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Abstract001

In-context learning has become a standard002
learning paradigm for language models. How-003
ever, current prompt engineering methods,004
which function within the token space, may005
restrict their effectiveness. We propose to ex-006
plore the potential of activation space through007
Iterative Context Vectors (ICVs), a technique008
aimed at improving task performance with-009
out backpropagation. ICVs are employed by010
first extracting and iteratively refining activa-011
tions within a language model, then applying012
them during inference with minimal compu-013
tational and memory overhead. We evaluate014
ICVs across a range of tasks using various mod-015
els and observe significant improvements. Our016
findings suggest that activation steering can017
serve as a promising direction for in-context018
learning, thereby opening new avenues for fu-019
ture research.020

1 Introduction021

Few-shot learning has long been a prominent re-022

search focus. Recently, language models (LMs)023

have shown the capability to execute few-shot learn-024

ing through in-context learning (ICL) (Brown et al.,025

2020). In this approach, learning a new task in-026

volves conditioning on a few support examples and027

predicting the most suitable tokens to complete a028

query input, all without the need for any parameter029

updates. This method is appealing because it relies030

solely on inference, allowing for quick adaptation031

to various downstream tasks.032

However, it has been noted that despite its poten-033

tial, the predictions of LMs can be highly volatile034

when conditioned on prompts. The outcomes de-035

pend significantly on the templates, demonstrations,036

their permutations, and can even ignore or violate037

the instructions of the prompt (Webson and Pavlick,038

2022; Min et al., 2022b).039

In this paper, we introduce Iterative Context Vec-040

tors (ICVs) to offer a new perspective. As illus-041

trated in Figure 1, rather than remaining in the042
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Figure 1: Iterative Context Vectors improve ICL perfor-
mance by modifying model activations.

discrete prompt space, ICVs delve into the exten- 043

sive activation space of the model. This exploration 044

reveals a largely uncharted area for developing new 045

methods, with our pioneering efforts to demon- 046

strate how ICL can be enhanced from the represen- 047

tations within the model. 048

ICV contrasts with existing prompt tuning meth- 049

ods (Li and Liang, 2021; Lester et al., 2021), which 050

operates in a continuous parameter space but still 051

as part of the prompt and requires training via back- 052

propagation. Again, unlike Parameter-Efficient 053

Fine-Tuning (PEFT) methods, e.g. LoRA (Hu et al., 054

2021), ICV does not seek to tune the parameters of 055

the model but rather modifies the activations during 056

inference. 057

The essential traits of ICV, which will be elabo- 058

rated upon in the rest of the paper, are highlighted 059

as follows: 060

1. ICV has an intuitive theoretical support. 061

2. ICV is independent of instruction, prompt, la- 062

bel and permutation choices. 063

3. ICV does not require backpropagation. 064

To the best of our knowledge, we are the first to 065

investigate the application of activation vectors on 066

diverse real-world in-context learning tasks and to 067

demonstrate their potential with in-context exam- 068
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ples during inference.069

