
Published as a conference paper at ICLR 2025

SOAP: IMPROVING AND STABILIZING SHAMPOO US-
ING ADAM FOR LANGUAGE MODELING

Nikhil Vyas∗
Harvard University

Depen Morwani∗
Harvard University

Rosie Zhao†
Harvard University

Itai Shapira†
Harvard University

David Brandfonbrener
Kempner Institute at Harvard University

Lucas Janson
Harvard University

Sham Kakade
Kempner Institute at Harvard University

ABSTRACT

There is growing evidence of the effectiveness of Shampoo, a higher-order pre-
conditioning method, over Adam in deep learning optimization tasks. How-
ever, Shampoo’s drawbacks include additional hyperparameters and computa-
tional overhead when compared to Adam, which only updates running averages
of first- and second-moment quantities. This work establishes a formal connec-
tion between Shampoo (implemented with the 1/2 power) and Adafactor — a
memory-efficient approximation of Adam — showing that Shampoo is equivalent
to running Adafactor in the eigenbasis of Shampoo’s preconditioner. This insight
leads to the design of a simpler and computationally efficient algorithm: ShampoO
with Adam in the Preconditioner’s eigenbasis (SOAP). With regards to improving
Shampoo’s computational efficiency, the most straightforward approach would be
to simply compute Shampoo’s eigendecomposition less frequently. Unfortunately,
as our empirical results show, this leads to performance degradation that worsens
with this frequency. SOAP mitigates this degradation by continually updating the
running average of the second moment, just as Adam does, but in the current
(slowly changing) coordinate basis. Furthermore, since SOAP is equivalent to
running Adam in a rotated space, it introduces only one additional hyperparam-
eter (the preconditioning frequency) compared to Adam. We evaluate SOAP on
language model pre-training, with experiments on 360m and 660m sized models.
In the large batch regime, SOAP reduces the number of iterations by over 40% and
wall clock time by over 35% compared to AdamW, with approximately 20% im-
provements in both metrics compared to Shampoo. An implementation of SOAP
is available at https://github.com/nikhilvyas/SOAP.

1 INTRODUCTION

With ever-increasing costs of LLM training, optimization efficiency has become a central question
in the field of deep learning. Several recent works have tackled this challenge by addressing both
the memory (Zhao et al., 2024a; Wang et al., 2024) and compute (Anil et al., 2020) footprint of
optimizers. In Algoperf (Dahl et al., 2023), a recent optimization efficiency benchmark, Sham-
poo (Gupta et al., 2018a), a second-order algorithm, outperformed all other submissions, including
Adam (Kingma & Ba, 2015), reducing wall-clock time by 28% (MLCommons, 2024). Higher-
order preconditioning has also been applied in large-scale training runs, such as Gemini-1.5 Flash
(Gemini Team, 2024).

The success of Shampoo has drawn increasing attention from the deep learning community. Several
works have explored ways to scale Shampoo by improving its memory and compute efficiency

∗Equal contribution. Correspondence to nikhil@g.harvard.edu.
†Equal contribution.

1

https://github.com/nikhilvyas/SOAP

Published as a conference paper at ICLR 2025

(Wang et al., 2024; Anil et al., 2020; Shi et al., 2023). Other research (Morwani et al., 2024) has
examined the theoretical foundations of Shampoo and proposed minor adjustments (such as using
power 1/2 rather than 1/4) that align with prior empirical findings (Anil et al., 2020). Moreover,
Morwani et al. (2024) also showed that Shampoo with the aforementioned modifications is close to
the optimal Kronecker approximation of the Adagrad (Duchi et al., 2011b) optimizer.

Our first contribution is demonstrating that the variant of Shampoo proposed by Morwani et al.
(2024) is equivalent1 to running Adafactor (Shazeer & Stern, 2018; Zhai et al., 2022) in the eigenba-
sis provided by Shampoo’s preconditioner. This interpretation of Shampoo connects it to a broader
family of methods (e.g. (George et al., 2018)) that design second-order algorithms by running a first-
order method in the eigenbasis provided by a second-order method. Building on this insight, we can
explore a broader design space for combining first and second order methods. Many of our design
choices are a synthesis of conceptual ideas from prior works of George et al. (2018); Anil et al.
(2020); Morwani et al. (2024) as well as implementation ideas from works of Wang et al. (2024);
Zhao et al. (2024a).

Explicitly, we study SOAP (ShampoO with Adam in the Preconditioner’s eigenbasis) an algorithm
that runs AdamW in the eigenbasis provided by Shampoo. Our main contributions are as follows:

• We make a formal connection between the Shampoo and the Adafactor algorithm. This
insight leads us to consider the SOAP algorithm, which runs AdamW in the preconditioned
space provided by Shampoo.

• SOAP outperforms both Shampoo and Adam in language model pre-training tasks with
model sizes 360m and 660m, even after extensive hyperparameter tuning of Shampoo.

• SOAP reduces the number of hyperparameters compared to Shampoo, resulting in only one
additional hyperparameter compared to AdamW: preconditioning frequency.

• SOAP demonstrates greater robustness to large preconditioning frequency compared to
Shampoo on language model pre-training tasks.

We should also note that while similar algorithmic variants have been discussed in the literature (e.g.
see the appendix of Anil et al. (2020)), we are the first to systematically evaluate it.

Organization: In Section 3, we discuss related works. In Section 4, we start by showing an equiv-
alence between Shampoo (with exponent 1/2) and running Adafactor in the eigenspace given by
Shampoo, then with this equivalence as the starting point we describe SOAP. In Section 5, we pro-
vide our experimental methodology and in Section 6, we compare the performance of AdamW,
Shampoo and SOAP on language modeling tasks. In Appendices B.2 and B.3 we discuss the the
space and time complexity of SOAP and how it can be improved. In Appendix C we show that
efficiency benefits of SOAP over AdamW are maintained for longer duration runs where #tokens =
100 × model size.

2 NOTATION AND BACKGROUND

We denote the weight matrix of a neural network layer by W ∈ Rm×n, and the corresponding
gradient by G ∈ Rm×n. At a given time step t, these are denoted as Wt and Gt, respectively. For a
batch of inputs at time t, denoted by Bt, the loss and its gradient evaluated at Wt are represented as
ϕBt(Wt) and ∇WϕBt(Wt), respectively.

Adagrad (Duchi et al., 2011b) is an online learning second-order algorithm that maintains a precon-
ditioner H ∈ Rmn×mn. If the vectorized gradient at time t is denoted by gt (i.e., gt = vec(Gt) ∈
Rmn), then the update of the preconditioner and the vectorized weights wt ∈ Rmn with learning
rate η is given by

Ht = Ht−1 + gtg
⊤
t ; wt = wt−1 − ηH

−1/2
t gt

Adam (Kingma & Ba, 2015), a widely used first-order optimization algorithm in deep learning is a
diagonal approximation of Adagrad. It maintains an exponential moving average of the gradients

1Given this connection, the results of Morwani et al. (2024) can be interpreted as showing that the eigenbasis
provided by Shampoo’s preconditioner is close to the “optimal” basis for running Adafactor.

2

Published as a conference paper at ICLR 2025

1600 3200 4800 6400
Training Steps

2.6

2.7

2.8

2.9

3.0

3.1

3.2

Tr
ai

n
Lo

ss

660m, 2m batch size
 Preconditioning Frequency=10

0.25 0.5 0.75 1.0
Wall Time (scaled by AdamW)

2.6

2.7

2.8

2.9

3.0

3.1

3.2

660m, 2m batch size
 Preconditioning Frequency=10

1 3 10 32 100
Preconditioning Frequency

2.82

2.84

2.86

2.88

2.90

2.92

2.94

Fin
al

 Te
st

 L
os

s

360m, 2m batch size

AdamW Shampoo SOAP SOAP (shorter LR schedule)

Figure 1: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedSham-
poo (Shi et al., 2023) implementation) and SOAP. In left and middle figures, Shampoo and SOAP
use a preconditioning frequency of 10. The ”shorter LR schedule” plot is where we tuned the cosine
decay so as to achieve the same terminal performance as AdamW. There we observe a ≥ 40% re-
duction in the number of iterations and a ≥ 35% reduction in wall clock time compared to AdamW,
and approximately a 20% reduction in both metrics compared to Shampoo. In the right figure we
ablate preconditioning frequency and observe a slower degradation of performance of SOAP as
compared to Shampoo. See Section 6 for a discussion of experimental results and ablation of batch
size and Section 5 for experimental methodology.

