
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Tensor Product Attention Is All You Need

Anonymous Authors1

Abstract
Scaling language models to handle longer input
sequences typically necessitates large key-value
(KV) caches, resulting in substantial memory
overhead during inference. In this paper, we pro-
pose Tensor Product Attention (TPA), a novel
attention mechanism that uses tensor decomposi-
tions to represent queries, keys, and values com-
pactly, significantly shrinking KV cache size at
inference time. By factorizing these representa-
tions into contextual low-rank components (con-
textual factorization) and seamlessly integrating
with RoPE, TPA achieves improved model qual-
ity alongside memory efficiency. Based on TPA,
we introduce the Tensor ProducT ATTenTion
Transformer (T6), a new model architecture for
sequence modeling. Through extensive empiri-
cal evaluation of language modeling tasks, we
demonstrate that T6 exceeds the performance of
standard Transformer baselines including MHA,
MQA, GQA, and MLA across various metrics,
including perplexity and a range of renowned
evaluation benchmarks. Notably, TPA’s mem-
ory efficiency enables the processing of signifi-
cantly longer sequences under fixed resource con-
straints, addressing a critical scalability challenge
in modern language models. The code is avail-
able at https://anonymous.4open.science/r/T6-
anonymous-2025.

1 Introduction
Large language models (LLMs) have revolutionized natu-
ral language processing, demonstrating exceptional perfor-
mance across tasks (Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023; Bubeck et al., 2023). As these
models evolve, their ability to process longer contexts be-
comes increasingly important for sophisticated applications
such as document analysis, complex reasoning, and code

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

RoPE

Scale

Linear

Scaled Dot-Product Attention

Concat

Linear

AQ BQ

RoPE

Scale

Linear

AK

Scale

Linear

AV

h

RQ

1

BV

RK

1
RV

1

Linear Linear

BK

Linear

Figure 1. Tensor Product Attention (TPA) in the Tensor ProducT
ATTenTion Transformer (T6). Different from multi-head atten-
tion, in each layer, firstly the hidden state goes through different
linear layers to get the latent factor matrices A(·)’s and B(·)’s for
query, key, and value. We additionally apply RoPE to BQ and BK

for query and key. Then the multi-head query, key, and value vec-
tors are attained by the tensor product of A(·) and B(·). Finally,
the output of TPA is produced by scaled dot-product attention
followed by linear projection of concatenated results of multiple
heads.

completions. However, managing longer sequences during
inference poses significant computational and memory chal-
lenges, particularly due to the storage of key-value (KV)
caches (Zhang et al., 2023c; Liu et al., 2024c). Because
memory consumption grows linearly with sequence length,
the maximum context window is limited by practical hard-
ware constraints.
A variety of solutions have been explored to address this
memory bottleneck. Some approaches compress or se-
lectively prune cached states through sparse attention pat-
terns (Child et al., 2019) or token eviction strategies (Zhang
et al., 2023c; Xiao et al., 2024; Ribar et al., 2024), though
such methods risk discarding tokens that may later prove
important. Other work proposes off-chip storage of key-
value states (He & Zhai, 2024), at the expense of in-
creased I/O latency. Attention variants like multi-query
attention (MQA) (Shazeer, 2019) and grouped-query atten-
tion (GQA) (Ainslie et al., 2023) reduce per-token cache
requirements by sharing keys and values across heads, but
often compromise flexibility or require significant architec-
tural modifications. Meanwhile, low-rank weight factor-
ization methods such as LoRA (Hu et al., 2022) effectively
reduce fine-tuning memory, yet do not address the KV cache
overhead that dominates runtime. The recently introduced

1

https://anonymous.4open.science/r/T6-anonymous-2025
https://anonymous.4open.science/r/T6-anonymous-2025

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Tensor Product Attention Is All You Need