2 Method070

We begin by establishing the evaluation framework.071

2.1 Activation Vector Evaluation072

We adhere to standard few-shot benchmarking pro-073

tocols (Vinyals et al., 2016; Finn et al., 2017; Snell074

et al., 2017) to define the activation vector evalua-075

tion setting. For a given split of an n-way k-shot076

classification task T = {Ttrain, Tval, Ttest}, which077

includes textual query-answer pairs (x, y), an ICL078

episode is sampled as:079

E = [(x1, y1), . . . , (xn×k, yn×k), (xq, yq)] . (1)080

Here, (xq, yq) represents the query and its label,081

preceded by the n× k support examples. To avoid082

the impact of unbalanced samples during extrac-083

tion, we uniformly sample k examples from each084

of the n classes and shuffle them to mitigate any085

bias arising from sample permutation.086

The episode must first be converted into a pure087

text sequence before the language model LM(·)088

can process it. This conversion is handled by a ver-089

balizer, which uses a predefined prompt template090

to instantiate the samples. The template contains091

two key components: the input-output separator092

that links a question with its answer, and the exam-093

ple separator that joins the given support set. To094

preserve the simplicity of the template, we have095

chosen to use one newline (\n) for the input-output096

separator and three newlines for the example sepa-097

rator, as adopted in Min et al. (2022a). In the sub-098

sequent text, the verbalizer will be considered an099

integral component of the Language Model (LM)100

and will not be explicitly referenced for the sake of101

conciseness.102

When the language model LM(·) is given an103

episode E, it executes autoregressive inference on104

each of its tokens. The input-output tokens are105

particularly noteworthy because they are responsi-106

ble for producing the answers. The prediction of107

the LM can be obtained by applying the softmax108

function to the logits of the possible labels.109

ŷclean = LM(E). (2)110

In contrast, an “edited” run utilizes an activation111

vector editor fedit, represented as112

ŷedit = LM(E; fedit(v, p)), (3)113

which relies on the extracted vectors v from an ac- 114

tivation vector extractor fext with hyperparameters 115

p: 116

v = fext(Ttrain; p). (4) 117

The extractor retrieves its target vectors v from 118

Ttrain and identifies the optimal hyperparameters p∗ 119

from Tval by maximizing the metric M: 120

p∗ = argmax
p

ME∼Tval (ŷedit, yq) (5) 121

v∗ = fext(Ttrain; p
∗). (6) 122

For single-token classification tasks, macro-F1, 123

micro-F1, and weighted-F1 scores can serve as 124

the metrics. The vectors v∗ and the optimal hyper- 125

parameters p∗ are then applied to the test set Ttest 126

to evaluate the final results ME∼Ttest (ŷedit, yq). 127

Having outlined the evaluation framework, we 128

will now move on to the theoretical grounds of our 129

method. 130

2.2 Theoretical Foundation 131

Given the significance of ICL, many theories have 132

been suggested to explain its mechanism, e.g. Xie 133

et al. (2022); Chan et al. (2022); Ye et al. (2023); 134

Oswald et al. (2023). Drawing inspiration from Irie 135

et al. (2022), we construct our ICV based on the 136

empirical evidence provided by Dai et al. (2023). 137

Irie et al. (2022) revisited the dual form of the 138

perceptron and applied it in the modern context 139

of deep NNs. They demonstrated that the forward 140

operation of any linear layer in neural networks 141

trained via gradient descent can be viewed as a key- 142

value-query attention mechanism (Vaswani et al., 143

2017). In this framework, the training data points 144

act as the keys, the corresponding gradients serve 145

as the values, and the test input generates the query. 146

A more detailed introduction to the dual form is 147

provided in Appendix B. 148

With the help of the dual form, Dai et al. (2023) 149

showed that ICL can be interpreted as a meta- 150

optimization process. This was achieved by revers- 151

ing the direction of the equivalence and breaking 152

down the attention key and value terms for the ICL 153

query token into its zero-shot and demonstration 154

components. Under the relaxed normalization set- 155

ting, the pretrained LM acts as a meta-optimizer. 156

Through forward computation, the LM generates 157

meta-gradients from the demonstration examples, 158

which are then applied to the original language 159

model via attention, culminating in the formation 160

of the ICL inference capability. Their experiments 161
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Figure 2: Illustration of the extraction and application phases of ICV. For clarity, contrastive subtraction and iterative
updates have been omitted.

verified that ICL behaves similarly to explicit fine-162

tuning from multiple perspectives.163

2.3 Iterative Context Vectors164

We have determined that attention layers signifi-165

cantly influence ICL, with demonstrations acting166

as meta-gradients to help the model adapt to the167

task during inference. This explanation provides168

an intuitive understanding of how the LM uses in-169

context examples, but it also highlights why ICL170

performance can be unstable. Specifically, meta-171

gradients derived from limited in-context examples172

may not fully capture the task and may not fit well173

with the initial parameters. For this reason, we pro-174

pose to extract the meta-gradients from the LM’s175

inference process to improve their accuracy and176

robustness. This would allow us to apply these177

meta-gradients directly in future inference tasks,178

eliminating the need to compute them afresh with179

ICL each time a query is evaluated.180

To define ICV, we first specify the extractor fext.181

To simulate the gradients, we generate two versions182

of a given n-way k-shot episode E in a contrastive183

manner, where k ≥ 1 is a hyperparameter. The184

positive sequence is the standard shuffled verbal-185

ization, serving as the target for the gradients. The186

negative sequence can have various design choices;187

we choose to use a zero-shot query, which provides188

no information about the task.189

The extractor then identifies the activations for190

all n × k input-output tokens of the support set191

(if one exists) and the final input-output token for192

the query in each attention layer of the LM. When193

k > 1, we initially average the activations for each194

class. Subsequently, we subtract the negative ac-195

tivations from the positive activations, thereby ob-196

taining the gradients for a single episode. Given197

that there is no support set in the negative sequence, 198

all activations from the positive support set share a 199

common subtrahend of the negative query. By av- 200

eraging over the training set, a preliminary version 201

of the vectors can be calculated, as illustrated in 202

Figure 2. 203

Next, to better utilize the forward pass computa- 204

tion, we propose to apply the vectors during the ex- 205

traction phase, thus introducing the concept of Iter- 206

ative Context Vectors. Specifically, we implement 207

a batch-like update strategy, simulating standard 208

batched gradient, which has been generally adopted 209

to reduce the instability of single-step gradients. 210

After every b extraction episodes, the vectors ex- 211

tracted from all previous episodes are averaged and 212

used as the ICVs during subsequent extractions, 213

leading us to the definition of the editor fedit. 214

For the l-th attention layer Attnl(·), we have the 215

corresponding extracted ICV vl. During inference, 216

the editing is executed following Eq. 10 217

EditAttnl(x) := Attnl(x) + α× vl, (7) 218

where two additional hyperparameters are intro- 219

duced: the extraction strength α1 and the inference 220

strength α2, adopted during the extraction and in- 221

ference phrases, respectively. In summary, the hy- 222

perparameters for the ICVs are p = {k, b, α1, α2}. 223

3 Experiments 224

We apply our ICVs to three popular models across 225

12 tasks. The results are shown in Table 1. Details 226

of the datasets can be found in Appendix C. 227

During the few-shot testing process, the model 228

cannot ascertain the true class distribution of the 229

test set, which is often imbalanced. Therefore, we 230

adhere to the one-shot testing design, which sup- 231
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Model Task agnews emot. hate irony offe. sent. abor. athe. clim. femi. hill. trec Avg.