Gt (denoted as Mt) and of element-wise squared gradients G2
t (denoted as Vt) for a given weight

matrix W . Its update rule with learning rate η is given by

Wt ←Wt−1 − η
Mt√
Vt

,

where the division is performed element-wise.

Adafactor (Shazeer & Stern, 2018; Zhai et al., 2022), a variant of Adam, replaces Vt with its best
rank-1 approximation V ′

t to reduce memory usage. While the original Adafactor paper (Shazeer &
Stern, 2018) proposed additional modifications, such as changes to the learning rate schedule, we
focus on the version of Adafactor proposed in recent works (Zhai et al., 2022; Zhao et al., 2024c),
whose update with learning rate η is given by

Wt ←Wt−1 − η
Mt√
V ′
t

.

Shampoo (Gupta et al., 2018b) is a second-order optimization algorithm that approximates Adagrad
and maintains two preconditioners, Lt ∈ Rm×m and Rt ∈ Rn×n, for a given weight matrix W ∈
Rm×n. The updates for the preconditioners and the weights with learning rate η are as follows:

Lt ← Lt−1 +GtG
T
t ; Rt ← Rt−1 +GT

t Gt; Wt ←Wt−1 − ηL
−1/4
t GtR

−1/4
t .

In practice, Shampoo is implemented with several other modifications such as layerwise learning
rate grafting and exponents other than −1/4. We will use the DistributedShampoo (Shi et al., 2023)
implementation which has these variations available as hyperparameters.

3 RELATED WORK

We begin by discussing works that are closely related, including George et al. (2018); Anil et al.
(2020) and Zhao et al. (2024a). Subsequently, we cover extended related works.

KFAC (Martens & Grosse, 2015) is a well-known second-order optimization algorithm designed
for neural networks. E-KFAC (George et al., 2018) builds upon KFAC in a manner analogous to our

3

Published as a conference paper at ICLR 2025

extension of Shampoo, introducing a diagonal preconditioner that is updated between KFAC inver-
sion steps. However, E-KFAC’s algorithm is not identical to running Adam in KFAC’s eigenbasis,
as the diagonal preconditioner is not Adam.

Anil et al. (2020) introduced several algorithmic and numerical improvements to develop a practical
and scalable version of Shampoo (Gupta et al., 2018b). Notably, they empirically found that using an
exponent of 1/2 outperforms the original exponent of 1/4 in Shampoo. Of particular interest to our
work is Appendix B of Anil et al. (2020), where, inspired by E-KFAC, they describe an algorithm
that is essentially equivalent to SOAP for 2D layers. However, no experiments were provided, and
the authors claimed that unpublished experiments showed no empirical improvement over Shampoo.
This discrepancy between our findings may be due to some of the implementation details of SOAP.

GaLore (Zhao et al., 2024a) was recently proposed as a method to reduce Adam’s memory footprint
by maintaining momentum in a low-rank subspace derived from the singular value decomposition
(SVD) of the gradients. Their algorithm’s full-rank version bears similarity to ours, with some
notable distinctions. Firstly, their projection subspace is determined by the SVD of the current
gradient, while we maintain an exponential moving average of GGT and GTG. Secondly, we retain
momentum in the original space and project it onto the preconditioned space, whereas they maintain
it in the preconditioned space and do not rotate it each time the preconditioned space is updated.
In Appendix D, we study GaLore’s performance and find that our modifications are necessary for
improving upon Shampoo. Moreover, their method only projects one side of a layer using the
eigenbasis while using the identity basis on the other side. We examine the impact of one-sided
projection for SOAP in Appendix B.1.

Diagonal Preconditioning based Optimizers: Other than AdamW, there are other optimizers
which involve diagonal preconditoning such as Lion (Chen et al., 2023), Sophia (Liu et al., 2024),
and Adafactor (Shazeer & Stern, 2018). Recent works of Kaddour et al. (2023); Zhao et al. (2024c)
showed that these optimizers perform comparably to AdamW for LLM pretraining but do not sur-
pass it. This suggests the need to explore non-diagonal preconditioners. We discuss prior works on
non-diagonal preconditioners below.

Second-Order Optimization: Research on second-order optimization in deep learning is generally
divided into two categories: Hessian-free methods and methods that estimate the Hessian.

Hessian-Free Methods: Hessian-free approaches (Martens, 2010; Martens & Grosse, 2015) op-
timize without explicitly computing the Hessian matrix, instead employing iterative techniques to
approximate the Newton step. Other recent works (Li, 2018; 2024; Pooladzandi & Li, 2024) have
focused on designing iterative preconditioners to improve the convergence specifically for stochastic
optimization algorithms.

Hessian Estimation Methods: These methods maintain an efficient approximation of the Hessian
for neural networks. KFAC (Martens & Grosse, 2015) and Shampoo (Gupta et al., 2018b) are two
widely recognized methods in this area.

KFAC (Martens & Grosse, 2015) was one of the first approaches to go beyond diagonal precondi-
tioners in neural networks, demonstrating that a layer-wise Kronecker-factored preconditioner ap-
proximates the layer-wise Hessian in multi-layer perceptrons (MLPs). Subsequent works (Martens
et al., 2018; Osawa et al., 2019) extended KFAC to other architectures. Recent research (George
et al., 2018; Gao et al., 2021) has further improved trace and diagonal estimates for KFAC. Efforts
to scale up KFAC (Ba et al., 2017; Puiu, 2022; 2023; Eschenhagen et al., 2023) have focused on
making the inversion step more efficient or enhancing distributed implementations.

Shampoo (Gupta et al., 2018b), another second-order optimization algorithm, is motivated by the
online learning algorithm Adagrad (Duchi et al., 2011a). Shampoo also employs a layer-wise
Kronecker-factored preconditioner. A recent distributed implementation of Shampoo (Shi et al.,
2023) won an optimization efficiency benchmark (Dahl et al., 2023), highlighting the practical util-
ity of second-order methods in deep learning. Few recent works (Duvvuri et al., 2024; Morwani
et al., 2024) have provided theoretical advancements on top of Shampoo. Other works (Anil et al.,
2020; Peirson et al., 2022; Lin et al., 2024; Wang et al., 2024) have proposed various strategies to
improve Shampoo’s scalability. We defer a comparison of SOAP with these methods to future work.

4

Published as a conference paper at ICLR 2025

4 ALGORITHM

4.1 THEORY

We begin by describing an equivalence between Shampoo and running Adafactor in the eigenbasis
of the Shampoo preconditioner. For simplicity we omit momentum but the equivalence also holds
with momentum. For this equivalence we use Shampoo with the following modifications from the
original Shampoo optimizer (Gupta et al., 2018b):

1. We use power 1/2 instead of power 1/4. This was already recommended in practical
implementations (Anil et al., 2020; Shi et al., 2023) and a theoretical connection between
optimal Kronecker approximation of Adagrad (Duchi et al., 2011b) preconditioner and
Shampoo with power 1/2 was established in Morwani et al. (2024).

2. We also use the scalar correction to per layer learning rates described in Ren & Goldfarb
(2021); Morwani et al. (2024).

3. Instead of the running average of L and R across time steps, we use dataset averages.

With these changes in place (first occurrence of these changes is highlighted in red in the algorithm
below) we formally define the two algorithms whose equivalence we show in Algorithms 1 and 2.

