂ is even smaller than the ground-truth function norm ∥g∥. To detect this underestimate,
we observe that, with the correct setting of Bg such that Bg ≥ ∥g∥, we have that by Lemma 3.2 and
the definition of maximum likelihood estimate,

ℓt(ĝ
MLE
t|B̂ ) ≥ ℓt(g) ≥ ℓt(ĝ

MLE
t|B )− α1(ϵ, δ, |Qg

t |, t|B̂),

where ĝMLE
t|B̂ is the maximum likelihood estimate function with function norm bound B̂ and

α1(ϵ, δ, |Qg
t |, t|B̂) is the corresponding parameter as defined in Lemma 3.2 with norm bound B̂. We

also have 2B̂ is a valid upper bound on ∥g∥ and thus,

ℓt(ĝ
MLE
t|2B̂ ) ≥ ℓt(g) ≥ ℓt(ĝ

MLE
t|2B̂ )− α1(ϵ, δ, |Qg

t |, t|2B̂).

Therefore,
ℓt(ĝ

MLE
t|B̂ ) ≥ ℓt(g) ≥ ℓt(ĝ

MLE
t|2B̂ )− α1(ϵ, δ, |Qg

t |, t|2B̂).

That is to say, ℓt(ĝMLE
t|B̂ ) needs to be greater than or equal to ℓt(ĝMLE

t|2B̂ )− α1(ϵ, δ, |Qg
t |, t|2B̂) when

B̂ is a valid upper bound on ∥g∥.

Therefore, we can use the heuristic: every time we find that

ℓt(ĝ
MLE
t|B̂ ) < ℓt(ĝ

MLE
t|2B̂ )− α1(ϵ, δ, |Qg

t |, t|2B̂),

we double the upper bound guess B̂.

G Related Work

We summarized the baseline comparison in terms of five factors in Table 2. Our algorithm is the first
to offer a data-driven trust level no-harm guarantee and a handover guarantee under no rankability
assumption.
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We briefly introduce the baseline methods used in the real-world experiments::

1. AV. et al., NeurIPS 2022 [11]: This algorithm initially proposed the human-AI collaborative
setting. The approach is straightforward: human experts can intervene in the optimization
process if they find the next query location suggested by the vanilla LCB BO to be un-
promising. This method can be described as a ’human as constraint’ approach, where the
BO must adhere to the experts’ recommendations regardless of the quality of their advice.
This approach assumes that human experts are at least better than the vanilla LCB, thus
requiring a high level of trust in the experts. As shown in Figure 5, experts’ input is not
always reliable.

2. Khoshvishkaie et al., ECML 2023 [50]: This setting assumes that the querying budget is
equally divided between human experts and the vanilla LCB BO. This means that once
a point is selected by human experts, the BO will alternately select the next query. This
method can select the vanilla LCB regardless of what the human expert selected, making it
likely to achieve a no-harm guarantee, although no theoretical proof is provided. The trust
level in experts in this method is low, as all expert inputs are treated equally regardless of
their quality. Therefore, while this method performs well in unreliable settings, it is not as
effective when experts are good advisors. To be fair, their work focuses more on imperfect
cases and does not consider scenarios with effective experts.

3. Adachi et al., AISTATS 2024 [7]: This setting assumes that the BO provides two possible
candidates, from which the human selects one. Both candidates have convergence guarantees,
thus ensuring a no-harm guarantee, although their proof is limited to discrete settings.
However, the human must ultimately choose one of the candidates, maintaining a high
level of trust in human experts. They introduced a discounting function that hand-tunes
the decaying rate of trust, gradually generating the same candidates. Although their work
initiated the no-harm guarantee concept, the trust level adjustment is not data-driven and
the proof is limited to discrete cases. To be fair, their main focus is on the explainability
of black-box optimizers, which we did not consider in this work. Their method can be
integrated into the GP surrogate model as a plug-and-play feature, making it easy to extend
our work.

We did not compare against the following papers due to difficulty in aligning assumptions and
similarity.

1. [43, 42, 24]: These works assume that humans can explicitly express their beliefs as a
probability distribution, such as a Gaussian distribution centered at the most promising
location. This assumption is too strong and incompatible with our black-box assumption of
human belief.