Multi-head Latent Attention (MLA) in Deepseek-V2 (Liu
et al., 2024a) caches compressed key-value representations
but needs additional position-encoded parameters per head
due to incompatibility with Rotary Position Embedding
(RoPE) efficiently (Su et al., 2024).
In order to overcome the limitations of existing approaches,
we introduce Tensor Product Attention (TPA), as illustrated
in Figure 1, a novel architecture that uses higher-order ten-
sors to factorize queries (Q), keys (K), and values (V) during
attention computation. By dynamically factorizing activa-
tions rather than static weights (e.g., LoRA), TPA constructs
low-rank, contextual representations that substantially re-
duce KV cache memory usage with improved representa-
tional capacity. In practice, TPA can reduce the memory
overhead by an order of magnitude compared to standard
multi-head attention (MHA) with lower pretraining vali-
dation loss (perplexity) and improved downstream perfor-
mance.
A key advantage of TPA is its native compatibility with
rotary positional embeddings (RoPE) (Su et al., 2024), en-
abling a straightforward drop-in replacement for multi-head
attention (MHA) layers in modern LLM architectures such
as LLaMA (Touvron et al., 2023) and Gemma (Team et al.,
2024).
Our primary contributions are summarized as follows:
• We propose Tensor Product Attention (TPA), A mecha-

nism that factorizes Q, K, and V activations using con-
textual tensor-decompositions to achieve 10× or more
reduction in inference-time KV cache size relative to stan-
dard attention mechanism (Vaswani et al., 2017) with im-
proved performance compared to previous methods such
as MHA, MQA, GQA, and MLA. In addition, we unify
existing attention mechanisms by revealing that MHA,
MQA, and GQA all arise naturally as non-contextual vari-
ants of TPA.

• We introduce the Tensor ProducT ATTenTion
Transformer (T6), a new TPA-based model architecture
for sequence modeling. On language modeling experi-
ments, T6 consistently improves validation perplexity
and downstream evaluation performance with reduced
KV cache size.

• We show TPA integrates seamlessly with RoPE (Su et al.,
2024), facilitating easy adoption in popular foundation
model architectures such as LLaMA and Gemma.

2 Background
In this section, we review two classical forms of attention:
Scaled Dot-Product Attention, and Multi-Head Attention
(MHA) (Vaswani et al., 2017). More types of attention
are introduced in the Appendix E, including Multi-Query
Attention (MQA) (Shazeer, 2019), and Grouped Query At-
tention (GQA) (Ainslie et al., 2023), as well as a recent

method called Multi-head Latent Attention (MLA) used in
DeepSeek-V2 (Liu et al., 2024a) and DeepSeek-V3 (Liu
et al., 2024b). We also introduce Rotary Position Embed-
ding (RoPE, Su et al. (2024)), which is commonly used in
recent works of large language models.
Notations. We use bold uppercase letters (e.g., X, Q) for
matrices, bold lowercase (e.g., a, b) for vectors, and italic
uppercase (e.g., WQ

i) for learnable parameter matrices. We
denote by [n] the set {1, . . . , n} for some positive integer
n. We use ⊤ to denote the transpose of a vector or a matrix.
Let dmodel be the embedding dimension, h the number of
attention heads, dh the dimension per head, xt ∈ Rd the
input for the t-th token at a given attention layer, X ∈
RT×dmodel denotes the input embeddings for T tokens, and
Q, K, V ∈ RT×h×dh denote the queries, keys, and values
of h heads for T tokens. With a little abuse of notation, Qi,
Ki, Vi ∈ RT×dh denote the i-th head of queries, keys, and
values, and Qt, Kt, Vt ∈ Rh×dh denote the heads of the
query, key, and value for t-th token.
Throughout the paper, WQ,WK ,W V denote projection
matrices for queries, keys, and values, respectively. In
multi-head attention, each head is associated with its
own set of WQ