Algorithm 1 Single step of idealized Shampoo with power 1/2.
1: Sample batch Bt.
2: Gt ∈ Rm×n ← −∇WϕBt

(Wt)
3: L← EB [GBG

T
B] {Where the expectation is over a random batch B.}

4: R← EB [G
T
BGB]

5: Ĥ ← L⊗R/Trace(L)
6: Wt ←Wt−1 − ηĤ−1/2Gt = Wt−1 − ηL−1/2GtR

−1/2/Trace(L)−1/2

Algorithm 2 Single step of idealized Adafactor in Shampoo’s eigenspace.
1: Sample batch Bt.
2: Gt ∈ Rm×n ← −∇WϕBt

(Wt)
3: L← EB [GBG

T
B]

4: R← EB [G
T
BGB]

5: QL ← Eigenvectors(L)
6: QR ← Eigenvectors(R)
7: G′

t ← QT
LGtQR

8: {Idealized version of code for Adafactor taking G′
t to be the gradient}

9: G′
Bt
← QT

LGBt
QR

10: A = EB [G
′
B ⊙G′

B]1m where G′
B = QT

LGBQR

11: C = 1⊤
nEB [G

′
B ⊙G′

B]

12: V̂t =
ACT

1⊤
n A
{Elementwise division}

13: G′′
t ←

G′
t√

V̂t+ϵ
{Elementwise division and square root}

14: G′′′
t ← QT

LG
′′
tQR {Projecting back to original space}

15: Wt ←Wt−1 − ηG′′′
t

Claim 1. Algorithms 1 and 2 are equivalent.

Proof. Consider Gt in the basis created after rotating by QL, QR i.e. G′
t = QT

LGtQR. Let the
eigenvalues of EBt [GBtG

T
Bt
] and EBt [G

T
Bt
GBt] be given by λ1, ..., λm and µ1, ..., µn respectively.

Algorithm 1 scales the i, j coordinate by (λiµj/(
∑

i λi))
−1/2, while Algorithm 2 scales them by

(AiCj/(
∑

i Ai))
−1/2. We now show that Ai = λi, an analogous argument shows Cj = µj .

5

Published as a conference paper at ICLR 2025

Algorithm 3 Single step of SOAP for a m × n layer. Per layer, we maintain four matrices:
L ∈ Rm×m, R ∈ Rn×n and V,M ∈ Rm×n. For simplicity we ignore the initialization and other
boundary effects such as bias correction. Hyperparameters: Learning rate η, betas = (β1, β2), ep-
silon ϵ, and preconditioning frequency f .
An implementation of SOAP is available at https://anonymous.4open.science/
status/SOAP-F93B.

1: Sample batch Bt.
2: G ∈ Rm×n ← −∇WϕBt(Wt)
3: G′ ← QT

LGQR

4: M ← β1M + (1− β1)G
5: M ′ ← QT

LMQR

6: {Now we “run” Adam on G′}
7: V ← β2V + (1− β2)(G

′ ⊙G′) {Elementwise multiplication}
8: N ′ ← M ′√

V̂t+ϵ
{Elementwise division and square root}

9: {Now that we have preconditioned by Adam in the rotated space, we go back to the original
space.}

10: N ← QLN
′QT

R
11: W ←W − ηN
12: {End of gradient step, we now update L and R and possibly also QL and QR. }
13: L← β2L+ (1− β2)GGT

14: R← β2R+ (1− β2)G
TG

15: if t % f == 0 then
16: QL ← Eigenvectors(L,QL)
17: QR ← Eigenvectors(R,QR)
18: end if

Ai = eTi EB [G
′
B ⊙G′

B]1m

= EB [
∑
j

(G′
B)

2
i,j]

= EB [
∑
j

(uT
i (GB)vj)

2] (Using definition of G′)

= EB [||uT
i (GB)||2] (vj form a basis)

= EB [u
T
i GBG

T
Bui]

= λi (By definition of λi and ui)

While these two algorithms are equivalent in their idealized forms, practical considerations reveal
some differences. Firstly, the algorithms differ when using running averages instead of dataset
averages. Secondly, and more significantly in practice, we do not invert or compute the eigenvector
decomposition of L and R at every step. This means that the “adaptivity” of learning rates in
Shampoo is limited2 to the updates of L and R. In contrast, with Adafactor in Shampoo’s eigenspace,
the second moment estimates (i.e., A and C in Algorithm 2) can be updated at every step as they are
computationally inexpensive. Additionally, instead of using Adafactor, we can opt3 for Adam, which
offers more generality. Combining these insights leads to Algorithm 3 which can be interpreted as
running Adam in Shampoo’s eigenspace.

2We note that practical implementations of Shampoo use grafting which allows for learning rate adaptivity
at every step, but this adaptivity is restricted to a single scalar per layer.

3Though using AdamW over Adafactor only gives very small improvements in performance, see Figure 5
and Appendix B.2. We also note that one can use any other diagonal preconditioner based optimizer in place
of Adam, such as Lion (Chen et al., 2023), Sophia (Liu et al., 2024) or Schedule-Free AdamW (Defazio et al.,
2024).

6

https://anonymous.4open.science/status/SOAP-F93B
https://anonymous.4open.science/status/SOAP-F93B

Published as a conference paper at ICLR 2025

Algorithm 4 Eigenvectors function, implemented using power iteration and QR decomposi-
tion. Inputs: PSD matrix P and estimate of eigenvectors Q. If the estimate was exact we would
have P = QDQT where D is the diagonal matrix with eigenvalues.

1: S ← PQ
2: Q← QR(S)

We now describe some additional implementation details:

1. Algorithm 3 describes the behavior of the algorithm for 2D layers. Following Zhao et al.
(2024a), for 1D layers we run standard AdamW. This reduces the overhead as compared to
standard implementations of Shampoo which solve an eigenvector problem for 1D layers
too.

2. Following Wang et al. (2024), we compute eigenvectors of L (and R) using one step of
power method (Algorithm 4). This requires doing one matrix multiplication followed
by QR decomposition. QR decomposition is faster (Documentation, 2024) than standard
eigenvector decomposition in PyTorch. For the first iteration, eigenvectors are initialized
by doing a standard eigenvector decomposition.

3. For layers with huge dimensions such as the first and last layer in language modeling trans-
formers, maintaining the eigenvectors would be space and time prohibitive. For such di-
mensions we fix the rotation matrix (QL or QR) to be identity. Note that if we fix both QL

and QR to be identity for a 2D layer, we would recover Adam.

4. Algorithm 3 omits bias correction and weight decay for simplicity, but these are used in
the actual implementation, identical to their use in AdamW.

The main focus of the next sections will be to explore the empirical performance of this algorithm
and its variations. In Appendices B.2 and B.3 we discuss the the space and time complexity of SOAP
and how it can be improved.

5 EXPERIMENTAL METHODOLOGY

Hyperparameter tuning: We begin with hyperparameter values suggested by prior research for
both AdamW and Distributed Shampoo (e.g., β2 = 0.95). Initially, we conduct a learning rate
sweep to determine the optimal learning rate for each optimizer. Once the optimal learning rate is
identified, we perform two-dimensional sweeps for each of the remaining hyperparameters, where
we vary the selected hyperparameter alongside the learning rate. The purpose of these sweeps
is to demonstrate that our default hyperparameter settings are near-optimal, disregarding potential
interactions between two non-learning-rate hyperparameters. A detailed discussion of the hyperpa-
rameter sweeps is provided in Appendix A.

Throughput Measurement: We evaluate the throughput of each optimizer by measuring the num-
ber of tokens processed per second. At present, we perform these measurements on a single H100
GPU and utilize gradient accumulation to accommodate large batch sizes. While this approach
may seem to disadvantage AdamW— as the overhead of Shampoo/SOAP is compared against mul-
tiple gradient accumulation steps— it is important to note that the overhead of Shampoo/SOAP
can be amortized across layers by distributing the updates across multiple GPUs. This technique
is employed in the distributed implementation of Shampoo (Shi et al., 2023). A comprehensive
comparison of distributed implementations of these algorithms is left to future work.

