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ABSTRACT

Retrieval-augmented generation (RAG) is a common strategy to reduce hallucina-
tions in Large Language Models (LLMs). While reinforcement learning (RL) can
enable LLMs to act as search agents by activating retrieval capabilities, existing
ones often underutilize their internal knowledge. This might lead to redundant
retrievals, potential harmful knowledge conflicts, and increased inference latency.
To address these limitations, an efficient adaptive search agent capable of discern-
ing optimal retrieval timing and synergistically integrating parametric (internal)
and retrieved (external) knowledge is in urgent need. This paper introduces the
Reinforced Internal-External Knowledge Synergistic REasoning Agent (IKEA),
which could indentify its own knowledge boundary and prioritize the utilization of
internal knowledge, resorting to external search only when internal knowledge is
deemed insufficient. This is achieved using a novel knowledge-boundary aware
reward function and a knowledge-boundary aware training dataset. These are
designed for internal-external knowledge synergy oriented RL, incentivizing the
model to deliver accurate answers, minimize unnecessary retrievals, and encour-
age appropriate retrievals only when its own knowledge is lacking. Evaluations
across multiple knowledge-intensive reasoning tasks demonstrate that IKEA sig-
nificantly outperforms baseline methods, reduces retrieval frequency significantly,
and exhibits robust generalization capabilities.

1 INTRODUCTION

The advancement of reinforcement learning with verifiable reward (RLVR) systems (Shao et al.,
2024; Su et al., 2025) has significantly enhanced the reasoning capability of language models, like
Deepseek-R1 (DeepSeek-AI et al., 2025). For knowledge-intensive tasks (Gao et al., 2024), R1-
like models (Su et al., 2025) could activate their internal pre-trained knowledge through reasoning.
However, constrained by the finite nature of pre-training corpora and the dynamic essence of world
knowledge, they remain susceptible to hallucinations (Huang et al., 2025a). To address the knowledge
deficiencies, current research typically empowers models to invoke search engines, essentially training
them as search agents (Jin et al., 2025; Chen et al., 2025). With RL, these models progressively learn
to decompose tasks and then retrieve relevant knowledge for each subtask to aid reasoning.

Despite this, the approach remains suboptimal for several reasons: Firstly, it primarily leverages the
tool-calling and information extraction capabilities of LLMs, largely underutilizing its potential as an
intrinsic knowledge base (i.e., LLM-as-KB (Heinzerling & Inui, 2021; Zheng et al., 2024)). This leads
to substantial retrieval redundancy, as external searches are still performed even when the necessary
information might already be implicitly encoded within the model parameters. Secondly, the
redundant retrieval might introduce noise into the retrieved contents (Dong et al., 2025), potentially
generating unnecessary knowledge conflicts (Fang et al., 2024). A common issue is erroneous
retrieved knowledge overriding the accurate parametric knowledge (Xu et al., 2024b). Thirdly, since
each search engine call interrupts the generation process of the LLM, an increase in the number of
searches (caused by the aforementioned redundancy) will elevate inference latency (Yu et al., 2024).
Thus, a critical research question emerges: How can we train an efficient adaptive search agent that
comprehensively integrates both parametric (internal) and retrieved (external) knowledge?
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This paper argues that such an agent needs to posses the following key knowledge-related behaviors:
(1) Self-knowledge Boundary Division (determine known/unknown): the ability to decompose a
query into atomic queries and determine whether each sub-query falls within the knowledge boundary
of the agent (Li et al., 2024a; Ren et al., 2024; Wen et al., 2024); (2) Internal Knowledge Recall
(search in parameter): the ability to generate relevant background knowledge to assist in answering
questions that fall within its knowledge boundary (Cheng et al., 2024; Mao et al., 2021); (3) External
Knowledge Recall (search in corpus): the ability to generate effective search queries for questions
outside its knowledge boundary and utilize search engines to acquire the desired knowledge (Zhao
et al., 2024). In all, an efficient adaptive search agent needs to accurately determine whether to search
in parameter or corpus, and should prioritize utilizing the knowledge embedded in its parameters,
thereby minimizing redundant search for information that already exists within the model. Therefore,
the retrieval timing becomes the core. Existing researches determine retrieval timing either via
external indicators/classifiers (Jiang et al., 2023; Jeong et al., 2024), which often generalize poorly
or require external tools, or through complex data engineering for imitation/preference learning (Yu
et al., 2024; Guan et al., 2025; Wang et al., 2025a) to enable autonomous decision-making. However,
how to imbue a model with the capacity to determine the optimal retrieval timing for adaptive retrieval
via RL has not been fully investigated.

To address these issues and enable the model to exhibit the aforementioned behaviors, the paper
proposes the Reinforced Internal-External Knowledge Synergistic REasoning Agent (IKEA), an
efficient adaptive search agent powered by RL. First, we design the IKEA agent framework, which
explicitly prompts the model to determine its knowledge boundary and prioritize the utilization of
knowledge within its parameters. A search engine is invoked to retrieve external knowledge only when
internal knowledge is deemed uncertain or insufficient. Next, we introduce two key components: a
knowledge-boundary aware reward function and a corresponding knowledge-boundary aware training
dataset for internal-external knowledge synergy oriented RL. The reward function incentivizes correct
answers while minimizing unnecessary external knowledge retrieval for questions where the LLMs
have possessed sufficient internal knowledge. Conversely, it encourages retrieval for questions beyond
its knowledge boundary. In this way, the perception capability of self-knowledge in LLMs could
be improved. Specifically, the training dataset, meticulously constructed, comprises a mixture of
questions that the model is likely to answer through its internal knowledge and those requiring
external knowledge. Actually, such a balanced dataset is crucial for the model training to adaptively
and synergistically leverage both internal and external knowledge.