i ,WK
i ,W V

i , and each has dimension
WQ

i ,WK
i ,W V

i ∈ R dmodel×dk , where dk is typically set
to dh, the dimension of each head.5 Similarly, we have an
output projection matrix WO ∈ R(h·dh)×dmodel . For methods
like MQA and GQA, some of these are shared or partially
shared across heads, but their shapes remain consistent.
We define the tensor product of two vectors as follows: for
vectors a ∈ Rm,b ∈ Rn, the tensor product of a and b is:

a⊗ b = C ∈ Rm×n,with Cij = aibj ,

where ai and bj are the i-th and j-th elements of a and b
respectively, and Cij is the (i, j)-th entry of C. We also
define the vectorization of a matrix C ∈ Rm×n by:

vec(C) = d ∈ Rmn,with di·n+j = Cij ,

where di·n+j is the (i · n+ j)-th element of d.

2.1 Scaled Dot-Product Attention

Scaled dot-product attention (Vaswani et al., 2017) deter-
mines how to focus on different parts of an input sequence
by comparing queries (Q) and keys (K). It produces a
weighted combination of the values (V). Formally, the
attention output is:

Attention(Q,K,V) = Softmax
(

QK⊤
√
dk

)
V,

where each of Q,K,V is an (n× dk) matrix for n tokens
and key dimension dk. The division by

√
dk stabilizes

training by controlling the scale of the inner products.

5Often, one sets h × dh = dmodel, so each head has
query/key/value dimension dh.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Tensor Product Attention Is All You Need

2.2 Multi-Head Attention (MHA)

Multi-Head Attention (MHA) extends scaled dot-product
attention by dividing the model’s internal representation into
several heads. Each head learns different projections for
queries, keys, and values, allowing the model to attend to
different types of information. For each token embedding
xt ∈ Rdmodel , MHA computes each head i as follows:

Qt,i = (WQ
i)⊤ xt ∈ Rdh ,

Kt,i = (WK
i)⊤ xt ∈ Rdh ,

Vt,i = (W V
i)⊤ xt ∈ Rdh ,

headi = Attention
(
Qi,Ki,Vi

)
,

where WQ
i ,WK

i ,W V
i ∈ Rdmodel×dh are learnable projec-

tion matrices for the i-th head, Qi,Ki,Vi ∈ RT×dh . After
computing each head’s attention, the outputs are concate-
nated and mapped back to the original dimension via another
matrix WO ∈ Rhdh×dmodel :

MHA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

MHA can capture a rich set of dependencies while each
head focuses on different subspaces.

2.3 Rotary Position Embedding (RoPE)

Many recent LLMs use rotary position embedding (RoPE;
Su et al., 2024) to encode positional information in the
query/key vectors. Specifically, let RoPEt denote the
rotation operator Tt ∈ Rdh×dh corresponding to the t-
th position. Tt is a block-diagonal matrix, which con-

sists of block-diagonal matrix
(
cos(tθj) − sin(tθj)
sin(tθj) cos(tθj)

)
, j ∈

{1, · · · , dh/2}, where {θj} are pre-defined frequency pa-
rameters, e.g., θj = 1/100002j/dh . Then we define

RoPE (Qt) ≜ QtTt, where Qt ∈ Rh×dh .

A fundamental property is that

Tt T
⊤
s = Tt−s, (2.1)

which ensures that relative positions (t− s) are preserved,
thereby providing a form of translation invariance in the
rotary position embedding.

3 Tensor Product Attention
In this section, we provide a detailed description of our
proposed Tensor Product Attention (TPA), which allows
contextual low-rank factorization for queries, keys, and val-
ues. First, we explain how TPA factorizes queries, keys,
and values with explicit tensor shapes. Next, we describe
how TPA can be integrated into the multi-head attention
framework and how it reduces memory consumption in KV
caching at inference time. Finally, we show how RoPE
can seamlessly integrate with TPA (including a pre-rotated
variant).