2. [39, 12]: These methods are nearly identical to [50]. Therefore, we selected [50] as a
representative work for this pessimistic approach.

3. [70]: This method is almost identical to [11]. Thus, we selected [11] as a representative
work for this pessimistic approach.

H Comparison and Generalization to Other Feedback Forms.

H.1 Other feedback forms
(a) Pinpoint form: [11, 39, 50] adopt this form that the algorithm asks the humans to directly

pinpoint the next query location.
(b) Pairwise comparison: [7] adopts this form that the algorithm presents paired candidates,

and the human selects the preferred one.
(c) Ranking: [12] adopts this form that the algorithm proposes a list of candidates, and the

human provides a preferential ranking.
(d) Belief function: [43, 42] adopt a Gaussian distribution as expert input. Unlike the others,

this form assumes an offline setting where the input is defined at the beginning and remains
unchanged during the optimization. Human experts must specify the mean and variance of
the Gaussian, which represent their belief in the location of the global optimum and their
confidence in this estimation, respectively.
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Figure 6: Different forms of human feedback

H.2 Adaptation

Slight modification can adapt these forms to our method.

(a) Pinpoint form: We can simply replace the expert-augmented LCB in line 4 of Algorithm 1
with the pinpointed candidate.

(b) Pairwise comparison: By adopting the Bradley-Terry-Luce (BTL) model [17], we can
extend our likelihood ratio model to incorporate preferential feedback. This allows us to
obtain the surrogate , while the other parts of our algorithm remain unchanged.

(c) Ranking: Ranking feedback can be decomposed into multiple pairwise comparisons.
Therefore, we can apply the same method as in the pairwise comparison.

(d) Belief function: We can use this Gaussian distribution model as the surrogate.

H.3 Comparison

We demonstrate the adaptation of (a) pinpoint and (d) belief function forms in Fig. 6. The pinpoint
strategy employs a sample from the expert belief function as xc on line 4 in Algorithm 1, while
keeping the remaining lines the same as the original. It performs worse than the original primal-dual
approaches, particularly in later iterations. This is because expert sampling does not incorporate GP
information. Generally, humans excel at exploration in the beginning, while GP excels at finding
precise locations in the later stages. This finding is supported by other literature, such as [48],
involving human expert studies.

In Fig. 6(b), we employed the multivariate normal distribution (MVN) belief model proposed by
[43]. This model represents the human belief function as p̃ = N (x;µ,Σ), where µ is the mean
vector representing the estimated location of the global optimum x∗, and Σ is the covariance matrix,
representing the confidence of the estimation. We use Σ = I, the identity matrix I, as suggested
by [43]. We transform: [0, |2πΣ|−1/2

] → [0, 1], and we use this normalised belief function as the
acceptance probability of a Bernoulli distribution 1 − p at given location x (note that p = 0 is
acceptance). Following [43], we set three levels of beliefs: strong, weak, and wrong. These levels are
established by adjusting the mean vector to be offset from x∗. ‘Strong’ aligns with x∗, ‘wrong’ is the
furthest possible location from x∗, and ‘weak’ is an intermediate location. Our algorithm robustly
converges for any level of trust.

As such, the primary reason we adopted binary labelling is due to its empirical success, as demon-
strated in Fig. 5 and Fig. 6. None of the other formats, including (a) pinpoint form [11, 50] and (b)
pairwise comparison [7], outperforms our method. In the experiments by [7], the authors showed that
(a) pairwise comparison outperforms both (d) belief form [43]. Therefore, it logically follows that
our binary labeling format yields the best performance.

The main reasons why the binary format works better are as follows:

(a) Pinpoint form: The accuracy of pinpointing is generally lower than that of kernel-based
models. Humans excel at qualitative comparison rather than estimating absolute quantities
[47]. Numerous studies [11, 48, 50, 70] have confirmed that manual search (pinpointing) by
human experts only outperforms in the initial stages, with standard BO with GP performing
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better in later rounds. [39] shows that this type of feedback only outperforms when the
expert’s manual sampling is consistently superior to the standard BO. However, such cases
are rare in our examples (e.g., Rosenbrock), and [11, 70] corroborate this conclusion.

