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ABSTRACT

Reliable evaluation of visual generative models has been a long-lasting prob-
lem. Existing evaluation metrics like Inception score and FID all follow the same
methodology, that is, to calculate feature statistics of generated images based on
a backbone network pretrained from real-world images (e.g., ImageNet). How-
ever, recent papers find that these methods are often biased and inconsistent with
humans. Besides, we find that these metrics are very sensitive to slight (even im-
perceptible) image perturbations. To develop a more robust metric aligned with
humans, we explore a new reversed approach, that is to pretrain a model from gen-
erated training data and evaluate it on natural test data. It is based on the insight
that a lower test error on natural data would, in turn, indicate that the training data
are of higher quality. We show that this metric, we call Virtual Classifier Error
(VCE), aligns better with human evaluation compared to FID, while being more
robust against image noises. Conceptually, VCE suggests a new pragmatic per-
spective to measure data quality by their usefulness for model training instead of
perceptual similarities.

1 INTRODUCTION

In the past few years, generative models have rapidly developed and the quality of generated im-
ages have become increasingly close to real images, and sometimes it even becomes hard for ordi-
nary people to distinguish them (Croitoru et al., 2023). The evaluation of generative models pro-
vides a vital role in this development by providing objective metrics to guide the technical progress
(Bińkowski et al., 2018; Rambhatla and Misra, 2023).

Table 1: Comparing FID and VCE under
very small Gaussian noise N (0, 0.01) and
round noises (0.1) with BigGAN on CIFAR-
10 (examples in Appendix E).

Noise None Gaussian Round

FID 3.87 13.49 39.01
VCE 14.79 15.14 16.1

A commonly used evaluation metrics currently is
Fréchet Inception Distance (FID) (Heusel et al.,
2017), which calculates the Wasserstein-2 distance
between real and generated features extracted by
Inception-V3 (Szegedy et al., 2016) pretrained on
ImageNet. However, employing a pretrained back-
bone to evaluate generative models has major draw-
backs. Firstly, as pointed out by Veeramacheneni
et al. (2023), FID tends to perform better when the
evaluation set closely resembles ImageNet classes or if the generators utilize ImageNet weights,
which can bias the output distribution towards ImageNet. As a result, FID-like metrics favor certain
generative models (like GANs) that tend to generate object-centric generated data, even if they do
not look realistic to humans. Secondly, these metrics are highly sensitive to noise. As shown in Table
1, FID varies a lot under subtle image perturbations that are perceptually indifferent to humans. This
is because the features obtained from pretrained backbones are not robust to input perturbations.
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Existing solutions to these drawbacks mainly focus on adopting other pretrained backbones like
DINO (Stein et al., 2023), which may still suffer from similar risks. To fundamentally alleviate
these drawbacks, we explore a new methodology for image evaluation that reverses the evaluation
pipeline: We first train a classifier (named a virtual classifier) using generated training data, and
use the test error (named Virtual Classifier Error (VCE)) on natural test data as the image quality
measurement (lower the better). Intuitively, generated data drawn from a poor image generator
deviate far from the real data, so when used for training, it will have limited generalization to natural
test data. On the contrary, high-quality generated data are close to the real data distribution and
can attain lower test error. Using generated data for training instead of for testing has the following
benefits: 1) it is more robust against perturbations in generated data, which can be largely ignored
during training and does not have a significant impact on final test error; 2) by training on generated
data, neural networks can elicit more features that naturally pretrained models may overlook —
especially those not present in natural data, e.g., unnatural fingers, racial and gender bias, and subtle
spurious features — and testing their generalization on natural data gives a fair account for the
influences of these features; 3) it is more pragmatism-centred, and has a better indication for data
quality under scenarios when the generated data are to be used to enrich the training dataset. These
advantages motivate us to investigate the use of virtual classifiers for image quality evaluation.

We conduct preliminary studies of VCE with some well-known state-of-the-art generative models,
including both GANs and diffusion models. The experiments result suggest that the virtual classifier
can attain better alignment with human scores of image quality, mitigate subtle noises and variations
in the generated dataset during the training process, and alleviate ImageNet class bias.