3.1 Tensor Factorization of Queries, Keys, and Values

Let xt ∈ Rdmodel for t = 1, . . . , T be the hidden-state vector
corresponding to the t-th token in a sequence of length
T . A typical multi-head attention block has h heads, each
of dimension dh, satisfying dmodel = h × dh. Standard
attention projects the entire sequence into three tensors,
Q, K, V ∈ RT×h×dh , where Qt,Kt,Vt ∈ Rh×dh

denote the slices for the t-th token.
Contextual Factorization (CF). Instead of forming each
head’s query, key, or value via a single linear map, TPA
factorizes each Qt,Kt,Vt into a sum of (contextual) tensor
products whose ranks are Rq , Rk, and Rv , respectively and
may differ. Specifically, for each token t, with a small abuse
of notation, we define:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ bQ
r (xt), (3.1)

Kt =
1

RK

RK∑
r=1

aKr (xt) ⊗ bK
r (xt), (3.2)

Vt =
1

RV

RV∑
r=1

aVr (xt) ⊗ bV
r (xt), (3.3)

where aQr (xt),a
K
r (xt),a

V
r (xt) ∈ Rh,

bQ
r (xt),b

K
r (xt),b

V
r (xt) ∈ Rdh . Hence, for queries, each

tensor product aQr (xt) ⊗ bQ
r (xt) : Rh × Rdh → Rh×dh

adds up to form the query slice Qt ∈ Rh×dh . Similarly,
analogous definitions apply to key slice Kt and value slice
Vt.
Latent Factor Maps. Each factor in the tensor product
depends on the token’s hidden state xt. For example, for
queries, we can write:

aQr (xt) = W aQ

r xt ∈ Rh, bQ
r (xt) = W bQ

r xt ∈ Rdh ,

and similarly for keys and values.
One often merges the rank index into a single output dimen-
sion. For instance, for queries:

aQ(xt) = W aQ

xt ∈ RRq·h, bQ(xt) = W bQ xt ∈ RRq·dh ,

which are then reshaped into AQ(xt) ∈ RRq×h and
BQ(xt) ∈ RRq×dh . Summing over Rq and scaled by 1

Rq

yields

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh .

Repeating for all tokens reconstitutes Q ∈ RT×h×dh . Simi-
lar procedures can be applied to obtain K and V with ranks
Rk and Rv , respectively.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Tensor Product Attention Is All You Need

Scaled Dot-Product Attention. Once Q,K,V are fac-
torized, multi-head attention proceeds as in standard Trans-
formers. For each head i ∈ {1, . . . , h}:

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi, (3.4)

where Qi,Ki,Vi ∈ RT×dh are the slices along the head di-
mension. Concatenating these h heads along the last dimen-
sion yields an RT×(h·dh) tensor, which is projected back to
RT×dmodel by an output weight matrix WO ∈ R(h·dh)×dmodel :

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

(3.5)

Parameter Initialization. We initialize the weight matrices
W aQ

r , W aK

r , W aV

r , W bQ

r , W bK

r , W bV

r using Xavier ini-
tialization (Glorot & Bengio, 2010). Specifically, each entry
of the weight matrix is drawn from a uniform distribution
with bounds [−

√
6/(nin + nout),

√
6/(nin + nout)], where

nin and nout are the input and output dimensions of the re-
spective weight matrices. This initialization strategy helps
maintain the variance of activations and gradients across the
network.

3.2 RoPE Compatibility and Acceleration

In a typical workflow of adding RoPE to standard multi-
head attention, one first computes Qt,Ks ∈ Rh×dh of the
t-th token and s-th token and then applies:

Qt 7→ Q̃t = RoPEt(Qt), Ks 7→ K̃s = RoPEs(Ks).

Direct Integration. A useful optimization is to integrate
RoPE directly into the TPA factorization. For example, one
can pre-rotate the token-dimension factors:

B̃K(xt) ←− RoPEt

(
BK(xt)

)
, (3.6)

yielding a pre-rotated key representation:

K̃t =
1

RK

RK∑
r=1

aK(r)(xt)⊗ RoPEt

(
bK
(s)(xt)

)
=

1

RK
AK(xt)

⊤ RoPEt

(
BK(xt)

)
.