(b) Pairwise comparison: This format relies on two critical assumptions: transitivity and
completeness. Transitivity assumes no inconsistencies, which are often referred to as a
"rock-paper-scissors" relationship. However, real-world human preferences frequently
exhibit this issue [20]. Completeness assumes that humans can always rank their preferences
at any given points. In practice, when a user is unsure which option is better, this assumption
does not hold. Our imprecise probability approach avoids these issues by not relying on an
absolute ranking structure [10, 41].

(c) Ranking: Ranking is an extension of pairwise comparison and has been classically re-
searched as the Borda count, which is known not to satisfy all rational axioms. Theoretically,
the Condorcet winner in pairwise comparison is the only method that is known to identify
the global maximum of ordinal utility.

(d) Belief function: This is another form of absolute quantity, which humans are generally not
proficient at estimating. Additionally, the offline nature of this method does not allow for
knowledge updates.

I Potential Extensions for Future Work

I.1 Extension to Time-varying Human Feedback Model

In practice, human’s belief in the black-box function may be influenced by the online evaluation
results of the ground-truth black-box function. To further incorporate such online influence, we need
to model the change of human feedback model.

Simple extension, yet not promising performance gain. The most naïve approach for non-stationary
model is windowing, i.e., forgetting the previous queried dataset. This can be very easy to apply to
our setting, as it simply removes the old data outside the predefined iteration window.

Fig. 7 shows the scenario where the accuracy of human experts’ labelling improves over time, rep-
resented by a = 2(1− exp(−αlr/|Qf

t |)), where αlr controls the learning rate. The non-stationary
model employs windowing, retaining only the most recent w-th data points, with w = 5. The
stationary model does not use windowing, thereby retaining all labelled datasets. The plots represent
the average of 10 runs without standard error for improved visibility. While simple regret showed
slight improvement initially, the performance gain varied depending on αlr. In contrast, the cumula-
tive number of queries |Qg

t | significantly increased due to the increased uncertainty introduced by
windowing.

More sophisticated extension. Another more sophisticated approach is modelling the dynamics
of behavioural change. A potential idea is modelling the human behaviour change as an implicit
online learning process of the latent function g. That is, gt+1 = F (gt, xt, yt), where gt is the human
latent function at step t. The forward dynamics F captures the update of human latent function g
when observing the new data point. One potential F is gradient ascent of log-likelihood as shown in
gt+1 = gt + λ∇g log pg(xt, yt), where pg(xt, yt) is the probability of observing yt at the input xt
given the black-box objective function is g. We can then combine this dynamic with our likelihood
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Table 3: The complete list of hyperparameters and their settings.
hyperparameters initial value data-driven optimisation? tuning method

f kernel hyperparamters BoTorch default ✓ maximising the marginal likelihood
g kernel hyperparamters BoTorch default ✓ copying f kernel values
r in Eq.2b 1e-4 fixed –
γf
|Qf

t |
in Eq.3 – ✓ algorithm using [40]

Bf in Lemma 3.1 standardised (=1) fixed –
σ in Lemma 3.1 σ = r fixed –
δ in Lemma 3.1 0.01 fixed –
βft in Lemma 3.1 1 ✓ using the equation in Lemma 3.1
λt in Eq. 6 1 ✓ using dual update in Eq. 5
ξ in Eq. 5 0.02 fixed –
Bg in Eq. 6 1 ✓ the method in Appendix F
α1 in Eq. 6 0.01 ✓ the method in Appendix F
η in line. 6 in Alg. 1 3 fixed –
gthr in line. 8 in Alg. 1 1e-5 fixed –

ratio model. Since this part requires significantly different analysis and experiments, we leave it as
future work.

I.2 Extension to Adaptive Trust Weight η

In line 6 of Alg. 2, the weight η is fixed. An adaptive η could offer better resilience to adver-
sity. However, even without such a scheme, our no-harm guarantee holds, both theoretically and
empirically.

Adaptation through the posterior standard deviation. Although η is set to be a constant in our
current design of the algorithm, there is still adaptation on trusting human or the vanilla BO algorithm
through the time-varying posterior standard deviation. Intuitively, if originally the expert-augmented
solution xct is trusted more, more samples are allocated to human-preferred region and σt(xct) drops
quickly. Intuitively, if we keep sampling xct and xut ̸= xct , σt(xut ) would finally be larger than ησt(xct)
and we switch to sampling xut .