Future Works. In this workshop version, we mainly focus on conditional generative models where
generated data are labeled, so that we can train a synthetic classifier. We leave unconditional models
to be explored in future works, where one may utilize self-supervised learning methods, or even
generative models themselves, for evaluating the generalization. Besides, the main idea of VCE
is generic and can be generalized to other domains as well (like text). Considering the advantages
elaborated above, it has the potential to become a competitive evaluation criterion when robustness,
generalization, and data utility are prioritised.

2 VIRTUAL CLASSIFIER ERROR

In this section, we introduce a novel metric called VCE which utilizes a classifier trained on gener-
ated datasets to evaluate generative models. Our evaluation focuses on widely prevalent conditional
generative models (Pérez et al., 2020; Li et al., 2023; Montserrat et al., 2019). In the future, we will
extend this metric to evaluate unconditional generative models(Hong et al., 2023) by self-supervised
learning (Jing and Tian) or unsupervised learning (Khanum et al., 2015) methods.

Denote the distribution of the real training Dtr and test dataset Dte as Pd, and that of the generated
data Dg as Pg . A generative model is trained on Dtr, aiming to learn a distribution Pg that closely
approximates Pd. To evaluate generative models, we draw N samples from Dg as training dataset
to train a virtual classifier Fg : Rd → Y , where Y = {1, . . . , c} denote the label space. We adopt
the classification error of Fg on natural test data as a measure of generate data quality, written as

VCE(Dg) = Ex1(Fg(x) ̸= y), (1)

where x ∈ Dte is a test sample, and y ∈ Y is the true label of x. Intuitively, a smaller VCE indicates
that the generalization ability of Fg on Dte is stronger, implying a smaller gap between Pg and Pd.

Theoretical Connection. Next, we provide formal proof of the effectiveness of VCE. The distribu-
tion gap between real and generated data can be characterized by the following Theorem 2.1 (see
proof in Appendix B.1).

Theorem 2.1. DKL(Pd(Y |X)∥Pg(Y |X)) ≤ DKL(Pd(X,Y )∥Pg(X,Y )), where DKL(p∥q) is the
KL-divergence between the distributions p and q, P (Y |X) is the conditional class distribution, and
P (X,Y ) is the joint probability distribution.

Observe that DKL(Pd(Y |X)∥Pg(Y |X)) = H(Pd(Y |X)) − EPd(X,Y )Pg(Y |X), where the latter
term corresponds to the CE classification loss. Therefore, the classification error on De of Fg reflects
the distribution gap between Pd and Pg .
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(a) BigGAN, FID=7.34, VCE=79.76 (b) ADM, FID=10.27, VCE=77.61

Figure 1: Generated goldfish from BigGAN and ADM (diffusion model). BigGAN excels at cap-
turing the key feature of goldfish (the yellow color) but overlooks other details and backgrounds. In
contrast, ADM focuses more on the entire image, including both the goldfish and the background,
resulting in generated images that better represent the real distribution.

(a) CIFAR-10 (b) ImageNet

Figure 2: FID v.s. VCE on generative models of CIFAR-10 and ImageNet. R represents the
correlation coefficient between FID,VCE and human error rate.

3 EXPERIMENTS

In this section, we evaluate VCE and FID on popular generative models. The results demonstrate
that VCE aligns better with human perception, and exhibits greater robustness than FID.

Experiment Setup. We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009) and Ima-
geNet1K (Deng et al., 2009). The generated images are derived from two popular types of generative
models: GANs (Szegedy et al., 2014) and diffusion models (Ho et al., 2020). The generative mod-
els of CIFAR-10 we used are PFGM++ (PF) (Xu et al., 2023)), StyleGAN2-ADA (ADA) (Karras
et al., 2020), BigGAN (BIG) (Brock et al., 2018), MHGAN (MH) (Turner et al., 2019), ReACGAN
(REAC) (Kang et al., 2021), ACGAN (AC) (Odena et al., 2017). The generative models we used
for ImageNet are ADM (Dhariwal and Nichol, 2021), ADMG-ADMU (MG) (Dhariwal and Nichol,
2021), BigGAN (BIG) (Brock et al., 2018), DiT-XL-2 (DIT) (Peebles and Xie, 2023), LDM (Rom-
bach et al., 2022), StyleGAN-XL (XL) (Sauer et al., 2022). The resolution of the generated images
of ImageNet is 256×256. We use human error rate (Zhou et al., 2019) as a ground truth metric, as it
reflects the evaluation of generative models based on human perception. When a generated dataset
is highly realistic, it becomes challenging for humans to determine whether an image is real or fake,
resulting in a high human error rate. The generated images and the results of the human error rate
used in our experiments are sourced from Stein et al. (2023).