Efficiency Benefits: Simply running SOAP for the same duration as Shampoo and AdamW cannot
be directly used to calculate the efficiency benefit (in terms of training steps or wall-clock time) of
using SOAP since we use a cosine schedule. Therefore, we run SOAP on .5, .625, .75 and .875
fraction of the training data and fit a scaling law of the form a + bN−β through the final losses
obtained, where N represents the number of training points and a, b, β are the parameters of the fit.
We show these points and the corresponding scaling laws obtained in Figure 2. This scaling law is
then used to calculate the efficiency benefit in terms of training steps and wallclock time as shown
in Figure 2. Here, the horizontal lines represent the final losses of AdamW and Shampoo.

7

Published as a conference paper at ICLR 2025

0.5 0.75 1.0
Total Training Steps (scaled)

2.82

2.84

2.86

2.88

2.90

2.92

2.94
Fin

al
 Te

st
 L

os
s

360m, 2m batch size

0.565 0.8 1.0
Total Training Steps (scaled)

2.66

2.68

2.70

2.72

2.74

2.76
660m, 2m batch size

0.72 0.875 1.0
Total Training Steps (scaled)

2.78

2.80

2.82

2.84

2.86

2.88

2.90
360m, 256k batch size

0.52 0.78 1.01.06
Total Wall Time (scaled by AdamW)

2.82

2.84

2.86

2.88

2.90

2.92

2.94

Fin
al

 Te
st

 L
os

s

0.62 0.875 1.0 1.12
Total Wall Time (scaled by AdamW)

2.66

2.68

2.70

2.72

2.74

2.76

0.83 1.0 1.11
Total Wall Time (scaled by AdamW)

2.78

2.80

2.82

2.84

2.86

2.88

2.90

AdamW SOAP Shampoo

Figure 2: Precise efficiency benefits of SOAP over AdamW and Shampoo for 360m (at 256k and
2m batch size) and 660m (at 2m batch size) model. For the precise methodology, refer to Section 5.

6 LANGUAGE MODELING EXPERIMENTS

In this section we focus on empirically comparing AdamW, DistributedShampoo, and SOAP on
language modeling tasks.

6.1 MEASURING EFFICIENCY BENEFITS

In Figure 1 (left and middle) and Figure 3 we show train loss curves for AdamW, Shampoo, and
SOAP on 360m and 660m models with 2m token batch size and “chinchilla-optimal” i.e. 20x
model size number of tokens. In these plots we observe that SOAP outperforms the other two
optimizers. To directly calculate the efficiency benefit of SOAP, we also run SOAP with cosine
decay for a shorter lr schedule, as shown in Figures 1 and 3. This allows us to approximate the
following efficiency benefits (when batch size is set to 2m and preconditioning frequency to 10):
≥ 40% reduction in the number of iterations and ≥ 35% reduction in wall clock time compared
to AdamW; ≈ 20% reduction in iterations and wall clock time as compared to Shampoo. Precise
efficiency benefit calculations are presented in Figure 2(left and middle). In Appendix C we show
that efficiency benefits of SOAP over AdamW are maintained for longer duration runs where #tokens
= 100 × model size.

8

Published as a conference paper at ICLR 2025

800 1600 2400 3200
Training Steps

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

n
Lo

ss

0.25 0.5 0.75 1.0
Wall Time (scaled by AdamW)

2.8

2.9

3.0

3.1

3.2

3.3

3.4

AdamW Shampoo SOAP SOAP (shorter LR schedule)

360m, 2m batch size, Preconditioning Frequency=10

Figure 3: Comparing performance of tuned runs for AdamW, Shampoo (using DistributedSham-
poo (Shi et al., 2023) implementation) and SOAP. Shampoo and SOAP use preconditioning fre-
quency of 10. We observe a ≥ 40% reduction in the number of iterations and a ≥ 35% reduction in
wall clock time compared to AdamW, and approximately a 20% reduction in both metrics compared
to Shampoo. See Figure 1 for 660m results, Sections 6.2 and 6.3 for ablations of preconditioning
frequency and batch size respectively, and Section 5 for detailed calculation of efficiency improve-
ment and experimental methodology.

6.2 EFFECT OF FREQUENCY OF FINDING EIGENVECTORS/INVERSE

In Figure 1 (right), we compare SOAP and Shampoo with respect to preconditioning frequency. We
observe the following:

• For all frequencies we tried from 1 to 100, both optimizers outperform AdamW.

• At frequency 1, SOAP and Shampoo are quite close in performance.

• At higher frequencies, the performance of both SOAP and Shampoo degrades but SOAP’s
performance degrades significantly slower than Shampoo’s.

6.3 SOAP IMPROVES THE CRITICAL BATCH SIZE

When scaling up batch sizes, the ideal outcome is that doubling the batch size results in halving
the number of training steps needed to achieve the same performance. The batch size at which this
ideal scaling starts to break down is referred to by McCandlish et al. (2018) as the critical batch
size. As models and datasets grow larger, it becomes increasingly important to develop optimizers
that support larger critical batch sizes, thereby reducing the serial runtime of a training run. In this
subsection, we compare the critical batch sizes of AdamW and SOAP. Relative to our baseline setup
of a 2 million batch size, when we decrease the batch size by a factor of k, we increase the precon-
ditioning frequency by the same factor. This ensures that the FLOPS and wall clock multiplicative
overhead for the eigenvector decomposition steps remains consistent with the 2 million batch size
setting.

We start by training a 360 million parameter model with a batch size of 256k for a ”Chinchilla-
optimal” number of tokens (20 times the model size) using AdamW, achieving a loss of 2.842.
This value is set as the target loss for our comparisons. In Figure 4 (left), we show the number
of steps AdamW and SOAP require to reach this target loss as we vary the batch size. SOAP
consistently requires fewer steps across all batch sizes, with the multiplicative benefits becoming
more pronounced at larger batch sizes. Additionally, we compare these results to the ideal scenario
(dashed line) of linear scaling, where doubling the batch size halves the number of steps. SOAP
more closely follows the linear scaling trend compared to AdamW, indicating that it has a higher
critical batch size in this setup.

9

Published as a conference paper at ICLR 2025

256 512 1024 2048
Batch Size

3125

6250

12500

25000
Es

tim
at

ed
 Tr

ai
ni

ng
 S

te
ps

 to
 L

os
s 2

.8
42

360m
 Critical Batch Size for AdamW versus SOAP

5000 10000 15000 20000
Training Steps

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

n
Lo

ss

360m, 256k batch size
 Preconditioning Frequency=80

AdamW Shampoo SOAP SOAP (shorter LR schedule) Linear Scaling Real Scaling

Figure 4: (left) Comparing the critical batch size of AdamW vs SOAP. We can see that SOAP im-
proves the critical batch size, by being much closer to the ideal linear scaling with batch size as
compared to AdamW. (right) Comparing performance of tuned runs for AdamW, Shampoo (using
DistributedShampoo (Shi et al., 2023) implementation) and SOAP for token batch size of 256k.
Shampoo and SOAP use preconditioning frequency of 80. We observe a ≥ 25% reduction in the
number of iterations compared to AdamW, and approximately a 10% reduction compared to Sham-
poo. See Figure 2 (right) for wall-clock time improvement and Section 5 for detailed calculation of
efficiency improvement.

In Figure 4 (right), we present the optimal runs for each optimizer (including Shampoo) at the
smallest batch size we consider: 256k. SOAP outperforms both Shampoo and AdamW, reducing
the number of iterations by 25% compared to AdamW, and by approximately 10% compared to
Shampoo. Furthermore, in Figure 2 (right, bottom), we demonstrate that SOAP also achieves a
wall-clock time improvement of ≥ 15% over AdamW and around 10% over Shampoo. We note
that these results are a preliminary analysis for smaller batch size runs. Our approach of keeping
the product of batch size and preconditioning frequency constant may not be optimal, and a better
trade-off could likely be found. Furthermore, SOAP’s overhead could potentially be reduced by
performing L and R updates in lower precision (instead of fp32). Finally, the diminished efficiency
gains of second-order methods at smaller batch sizes are consistent with prior findings (Zhang et al.,
2019; Ishikawa & Yokota, 2024).