Choice of η does not need to be very large in practice. Intuitively, η captures the belief on the
expertise level of the human. The more trust we have on the expertise of the human, the larger η we
can choose. But larger η increases the risk of higher regret due to potential over-trust in adversarial
human labeler. In our experience, η does not need to be very large. Indeed, η = 3 already achieves
superior performance in our experiment (see Fig. 3).

I.3 Extension to Different Acquisition Function

Our algorithm can be easily extended to other acquisition functions. For example, we can indeed use
similar idea to extend expected improvement (EI) acquisition function to human constrained expected
improvement (HCEI) to generate xct .

xct ∈ argmax
x∈X

P(x is accepted by human)EI(x). (70)

J Experiments

J.1 Hyperparameters

We summarized the comprehensive list of hyperparameters used in this work and their settings
in Table 3. Most of these are standard in typical GP-UCB approaches. The newly introduced
hyperparameters are primarily tunable in a data-driven manner, and we provided a sensitivity analysis
in the experiment section for those that are not.
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J.2 Synthetic Function Details

J.2.1 Task Definitions

Ackely Ackley funciton is defined as:

f(x) := −a exp

−b
√√√√1

d

d∑
i=1

x2i

− exp

[
1

d

d∑
i=1

cos(cxi)

]
+ a+ exp(1) (71)

where a = 20, c = 2π, d = 4. We take the negative Ackley function as the objective of BO to make
this optimisation problem maximisation. This is a 4-dimensional function bounded by x ∈ [−1, 1]d.
The global optimum is x∗ = [0, 0, 0, 0] and f(x∗) = 0.

Hölder Table Hölder Table funciton is defined as:

f(x) :=

∣∣∣∣∣ sin(x1) cos(x2) exp
(∣∣∣∣∣1−

√
x21 + x22
π

∣∣∣∣∣
) ∣∣∣∣∣ (72)

where xi is the i-th dimensional input. This is a 2-dimensional function bounded by x ∈ [0, 10]d.
The global optimum is x∗ = [8.05502, 9.66459] and f(x∗) = 19.2085.

Rastringin Rastringin function is defined as:

f(x) := 10d

d∑
i=1

[
x2i − 10 cos(2πxi)

]
(73)

where xi is the i-th dimensional input. This is a 2-dimensional function bounded by x ∈
[−5.12, 5.12]d. The global optimum is x∗ = [0, 0] and f(x∗) = 0.

Michalewicz Michalewicz funciton is defined as:

f(x) :=

d∑
i=1

sin(xi) sin
2m

(
ix2i
π

)
(74)

where xi is the i-th dimensional input and m = 10. This is a 5-dimensional function bounded by
x ∈ [0, π]d. The global optimum is f(x∗) = −4.687658.

Rosenbrock Rosenbrock funciton is defined as:

f(x) :=

d−1∑
i=1

[
100(xi+1 − x2i )

2 + (xi − 1)2
]

(75)

where xi is the i-th dimensional input. This is a 3-dimensional function bounded by x ∈ [−5, 10]d.
The global optimum is x∗ = [1]d and f(x∗) = 0.

J.2.2 Computational time and elicitation efficiency

Figure 8 presents the comprehensive experimental results, including overhead and cumulative queries.
Overhead refers to the wall-clock time in seconds required to generate the next query location. While
the time taken to query the objective function is excluded, the time to query human (or synthetic)
experts is included. Our overhead is the largest among the simple baselines; however, an average
of around 10 seconds per query is reasonable when compared to more computationally expensive
algorithms, such as information-theoretic acquisition functions, which typically require several hours
per query. In most experiments, we observe a plateau in cumulative queries, indicating a handover
guarantee. In the case of the Michalewicz function, a plateau has not yet been reached due to its
high-dimensional nature. Nevertheless, we observe convergence acceleration in both simple and
cumulative regrets.
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Figure 8: Simple and cumulative regrets, overhead, and cumulative queries for synthetic experiments.
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J.2.3 Comprehensive check for no-harm guarantee