Thus, each Kt is already rotated before caching, removing
the need for explicit rotation at the decoding time and accel-
erating autoregressive inference. Depending on hardware
and performance requirements, one can also adopt different
RoPE integration approaches for training and inference.

Theorem 1 (RoPE’s Compatibility with TPA). Let Qt be
factorized by TPA as

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh ,

where AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh . Then
we have:

RoPE(Qt) =
1

RQ
AQ(xt)

⊤ B̃Q(xt), (3.7)

where B̃Q(xt) = RoPEt

(
BQ(xt)

)
. In addition, as-

sume Qt and Ks are factorized by TPA and then ro-
tated by RoPEt,RoPEs. Let Q̃t = RoPEt(Qt) and
K̃s = RoPEs(Ks). Then we have

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality
implies:

RoPEt−s

(
qt,i

)⊤
ks,i = q̃⊤

t,i k̃s,i.

where qt,i ∈ Rdh is the i-th query head of t-th token, and
ks,i ∈ Rdh is the j-th key head of s-th token, and

q̃t,i = RoPE(qt,i) = Ttqt,i ∈ Rdh

k̃s,i = RoPE(ks,i) = Tsks,i ∈ Rdh .

Theorem 1 indicates that TPA does not break RoPE’s rel-
ative translational property. We prove Theorem 1 in Ap-
pendix C.1. In short, RoPEt acts as a block-diagonal orthog-
onal transform (i.e., a matrix Tt) on BQ(xt). Consequently,
AQ(xt) remains unchanged, while each column of BQ(xt)
is rotated appropriately, preserving the TPA structure.

3.3 KV Caching and Memory Reduction

In autoregressive decoding, standard attention caches
Kt,Vt ∈ Rh×dh for each past token t. This accumulates to
RT×h×dh for keys and RT×h×dh for values, i.e., 2T h dh
total.
TPA Factorized KV Caching. Instead of storing the full Kt

and Vt, TPA stores only their factorized ranks. Specifically,
we keep

AK(xt), B̃K(xt) and AV (xt), BV (xt),

where AK(xt) ∈ RRK×h, B̃K(xt) ∈
RRK×dh , AV (xt) ∈ RRV ×h, BV (xt) ∈ RRV ×dh .
Hence, the memory cost per token is

RK(h+ dh)︸ ︷︷ ︸
for K

+ RV (h+ dh)︸ ︷︷ ︸
for V

= (RK +RV)
(
h+ dh

)
.

Compared to the standard caching cost of 2h dh, the ratio
is:

(RK +RV) (h+ dh)

2h dh
.

For large h and dh (typically dh = 64 or 128), setting
RK , RV ≪ h (e.g., rank 1 or 2) often yields 10× or more
reduction.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Tensor Product Attention Is All You Need

Table 1. Comparison of different attention mechanisms. Here, RQ, RK , and RV denote the ranks for queries, keys, and values in TPA,
respectively. Variants of TPA, such as TPA (KVonly), TPA (Non-contextual A), and TPA (Non-contextual B), are detailed in Section F.
For MLA, dRh and dh are the dimensions for RoPE and non-RoPE parts; d′c and dc are the dimensions of compressed vectors for query
and key-value, respectively.

METHOD KV CACHE # PARAMETERS # QUERY HEADS # KV HEADS

MHA 2hdh 4d2model h h
MQA 2dh (2 + 2/h)d2model h 1
GQA 2gdh (2 + 2g/h)d2model h g

MLA dc + dRh
d′c(dmodel + hdh + hdRh)

+dmodeld
R
h + dc(dmodel + 2hdh) h h

TPA (RK +RV)(h+ dh) dmodel(RQ +RK +RV)(h+ dh) + dmodel hdh h h
TPA (KVonly) (RK +RV)(h+ dh) dmodel(RK +RV)(h+ dh) + 2dmodel hdh h h