We conducted evaluations on multiple datasets involving both single-hop (Kwiatkowski et al., 2019;
Mallen et al., 2023) and multi-hop (Yang et al., 2018; Ho et al., 2020) knowledge reasoning tasks.
IKEA outperforms baselines across various datasets and demonstrates strong generalization capa-
bilities on out-of-distribution datasets. Compared to naive reinforcement learning approaches (i.e.
Search-R1) (Jin et al., 2025; Song et al., 2025; Chen et al., 2025), it can significantly reduce the
number of retrievals while improving performance. This fully showcases the effectiveness and
efficiency of our proposed method. The contribution of this paper are as follows:

• This paper addresses the limitations of current search agents, which often over-rely on external
searches and underutilize their intrinsic knowledge, leading to retrieval redundancy.

• This paper proposes Reinforced Internal-External Knowledge Synergistic Reasoning Agent (IKEA),
an efficient adaptive search agent via reinforcement learning, which could delineate the self-
knowledge boundary and prioritize parametric knowledge before resorting to external retrieval.

• This paper presents a detailed analysis demonstrating that both knowledge-boundary aware reward
design and training dataset construction are key to training efficient adaptive search agents.

2 PRELIMINARY

2.1 MULTI-TURN RLVR FOR LLM-AGENT

We consider an LLM agent π that interacts with an environment E over N rounds to complete
a task t. In each round k, the agent, based on the current state sk, generates an action ak. The
environment responds with an observation ok+1. The state sk is the history of all preceding tokens:
sk = (t, a0, o1, . . . , ak−1, ok). A full trajectory is denoted as τ = (t, a0, o1, . . . , aN−1, oN , r),
where r is a final reward. RL aims to optimize the policy π(a|s) to maximize this reward.
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Figure 1: The top of the figure illustrates the training process for Multi-turn Reinforcement Learning
with Verifiable Reward for LLM-Agent. In the middle is Search-R1, and at the very bottom is IKEA.
Search-R1 and IKEA are special types of LLM-agents. We highlight the differences from the training
of general LLM-agents, and to save space, we have omitted the common parts, such as the calculation
of KL and Advantage.

While Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a common practice, it requires
training a separate, memory-intensive value model to estimate the advantage. To circumvent this,
we adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), a value-free algorithm.
GRPO performs a group of G rollouts per task and estimates the advantage for each trajectory τi by
normalizing its reward ri relative to the group’s statistics: Âτi = (ri − µr)/σr, where µr and σr are
the mean and standard deviation of rewards in the group. The GRPO loss function is:

LGRPO(θ) = −Êt∼T,τi∼πold(τ |t)
1

G

G∑
i=1

1∑N−1
k=0 |ai,k|

N−1∑
k=0

|ai,k|∑
ℓ=1

[
min

(
rθÂτi , clip(rθ, 1− ϵ, 1 + ϵ)Âτi

)]
(1)

where rθ =
πθ(ai,k,l|si,k)

πθold
(ai,k,l|si,k) . The loss is computed only on the agent-generated action tokens.

2.2 AGENTIC SEARCH RL PARADIGM

We instantiate this RL framework for knowledge-intensive reasoning tasks, where the agent interacts
with a search environment. The agent’s actions ak are structured token sequences using special tags,
as pioneered by recent works (Jin et al., 2025; Song et al., 2025; Chen et al., 2025). Each action must
contain a reasoning step and an interaction step:

ak = (<THINK> . . . </THINK>, ainteract
k )

The interaction part, ainteract
k , is either a search query or a final answer:

ainteract
k ∈ {<SEARCH>[query]</SEARCH>, <ANSWER>[final answer]</ANSWER>}

If a <SEARCH> action is generated, the environment returns retrieved documents as the observation
ok+1 = <CONTEXT>[. . . ]</CONTEXT>. If an <ANSWER> action is generated, the episode termi-
nates, and a final reward r is calculated based on an Exact Match Reward Function. A group of such
trajectories is then used to optimize the agent with the LGRPO(θ) loss function defined in Section 2.1.
The content within the environment-provided <CONTEXT> tags is masked out during loss calculation.
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3 IKEA: REINFORCED INTERNAL-EXTERNAL KNOWLEDGE SYNERGISTIC
REASONING AGENT

An efficient adaptive search agent should possess the ability to delineate its own knowledge bound-
ary and leverage internal parametric knowledge as much as possible within this boundary, while
employing retrieval for knowledge outside this boundary. To this end, we propose the Reinforced
Internal-External Knowledge Synergistic REasoning Agent (IKEA) as shown in the bottom of Figure
1. We design the system prompt (in Appendix B) to encourages the agent to first delineate its own
knowledge boundary and prioritize its internal parametric knowledge. The fundamental challenge,
however, is training the agent to learn how to make this crucial decision dynamically. We describe
the design philosophy of the reward mechanism first. Then we elaborate the specific details for
knowledge-boundary aware RL.

3.1 DESIGN PHILOSOPHY: KNOWLEDGE BOUNDARY PERCEPTION VIA ONLINE
EXPLORATION

To overcome the redundant retrievals that plague existing models, our core design philosophy is
to train an agent that can perceive its own knowledge boundary. We define this boundary as the
distinction between the model’s inter parametric knowledge and the external knowledge. Rather than
using static rules, we empower the agent to learn this boundary dynamically through RL.

During the rollout phase for collecting trajectories, we can observe the agent’s actions across two
axes: whether it performs a search and whether it answers correctly, which defines four key behaviors:

• Behavior 1 (No Search, Correct): The ideal case where internal knowledge is sufficient.
• Behavior 2 (No Search, Incorrect): The worst case where the agent is unaware of knowledge gap.
• Behavior 3 (Search, Correct): A successful case where the agent actively fills knowledge gap.
• Behavior 4 (Search, Incorrect): A suboptimal case where an attempt to fill knowledge gap fails.