We examine the no-harm guarantee by extending the iterations to confirm that our algorithm can
converge at a rate comparable to the vanilla LCB. We tested with the two adversarial cases; (1)
varying feedback accuracy a ∈ {−2,−1, 0, 1, 2} for the fixed trust weight η = 3 and (2) varying
trust weights η ∈ {3, 5, 10, 100} for the fixed accuracy a = −2. Our algorithm converges to the same
regret as the vanilla LCB over multiple iterations in both cases. We observed saturation behavior,
where the convergence drop starts at similar locations among larger η, indicating that the no-harm
guarantee is assured regardless of how large η becomes. Particularly, the convergence curves of
η = 10 and η = 100 are almost identical, supporting the saturation perspective.

J.3 Human experiment details

J.3.1 Task definitions

The task involves identifying the optimal electrolyte material combination to maximize ionic con-
ductivity in lithium-ion batteries. Ionic conductivity is crucial for reducing internal resistance,
which is essential for fast charging. Slow charging remains one of the biggest challenges for the
widespread adoption of electric vehicles. Therefore, finding the best electrolyte combination is crucial
to advancing electric vehicle development and realizing a sustainable society.
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In our study, we considered four types of electrolyte materials. For demonstration purposes, we
did not conduct physical experiments. Instead, we utilized an open dataset and fitted functions to
interpolate between data points, creating a continuous search space. Experiments were then performed
on this synthetic data using software and four human experts. In real-world development, researchers
and engineers synthesize these materials, which is expensive, making the expert’s labeling process
significantly cheaper than objective queries.

Li+ standard design The first task involves the EC-DMC-EMC-LiPF6 system [26, 7], where EC,
DMC, and EMC are ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate, respectively,
and LiPF6 is lithium hexafluorophosphate. Ionic conductivity depends on both lithium salt molarity
and cosolvent composition. Using the dataset from [26], we fitted the Casteel-Amis equation [19]
and extended it to a continuous space. The input features are (1) LiPF6 molarity, (2) DMC vs.
EMC cosolvent ratio, and (3) EC vs. carbonates cosolvent ratio, with inputs bounded as x1 ∈ [0, 2],
x2 ∈ [0, 1], and x3 ∈ [0, 1]. The output is generated by adding i.i.d. zero-mean Gaussian noise with
a variance of 1 to the noiseless function. We take the negative of the ionic conductivity in log mS/cm
as the minimization objective.

Li+ methyl-acetate The second task involves the MA-DMC-EMC-LiPF6 system [56, 7], with MA
being methyl acetate. Using the dataset from [56], we fitted the Casteel-Amis equation and extended
it to continuous space. The input features are (1) LiPF6 molarity, (2) DMC vs. EMC cosolvent
ratio, and (3) MA vs. carbonates cosolvent ratio, with inputs bounded as x1 ∈ [0, 2], x2 ∈ [0, 1],
and x3 ∈ [0, 1]. The output is generated by adding i.i.d. zero-mean Gaussian noise with a variance
of 1 to the noiseless function. We take the negative of the ionic conductivity in log mS/cm as the
minimization objective.

Li+ polymer-nanocomposite The third task involves the PEO-LLZTO nanocomposite elec-
trolyte system [108], where PEO is polyethylene oxide, and LLZTO is lithium garnet
(Li6.4La3Zr1.4Ta0.6O12) nanoparticles. Using the dataset from[108], we fitted a GP model and
extended it to continuous space. The input features are (1) PEO volume %, (2) LLZTO volume %,
and (3) LLZTO particle size in micrometers, with inputs bounded as x1 ∈ [70, 95], x2 ∈ [5, 30], and
x3 ∈ [0.04, 10]. The output is generated by adding i.i.d. zero-mean Gaussian noise with a variance
of 1 to the noiseless function. We take the negative of the ionic conductivity in log mS/cm as the
minimization objective.