TPA (Non-contextual A) (RK +RV)dh (RQ +RK +RV)(dmodeldh + h) + dmodel hdh h h
TPA (Non-contextual B) (RK +RV)h (RQ +RK +RV)(dmodelh+ dh) + dmodel hdh h h

3.4 Unifying MHA, MQA, and GQA as
Non-contextual TPA

3.4.1 MHA AS NON-CONTEXTUAL TPA

Standard multi-head attention (MHA) can be viewed as a
specific instance of TPA in which: 1) the rank is set equal
to the number of heads; 2) the head dimension factor is non-
contextual (i.e., independent of the t-th token embedding
xt ∈ Rdmodel); 3) the token dimension factor is a linear
function of xt.
To match MHA with TPA, let RQ = RK = RV = h.
Focusing on Qt:

(a) Non-contextual head factors. Define

aQi = RQei ∈ Rh, (3.8)

where ei ∈ Rh is the i-th standard basis vector, so that
ei ⊗ · corresponds to the i-th head of Qt.

(b) Contextual token factors. Define

bQ
i (xt) = (WQ

i)⊤xt ∈ Rdh , (3.9)

where WQ
i ∈ Rdmodel×dh is the per-head query projec-

tion defined before, hence bQ
i (xt) dependent on xt.

Substituting (3.8)–(3.9) into (3.1) gives:

Qt =

h∑
i=1

[
ei ⊗

(
(WQ

i)⊤ xt

)]
∈ Rh×dh . (3.10)

Each term ei⊗
(
(WQ

i)⊤xt

)
in (3.10) contributes only to the

i-th row, reconstituting the usual MHA form of Qt. Anal-
ogous constructions hold for Kt and Vt using WK

i ,W V
i .

Thus, MHA is a non-contextual, full-rank variant of TPA.
TPA with Non-contextual A. More broadly, TPA
can use non-contextual head-dimension factors
aQr ,a

K
r ,aVr ∈ Rh (i.e., independent of xt), while allowing

bQ
r (xt),b

K
r (xt),b

V
r (xt) to remain context-dependent.

Then, for keys:

Kt =
1

RK

RK∑
r=1

aKr ⊗ bK
r (xt),

and similarly for queries/values. This reduces per-token
computations and can be effective when head-dimension
relationships are relatively stable across all tokens.
MQA and GQA as Non-Contextual TPA. Multi-Query
Attention (MQA) (Shazeer, 2019) and Grouped Query At-
tention (GQA) (Ainslie et al., 2023)6 also emerge naturally
from TPA by restricting the head-dimension factors to be
non-contextual and low-rank:

• MQA as Rank-1 TPA. In MQA, all heads share a single
set of keys/values, corresponding to RK = RV = 1 along
the head dimension. Concretely,

Kt = (1, . . . , 1)⊤ ⊗ bK(xt),

Vt = (1, . . . , 1)⊤ ⊗ bV (xt),

forces every head to use the same Kt,Vt. Each head
retains a distinct query projection, matching the MQA
design.

• GQA as Grouped Rank-1 TPA. GQA partitions h heads
into G groups, each sharing keys/values within that group.
In TPA form, each group g has a dedicated non-contextual
factor pair aKg ,aVg ∈ Rh, which acts as a “mask” for the
heads in that group. Varying G from 1 to h interpolates
from MQA to standard MHA.

Hence, by constraining TPA’s head-dimension factors to be
constant masks (one for MQA; multiple for GQA), these
popular variants are recovered as special cases.

3.5 Computational Cost.

For a detailed analysis of the computational cost of TPA,
please refer to Appendix A, which shows that the training

6The original definitions of MQA and GQA are presented in
Appendix E.1 and E.2, respectively.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Tensor Product Attention Is All You Need

and inference flops of TPA with optimized implementa-
tion (without materializing Q, K, and V) are smaller than
MHA, GQA, and MLA. Specifically, when we set Rq = 6,
Rk = Rv = 2 (our default setting), TPA is 10× or more
faster on calculating QK⊤ than MLA during inference (see
Appendix A.8).