Our reward mechanism is meticulously designed to instill a preference for these behaviors in the
order of 1 > 3 > 4 > 2. This hierarchy teaches the agent to perceive its knowledge boundary through a
series of crucial trade-offs.

First, the preference for Behavior 1 over 3 is key to promoting efficiency and confidence. When
both paths lead to a correct answer, we reward the agent more for relying on its internal knowledge.
This penalizes redundant searches—those performed out of uncertainty rather than necessity—and
encourages the model to trust its own parameters, thereby solidifying its perception of the internal
knowledge boundary. Furthermore, within Behavior 3 itself, we can perform more fine-grained
boundary learning. If multiple trajectories with varying numbers of searches all lead to a correct
answer, we reward those with fewer searches more highly. This penalizes the redundant searches
present in the longer trajectories, further training the agent to distinguish precisely which pieces
of knowledge require external support. Next, the preference for Behavior 4 over 2 is designed to
discourage inaction when the agent has knowledge deficiency. While both scenarios result in an
incorrect answer, Behavior 4 demonstrates that the agent was at least aware of a potential knowledge
gap and attempted to explore. Rewarding this exploration, even if unsuccessful, trains the agent
to avoid being "confidently wrong" and instead seek external help when its internal knowledge is
insufficient. Finally, the clear separation between correct and incorrect outcomes (Behaviors 1 & 3
> 4 & 2) ensures that accuracy remains the primary objective. The agent learns that any path to a
correct answer is fundamentally better than any path to an incorrect one.

This creates a dynamic tension that forces the agent to learn a true knowledge-boundary awareness. It
must constantly balance the efficiency of using internal knowledge against the risk of being incorrect,
and the necessity of exploration against the cost of search. This philosophy of cultivating a nuanced
self-awareness is operationalized through the specific RL framework detailed next.

3.2 KNOWLEDGE-BOUNDARY AWARE RL

Reward Function. Due to the probabilistic nature of LLMs, existing LLMs have a blurred perception
of their self-knowledge boundaries. They cannot definitively distinguish which questions pertain to
internal knowledge and which require external knowledge. As shown in the bottom of the Figure 1,
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for the same task, τ1 only uses internal knowledge, τG−1 only use external knowledge, and τG uses
both internal and external knowledge. Consequently, agents may exhibit knowledge misidentification
behaviors, leading to the generation of hallucinated answers for questions outside their knowledge
boundaries, while utilizing redundant retrieval to for questions within their knowledge boundaries.

To address this, we design a knowledge-boundary aware reward composed of several components.
First, the answer reward (rans) is 1 if the final answer matches the gold answer, and 0 otherwise.
Second, the knowledge boundary reward (rkb) is determined as follows: if rans = 1, rkb is a linear
function increasing as the retrieval times (RT ) decrease, ranging from 0 to rkb+. If rans = 0, then
rkb = 0 when the number of retrievals is 0, and rkb = rkb− (a small value) when the number of
retrievals is greater than 0. Finally, for the format reward, if the generated trajectory violates format
constraints of IKEA, the total reward is -1; otherwise, it is rans + rkb.

The expression for the reward function is as follows:

R =

{
−1 if trajectory format is incorrect
rans + rkb if trajectory format is correct

(2)

rans =

{
1 ans == gold ans
0 ans != gold ans

, rkb =


rkb+ ×

(
1− RT

RTmax

)
if rans = 1

0 if rans = 0 and RT = 0

rkb− if rans = 0 and RT > 0

(3)

Here, RTmax denotes the maximum number of retrievals, rkb− is a small value, rkb+ is the maximum
possible knowledge boundary reward. During exploration, when the agent obtains the correct answer
(rans = 1), it may utilize internal or external knowledge. The reward rkb+ is designed to incentivize
the agent to minimize retrieval attempts, thereby favoring the use of internal knowledge. Conversely,
when the agent fails to obtain the correct answer (rans = 0), indicating high uncertainty regarding
relevant knowledge, the reward rkb− encourages reliance on external knowledge. To prevent the
development of excessive retrieval behavior, we establish rkb− ≪ rkb+.

Dataset Construction. We use In-context Learning with three Chain-of-Thought exemplars to probe
the internal knowledge of the model. For each question, we sample the answer N times. A question
is labeled Qeasy if the correct answer is obtained at least once, indicating the model likely possesses
the relevant knowledge. Otherwise, it’s labeled Qhard.

If the training dataset exclusively contained data from Qeasy, the model would be more likely to
utilize internal knowledge during rollout, and relying solely on internal knowledge would yield higher
rewards than using retrieval. Consequently, after full training, the model would tend to avoid retrieval
for any question. Conversely, if the training dataset only comprised Qhard questions, the model
would be more inclined to use external retrieved knowledge during the rollout, and using the retriever
would result in higher rewards than not using it. Thus, after full training, the model would tend to use
retrieval exclusively for all questions.

To achieve a balanced use of internal and external knowledge, we construct the training dataset with
a 1:1 ratio of Qeasy and Qhard questions. This promotes adaptive retrieval and synergy between
internal and external knowledge.

Finally, based on our carefully constructed reward function and the training dataset, we optimize the
agent towards internal-external knowledge synergy using the Loss Function 1.

4 EXPERIMENT

4.1 SETTING

Test sets (easy and hard subsets) were constructed like the training set (Section 3.2), including
two in-distribution and two out-of-distribution sets (details in Appendix C). We benchmarked our
method against baselines (Appendix D) using various model sizes and types, with training specifics
in Appendix E. Performance was evaluated by exact match (EM) and efficiency by the number of
valid searches (RT) (Jin et al., 2025).
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Table 1: Overall performance based on Qwen2.5-3B(-Instruct) and Qwen2.5-7B(-Instruct). Models
with the "-Zero" suffix are trained from the Base model, otherwise trained from the Instruct model.
EM is the exact match, and RT is the number of valid searches. *** results are reproduced using the
checkpoint released by the original paper, the Search-R1-Zero-3B might suffer from over-optimization
and it is hard to count the RT. †DeepRAG results are from its original paper; the values are EM/RT.