Li+ Ionic liquid The fourth task involves the bmimSCN-LiClO4-LiTFSI ionic liquid [72], where
bmimSCN is 1-butyl-3-methylimidazolium thiocyanate, LiClO4 is lithium perchlorate, and LiTFSI is
lithium bis(trifluoromethanesulfonyl)imide. Using the dataset from [72], we fitted a GP model and
extended it to continuous space. The input features are (1) LiClO4 molarity, (2) LiTFSI molarity,
and (3) bmimSCN molarity, with inputs bounded as x1 ∈ [0, 4], x2 ∈ [0, 1.5], and x3 ∈ [3, 5]. The
output is generated by adding i.i.d. zero-mean Gaussian noise with a variance of 1 to the noiseless
function. We take the negative of the ionic conductivity in log mS/cm as the minimization objective.

J.4 How Do Human Experts Reason?

We explore how experts reason through these optimization tasks. Ionic conductivity is roughly
estimated by the product of movable ion density and diffusivity, as described by the Nernst-Einstein
equation. Experts base their evaluations on this relationship.

Li+ standard design In this system, EC plays a crucial role in both factors. LiPF6 provides movable
ions (Li+ and PF−

6 ), but these ions are not mobile in their raw state due to strong electrostatic forces.
EC, a highly polarized but non-charged solvent, dissolves LiPF6 through solvation. Increasing EC
concentration can raise movable ion density, but EC’s high viscosity slows diffusivity, creating a
convex curve. Experts generally agree that the global maximum is around 30% EC and 1 M LiPF6,
but the optimal EMC/DMC ratio remains uncertain. EMC and DMC are similar, with EMC being
larger and asymmetric, and DMC being smaller and symmetric. Smaller molecules tend to be more
diffusive, so a higher DMC ratio is expected to be better, although the asymmetric structure of EMC
could disrupt higher-order solvation networks, contributing to diffusivity.
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In summary, experts vaguely know the whole function shape and possible global optimum location
for two variables, yet others are unknown.

Li+ methyl-acetate his task involves replacing EC with MA from the first task, making the overall
system similar. However, MA is an unusual material, and none of the participants are familiar with it.
We will explain how experts reasoned this change in the optimization task.

EC plays a central role in dissolving LiPF6, increasing movable ion density, although it is viscous.
While no one knows methyl acetate, it can be inferred that it also dissolves LiPF6. The challenge lies
in determining its polarization ability and viscosity. EC is a planar molecule with a five-membered
ring, resembling a ‘small sheet magnet’ with strong magnetic power but easy stacking. Conversely,
MA is a small, non-ring-structured, asymmetric molecule. This asymmetry prevents MA molecules
from stacking, enhancing diffusivity. However, the asymmetry also reduces polarization, leading to a
weaker solvation effect and lower movable ion density.

Thus, MA has a mix of positive and negative effects, making it difficult for experts to predict the exact
shape of the convex curve. Nonetheless, in most "less viscous" solvent systems, the peak typically
occurs around 1.5 M of LiPF6. Experts can roughly estimate this position, and this estimation is
fairly accurate, as the true position is at 1.35 M.

Li+ polymer-nanocomposite This task is completely different from the previous two tasks. Our
electrolyte is now solid-state rather than liquid, so the Nernst-Einstein equation may not be applicable.
However, the core idea remains the same. PEO is a framework material without ionic conductivity,
whereas LLZTO has ionic conductivity. Generally, a higher LLZTO content should result in greater
conductivity. Other factors are less certain.

We can anticipate the effects in both directions. Smaller particle sizes might be better because they
distribute more evenly within the PEO, increasing ionic conductive paths. However, smaller particles
might also be worse due to increased grain boundaries and aggregation caused by electric forces.
Thus, most experts expected a convex relationship with particle size and a monotonic increase with
LLZTO ratio.

In reality, experimental results showed that conductivity improved monotonically with smaller particle
sizes and displayed a convex relationship with LLZTO volume. Therefore, the experts’ advice was
somewhat inaccurate.

Looking back, experts were partially correct. Aggregation did create the convex shape in LLZTO
volume ratio, indicating their understanding of the phenomenon. However, they did not identify the
correct input dimension where aggregation mattered. For particle size, the thorough mixing procedure
with ball milling used in the dataset prevented aggregation, leading to misconceptions about the
function shape.