3.6 Model Architectures

We propose a new architecture called Tensor ProducT
ATTenTion Transformer (T6), which uses our Tensor Prod-
uct Attention (TPA) in place of standard MHA (multi-head
attention) or GQA (grouped-query attention). Building upon
the query, key, and value tensors Q,K,V ∈ RT×h×dh de-
fined in Section 3.1, T6 utilize the overall architecture of
LLaMA (Touvron et al., 2023) while changing the self-
attention block to our TPA-based version. The feed-forward
network (FFN) adopts a SwiGLU layer, as in (Shazeer, 2020;
Touvron et al., 2023).
TPA QKV Factorization. Let each token’s hidden-
state vector be xt ∈ Rdmodel , and we follow Sec-
tion 3.1 to project the entire sequence into three tensors
Q,K,V ∈ RT×h×dh , where Qt, Kt, Vt ∈ Rh×dh

denote the slices for the t-th token. The factor components
aQr (xt),b

Q
r (xt),a

K
r (xt),b

K
r (xt),a

V
r (xt),b

V
r (xt) are

produced by linear transformations on xt. For instance,
letting W aQ

r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel , we have:

aQr (xt) = W aQ

r xt, bQ
r (xt) = W bQ

r xt.

In practice, we merge all ranks r into a single dimension
of the output, reshape, and sum over rank indices; see Sec-
tion 3.1 for details. The factorization for K and V follows
the same pattern.
Rotary Positional Embedding (RoPE). As discussed in
Section 3.2, RoPE (Su et al., 2024) is applied to the Q
and K. Within TPA, we pre-rotate the factor bQ

t (xt) and
bK
s (xs) directly, so that each Ks is already rotated prior to

caching, see (3.6) and Theorem 1.
Attention Step and Output Projection. Once we have
Q,K,V factorized per token with RoPE applied on Q and
K, the attention step proceeds for each head i ∈ {1, . . . , h}
using (3.4). Finally, concatenating these h heads and then
projecting them back using an output weight matrix gives
the final attention result, as shown in (3.5).
SwiGLU Feed-Forward Network. Following Shazeer
(2020); Touvron et al. (2023), our T6 uses a SwiGLU-based
Feed-Forward Network (FFN): FFN(x) =

[
σ(xW1) ⊙

(xW2)
]
W3, where σ is the SiLU (a.k.a., swish) nonlin-

earity, ⊙ is element-wise product, and W1,W2,W3 are
learnable parameters. Note that other activation functions
can also be used.
Overall T6 Block Structure. Putting everything together,

one T6 block consists of:

x ← x+TPA
(
RMSNorm(x)

)
,

x ← x+ SwiGLU-FFN
(
RMSNorm(x)

)
.

We place norm layers (e.g., RMSNorm) before each sub-
layer. Stacking L such blocks yields a T6 model architecture
with L layers.