gpt-j-6b Clean 53.53 24.07 49.38 55.93 51.98 36.94 32.96 25.38 27.11 31.80 35.74 44.83 39.14
FV 37.95 10.72 36.36 37.80 41.91 21.92 27.07 28.21 28.20 28.03 24.86 11.26 27.86
TV 62.46 26.12 50.17 55.53 52.05 38.72 31.56 25.57 29.45 31.67 35.83 51.94 40.92
ICV 62.63 20.26 51.19 63.27 52.54 34.55 37.74 33.09 36.46 38.66 38.65 40.66 42.48

llama-2-7b Clean 61.94 54.45 53.27 58.65 51.86 38.96 27.52 22.13 28.60 29.27 29.42 56.56 42.72
FV 23.68 16.67 50.76 38.70 21.76 12.60 23.26 10.33 27.05 27.30 20.08 5.92 23.18
TV 70.93 59.68 52.44 50.48 54.05 43.67 27.90 21.83 32.04 29.31 32.99 56.61 44.33
ICV 67.15 38.19 57.36 66.03 58.39 45.56 31.00 22.66 32.70 29.16 30.09 61.80 45.00

llama-2-13b Clean 76.23 61.89 53.83 55.17 60.34 38.77 34.96 27.11 20.96 37.13 45.53 61.10 47.75
FV 51.54 10.15 36.35 54.79 21.76 23.97 9.16 7.48 28.21 8.98 13.65 13.11 23.26
TV 76.03 63.74 54.47 55.36 60.55 38.38 35.12 30.08 28.33 37.15 44.66 65.69 49.13
ICV 83.48 65.51 54.43 53.66 62.01 44.03 34.98 26.11 36.63 47.08 54.69 72.67 52.94

Table 1: Main experiment results with macro-F1 as the metric. "Clean" denotes a standard one-shot ICL result. The
models are GPT-J-6B (Wang and Komatsuzaki, 2021) and Llama 2 (Touvron et al., 2023).

plies the model with minimal yet sufficient infor-232

mation through a uniformly distributed support set.233

We evaluate over 200 episodes for both extraction234

and hyperparameter search, with a fixed iterative235

batch size b = 10 for all tasks. For other hyperpa-236

rameters of ICVs, we search for the extraction shot237

k ∈ {1, 2, 3, 4}, the extraction strength and the in-238

ference strength α1, α2 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.239

The final testing results are averaged over 10,000240

randomly sampled episodes.241

As further proof of concept and baselines for242

comparison, we also include two recent activation243

vector proposals: Function Vectors (Todd et al.,244

2023) and Task Vectors (Hendel et al., 2023). Al-245

though these methods were not originally designed246

to operate under the ICL evaluation setting, we247

adapted them to utilize the training set by averag-248

ing the activations. We search over their respective249

hyperparameters as well as the extraction shot k250

to ensure a fair comparison. Please refer to Ap-251

pendix A for a discussion of their designs.252

The results demonstrate that ICVs generally en-253

hance ICL performance, surpassing the baselines254

in most tasks as well as in the overall average. De-255

spite its simpler design, Task Vectors prove to be256

surprisingly competitive and can serve as a robust257

baseline. Conversely, Function Vectors hardly con-258

tribute to performance enhancement. Due to FVs’259

high search time stemming from their design, they260

may necessitate substantially more effort for opti-261

mization in real ICL applications.262

To achieve a more comprehensive understanding263

of ICVs, we compare their performance against the264

standard ICL using additional shots, as illustrated265

in Table 2. Firstly, it is observed that ICVs not266

only surpass the majority of 1-shot performances267

but also often match or exceed performances with268

Task agnews hate irony offe. sent. abor.

0-shot 51.14 45.99 59.25 47.60 32.83 26.51
1-shot 62.89 49.71 44.65 52.85 41.27 27.25
2-shot 76.30 57.74 53.11 57.03 45.01 22.98
3-shot 80.05 60.10 58.31 59.45 45.83 18.90
4-shot 81.44 61.47 54.45 58.10 48.39 18.20

ICV 67.15 57.36 66.03 58.39 45.56 31.00

Table 2: Comparison between ICV and standard ICL on
Llama-2-7b with macro-F1 as the metric. See Table 6
for complete results.