7 DISCUSSION AND LIMITATIONS

We study an optimizer called SOAP: ShampoO with Adam in the Preconditioner’s eigenbasis. We
show that SOAP outperforms both AdamW and Shampoo in language modeling tasks and show that
it is more robust to changes in preconditioning frequency than Shampoo. While we have explored
many factors such as batch size (Section 6.3) and training duration (Appendix C) we acknowledge
that our study focuses on a relatively small scale compared to recent LLMs Touvron et al. (2023)
which are two orders of magnitude bigger. We hypothesize that our findings on the performance of
SOAP would generalize to larger scales due to its theoretical foundation. SOAP’s robustness is also
supported by the fact that SOAP is equivalent to running Adam in a rotated space, and Adam has
proven to be effective across scale and tasks. However, this hypothesis remains to be validated.

For future work, we aim to improve the design of SOAP further, particularly by exploring the use
of lower precision for preconditioners and optimizing its distributed implementation. Additionally,
we are interested in testing SOAP’s performance in other domains, such as vision, to evaluate its
performance across different types of tasks.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

SK, DM, and RZ acknowledges support from the Office of Naval Research under award N0001422-
1-2377 and the National Science Foundation Grant under award #IIS 2229881. This work has
been made possible in part by a gift from the Chan Zuckerberg Initiative Foundation to estab-
lish the Kempner Institute for the Study of Natural and Artificial Intelligence. NV, DM and
RZ are supported by a Simons Investigator Fellowship, NSF grant DMS-2134157, DARPA grant
W911NF2010021,and DOE grant DE-SC0022199. LJ acknowledges funding from the National
Science Foundation DMS-2134157.

11

Published as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=SkkTMpjex.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Sym-
bolic discovery of optimization algorithms. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.html.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan
Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,
Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura,
Ankush Garg, and Peter Mattson. Benchmarking neural network training algorithms, 2023.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The road less scheduled. CoRR, abs/2405.15682, 2024. doi: 10.48550/ARXIV.2405.
15682. URL https://doi.org/10.48550/arXiv.2405.15682.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=shpkpVXzo3h.

Documentation. torch.linalg.eigh documentation. https://web.archive.org/web/
20240519213242/https://pytorch.org/docs/stable/generated/torch.
linalg.eigh.html, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011a. URL
http://jmlr.org/papers/v12/duchi11a.html.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011b. doi: 10.5555/1953048.
2021068. URL https://dl.acm.org/doi/10.5555/1953048.2021068.

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui Hsieh, and Inderjit S Dhillon. Combining axes
preconditioners through kronecker approximation for deep learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=8j9hz8DVi8.

Runa Eschenhagen, Alexander Immer, Richard E Turner, Frank Schneider, and Philipp Hen-
nig. Kronecker-factored approximate curvature for modern neural network architectures. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=Ex3oJEKS53.

Kaixin Gao, Xiaolei Liu, Zhenghai Huang, Min Wang, Zidong Wang, Dachuan Xu, and Fan Yu. A
trace-restricted kronecker-factored approximation to natural gradient. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(9):7519–7527, May 2021. doi: 10.1609/aaai.v35i9.
16921. URL https://ojs.aaai.org/index.php/AAAI/article/view/16921.

12

https://openreview.net/forum?id=SkkTMpjex
http://papers.nips.cc/paper_files/paper/2023/hash/9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/9a39b4925e35cf447ccba8757137d84f-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.15682
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://web.archive.org/web/20240519213242/https://pytorch.org/docs/stable/generated/torch.linalg.eigh.html
https://web.archive.org/web/20240519213242/https://pytorch.org/docs/stable/generated/torch.linalg.eigh.html
https://web.archive.org/web/20240519213242/https://pytorch.org/docs/stable/generated/torch.linalg.eigh.html
http://jmlr.org/papers/v12/duchi11a.html
https://dl.acm.org/doi/10.5555/1953048.2021068
https://openreview.net/forum?id=8j9hz8DVi8
https://openreview.net/forum?id=8j9hz8DVi8
https://openreview.net/forum?id=Ex3oJEKS53
https://openreview.net/forum?id=Ex3oJEKS53
https://ojs.aaai.org/index.php/AAAI/article/view/16921

Published as a conference paper at ICLR 2025

Google Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of to-
kens of context. https://storage.googleapis.com/deepmind-media/gemini/
gemini_v1_5_report.pdf, 2024. [Online; accessed 19-May-2024].

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast approx-
imate natural gradient descent in a kronecker factored eigenbasis. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
9573–9583, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
48000647b315f6f00f913caa757a70b3-Abstract.html.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018a.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1837–1845. PMLR,
2018b. URL http://proceedings.mlr.press/v80/gupta18a.html.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. CoRR, abs/2203.15556, 2022. doi: 10.48550/
ARXIV.2203.15556. URL https://doi.org/10.48550/arXiv.2203.15556.

Satoki Ishikawa and Rio Yokota. When does second-order optimization speed up training? In The
Second Tiny Papers Track at ICLR 2024, 2024. URL https://openreview.net/forum?
id=NLrfEsSZNb.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kusner. No train no
gain: Revisiting efficient training algorithms for transformer-based language models. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
51f3d6252706100325ddc435ba0ade0e-Abstract-Conference.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE Transactions on Neural Networks and
Learning Systems, 29(5):1454–1466, 2018. doi: 10.1109/TNNLS.2017.2672978.

Xi-Lin Li. Stochastic hessian fittings with lie groups, 2024. URL https://arxiv.org/abs/
2402.11858.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E. Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? A second-order perspective. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 29949–29973. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/lin24e.html.

13

https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/48000647b315f6f00f913caa757a70b3-Abstract.html
http://proceedings.mlr.press/v80/gupta18a.html
https://doi.org/10.48550/arXiv.2203.15556
https://openreview.net/forum?id=NLrfEsSZNb
https://openreview.net/forum?id=NLrfEsSZNb
http://papers.nips.cc/paper_files/paper/2023/hash/51f3d6252706100325ddc435ba0ade0e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/51f3d6252706100325ddc435ba0ade0e-Abstract-Conference.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2402.11858
https://arxiv.org/abs/2402.11858
https://proceedings.mlr.press/v235/lin24e.html

Published as a conference paper at ICLR 2025

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=3xHDeA8Noi.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu. Adalomo: Low-memory optimization
with adaptive learning rate. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 12486–12502. Association for Computational Linguistics, 2024a.
URL https://aclanthology.org/2024.findings-acl.742.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning for
large language models with limited resources. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 8187–
8198. Association for Computational Linguistics, 2024b. URL https://aclanthology.
org/2024.acl-long.445.

James Martens. Deep learning via hessian-free optimization. In Proceedings of the 27th Interna-
tional Conference on International Conference on Machine Learning, ICML’10, pp. 735–742,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 2408–2417, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/martens15.html.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=HyMTkQZAb.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. CoRR, abs/1812.06162, 2018. URL http://arxiv.org/abs/1812.
06162.

MLCommons. Mlc algoperf benchmark competition. https://mlcommons.org/2024/08/
mlc-algoperf-benchmark-competition/, 2024. Accessed: 2024-10-01.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-scale distributed second-order optimization using kronecker-factored approximate curva-
ture for deep convolutional neural networks. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 12351–12359, 2019. doi: 10.1109/CVPR.2019.01264.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Abel Peirson, Ehsan Amid, Yatong Chen, Vladimir Feinberg, Manfred K Warmuth, and Rohan Anil.
Fishy: Layerwise fisher approximation for higher-order neural network optimization. In Has it
Trained Yet? NeurIPS 2022 Workshop, 2022. URL https://openreview.net/forum?
id=cScb-RrBQC.