Method
NQ PopQA HotpotQA 2Wiki Avg

Easy Hard Easy Hard Easy Hard Easy Hard

EM RT EM RT EM RT EM RT EM RT EM RT EM RT EM RT EM RT

Qwen2.5-3B
w/o parameter update (re-implementation)
Direct 36.33 0 3.91 0 56.05 0 2.54 0 50.39 0 1.56 0 50.98 0 11.72 0 26.69 0.00
RAG 59.77 1 30.47 1 68.16 1 31.64 1 54.30 1 13.87 1 40.04 1 12.70 1 38.87 1.00
Iter-Retgen 59.57 4 30.27 4 68.55 4 32.81 4 55.86 4 16.02 4 41.60 4 15.23 4 39.99 4.00
IR-COT 35.74 3.26 15.04 3.34 48.05 3.15 24.80 3.17 43.36 3.64 9.77 3.60 25.39 3.82 9.18 3.70 26.42 3.46
FLARE 34.57 0.21 4.49 0.41 52.15 0.18 4.49 0.52 48.44 0.16 1.76 0.61 50.00 0.03 11.13 0.32 25.88 0.31

Reinforcement learning (re-implementation for search-r1)
R1-Zero 62.34 0 10.55 0 72.66 0 3.71 0 59.57 0 4.49 0 57.22 0 13.28 0 35.48 0.00
R1 59.77 0 7.23 0 70.11 0 3.13 0 58.01 0 3.71 0 57.81 0 13.67 0 34.18 0.00
Search-R1-Zero*** 66.60 - 28.51 - 77.73 - 27.93 - 64.45 - 13.67 - 52.54 - 13.48 - 43.11 -
Search-R1 66.41 1.17 32.61 1.30 73.43 1.22 29.49 1.53 65.23 1.86 22.27 1.88 51.17 2.16 26.56 2.00 45.90 1.64
IKEA-Zero 71.29 1.00 34.18 1.00 78.90 1.00 35.94 1.02 68.94 1.05 21.09 1.14 54.69 1.19 23.63 1.39 48.58 (+5.47) 1.10
IKEA 72.46 1.00 31.44 1.02 79.69 1.00 33.59 1.02 69.92 1.04 20.11 1.13 59.37 1.15 20.70 1.21 48.41 (+2.51) 1.07 (-34.76%)

Qwen2.5-7B
w/o parameter update (re-implementation)
Direct 41.41 0 4.30 0 61.13 0 2.34 0 54.69 0 4.10 0 51.95 0 10.94 0 28.86 0.00
RAG 57.23 1 26.37 1 69.73 1 31.64 1 58.98 1 17.77 1 40.82 1 11.33 1 39.23 1.00
Iter-Retgen 58.79 4 26.95 4 70.90 4 31.25 4 61.52 4 19.73 4 43.36 4 14.45 4 40.87 4.00
IR-COT 40.04 2.59 14.26 2.68 58.98 2.48 25.78 2.56 46.09 3.09 14.26 2.94 17.58 3.18 12.50 3.07 28.69 2.82
FLARE 39.65 0.16 5.27 0.28 59.96 0.11 3.13 0.67 52.93 0.08 4.10 0.375 51.17 0.03 11.52 0.35 28.47 0.26

SFT/DPO (results from the original paper, shown as EM/RT)
DeepRAG† - 40.60/ 32.10/ 40.40/ - -

Reinforcement learning
R1-Zero 66.80 0 15.23 0 72.65 0 6.25 0 64.65 0 5.66 0 53.32 0 18.16 0 37.84 0.00
R1 62.50 0 14.06 0 73.04 0 5.27 0 64.06 0 5.47 0 57.23 0 14.45 0 37.01 0.00
Search-R1-Zero 68.55 1.19 35.55 1.34 76.37 1.16 33.59 1.30 69.73 1.78 25.78 1.77 46.68 2.38 26.56 2.13 47.85 1.63
Search-R1 65.63 1.34 33.40 1.51 78.13 1.24 32.62 1.51 68.17 2.00 24.02 2.07 35.35 2.67 22.66 2.47 45.00 1.85
IKEA-Zero 74.80 1.00 37.89 1.00 80.47 1.00 33.20 1.00 74.22 1.01 23.43 1.08 57.42 1.03 27.34 1.23 51.10 (+3.25) 1.04 (-36.20%)
IKEA 74.61 0.59 32.23 0.89 80.08 0.56 31.84 1.09 71.88 0.60 26.56 1.20 54.49 0.93 28.71 1.38 50.05 (+5.05) 0.91 (-50.81%)
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Figure 2: The training log of IKEA-3B-Zero, IKEA-3B, IKEA-7B-Zero and IKEA-7B. We show the
curve of number of valid searches, response length and trainign rewards.

4.2 OVERALL RESULTS

Experimental results are presented in Table 1, with corresponding training dynamics illustrated in
Figure 2. A detailed analysis was conducted to demonstrate the advantages of the proposed method
and provide insights for future research.

Baselines without parameter updates struggle to effectively synergize internal and external
knowledge. "Direct" (internal knowledge) is outperformed by retrieval-based methods like "RAG"
and "Iter-Retgen" (Shao et al., 2023) on "Hard" tasks, revealing LLMs’ internal knowledge gaps.
However, constant retrieval introduces conflicts and latency. Adaptive methods like IR-COT (Trivedi
et al., 2023) and FLARE (Jiang et al., 2023) fail to solve this; IR-COT improves "Hard" performance
at the cost of "Easy" tasks, while FLARE’s token-probability trigger is ineffective, leading to minimal
retrieval. This shows that un-finetuned models cannot autonomously and effectively determine when
to synergistically leverage internal and external knowledge.