VCE Aligns Better with Human Perception than FID. We compare VCE and FID on CIFAR-10
and ImageNet in Figure 2. Figure 2(a) demonstrates that both VCE and FID can effectively evaluate
generative models of CIFAR-10. However, Figure 2(b) reveals that FID on ImageNet correlates little
with human perception, while VCE aligns exceptionally well. See details in Appendix C.

Notably, diffusion models generally outperform GANs in terms of human perception, while FID
tends to favor GANs (Dhariwal and Nichol, 2021). VCE effectively compensates for this limitation.
Based on the visualized results in Figure 1, we observe that GANs excel at capturing the crucial
features of central objects while easily overlooking the background or other details. In contrast,
diffusion models focus more on the entire image, aiming to capture the whole distribution. As a
result, FID is easily deceived by GANs, but VCE, evaluating virtual classifiers on the real dataset,
better reflects the generative models’ ability to cover the real distribution.

VCE is More Robust than FID. The neural network exhibits a certain level of robustness to high-
frequency noise and other perturbations during training. Therefore, we further investigate the impact
of subtle perturbations on VCE and FID. Specifically, we add noise to the generated images or round
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(a) Adding Noise (b) Rounding Pixel

Figure 3: FID v.s. VCE when generated images of CIFAR-10 are slightly perturbed. E denotes
error, while R represents the correlation coefficient between FID/VCE and the human error rate.
The suffix “*” denoted a noisy dataset with Gaussian or round noise. (a): Adding Gaussian noise
(mean=0, stdev=0.01) to generated datasets. (b): Keep 1 decimal place for normalized pixel values.

the pixel values, which are transformations that are challenging for the human eye to perceive (Visual
examples in Appendix E). We evaluate the correlation of human error rates and metrics and calculate
errors E after perturbation. In order to avoid the impact of different scales of FID and VCE, EM

is calculated using the formula: EM = 1
n

∑
|m′

i−mi|
maxi(mi,m

′
i)

, where mi and m′
i denote the metric values

(FID/VCE) of the i-th generative model before and after perturbation, respectively. n represents the
total number of generative models considered in the experiments. As shown in Figure 3, the error
of VCE is significantly lower than that of FID, and it exhibits a stronger correlation with human
perception than FID after being perturbed. This indicates that our method is robust.

Table 2: We evaluate six generative models trained from ImageNet with their correlation coeffi-
cients between VCE and the human error rate (higher the better). (a): VCE with different backbones
under 30-epoch training. (b): VCE with MobileNet-V2 under different training epochs.

(a) Backbones

Backbone ResNet18 MobileNet-V2 DenseNet121

Corr. -0.69 -0.79 -0.66

(b) Training Epochs

Epochs 20 30 40

Corr. -0.62 -0.79 -0.65

Configuration of VCE. At last, we analyze the behavior of VCE to different backbones and training
epochs. As shown in Table 2, the best alignment between VCE and human perception is achieved
using MobileNetV2 as the backbone and training for 30 epochs. Therefore, we recommend using
50k generated images as the training dataset, selecting MobileNetV2 as the backbone, and training
for 30 epochs when computing VCE. Overall, VCE is roughly consistent under different choices of
backbones and training epochs.

4 DISCUSSIONS

In this paper, we propose a new procedure to evaluate image quality by training models on generated
data while evaluating them on natural test data. The resulting metric, Virtual Classifier Error, shows
promising performance on benchmark datasets for evaluating state-of-the-art generative models and
exhibits better alignment with human preference, while being more robust against noises.