Omead Pooladzandi and Xi-Lin Li. Curvature-informed SGD via general purpose lie-group precon-
ditioners, 2024. URL https://openreview.net/forum?id=sawjxRnVpF.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. CoRR, abs/2406.19146, 2024.
doi: 10.48550/ARXIV.2406.19146. URL https://doi.org/10.48550/arXiv.2406.
19146.

14

https://openreview.net/forum?id=3xHDeA8Noi
https://openreview.net/forum?id=3xHDeA8Noi
https://aclanthology.org/2024.findings-acl.742
https://aclanthology.org/2024.acl-long.445
https://aclanthology.org/2024.acl-long.445
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://openreview.net/forum?id=HyMTkQZAb
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
https://mlcommons.org/2024/08/mlc-algoperf-benchmark-competition/
https://mlcommons.org/2024/08/mlc-algoperf-benchmark-competition/
https://openreview.net/forum?id=cScb-RrBQC
https://openreview.net/forum?id=cScb-RrBQC
https://openreview.net/forum?id=sawjxRnVpF
https://doi.org/10.48550/arXiv.2406.19146
https://doi.org/10.48550/arXiv.2406.19146

Published as a conference paper at ICLR 2025

Constantin Octavian Puiu. Randomized k-facs: Speeding up k-fac with randomized numerical linear
algebra. In Hujun Yin, David Camacho, and Peter Tino (eds.), Intelligent Data Engineering and
Automated Learning – IDEAL 2022, pp. 411–422, Cham, 2022. Springer International Publishing.
ISBN 978-3-031-21753-1.

Constantin Octavian Puiu. Brand new k-facs: Speeding up k-fac with online decomposition updates,
2023. URL https://arxiv.org/abs/2210.08494.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, volume 34, pp. 26040–26052. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/dae3312c4c6c7000a37ecfb7b0aeb0e4-Paper.pdf.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=0bmXrtTDUu.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 4603–4611. PMLR, 2018. URL
http://proceedings.mlr.press/v80/shazeer18a.html.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel
pytorch implementation of the distributed shampoo optimizer for training neural networks at-
scale. CoRR, abs/2309.06497, 2023. doi: 10.48550/ARXIV.2309.06497. URL https:
//doi.org/10.48550/arXiv.2309.06497.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/ARXIV.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Nikhil Vyas, Depen Morwani, and Sham M. Kakade. Adamem: Memory efficient momentum
for adafactor. In 2nd Workshop on Advancing Neural Network Training: Computational Ef-
ficiency, Scalability, and Resource Optimization (WANT@ICML 2024), 2024. URL https:
//openreview.net/forum?id=fZqMVTz7K5.

Sike Wang, Jia Li, Pan Zhou, and Hua Huang. 4-bit shampoo for memory-efficient network training.
CoRR, abs/2405.18144, 2024. doi: 10.48550/ARXIV.2405.18144. URL https://doi.org/
10.48550/arXiv.2405.18144.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha
Sohl-Dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale
proxies for large-scale transformer training instabilities. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
d8w0pmvXbZ.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Or-
leans, LA, USA, June 18-24, 2022, pp. 1204–1213. IEEE, 2022. doi: 10.1109/CVPR52688.2022.
01179. URL https://doi.org/10.1109/CVPR52688.2022.01179.

15

https://arxiv.org/abs/2210.08494
https://proceedings.neurips.cc/paper_files/paper/2021/file/dae3312c4c6c7000a37ecfb7b0aeb0e4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/dae3312c4c6c7000a37ecfb7b0aeb0e4-Paper.pdf
https://openreview.net/forum?id=0bmXrtTDUu
http://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.48550/arXiv.2309.06497
https://doi.org/10.48550/arXiv.2309.06497
https://doi.org/10.48550/arXiv.2302.13971
https://openreview.net/forum?id=fZqMVTz7K5
https://openreview.net/forum?id=fZqMVTz7K5
https://doi.org/10.48550/arXiv.2405.18144
https://doi.org/10.48550/arXiv.2405.18144
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://doi.org/10.1109/CVPR52688.2022.01179

Published as a conference paper at ICLR 2025

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George E. Dahl,
Christopher J. Shallue, and Roger B. Grosse. Which algorithmic choices matter at which batch
sizes? insights from a noisy quadratic model. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8194–8205, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
e0eacd983971634327ae1819ea8b6214-Abstract.html.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuan-
dong Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. CoRR,
abs/2403.03507, 2024a. doi: 10.48550/ARXIV.2403.03507. URL https://doi.org/10.
48550/arXiv.2403.03507.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. (code) galore: Memory-efficient LLM training by gradient low-rank projection. https:
//github.com/jiaweizzhao/GaLore, 2024b.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M. Kakade. Decon-
structing what makes a good optimizer for language models. CoRR, abs/2407.07972, 2024c.
doi: 10.48550/ARXIV.2407.07972. URL https://doi.org/10.48550/arXiv.2407.
07972.

16

https://proceedings.neurips.cc/paper/2019/hash/e0eacd983971634327ae1819ea8b6214-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e0eacd983971634327ae1819ea8b6214-Abstract.html
https://doi.org/10.48550/arXiv.2403.03507
https://doi.org/10.48550/arXiv.2403.03507
https://github.com/jiaweizzhao/GaLore
https://github.com/jiaweizzhao/GaLore
https://doi.org/10.48550/arXiv.2407.07972
https://doi.org/10.48550/arXiv.2407.07972

Published as a conference paper at ICLR 2025

A EXPERIMENTAL SETUP

Many aspects of our setup such as models are the same as in Zhao et al. (2024c). We will restate
those details verbatim for completeness.

We train language models on C4 tokenized with the T5 tokenizer (Raffel et al., 2020) and report
results in terms of validation loss.

Models. We start from the OLMo codebase (Groeneveld et al., 2024) and train decoder-only trans-
former models of three sizes: 210m, 360m, and 660m, where the parameter count refers to non-
embedding parameters. The models have widths of 1024, 1024, and 1408 and depths of 12, 24, 24.
We used the 210m model to explore various ablations, most of our reported results are on 360m and
660m. The MLP hidden dimension is 4x of the width. The activation function is GeLU (Hendrycks
& Gimpel, 2016). We use RoPE positional encodings (Su et al., 2024). Attention heads are always
dimension 64. We use PyTorch default LayerNorm. We use QK layer norm (Dehghani et al., 2023).
Following Wortsman et al. (2024) we do not learn biases for the linear layers or LayerNorms. We
train in mixed precision with bfloat16.

Algorithms. We use the standard Pytorch implementation of AdamW (Paszke et al., 2019), the
DistributedShampoo Shi et al. (2023) implementation of Shampoo. We implement ourselves SOAP
and GaLore starting from an older version of Pytorch implementation of AdamW and the official
GaLore implementation Zhao et al. (2024b).

Default hyperparameters. We use β1 = 0.95, as we found it to outperform β1 = 0.9 in our
sweeps for the 360m model. Following Wortsman et al. (2024) we use decoupled weight decay with
coefficient 1e−4 and z-loss with coefficient 1e−4. We use the default value of ϵ = 1e−8 in AdamW
(actual or when used for grafting), SOAP and GaLore. We use warmup followed by cosine decay as
our scheduler. We start the warmup and end the cosine decay at 0.1x the maximum learning rate.

Default hyperparameters for DistributedShampoo Shi et al. (2023) state that they find the op-
timal exponent to be either −1/2 or −1.82/4 ≈ −1/2.2. Our preliminary findings were similar
to this. Hence we set the default values of exponent to be −1/2.5 for both 1D and 2D parameters.
We set ϵshampoo = 1e−12 and βshampoo = 0.95 based on our initial set of experiments on the 210m
model.

Default hyperparameters for GaLore GaLore introduces an additional hyperparameter called
scale (α) since due to low rank updates the overall update magnitude decreases. Since we are
running a full rank version of GaLore we set α = 1.