Reinforcement learning baselines can effectively activate either internal or external knowledge,
but not both synergistically. R1, an RL-based method focusing on internal knowledge, improves
performance on "Easy" subsets but not on "Hard" ones. Conversely, Search-R1 (Jin et al., 2025) uses
RL to generate search queries for external knowledge, outperforming other retrieval methods with
fewer calls. While both demonstrate RL’s ability to enhance the use of internal or external knowledge
in isolation, neither method effectively integrates the two sources.
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IKEA can adaptively combine internal and external knowledge for synergistic knowledge
reasoning. Through RL with a knowledge-boundary aware reward, IKEA learns to use internal
knowledge when sufficient and retrieve external knowledge only when necessary. Compared to R1,
IKEA improves performance by over 10%, primarily on "Hard" subsets. Compared to Search-R1,
it achieves superior performance with significantly fewer retrievals. This shows IKEA learns to
delineate its own knowledge boundaries, leveraging parametric knowledge by default and external
knowledge selectively, which mitigates knowledge conflicts, improves efficiency, and generalizes
well to out-of-distribution datasets.

The IKEA training method is effective across models of different sizes and types. As shown in
Figure 2, IKEA models initialized from instruction-tuned LMs and IKEA-Zero models from base
LMs converge to similar high rewards, demonstrating that RL can instill this synergistic reasoning
capability from scratch. Larger models (7B vs. 3B) learn faster and achieve better results. The
training logs show a pattern where retrieval counts first increase (exploration) and then decrease
(exploitation), indicating that the model learns to eliminate retrieval redundancy over time.

4.3 ERROR ANALYSIS

A key motivation for IKEA is to mitigate errors caused by the flawed retrieval strategies of existing
models. To analyze the effectiveness of IKEA in this regard, we categorize these common failures
into two types that often stem from redundant retrieval:

Invalid Retrieval: This occurs due to insufficient internal knowledge, and the subsequent external
search also fails to provide relevant information, leading to an incorrect final answer. Conflict
Retrieval: This occurs when the model’s internal parametric knowledge is actually correct, but the
external search retrieves conflicting or misleading information that overrides this internal knowledge,
also resulting in an incorrect answer.

Table 2: IKEA-7B Performance on Redundant Re-
trieval Error Types.

Partition Count IKEA Correct IKEA Correct Ratio
Invalid Retrieval 452 55 0.12
Conflict Retrieval 90 57 0.63

To quantify performance against these specific
failure modes, we created approximate error sets
by analyzing the performance of the 7B-level R1
(internal knowledge only) and Search-R1 (exter-
nal knowledge only) models on the HotpotQA
dataset. Cases where both models failed are la-
beled as "Invalid Retrieval," while cases where
R1 succeeded but Search-R1 failed are labeled as "Conflict Retrieval." As shown in Table 2, IKEA
demonstrates a substantial ability to resolve these challenging cases.

IKEA’s success in these scenarios stems directly from its core design philosophy of knowledge
boundary perception: Against Invalid Retrieval: IKEA learns to generate more precise and effective
search queries through reinforcement learning. By improving the quality of its exploration, IKEA can
retrieve relevant information where Search-R1’s more generic queries fail, thus successfully bridging
the knowledge gap. Against Conflict Retrieval: Because IKEA’s reward function encourages it to
trust its internal knowledge when sufficient (Behavior 1), it learns to avoid performing redundant
searches for topics it already knows well. This fundamental avoidance of unnecessary retrieval is
its primary defense, as it prevents the model from ever being exposed to the potentially conflicting
external information that misleads Search-R1.

The case studies shown in the Appendix F provide qualitative examples of how IKEA achieves this.

5 ABLATION STUDY

We conducted ablation studies based on Qwen2.5-3B-Instruct, which fully validated the effectiveness
of the proposed method.

5.1 THE EFFECTS OF REWARD DESIGN

We present the training process using different rewards in Figure 3 and the final test results in Table 3.
Without the knowledge boundary aware reward ("w/o rkb"), both effective retrievals and response
length show a consistent upward trend, significantly surpassing models with the original reward.
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Figure 3: The training logs of different reward design. We show the curve of number of valid searches,
response length and trainign rewards.

Table 3: The ablation results of reward design.

Method NQ PopQA HotpotQA 2Wiki Avg
Easy Hard Easy Hard Easy Hard Easy Hard

IKEA (EM) 72.46 31.44 79.69 33.59 69.92 20.11 59.37 20.70 48.41
RT 1.00 1.02 1.00 1.02 1.04 1.13 1.15 1.21 1.07

IKEA w/o rkb− (EM) 66.01 28.91 74.61 32.42 66.99 20.90 55.27 0.21 43.17
RT 0.48 0.68 0.53 1.00 0.58 1.08 0.64 1.11 0.89

IKEA w/o rkb (EM) 71.09 34.57 76.37 32.23 70.12 25.59 53.32 25.20 48.56
RT 1.40 1.54 1.35 1.63 1.94 2.12 2.40 2.48 1.86

This is because early in training, retrieval is more frequently rewarded than relying on parametric
knowledge, leading to gradient updates that suppress the latter. Consequently, the model develops a
bias for "retrieval > no retrieval", eventually maximizing reliance on retrieved knowledge, akin to the
Search-R1 strategy. For the "w/o rkb-" case (excluding the negative component of the knowledge
boundary aware reward), retrieval count and response length are significantly less than the original
reward. Because the positive reward component (rkb+) encourages greater reliance on internal
knowledge. This leads to incorrect generalization, where the model increasingly defaults to the R1
strategy even for questions requiring external knowledge. Final results show that IKEA "w/o rkb"
achieves a similar EM score but with significantly more retrievals. Conversely, IKEA "w/o rkb−"
exhibits considerably degraded performance alongside a substantial decrease in retrievals. Therefore,
we conclude that an effective knowledge boundary aware reward function must appropriately balance
internal and external knowledge utilization to achieve their synergistic application.