higher numbers of shots. Secondly, the data indi- 269

cates that the performance of standard ICL does 270

not always improve with an increased number of 271

demonstration examples. This suggests potential 272

limitations of solely relying on prompt engineering 273

to enhance performance. Thirdly, it is crucial to 274

note that the temporal cost of standard ICL theo- 275

retically scales with O(n2). Although it is feasible 276

to cache keys and values in practice, these caches 277

cannot be reused when a new set of examples is 278

introduced, which is likely to occur due to the inher- 279

ent difficulty in identifying and ensuring a single 280

set of examples that are effective for all inputs. 281

Finally, an ablation study examining the iterative 282

batch size b has been conducted and is presented in 283

Appendix D. 284

4 Conclusion 285

In our study, we have derived the Iterative Context 286

Vectors (ICVs) from an intuitive theoretical frame- 287

work, defined the evaluation protocols and subse- 288

quently conducted a series of experiments. Despite 289

ICVs’ simplicity, the results obtained are highly en- 290

couraging, indicating that activation vectors show 291

significant potential for further exploration. 292
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Limitations293

This study examines the application of Iterative294

Context Vectors in the context of one-shot exam-295

ples as a compromise between inference time and296

in-context information. Although applying ICVs to297

zero-shot inference would be more efficient, a com-298

putational sequence of insufficient length might299

hinder the model’s ability to effectively solve the300

given task. (Feng et al., 2023)301

We have opted for classification tasks wherein302

a single output token is sufficient to distinguish303

between the classes. The development and appli-304

cation of activation vectors in more complex tasks,305

as well as in generative tasks, represent areas for306

future investigation. Nevertheless, it is worth not-307

ing that the concept of ICVs and the associated308

evaluation protocol can potentially be expanded to309

encompass these more advanced applications.310

References311

Francesco Barbieri, Jose Camacho-Collados, Luis Es-312
pinosa Anke, and Leonardo Neves. 2020. TweetEval:313
Unified Benchmark and Comparative Evaluation for314
Tweet Classification. In Findings of the Association315
for Computational Linguistics: EMNLP 2020, pages316
1644–1650, Online. Association for Computational317
Linguistics.318

Tom Brown, Benjamin Mann, Nick Ryder, Melanie319
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind320
Neelakantan, Pranav Shyam, Girish Sastry, Amanda321
Askell, Sandhini Agarwal, Ariel Herbert-Voss,322
Gretchen Krueger, Tom Henighan, Rewon Child,323
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens324
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-325
teusz Litwin, Scott Gray, Benjamin Chess, Jack326
Clark, Christopher Berner, Sam McCandlish, Alec327
Radford, Ilya Sutskever, and Dario Amodei. 2020.328
Language Models are Few-Shot Learners. In Ad-329
vances in Neural Information Processing Systems,330
volume 33, pages 1877–1901. Curran Associates,331
Inc.332

Stephanie C. Y. Chan, Adam Santoro, Andrew K.333
Lampinen, Jane X. Wang, Aaditya Singh, Pierre H.334
Richemond, Jay McClelland, and Felix Hill. 2022.335
Data Distributional Properties Drive Emergent In-336
Context Learning in Transformers. Preprint,337
arxiv:2205.05055.338

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming339
Ma, Zhifang Sui, and Furu Wei. 2023. Why Can340
GPT Learn In-Context? Language Models Implic-341
itly Perform Gradient Descent as Meta-Optimizers.342
Preprint, arxiv:2212.10559.343

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,344
Di He, and Liwei Wang. 2023. Towards Revealing345

the Mystery behind Chain of Thought: A Theoret- 346
ical Perspective. Advances in Neural Information 347
Processing Systems, 36:70757–70798. 348

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. 349
Model-agnostic meta-learning for fast adaptation of 350
deep networks. In International Conference on Ma- 351
chine Learning, pages 1126–1135. PMLR. 352

Roee Hendel, Mor Geva, and Amir Globerson. 2023. 353
In-Context Learning Creates Task Vectors. In Find- 354
ings of the Association for Computational Linguis- 355
tics: EMNLP 2023, pages 9318–9333, Singapore. 356
Association for Computational Linguistics. 357

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 358
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 359
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation 360
of Large Language Models. In International Confer- 361
ence on Learning Representations. 362

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. 363
2022. The Dual Form of Neural Networks Revisited: 364
Connecting Test Time Predictions to Training Pat- 365
terns via Spotlights of Attention. In Proceedings of 366
the 39th International Conference on Machine Learn- 367
ing, pages 9639–9659. PMLR. 368

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. 369
The Power of Scale for Parameter-Efficient Prompt 370
Tuning. In Proceedings of the 2021 Conference on 371
Empirical Methods in Natural Language Processing, 372
pages 3045–3059, Online and Punta Cana, Domini- 373
can Republic. Association for Computational Lin- 374
guistics. 375

Quentin Lhoest, Albert Villanova del Moral, Yacine 376
Jernite, Abhishek Thakur, Patrick von Platen, Suraj 377
Patil, Julien Chaumond, Mariama Drame, Julien Plu, 378
Lewis Tunstall, Joe Davison, Mario Šaško, Gun- 379
jan Chhablani, Bhavitvya Malik, Simon Brandeis, 380
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas 381
Patry, Angelina McMillan-Major, Philipp Schmid, 382
Sylvain Gugger, Clément Delangue, Théo Matus- 383
sière, Lysandre Debut, Stas Bekman, Pierric Cistac, 384
Thibault Goehringer, Victor Mustar, François Lagu- 385
nas, Alexander M. Rush, and Thomas Wolf. 2021. 386
Datasets: A Community Library for Natural Lan- 387
guage Processing. Preprint, arxiv:2109.02846. 388