Na+ Ionic liquid This task is completely different from the previous tasks. Although our electrolyte
is liquid, all materials are ionically conductive. As the name suggests, ionic liquids are special
materials that can dissolve themselves without the need for a cosolvent. Consequently, the movable ion
density factor remains almost unchanged, as all components are conductive regardless of composition.
Therefore, diffusivity becomes the dominant factor. Diffusivity primarily depends on two factors:
molecule size and electric interaction. Smaller molecules are generally more mobile, but they also
have stronger electric interactions when the charge is the same (all ions in this system are monovalent).

This dual dependence leads to different expectations: if size is the dominant factor, smaller molecules
(like LiCl4) are expected to perform best. Conversely, if electric interaction is dominant, the results
will differ.

Most experts anticipated a monotonic change in all dimensions, expecting both LiCl4 and LiTFSI to
show increased performance due to their smaller size compared to bmimSCN. However, experimental
results showed a double peak shape for LiTFSI vs. bmimSCN and a convex shape for LiCl4 and
bmimSCN. Thus, the experts’ advice was inaccurate. The real physical phenomena were more
complex than initially thought, with electric interactions playing a more dominant role.
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Figure 10: Simple and cumulative regrets, overhead, and cumulative queries for real-world experi-
ments.

J.4.1 Computational time and elicitation efficiency

Figure 10 illustrates the full experimental results, including the best observed values maxY|Qf
T |,

overhead, and cumulative queries Qg
t . The overhead definition remains consistent with that in the

synthetic experiments. Note that these experiments include only four human trials, resulting in
noisier data compared to the synthetic experiments, which used 10 random seeds. The overhead
for our method and the baselines is approximately the same, around 10 seconds per query. This is
manageable compared to the significantly slower methods, such as information-theoretic acquisition
functions, which take several hours per query.

Regarding cumulative queries, only our method demonstrates a handover guarantee. While baseline
methods continue to request human intervention even as the experiments conclude, our method stops
requesting input midway through the experiments, thereby freeing the human expert from the task.
Our approach allows for more effective input from experts in cases where their advice is beneficial
and reduces input in unreliable cases. In contrast, the baselines request input regardless of the quality
of the advice. Notably, the method described in [11] increases the frequency of requests when experts
provide incorrect information. This occurs because disagreements between the surrogate f and
human beliefs prompt human experts to intervene, aiming to prevent the BO from proceeding in the
wrong direction. Unfortunately, this intervention can act as an adversarial response. In contrast, our
algorithm avoids such scenarios through active learning constraints (as highlighted in line 6), thus
achieving a no-harm guarantee in unreliable cases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Elicitation efficiency and no-harm guarantee are proved in Theorem 4.1.
Experiments shows empirical efficacy in Figures 3, 4, 5, 8, 10.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Conclusion and Limitation section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions 2.1-2.6, Proofs in Appendices A-C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental section, Appendix J, open-sourced code (anonymous) https:
//github.com/ma921/COBOL/
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

42

https://github.com/ma921/COBOL/
https://github.com/ma921/COBOL/


Answer: [Yes]

Justification: Provide data and code on Anonymised repository https://github.com/
ma921/COBOL/

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See experimental section and Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments report the ± standard errors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See experimental section and footnote 2. See also Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is pure algorithm development.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Conclusion and Limitation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Our paper is a pure algorithm study for blackbox optimization for small, lower
dimensional tasks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See experimental section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documents are available on Anonymised repository https://anonymous.
4open.science/r/COBOL-9B8B/
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: See experimental section and Appendix J.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: While we do not have IRB approval, our institution has reviewed and approved
our study as low-risk followed by the protocol indicated in https://researchsupport.
admin.ox.ac.uk/governance/ethics/apply, considering that all experiments involve
running software on open-source datasets. According to the NeurIPS 2024 ethics guidelines,
adherence to existing protocols at the authors’ institution is required, with IRB approval
being just one form of such protocols. Our institution follows its own policy, and we adhered
to the standard procedure.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

46

https://anonymous.4open.science/r/COBOL-9B8B/
https://anonymous.4open.science/r/COBOL-9B8B/
https://researchsupport.admin.ox.ac.uk/governance/ethics/apply
https://researchsupport.admin.ox.ac.uk/governance/ethics/apply


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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