5.2 THE EFFECTS OF DATASET DIFFICULTY
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Figure 4: The training logs of different the difficulty of training datasets. We show the curve of
number of valid searches, response length and trainign rewards.

We illustrate the training processes using different datasets of varying difficulty in Figure 4 and
present the final test results in Table 4. Training on datasets of varying difficulty (easy, mixed, hard)
revealed a consistent trend during training: Hard > Mixed > Easy for both effective number of
searches and response length. This is because the model uses parametric knowledge for problems
within its knowledge boundary and retrieval knowledge for those beyond it. Training on the Easy
dataset showed a continuous decrease in retrieval attempts and response length, indicating that models
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Table 4: The ablation results of the difficulty of the training datasets.

Method NQ PopQA HotpotQA 2Wiki Avg
Easy Hard Easy Hard Easy Hard Easy Hard

IKEA (EM) 72.46 31.44 79.69 33.59 69.92 20.11 59.37 20.70 48.41
RT 1.00 1.02 1.00 1.02 1.04 1.13 1.15 1.21 1.07

IKEA w/ easy (EM) 66.99 21.88 76.17 25.59 66.70 15.43 56.45 16.80 43.25
RT 0.28 0.54 0.29 0.80 0.34 0.84 0.16 0.70 0.49

IKEA w/ hard (EM) 66.02 33.98 75.39 0.35 64.65 25.00 46.09 23.63 41.89
RT 1.03 1.07 1.05 1.11 1.46 1.59 2.08 2.10 1.44

converge to behaviors characteristic of the training data’s difficulty. On the test set, both easy and
hard variants of the IKEA model showed substantially lower Exact Match (EM) scores compared to
the original. Retrieval attempts dropped significantly for the easy variant and increased substantially
for the hard variant. This highlights that disproportionately favoring one type of knowledge hinders
full performance, underscoring the importance of synergistically using both internal (parametric) and
external (retrieval-based) knowledge for effective reasoning.

6 RELATED WORK

RL for LLM-based Agent Reinforcement Learning (RL) (Wang et al., 2025b) is a crucial technique
for post-training Large Language Models (LLMs), enabling the alignment of pre-trained models’
values (Ouyang et al., 2022) and enhancing their capabilities in specific downstream tasks (Goldie
et al., 2025). The community has developed various distinctive RL algorithms, such as PPO (Schulman
et al., 2017), DPO (Rafailov et al., 2023), RLOO (Ahmadian et al., 2024), ReMax (Li et al., 2024b),
and GRPO (Shao et al., 2024). Building upon this, by constructing different environments and reward
functions, LLMs can be trained into intelligent agents capable of autonomous decision-making and
interaction with the environment (Huang et al., 2025b). A typical application in this area is the Search
Agent (Jin et al., 2025; Chen et al., 2025; Song et al., 2025), which interacts with search engines to
continuously acquire knowledge from the environment and perform reasoning.

The Knowledge Boundary of LLM Large Language Models possess parametric knowledge
(Zheng et al., 2024) and can access external knowledge. The concept of Knowledge Boundary (Li
et al., 2024a; Xu et al., 2024a) distinguishes between these. This boundary is probed using template-
based methods (evaluating responses to specific prompts (Petroni et al., 2019)) or internal state-based
methods (classifying based on model features like hidden states (Chen et al., 2024) or SAEs (Zhao
et al., 2025)). Understanding this boundary is crucial for Retrieval Augmented Generation (RAG)
models (Ren et al., 2024) to adapt their behavior to different questions and avoid hallucinations.

7 CONCLUSION AND LIMITATIONS

This paper introduced the Reinforced Internal-External Knowledge Synergistic Reasoning Agent
(IKEA), an innovative approach to developing efficient and adaptive search agents. IKEA addresses
critical limitations in existing RL-based search agents, namely the underutilization of internal knowl-
edge, which can lead to redundant retrievals, potential knowledge conflicts, and increased inference
latency. The core of IKEA lies in its ability to discern its own knowledge boundary, prioritizing
the use of its internal parametric knowledge and resorting to external search only when the internal
knowledge is deemed insufficient or uncertain. This is achieved through a novel knowledge-boundary
aware reward function and a meticulously constructed knowledge-boundary aware training dataset.
This approach significantly enhances reasoning efficiency and accuracy on knowledge-intensive tasks.
Despite these achievements, IKEA’s reliance on specific dataset construction and model probing for
knowledge boundary awareness may limit its universal applicability, the reward function parameters
might require grid searching, and the RL training process is computationally expensive. Future work
could explore more dynamic knowledge boundary learning methods, investigate applicability across
a broader range of tasks, and aim to reduce training resource requirements.
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A LLM USAGE DISCLOSURE

We use LLM for paper writing to check grammar and boost the clarity. We do not use LLM for
research. We do not use LLM to generate experiment code and analysis.

B IKEA AGENT TEMPLATE

We use the system template in Table 5 to prompt the agent to interact with the environment:

C DATASET CONSTRUCTION

We use NQ (Kwiatkowski et al., 2019) and HotpotQA (Ho et al., 2020) as the in-distribution datasets.
We use the PopQA (Mallen et al., 2023) and 2Wikimultihopqa (Ho et al., 2020) as the out-of-
distribution datasets. Following the knowledge-boundary training dataset construction method, we
construct easy and hard subset for each dataset. We use the Qwen-2.5-3B-Instruct as the sampling
model. There are 512 examples in each subset of each dataset.

D BASELINES

We compared methods that do not require training (e.g., zero-shot or few-shot prompting), those that
utilize Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO), and reinforcement
learning-based approaches. The corresponding baselines are shown as follows:

• Direct We directly prompt the model to answer the relevant question using only its internal
knowledge.