Meanwhile, we also acknowledge that compared to FID and its counterparts, VCE has a few prac-
tice challenges. First, it requires training a model with generated data that is more computationally
expensive. Regarding this issue, we show that training only for a few epochs (e.g., 20 epochs on
CIFAR-10) already gives a fairly good metric. Further techniques like initializing from a pretrained
model, or using advanced training techniques, may further improve its efficiency. Second, the train-
ing of VCE may depend on various hyperparameters (such as, learning rates, optimizers). As shown
above, these choices do not have much influence on the final performance among a proper range,
and one may still develop a benchmark metric with a standard training recipe. Therefore, despite
these challenges, we believe that VCE still has the potential to become a promising alternative or
compliment to existing image evaluation criteria.
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A EXPERIMENTAL DETAILS

During the training of the classifier for VCE, we utilize a dataset consisting of 50,000 generated
images. The classifier is trained for 30 epochs using the SGD optimizer with an initial learning rate
of 0.1 and batch size of 128.

B OMITTED PROOF

B.1 PROOF OF THEOREM 2.1

Proof.

DKL(Pd(Y |X)∥Pg(Y |X))

=EPd(X,Y ) log
Pd(Y |X)

Pg(Y |X)

=EPd(X,Y ) log
Pd(Y |X)Pd(X)Pg(X)

Pg(Y |X)Pd(X)Pg(X)

=EPd(X,Y ) log
Pd(X,Y )

Pg(X,Y )
− EPd(X,Y ) log

Pd(X)

Pg(X)

=DKL(Pd(X,Y )∥Pg(X,Y ))−DKL(Pd(X)∥Pg(X))

≤DKL(Pd(X,Y )∥Pg(X,Y )) = DKL(Pd(X|Y )∥Pg(X|Y )).

C ADDITIONAL RESULS

Table 3 presents the results of VCE and FID on CIFAR-10, while Table 4 displays the results of
VCE and FID on ImageNet. The result of human error sourced from Stein et al. (2023).

Table 3: VCE and FID of generative models on CIFAR-10.
PFGM++ ADA BigGAN MHGAN ReACGAN ACGAN

Human Error Rate 43.58 39.3 38.68 33.62 33.56 14.82
VCE 9.92 12.9 14.79 13.88 15.22 52.87
FID 1.81 2.53 3.87 4.21 4.4 35.47

Table 4: VCE and FID of generative models on ImageNet.
StyleGAN-XL LDM ADMG-ADMU Dit-XL BigGAN ADM

Human Error Rate 15.34 30.88 26.88 28.62 15.8 26.64
VCE 77.59 74.49 77.36 75.534 79.76 77.61
FID 2.53 4.13 4.16 2.92 7.34 10.27

D RELATED WORKS

Due to the generative model reflects the learned distribution implicitly, we can only indirectly assess
the quality of the generated model by sampling from the distribution, and cannot efficiently eval-
uate the likelihood. This poses significant challenges in evaluating generative models. Inception
Score uses Inception V3 to classify generated images, while FID calculates the Wasserstein distance
between real and generated images using Inception V3’s feature representations. But, their results
do not align with human perception (Stein et al., 2023) and tend to favor giving higher scores to
GANs compared to diffusion models, despite the higher image quality achieved by diffusion models
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(Dhariwal and Nichol, 2021). These methods are also highly sensitive to tiny differences. Perform-
ing operations such as resizing or compressing images (Parmar et al., 2022), rounding pixel values
(Veeramacheneni et al., 2023), or adding subtle noise can cause FID to change greatly. Additionally,
images which almost look like noise can also achieve very desirable IS and FID when compared
to real images (Barratt and Sharma, 2018; Veeramacheneni et al., 2023). Overall, the approach of
utilizing a pretrained classifier has several shortcomings. In contrast, our proposed method of em-
ploying a Virtual Classifier not only aligns more closely with human perception but also exhibits
robustness to subtle variations.

E VISUALIZATION OF THE IMAGES

For a concrete understanding, we provide perturbed examples of the generated images from Big-
GAN. It is evident that despite the imperceptibility of the perturbations to human perception, there
is a substantial change in FID while VCE remains relatively unchanged. This observation highlights
the robustness of our proposed method.

Raw, FID=3.87 VCS=14.79

Gaussian, FID=13.49 VCS=15.14

Round, FID=39.01 VCS=16.1

Figure 4: Examples of perturbed generated images from BigGAN.
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