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter 389
Pfister, and Martin Wattenberg. 2023. Inference- 390
Time Intervention: Eliciting Truthful Answers from 391
a Language Model. Advances in Neural Information 392
Processing Systems, 36:41451–41530. 393

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: 394
Optimizing Continuous Prompts for Generation. In 395
Proceedings of the 59th Annual Meeting of the Asso- 396
ciation for Computational Linguistics and the 11th 397
International Joint Conference on Natural Language 398
Processing (Volume 1: Long Papers), pages 4582– 399
4597, Online. Association for Computational Lin- 400
guistics. 401

5

https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.48550/arXiv.2205.05055
https://doi.org/10.48550/arXiv.2205.05055
https://doi.org/10.48550/arXiv.2205.05055
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.48550/arXiv.2212.10559
https://doi.org/10.18653/v1/2023.findings-emnlp.624
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.48550/arXiv.2109.02846
https://doi.org/10.48550/arXiv.2109.02846
https://doi.org/10.48550/arXiv.2109.02846
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353


Sheng Liu, Lei Xing, and James Zou. 2023. In-context402
Vectors: Making In Context Learning More Effec-403
tive and Controllable Through Latent Space Steering.404
Preprint, arxiv:2311.06668.405

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-406
naneh Hajishirzi. 2022a. MetaICL: Learning to407
Learn In Context. In Proceedings of the 2022 Con-408
ference of the North American Chapter of the As-409
sociation for Computational Linguistics: Human410
Language Technologies, pages 2791–2809, Seattle,411
United States. Association for Computational Lin-412
guistics.413

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,414
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-415
moyer. 2022b. Rethinking the Role of Demonstra-416
tions: What Makes In-Context Learning Work? In417
Proceedings of the 2022 Conference on Empirical418
Methods in Natural Language Processing, pages419
11048–11064, Abu Dhabi, United Arab Emirates.420
Association for Computational Linguistics.421

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-422
dazzo, Joao Sacramento, Alexander Mordvintsev, An-423
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-424
formers Learn In-Context by Gradient Descent. In425
Proceedings of the 40th International Conference on426
Machine Learning, pages 35151–35174. PMLR.427

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.428
Prototypical Networks for Few-shot Learning. In429
Advances in Neural Information Processing Systems,430
volume 30. Curran Associates, Inc.431

Nishant Subramani, Nivedita Suresh, and Matthew Pe-432
ters. 2022. Extracting Latent Steering Vectors from433
Pretrained Language Models. In Findings of the434
Association for Computational Linguistics: ACL435
2022, pages 566–581, Dublin, Ireland. Association436
for Computational Linguistics.437

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron438
Mueller, Byron C. Wallace, and David Bau. 2023.439
Function Vectors in Large Language Models. In The440
Twelfth International Conference on Learning Repre-441
sentations.442

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-443
bert, Amjad Almahairi, Yasmine Babaei, Nikolay444
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti445
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton446
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,447
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,448
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-449
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan450
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,451
Isabel Kloumann, Artem Korenev, Punit Singh Koura,452
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-453
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-454
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-455
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-456
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,457
Ruan Silva, Eric Michael Smith, Ranjan Subrama-458
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-459
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,460

Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 461
Melanie Kambadur, Sharan Narang, Aurelien Ro- 462
driguez, Robert Stojnic, Sergey Edunov, and Thomas 463
Scialom. 2023. Llama 2: Open Foundation and Fine- 464
Tuned Chat Models. Preprint, arxiv:2307.09288. 465

Alexander Matt Turner, Lisa Thiergart, David Udell, 466
Gavin Leech, Ulisse Mini, and Monte MacDi- 467
armid. 2023. Activation Addition: Steering Lan- 468
guage Models Without Optimization. Preprint, 469
arxiv:2308.10248. 470

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 471
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 472
Kaiser, and Illia Polosukhin. 2017. Attention is All 473
you Need. In NIPS 2017, volume 30. Curran Asso- 474
ciates, Inc. 475

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, ko- 476
ray kavukcuoglu, and Daan Wierstra. 2016. Match- 477
ing Networks for One Shot Learning. In Advances in 478
Neural Information Processing Systems, volume 29. 479
Curran Associates, Inc. 480

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 481
6B: A 6 Billion Parameter Autoregressive Lan- 482
guage Model. https://github.com/kingoflolz/ 483
mesh-transformer-jax. 484

Mengqiu Wang, Noah A. Smith, and Teruko Mitamura. 485
2007. What is the Jeopardy Model? A Quasi- 486
Synchronous Grammar for QA. In Proceedings 487
of the 2007 Joint Conference on Empirical Meth- 488
ods in Natural Language Processing and Computa- 489
tional Natural Language Learning (EMNLP-CoNLL), 490
pages 22–32, Prague, Czech Republic. Association 491
for Computational Linguistics. 492