• RAG We retrieve documents using the question and prompt the model to answer the relevant
question relying solely on the retrieved knowledge.

• Iter-Retgen (Shao et al., 2023) It is an iterative retrieval-generation method that achieves
strong performance by synergizing parametric and non-parametric knowledge. We set the
default ret-gen turns as 4.

• IR-COT (Trivedi et al., 2023) It is method for multi-step question answering, which
interleaves retrieval with steps in the chain-of-thought, using CoT to guide retrieval and
retrieval results to improve CoT. It will adatpively determine the turns of retrieval according
to the knowledge needs. And we set the max turns as 4.

• FLARE (Jiang et al., 2023) This method introduces a forward-looking active retrieval-
augmented generation (FLARE) approach that iteratively uses predictions of upcoming
sentences to anticipate future content and retrieves relevant documents when a sentence
contains low-confidence tokens, in order to regenerate that sentence. It uses a specific
criteria to determine the retrieval timing. We set the max number of search as 4.

• DeepRAG (Guan et al., 2025) This method introduces a framework that models retrieval-
augmented generation as a Markov Decision Process (MDP), enabling strategic and adaptive
retrieval to improve retrieval efficiency and answer accuracy. It collects offline trajectories
to finetune the base model with SFT and DPO.

• R1 (DeepSeek-AI et al., 2025) It uses reinforcement learning to encourage the model to
reason in order to activate its internal knowledge. This method only uses the internal
knowledge.

• Search-R1 (Jin et al., 2025; Song et al., 2025; Chen et al., 2025) The model’s capacity
to employ external retrieval tools is activated via multi-turn reinforcement learning. This
technique exclusively relies on the model’s external knowledge. We set the max number of
search as 4.
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You are an expert assistant capable of solving knowledge-intensive tasks efficiently. You will be
given a question to answer as accurately as possible.
You can use your own knowledge or call external search engines to gather additional information,
but searching should only occur when necessary. Specifically, you should search only when
encountering a clear knowledge gap or uncertainty that prevents you from confidently answering
the question.
To arrive at the answer, you will proceed step-by-step in a structured cycle of ’<think>thinking
content</think>’, ’<search>search query</search>’ (optional), and ’<context>returned external
information</context>’ (optional) sequences. You can only generate content within these special
tags.
Remember that <search>xxx</search> and <context>xxx</context> are optional. You can skip
them if you have enough knowledge to answer the question. And skip is them is encouraged and
preferable.
Thinking Phase (<think>): Recall your own knowledge, analyze current information, and decide
whether further search is needed. If enough knowledge is available, skip searching. For question,
it may be decomposed into sub-questions for you to think about. Some sub-questions may be
answered by searching, while others may not. You can also use the <think> tag to express your
uncertainty about the sub-question.
Searching Phase (<search>): Formulate a search query only if required to fill a knowledge gap
or verify uncertainty. Skip if unnecessary. Information Phase (<context>): Use search results as
context for further steps. If no search was performed, proceed without this phase.
Answering Phase (<answer>): Provide a concise and accurate answer within <answer> tags once
you have enough knowledge. The answer should be short and precise, such as <answer> Beijing
</answer>.
Here are a few examples:
—
Example 1: search is needed, search more than once
Question: xxx
<think> xxx </think>
search> xxx </search>
<context> xxx </context>
<think> xxx </think>
(search more than once)
<think> xxx </think>
<answer> xx </answer>
Example 2: search is needed, only search once
Question: xxx?
<think> xxx </think>
<search> xxx </search>
<context> xxx </context>
<think> xxx </think>
<answer> xxx </answer>
—
Example 3: search is not needed
Question: xxx?
<think> xxx </think>
<answer> xxx </answer>
—
You can search 0 - N times. 0 is preferable. Each search should be focused on one sub-question.
The answer within <answer> tags should be short and precise, such as <answer> yes </answer>.
Now it is your turn to answer the question.
Question: {question}

Table 5: System prompt of IKEA.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E IMPLEMENTATION DETAILS

We use e5-base (Wang et al., 2022) as the retriever model and wikipedia2018 as the corpus for retrieval.
We employ Qwen2.5-3B(-Instruct) and Qwen2.5-7B(-Instruct) as the initial models. Models with the
"-Zero" suffix are trained from the Base model, while those without it are trained from the Instruct
model. we use FlashRAG (Jin et al., 2024) to reproduce the baseline results. We utilize the verl
(Sheng et al., 2025) framework for training. GRPO (Shao et al., 2024) is used as the reinforcement
learning algorithm. We use the NQ and HotpotQA to construct training datasets. For each one, we
sample 4000 easy samples and 4000 hard samples. We set the number of rollouts as 16 for one task.
We set the learning rate as 5e-7, warmup ratio as 75%, batch size as 256, training steps as 120. We
set rkb+ as 0.6 and rkb− as 0.05, RTmax as 3. We use 8 A100 GPUs for all the experiments.

F CASE STUDIES

Case Study 1: Avoiding Invalid Retrieval

Question: Identify the American comedian born on March 21, 1962, who appeared in the
movie "Sleepless in Seattle."
Ground Truth: Rosie O’Donnell

Trajectories (some content omitted due to context limit)

R1: <think> Let’s think through this step by step: 1. The question asks about an American
comedian born on March 21, 1962, who appeared in the movie S̈leepless in Seattle.2̈. The
movie S̈leepless in Seattleẅas released in 1993. 3. Some of the main cast members of the
movie include Tom Hanks, Meg Ryan, and Sally Field. 4. Among these actors, the only
comedian who was active in the 1990s and matches the birth year of 1962 is Billy Crystal. 5.
Billy Crystal is an American comedian who was indeed active in the 1990s and matches the
birth date given. </think> <answer> Billy Crystal </answer>