Token counts. For all of our runs we use a sequence length of 1024. For all models (except in
Section 6.3), we use a token batch size of 2048k ≈ 2m. We default to training models for the
approximately “chinchilla optimal” (Hoffmann et al., 2022) number of tokens that is ≈20 times the
number of parameters. Explicitly, this means for our default batch size of 2m, the 210m models are
trained for 1600 steps or ≈ 3.3b tokens. The 360m models are trained for 3200 steps, the 660m
models are trained for 6400 steps.

A.1 SWEEPING OVER HYPERPARAMETERS

AdamW, 2m batch size: Starting from the default hyperparameters above we do the following
sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. (360m) We sweep over the cross product of best 3 learning rates and β1 ∈ {0.9, 0.95, 0.99}.
3. (360m) We sweep over the cross product of best 3 learning rates and β2 ∈ {0.9, 0.95, 0.99}.

The last two of the sweeps did not yield any benefit for the 360m model with 2m batch size hence
we only sweep over learning rate for the 660m model with 2m batch size.

17

Published as a conference paper at ICLR 2025

DistributedShampoo, 2m batch size: Starting from the default hyperparameters above we do the
following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. (360m) We sweep over over the cross product of best 3 learning rates from above and

ϵshampoo ∈ {1e−11, 1e−12, 1e−13}.
3. (360m) We sweep over over the cross product of best 3 learning rates from above and

βshampoo ∈ {.9, .95, .975}.
4. Let e1, e2 denote the exponents used in DistributedShampoo for 1D and 2D parameters

respectively. We also sweep over the cross product of best 3 learning rates from above and
(e1, e2) in {(2, 2), (2.5, 2.5), (3, 3), (2, 4)}.

These sweeps did not yield any significant improvement in performance (< .004) for the 360m
model. Hence we only sweep over the learning rate for the 660m model.

SOAP, 2m batch size: Starting from the default hyperparameters above we sweep over learning
rate in {.1, .0316, .01, . . . , 3.16e−4}.
AdamW, 256k batch size: For the 360m model with 256 batch size we start from the default
hyperparameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. We sweep over the cross product of best 3 learning rates and β2 ∈ {0.95, 0.99}.

In the second sweep we observe small improvements in performance by using β2 = .99, so our final
numbers use β2 = .99. This (small) improvement in performance by using a larger β2 at smaller
batch sizes was also observed by Porian et al. (2024); Zhao et al. (2024c).

DistributedShampoo, 256k batch size: For the 360m model with 256 batch size we start from the
default hyperparameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. We sweep over the cross product of best 3 learning rates and (β2, βshampoo) ∈
{(.95, .95), (.99, .99)}.

In the second sweep we observe small improvements in performance by using β2 = βshampoo = .99,
so our final numbers use β2 = βshampoo = .99.

SOAP, 256k batch size: For the 360m model with 256 batch size we start from the default hyper-
parameters and do the following sweeps:

1. We sweep over learning rate in {.1, .0316, .01, . . . , 3.16e−4}.
2. We sweep over the cross product of best 3 learning rates and β2 ∈ {.95, .99}.

In the second sweep we observe small improvements in performance by using β2 = .99, so our final
numbers use β2 = .99.

Preconditioning frequency sweeps: For the preconditioning frequency experiments of SOAP and
Shampoo (Figure 1 (right)), for each frequency we do a learning rate sweep over the best 3 learning
rates found at preconditioning frequency 10. Other hyperparameters are set to their optimal values
obtained using the precondition frequency 10 sweeps.

360m and 660m shorter runs: For each of the shorter runs of 360m and 660m models for the SOAP
optimizer (Figure 2), we did learning rate sweep over the best 3 learning rates found for the standard
length run. Other hyperparameters are set to their optimal values obtained using the standard length
run.

Warmup: The warmup duration for the 360m and 660m models were 600 and 1200 steps respec-
tively. For the shorter runs (Figure 2), for 360m model, the warmup durations were 400, 400, 500
and 525 steps for 0.5, 0.625, 0.75 and 0.875 runs respectively. For the 660m model, the warmup du-
rations were 600, 750, 900 and 1050 steps for 0.5, 0.625, 0.75 and 0.875 runs respectively. For 360m
model with 256k batch size (Section 6.3) we use a warmup for 4000 steps (total steps is 25000).

18

Published as a conference paper at ICLR 2025

B FURTHER EFFICIENCY IMPROVEMENTS

In this section, we discuss space and time complexity of SOAP and provide an overview of potential
avenues for further space and compute efficiency improvements in SOAP.

B.1 ONE SIDED EIGENBASIS

As described in Section 3, Zhao et al. (2024a) have an algorithm similar to ours. One of the differ-
ences is that they only project the smaller side of the layer using the eigenbasis while using identity
as the rotation matrix for the larger side i.e. if m < n we set QR = In in Algorithm 3 and if m > n
we set QL = Im. Doing this leads to a reduction in space usage as well as reduction of optimizer
time overhead, which is discussed in Appendices B.2.1 and B.3.1.

In Figure 5, it is evident that the one-sided projection results in slightly reduced performance com-
pared to the original SOAP optimizer. However, it still performs on par with, or marginally better
than, Shampoo, while maintaining greater computational efficiency. Further investigation into the
potential for these variants to surpass the computational efficiency of original SOAP optimizer is left
for future work.

1000 2000 3000
Train Steps

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Tr
ai

n
Lo

ss

360m, 2m batch size
 Preconditioning Frequency = 10

2000 4000 6000
Train Steps

2.6

2.7

2.8

2.9

3.0

3.1

3.2

660m, 2m batch size
 Preconditioning Frequency = 10

AdamW
Shampoo

SOAP
SOAP (factorized)

SOAP (one-sided)
SOAP (factorized, one-sided)

Figure 5: Performance of variants of SOAP which improve space usage or time overhead. 1. SOAP
(factorized): Uses Adafactor instead of Adam in Shampoo’s eigenbasis and 2. SOAP (one-sided):
Uses Q = I (i.e. no rotation) on the large side of weight matrix and 3. SOAP (factorized, one-
sided): Combines both of these changes. We observe that while using Adafactor instead of Adam
causes a negligible increase in loss, using the one-sided variant causes a larger increase. However,
the one-sided variant also has much larger reduction in time and space overhead. For computational
benefits of these variants see Appendices B.2 and B.3.

B.2 SPACE USAGE OF SOAP

For a m× n matrix where m > n we require
2m2 (for L,QL) + 2n2 (for R,QR) + 3mn (for gradient, M,V)

space usage4 (beyond weights and activations), specifically for L,QL, R,QR,momentum (M),
AdamW’s second order estimate (V), and the gradient. This is the same space usage as Distributed-
Shampoo while AdamW uses 3mn.

4One mn is for storing the gradients, this can be avoided (as long as there is no gradient accumulation) by
applying gradients along with backprop (Lv et al., 2024b) but this is not implemented by default in standard
deep learning frameworks such as PyTorch. Hence we will include this term in all of our calculations.

19

Published as a conference paper at ICLR 2025

B.2.1 IMPROVING SPACE USAGE OF SOAP

The most direct way to reduce memory is using low precision to store the L,R,QL, QR, V matri-
ces, which is done by Dettmers et al. (2022); Wang et al. (2024). Orthogonal to the low precision
approaches, there are two algorithmic approaches to improving the space usage of SOAP:

• Using Adafactor instead of Adam as the diagonal preconditioner after rotating by QL and
QR. This reduces the space usage by mn.

• Using one sided version of SOAP (Appendix B.1). This reduces space usage from 2m2 +
2n2 + 3mn to 2min(m,n)2 + 3mn.

• Combining these approaches yields space usage of 2min(m,n)2 + 2mn.

For standard transformer architectures the last variant which combines the two approaches would
yield less space usage overall compared to AdamW (which uses 3mn).