Albert Webson and Ellie Pavlick. 2022. Do Prompt- 493
Based Models Really Understand the Meaning of 494
Their Prompts? In Proceedings of the 2022 Con- 495
ference of the North American Chapter of the As- 496
sociation for Computational Linguistics: Human 497
Language Technologies, pages 2300–2344, Seattle, 498
United States. Association for Computational Lin- 499
guistics. 500

Sang Michael Xie, Aditi Raghunathan, Percy Liang, 501
and Tengyu Ma. 2022. An Explanation of In-context 502
Learning as Implicit Bayesian Inference. Preprint, 503
arxiv:2111.02080. 504

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, 505
Greg Durrett, and Ramakanth Pasunuru. 2023. Com- 506
plementary Explanations for Effective In-Context 507
Learning. Preprint, arxiv:2211.13892. 508

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 509
Character-level Convolutional Networks for Text 510
Classification. In Advances in Neural Information 511
Processing Systems, volume 28. Curran Associates, 512
Inc. 513

6

https://doi.org/10.48550/arXiv.2311.06668
https://doi.org/10.48550/arXiv.2311.06668
https://doi.org/10.48550/arXiv.2311.06668
https://doi.org/10.48550/arXiv.2311.06668
https://doi.org/10.48550/arXiv.2311.06668
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.naacl-main.201
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.18653/v1/2022.findings-acl.48
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2308.10248
https://doi.org/10.48550/arXiv.2308.10248
https://doi.org/10.48550/arXiv.2308.10248
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.48550/arXiv.2111.02080
https://doi.org/10.48550/arXiv.2211.13892
https://doi.org/10.48550/arXiv.2211.13892
https://doi.org/10.48550/arXiv.2211.13892
https://doi.org/10.48550/arXiv.2211.13892
https://doi.org/10.48550/arXiv.2211.13892


A Related Work514

A.1 Activation Vectors515

Some preliminary works have recently explored516

steering LMs in the representation space. Task Vec-517

tors (Hendel et al., 2023) are extracted from one518

layer of the model during ICL inference and then519

applied to a zero-shot query to determine whether520

they can preserve task-relevant information. Func-521

tion Vectors (Todd et al., 2023), on the other hand,522

select activations from the top attention heads based523

on their causal effect in promoting the correct an-524

swer, average these activations, and add them to a525

specific layer.526

Although these vectors are designed with in-527

tentions similar to ours, they are tested primarily528

on simple synthetic tasks like antonym, country-529

capital, and singular-plural pairs. In contrast, we530

target a practical setting by evaluating on real-531

world datasets, providing a more comprehensive532

assessment ground.533

A.2 Generative Steering534

Another research direction focuses on modifying535

LMs’ activations for generation and transfer pur-536

poses. Latent Steering Vectors (Subramani et al.,537

2022) aim at sentence recovery and sentiment trans-538

fer. Inference-Time Intervention (Li et al., 2023) in-539

volves probing each attention head and guiding the540

model with the probe vector to enhance the truthful-541

ness of the generated text. Studies by Turner et al.542

(2023) and Liu et al. (2023) address style and senti-543

ment transfer by employing positive and negative544

sentence pairs to extract contrastive guidance.545

Despite their similarities, these methods either546

require training with backpropagation or are specif-547

ically tailored for generative or transfer tasks be-548

tween sentence pairs. Consequently, they cannot549

be directly integrated into our approach.550

B The Dual Form of Attention Layers551

Formally, assume a linear layer trained via gradient552

descent utilizing T training inputs (x1, . . . ,xT )553

and their corresponding (backpropagated) error sig-554

nals (e1, . . . , eT ), where xt ∈ Rdin and et ∈555

Rdout . If standard gradient descent is applied, a556

loss function L produces the error signal et =557

−ηt(∇yL)t, where ηt ∈ R is the learning rate, and558

yt = Wxt is the output of the linear layer. Its559

weight matrix is given by560

W = W 0 +
T∑
t=1

et ⊗ xt, (8) 561

where W 0 ∈ Rdout×din represents the initial value 562

of the weights. This linear layer transforms an 563

input x ∈ Rdin into an output S1(x) ∈ Rdout : 564

S1(x) = Wx. (9) 565

Next, consider a composite layer S2 that stores 566

T key-value pairs, represented by a key matrix 567

X = (x1, . . . ,xT ) ∈ Rdin×T and a value matrix 568

E = (e1, . . . , eT ) ∈ Rdout×T , along with a weight 569

matrix W 0 ∈ Rdout×din . This layer transforms an 570

input x ∈ Rdin into an output S2(x) ∈ Rdout by 571

S2(x) = W 0x+Attn(X,E,x), (10) 572

where the parameters of the unnormalized attention 573

operator Attn(·) are, in order, the key, value, and 574

query. 575

It can be shown that S1 and S2 are equivalent by 576

expanding the attention operation as 577

Attn(X,E,x) = EX⊤x =

(
T∑
t=1

et ⊗ xt

)
x.