Search-R1:
<think> To answer this question, I need to identify an American comedian born on March 21,
1962, who appeared in the movie S̈leepless in Seattle.Ï don’t immediately recall this specific
information, so I will need to search for it. </think>
<search> American comedian born on March 21, 1962, appeared in Sleepless in Seattle
</search>
<context>Doc 1(Title: S̈leepless in Seattle)̈ (content omitted) Doc 2(Title: M̈ike Birbiglia)̈
(content omitted) Doc 3(Title: D̈ave Attell)̈ (content omitted) </context>

... (the last two turn are exact the same as this turn)

IKEA:
<think> I need to identify the American comedian born on March 21, 1962, who appeared in
the movie S̈leepless in Seattle.T̈his requires specific information about the cast of the movie
and the birth date of the comedian. </think>
<search> American comedian born on March 21, 1962, appeared in the movie S̈leepless in
Seattle<̈/search>
<context>Doc 1(Title: S̈leepless in Seattle)̈ (content omitted)Doc 2(Title: R̈oss Malinger)̈
(content omitted)Doc 3(Title: R̈oss Malinger)̈ (content omitted)</context>
<think> Ross Malinger was born on July 7, 1984, not March 21, 1962. The correct comedian
is Billy Crystal, but Billy Crystal was not born on March 21, 1962. The correct comedian
is actually Rosie O’Donnell, who was born on March 21, 1962, and appeared in the movie
S̈leepless in Seattle.<̈/think>
<answer> Rosie O’Donnell </answer>

Analysis

R1’s Behavior (Incorrect):
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• The model incorrectly identifies Billy Crystal as the answer, resulting in a factual hallucina-
tion.

Search-R1’s Behavior (Incorrect):
• The model fails to find the correct answer even after multiple searches. The first search was

effective and contained the entity "Rosie O’Donnell" but not her birthday, which prompted
further searches.

• Subsequently, the model failed to decompose the task and repeatedly generated the same
ineffective query. The reasoning process terminated after hitting the search limit, leading to
its inability to provide the correct answer.

IKEA’s Behavior (Correct):
• IKEA generates a search query and ultimately identifies the correct answer as Rosie

O’Donnell. The first search contains the entity "Rosie O’Donnell" but not her birthday.
• In its subsequent reasoning process, it first eliminates Ross Malinger and Billy Crystal

for not matching the birth date. It then confirms that Rosie O’Donnell is the American
comedian born on March 21, 1962, who appeared in "Sleepless in Seattle," satisfying all
conditions. This demonstrates a classic example of synergistic reasoning between internal
and external knowledge.

Case Study 2: Avoiding Conflict Retrieval

Question: Identify the founder of the team Brad Budde played for, which was founded in
1960 as the Dallas Texans.
Ground Truth: Lamar Hunt

Trajectories (some content omitted due to context limit)

R1: <think> Let’s think through this step by step: 1. Identify the team: Brad Budde played
for the Kansas City Chiefs. The Kansas City Chiefs were previously known as the Dallas
Texans. 2. Determine the founding year: The Dallas Texans were founded in 1960. 3. Identify
the founder: The Dallas Texans were founded by Lamar Hunt. </think> <answer> Lamar
Hunt </answer>",

Search-R1: <think> I need to find out who founded the Dallas Texans in 1960. </think>
<search> who founded the Dallas Texans in 1960 </search>
<context>Doc 1(Title: D̈allas Texans (NFL))̈ (content omitted) Doc 2(Title: T̈ex Schramm)̈
(content omitted) Doc 3(Title: Ḧistory of the Dallas Cowboys)̈ (content omitted)</context>
From the information provided, it seems Lamar Hunt founded the Dallas Texans in 1960 as
part of the American Football League (AFL). However, the Dallas Cowboys were established
in the same year as an NFL team. The key detail I need to confirm is the specific person who
founded the Dallas Cowboys in 1960, which is Tex Schramm.
<search> Tex Schramm founded Dallas Cowboys </search>
<context>Doc 1(Title: T̈ex Schramm)̈ (content omitted) Doc 2(Title: T̈ex Schramm)̈ (content
omitted) Doc 3(Title: T̈ex Schramm)̈ (content omitted)
<answer> Tex Schramm </answer>

IKEA: <think> I need to identify the team that Brad Budde played for, which was founded in
1960 as the Dallas Texans. Then I need to find out who founded this team. </think>
<search> Brad Budde NFL team founded 1960 Dallas Texans </search>
<context>Doc 1(Title: 1̈960 Dallas Texans season)̈ (content omitted) Doc 2(Title: D̈allas Tex-
ans (NFL))̈ (content omitted) Doc 3(Title: K̈ansas City Chiefs)̈ (content omitted) </context>
<think> Based on the information gathered, the Dallas Texans were founded in 1960 by
Lamar Hunt. </think>
<answer> Lamar Hunt </answer>",
Analysis
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R1’s Behavior (Correct):
• The model’s reasoning process is clear and correct. It first identifies that Brad Budde played

for the Kansas City Chiefs, whose predecessor was the Dallas Texans, founded in 1960. It
correctly concludes that the founder was Lamar Hunt.

Search-R1’s Behavior (Incorrect):
• The model’s error lies in confusing the Dallas Texans with the Dallas Cowboys.
• Although it retrieved some information about the Dallas Cowboys and their related figure,

Tex Schramm, this was irrelevant to the question. Search-R1 retrieved seemingly relevant
but actually unrelated information, which misled the model’s reasoning and overrode its
originally correct parametric knowledge.

IKEA’s Behavior (Correct):
• The model’s solution is correct. Through a better search query, it clearly identified that the

predecessor of Brad Budde’s team was the Dallas Texans, founded in 1960 by Lamar Hunt.
• The reasoning is accurate, and the answer is correct. By using a better search query, IKEA

retrieved more relevant information and avoided the interference of conflicting information.
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