We try these approaches in Figure 5. We observe that using Adafactor instead of AdamW yields
very small reductions in performance while using one-sided preconditioner results in larger reduc-
tions. Nonetheless even after combining these two approaches the resulting optimizer outperforms
AdamW while having a smaller space requirement than AdamW. Regarding space usage we also
note that Adafactor (with momentum added back) itself utilizes only 2mn space usage and has
been shown to perform comparable to AdamW for ViT training (Zhai et al., 2022) and for language
model training (Zhao et al., 2024c). Further space reduction beyond Adafactor has been studied
in the Adalomo (Lv et al., 2024a), GaLore (Zhao et al., 2024a), and AdaMeM (Vyas et al., 2024)
papers.

B.3 TIME OVERHEAD OF SOAP

There are two types of overhead of Shampoo and SOAP over AdamW: the overhead per step and
the overhead when changing the preconditioner (or for SOAP, the preconditioner’s eigenbasis). Let
us first analyze the first one. For SOAP per step for a layer of size m× n we have an overhead of

m3 (updating L)+n3 (updating R)+(2m2n+2mn2) (projecting and projecting back on both sides).

We note that this is more than the overhead of Shampoo which is m3 + n3 + m2n + n2m. This
can be observed in Figure 2 (bottom, right) but not in the other figures since there the second type
of overhead is the dominant term.

The second type of overhead is due to changing the preconditioner for Shampoo (or for SOAP, pre-
conditioner’s eigenbasis i.e. QL and QR). The DistributedShampoo (Shi et al., 2023) implementa-
tion of Shampoo uses a direct call to torch.linalg.eigh for this. Following Wang et al. (2024)
we use Algorithm 4 which uses power iteration based approach which calls torch.linalg.qr.
We note that torch.linalg.qr is faster than torch.linalg.eigh (Documentation, 2024).
In Figure 6 (right) we see that using power iteration based approach (torch.linalg.qr) per-
forms as well as fresh eigenvector decomposition (torch.linalg.eigh).

Effect of frequency on overhead: In Figure 6 (left), we observe that the overhead decreases
as the preconditioning frequency increases, i.e., the frequency of invoking Algorithm 4. If the
only additional computation occurred in Algorithm 4, we would expect the overhead to scale as
1.0/(preconditioning frequency), approaching zero. However, empirical results (Figure 6 left) show
that the overhead approaches an asymptote greater than zero. This is attributable to the additional
matrix multiplications required to update L, update R, project the gradient, and reproject the gradi-
ent (for each layer) in the optimizer. Currently, these operations are performed in float32; reducing
the precision of these operations, as proposed in Wang et al. (2024), could lower this asymptote.

B.3.1 IMPROVING TIME OVERHEAD OF SOAP

The per step overhead of SOAP can be reduced by using low precision to store the L,R,QL, QR, V
matrices (Dettmers et al., 2022; Wang et al., 2024), which in turn will speed up computation done
using these matrices. This approach cannot be used for reducing the overhead for the preconditioner
update in popular deep learning frameworks such as Pytorch since torch.linalg.qr does not

20

Published as a conference paper at ICLR 2025

100 101 102

Preconditioning Frequency

1

2

4

8

16

32

%
ov

er
he

ad
 in

 tr
ai

ni
ng

 o
ve

r A
da

m
W

Frequency vs overhead

SOAP

1 3 10 32 100
Preconditioning Frequency

2.82

2.84

2.86

2.88

2.90

2.92

2.94

Fin
al

 Te
st

 L
os

s

AdamW
SOAP (default, QR)

SOAP (eigh)
Shampoo

Figure 6: (Left) Depicting the overhead of SOAP over AdamW as a function of precondition-
ing frequency (Right) Comparing the performance of SOAP with torch.linalg.eigh for
computing the eigenvectors with Algorithm 4, which uses torch.linalg.qr. Note that
torch.linalg.qr is computationally more efficient than torch.linalg.eigh (as men-
tioned in Documentation (2024)); however, both seem to have comparable performance throughout
the preconditioning frequency spectrum.

support precision lower than float32. Orthogonal to the low precision approach we can improve
the per step time overhead of SOAP by the following algorithmic approaches:

• Using Adafactor instead of Adam (Appendix B.2) as the diagonal preconditioner after ro-
tating by QL and QR. In this version of SOAP the overhead can be improved by from
m3+n3+2m2n+2n2m to m3+n3+m2n+n2m+max(m,n)2 min(m,n)+min(m,n)3

by merging the project and project back steps for the smaller dimension.

• Using one sided version of SOAP (Appendix B.1). This reduces overhead from m3+n3+
2m2n+ 2n2m to min(m,n)3 + 2min(m,n)2 max(m,n).

• Combining these approaches yields an overhead of min(m,n)2 max(m,n)+2min(m,n)3

Using one-sided version also reduces the second type of overhead from a calls to
torch.linalg.qr on a m×m and a n×n matrix to only a single call to min(m,n)×min(m,n)
matrix.

C LONGER DURATION RUN

Chinchilla scaling laws (Hoffmann et al., 2022) suggest that it is compute optimal to use tokens
which are approximately 20x the models size, which is what we have been using for our standard
runs. But many recent LLMs such as the LLaMA (Touvron et al., 2023) series of models are trained
on much larger token counts. This can be to take into account the computational cost during infer-
ence (Sardana et al., 2024) or to create models which are usable or finetunable by downstream users.
In Figure 7 we train a language model with AdamW on a 100x model size token count. We then
train the same model with SOAP for 50x, 75x, and 100x token counts to approximate the efficiency
benefits. We find efficiency benefits (> 40%) similar to those observed in Figure 2 for AdamW runs
with 20x token counts.

D GALORE

We tried GaLore for 210m model, and while it outperformed AdamW it performed worse than
Shampoo. Hence we do not try GaLore for higher model sizes.

Hyperparameter sweeps: We did the following sweeps:

21

Published as a conference paper at ICLR 2025

0.5 0.6 0.7 0.8 0.9 1.0
Total Training Steps (Scaled)

2.65

2.66

2.67

2.68

2.69

2.70

2.71
Tr

ai
n

Lo
ss

0.5 0.6 0.7 0.8 0.9 1.0
Total Wall Time (Scaled by AdamW)

2.65

2.66

2.67

2.68

2.69

2.70

2.71

AdamW SOAP

360m, 2m batch size, long run with 33.5b tokens or 100x model size
 Preconditioning Frequency=10

Figure 7: Total training steps (Left) and total wall clock time versus final test loss for long runs
(#tokens = 5x “chinchilla” tokens = 100x model size).

1. We swept the cross product over learning rate (3.16e−4, 1e−3, 3.16e−3, 1e−2), precon-
ditioning frequency (10, 50, 200), both sided and one sided versions. Frequency 200 had
the best results matching the observation of Zhao et al. (2024a).

2. We did a cross product sweep over learning rate (3.16e−4, 1e−3, 3.16e−3, 1e−2), both
sided and one sided versions with β2 = .99 instead of .95 and preconditioning frequency
200.

3. We did a cross product sweep over learning rate (3.16e−4, 1e−3, 3.16e−3, 1e−2), both
sided and one sided versions, preconditioning frequency (50, 200) with β1 = .9 instead of
.95.

The best performing run among all of these achieved a final loss of 3.12 while the best Shampoo run
achieved a final loss of 3.10.

22

	Introduction
	Notation and Background
	Related Work
	Algorithm
	Theory

	Experimental Methodology
	Language Modeling Experiments
	Measuring Efficiency Benefits
	Effect of Frequency of Finding Eigenvectors/Inverse
	SOAP Improves the Critical Batch Size

	Discussion and Limitations
	Experimental Setup
	Sweeping over hyperparameters

	Further Efficiency Improvements
	One Sided Eigenbasis
	Space usage of SOAP
	Improving space usage of SOAP

	Time Overhead of SOAP
	Improving time overhead of SOAP

	Longer Duration Run
	GaLore