(11) 578

C Dataset and Tasks 579

All datasets utilized in this research are obtained 580

from Huggingface (Lhoest et al., 2021). A full list 581

of these datasets, along with their corresponding 582

access labels, is detailed in Table 3. 583

AG News (Zhang et al., 2015) is a subdataset of 584

AG’s corpus of news articles constructed by assem- 585

bling titles and description fields of articles from 586

the 4 largest classes (“World”, “Sports”, “Busi- 587

ness”, “Sci/Tech”) of AG’s Corpus. 588

TweetEval (Barbieri et al., 2020) introduces an 589

evaluation framework consisting of a series of 590

Twitter-specific classification tasks. We selected all 591

single-token classification tasks from the dataset. 592

Text Retrieval Conference Question Answering 593

(TrecQA) (Wang et al., 2007) is a dataset created 594

from the TREC-8 (1999) to TREC-13 (2004) Ques- 595

tion Answering tracks. 596

Our few-shot evaluation methodology employs 597

episodic sampling to regulate the duration of both 598

extraction and inference processes, rather than re- 599

lying solely on the absolute number of samples. 600
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Name Abbr. Huggingface Label

AG News agnews ag_news
Emotion emot. tweet_eval/emotion
Hate hate tweet_eval/hate
Irony irony tweet_eval/irony
Offensive offe. tweet_eval/offensive
Sentiment sent. tweet_eval/sentiment
Abortion abor. tweet_eval/stance_abortion
Atheism athe. tweet_eval/stance_atheism
Climate clim. tweet_eval/stance_climate
Feminist femi. tweet_eval/stance_feminist
Hillary hill. tweet_eval/stance_hillary
TREC trec trec

Table 3: The datasets and tasks employed, along with
their corresponding abbreviations used in the result ta-
bles, and their respective labels as hosted on Hugging
Face.

Consequently, not all available samples are utilized601

during the experimental procedures. This aspect602

underscores an additional dimension of efficiency603

inherent in activation vectors.604

We utilize the default labels provided with the605

datasets to emphasize the independence of prompt606

formatting. It is noteworthy that, for the TREC607

dataset, the observed low zero-shot performance608

can be attributed to the default labels, which609

are capitalized abbreviations such as "ABBR",610

"ENTY", and "LOC". This particular dataset func-611

tions as a special case within our experiments,612

aimed at investigating whether ICVs can adapt to613

labels that are less semantically meaningful.614

D Additional Results615

More metrics of the main experiment. We616

present the results on the other two metrics, namely617

micro-F1 and weighted-F1, derived from our main618

experiment, in Table 4 and Table 5, respectively.619

Under these evaluation criteria, ICVs demonstrate620

performance on par with, and often surpassing, that621

of FV and TV across the majority of tasks.622

All experiments were conducted utilizing a pre-623

determined random seed (42) to mitigate selection624

bias. To ensure a robust representation of result dis-625

tributions, the tests from the main experiments were626

averaged over a substantial number of episodes,627

specifically 10,000.628

Notably, the exception lies in the GPT-J-6B629

& micro-F1 setting, where FV exhibits superior630

performance. Given the pronounced underperfor-631

mance of FVs across other cases, we hypothesize632

that this anomalous result may indicate a strong 633

bias of FVs towards the majority classes and the 634

specific model. This bias results in an elevated 635

micro-F1 score, while simultaneously failing to 636

perform effectively under other evaluation settings. 637

Ablation on the extraction batch size. Addi- 638

tionally, we make an experiment that ablate on the 639

extraction batch size b. The results are shown in 640

Figure 3. It is evident that without our iterative 641

batching strategy, whether when b = 1 or b is ex- 642

cessively large, the extracted ICVs demonstrate 643

suboptimal performance. 644

As stated in Section 3, we consistently employ 645

b = 10 across all models and tasks in other exper- 646

iments, concentrating our search efforts on other 647

hyperparameters. This approach is intended to limit 648

the search time and to prioritize the identification 649

and optimization of the more significant parame- 650

ters. 651

Furthermore, the results suggest that there exists 652

substantial potential for optimization within the 653

design and hyperparameter space of ICVs. This 654

potential will be reserved for future research en- 655

deavors aimed at refining and advancing more so- 656

phisticated methodologies. 657

E Code and Reproducibility 658

The core code defining the ICVs as well as the 659

evaluation protocol is provided within the supple- 660

mentary material. We will release the complete 661

code repository necessary for reproducing all of 662

our experiments to promote transparency and facil- 663

itate future research endeavors. 664
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Model Task agnews emot. hate irony offe. sent. abor. athe. clim. femi. hill. trec Avg.

gpt-j-6b Clean 57.97 31.91 49.39 59.86 63.22 38.73 39.17 30.49 30.92 37.70 40.33 54.01 44.48
FV 41.45 27.30 57.13 60.76 72.16 48.98 68.37 73.35 73.31 64.94 59.47 18.04 55.44
TV 66.85 33.23 50.20 59.69 60.83 40.01 37.87 31.27 37.15 37.52 40.80 61.51 46.41
ICV 63.37 31.55 51.29 64.64 60.97 38.89 55.97 47.76 53.12 43.62 54.14 53.46 51.57

llama-2-7b Clean 63.40 57.31 53.64 62.22 53.67 40.02 28.69 24.90 34.88 30.25 30.05 60.77 44.98
FV 34.46 39.73 57.11 61.01 27.82 19.94 24.71 14.02 33.48 64.97 25.82 18.88 35.16
TV 71.72 62.94 52.92 56.26 56.48 43.10 29.29 24.63 65.82 30.29 33.86 60.81 49.01
ICV 69.72 36.41 57.38 66.58 64.78 48.22 37.44 26.12 54.66 33.60 37.49 59.02 49.28

llama-2-13b Clean 77.96 65.42 54.00 55.19 63.56 41.41 52.57 42.78 20.36 55.94 56.83 67.02 54.42
FV 58.42 25.40 57.10 54.85 27.82 48.83 15.92 12.64 73.37 15.57 25.74 28.43 37.01
TV 77.89 67.90 54.59 55.40 63.70 40.31 53.25 44.48 42.68 55.95 56.61 70.52 56.94
ICV 83.77 69.07 54.72 54.23 73.52 43.51 51.01 44.95 49.01 57.68 62.80 75.20 59.96

Table 4: Main experiment results with micro-F1 as the metric. "Clean" denotes a standard one-shot ICL result.

Model Task agnews emot. hate irony offe. sent. abor. athe. clim. femi. hill. trec Avg.

gpt-j-6b Clean 53.69 22.48 49.46 58.64 62.47 33.50 42.61 34.82 34.83 40.34 42.14 51.52 43.88
FV 37.89 11.71 41.54 45.93 60.49 32.21 55.53 62.07 62.02 51.96 44.36 11.08 43.07
TV 62.63 23.97 50.34 58.33 61.26 35.46 41.46 35.53 42.27 40.15 42.56 57.36 45.94
ICV 62.74 23.08 51.50 64.78 61.40 28.80 55.25 51.70 56.21 46.26 50.60 48.26 50.05

llama-2-7b Clean 76.36 65.73 53.46 54.99 65.44 33.47 51.80 45.57 19.77 53.00 55.25 68.46 53.61
FV 51.57 10.32 41.51 54.43 12.11 32.04 4.37 2.84 62.10 4.20 10.54 15.84 25.16
TV 76.18 68.12 54.15 55.11 65.54 32.67 52.24 48.36 45.48 52.99 54.78 70.22 56.32
ICV 83.56 69.51 53.91 52.56 71.28 42.13 51.52 47.12 52.56 59.37 61.99 75.31 60.07

llama-2-13b Clean 62.03 57.45 53.83 61.15 56.07 35.33 30.58 27.50 38.72 31.75 27.79 64.49 45.56
FV 23.85 23.29 52.94 46.74 12.11 8.91 24.87 4.18 34.90 51.57 13.49 6.60 25.29
TV 71.05 63.17 53.09 53.30 58.79 41.54 31.37 27.49 61.51 31.87 32.48 64.41 49.17
ICV 67.27 38.23 57.49 66.95 65.62 40.49 40.43 30.16 55.75 34.57 36.80 56.14 49.16

Table 5: Main experiment results with weighted-F1 as the metric. "Clean" denotes a standard one-shot ICL result.

Task agnews emot. hate irony offe. sent. abor. athe. clim. femi. hill. trec Avg.

0-shot 51.14 30.02 45.99 59.25 47.60 32.83 26.51 23.58 13.22 24.75 31.18 0.59 32.22
1-shot 62.89 44.57 49.71 44.65 52.85 41.27 27.25 23.39 28.55 29.65 29.24 56.17 40.85
2-shot 76.30 53.86 57.74 53.11 57.03 45.01 22.98 21.43 30.88 22.57 31.67 68.62 45.10
3-shot 80.05 58.76 60.10 58.31 59.45 45.83 18.90 17.50 32.09 19.92 30.27 69.71 45.91
4-shot 81.44 59.04 61.47 54.45 58.10 48.39 18.20 14.12 27.67 21.03 27.35 71.33 45.22

ICV 67.15 38.19 57.36 66.03 58.39 45.56 31.00 22.66 32.70 29.16 30.09 61.80 45.01

Table 6: Full comparison between ICV and standard ICL on Llama-2-7b with macro-F1 as the metric. The clean
results shown here are averaged over 1,000 episodes.
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Figure 3: Ablation study on the extraction batch size b. Eight different values of b were evaluated using Llama-2-7b
on the AG News dataset. The experiments were conducted under the conditions of 200 one-shot extraction episodes
and 1,000 testing episodes. The white color in the heatmaps indicates the corresponding clean one-shot macro-F1
score (62.89, as presented in Table 2).

10


	Introduction
	Method
	Activation Vector Evaluation
	Theoretical Foundation
	Iterative Context Vectors

	Experiments
	Conclusion
	Related Work
	Activation Vectors
	Generative Steering

	The Dual Form of Attention Layers
	Dataset and Tasks
	Additional Results
	Code and Reproducibility