4 Experiments

4.1 Language Modeling Tasks

All experiments reported in this paper are implemented
on the nanoGPT code base (Karpathy, 2022), using the
FineWeb-Edu 100B dataset (Lozhkov et al., 2024). The
dataset contains 100 billion tokens for training and 0.1 bil-
lion tokens for validation. We compare T6 against the base-
line Llama architecture (Touvron et al., 2023) with SwiGLU
activation (Shazeer, 2020) and RoPE embeddings (Su et al.,
2024), as well as Llama variants that replace Multi-Head
Attention (MHA; Vaswani et al., 2017) with Multi-Query
Attention (MQA; Shazeer, 2019), Grouped Query Attention
(GQA; Ainslie et al., 2023), or Multi-head Latent Attention
(MLA; Liu et al., 2024a). In our experiments, the number
of heads h is adjusted for each attention mechanism to en-
sure that all attention mechanisms have the same number of
parameters as the standard Multi-Head Attention (MHA),
which has 4d2model parameters per attention layer. We train
models at four scales: small (124M parameters), medium
(353M), large (773M), and XL (1.5B). Details on architec-
ture hyperparameters and training hardware are shown in
Appendix G.1.
Training Setup. We follow the nanoGPT training con-
figuration. In particular, we use the AdamW (Loshchilov,
2017) optimizer with (β1, β2) = (0.9, 0.95), a weight de-
cay of 0.1, and gradient clipping at 1.0. We follow the same
setting as nanoGPT that the learning rate is managed by
a cosine annealing scheduler (Loshchilov & Hutter, 2016)
with 2,000 warmup steps and a (total) global batch size of
480. For the small, medium, large and XL models, we set
maximum learning rates of 6× 10−4, 3× 10−4, 2× 10−4,
and 1× 10−4 (respectively), and minimum learning rates of
3× 10−5, 6× 10−5, 1× 10−5, and 1× 10−5 (respectively).
Training & Validation Curves. Figures 2 and 3 com-
pare training and validation loss curves for the medium
(353M), large (773M), and XL (1.5B) models on FineWeb-
Edu-100B. Overall, TPA (red curves) and its simpler vari-
ant TPA-KVonly (pink curves) (see F) converge as fast as
or faster than the baselines (MHA, MQA, GQA, MLA)
while also achieving visibly lower final losses. For in-
stance, in Figure 3(b), TPA and TPA-KVonly remain below
the MHA baseline in terms of validation loss at nearly all
training stages. Meanwhile, Multi-Head Latent Attention
(MLA) (Liu et al., 2024a) (blue curves) generally trains

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Tensor Product Attention Is All You Need

more slowly and yields higher losses.
Validation Perplexity. Figure 4 (in the Appendix) shows
the validation perplexities of the medium- and large-scale
models. Mirroring the loss curves, TPA and TPA-KVonly
steadily outperform MHA, MQA, GQA, and MLA over the
course of training. By the end of pretraining (around 49B
tokens), TPA-based approaches achieve the lowest perplexi-
ties in most configurations.
Downstream Evaluation. We evaluate zero-shot and
two-shot performance on standard benchmarks, including
ARC (Yadav et al., 2019), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2020) and MMLU (Hendrycks et al., 2021), using the
lm-evaluation-harness codebase (Gao et al., 2024).
For ARC-E, ARC-C, HellaSwag, OBQA, PIQA, and SciQ,
we report accuracy norm; for other tasks, we report stan-
dard accuracy. Due to the page limitation, we only display
the zero-shot evaluation results of medium and large mod-
els here in Tables 2 and 3. Zero-shot evaluation of small
and XL models are displayed in Tables 6 and 7 in the ap-
pendix. Moreover, we also present 2-shot evaluation results
in Tables 8, 9, 10 and 11 in the appendix.
For the medium-size (353M) models (Tables 2 and 9), TPA
generally ties or outperforms all competing methods, achiev-
ing, for example, an average of 51.41% in zero-shot mode
versus MHA’s 50.11%, MQA’s 50.44%, and MLA’s 50.13%.
When given two-shot prompts, TPA again leads with 53.12%
average accuracy. A similar trend appears for the large-size
(773M) models (Tables 3), where TPA-KVonly attains the
highest average (53.52% zero-shot). And for the XL size
(1.5B) models (Table 7), TPA-KVonly attains the highest
average (55.03% zero-shot).
Our experiments confirm that TPA consistently matches
or exceeds the performance of established attention mech-
anisms (MHA, MQA, GQA, MLA) across medium and
large model scales. The fully factorized TPA excels on
mid-scale models, while TPA-KVonly can rival or surpass it
at larger scales. In both cases, factorizing the attention ac-
tivations shrinks autoregressive KV cache requirements by
up to 5×–10×, thus enabling much longer context windows
under fixed memory budgets. In summary, tensor product
attention provides a flexible, memory-efficient alternative to
standard multi-head attention, advancing the scalability of
modern language models.

5 Related Work
Transformers and Attention. As a sequence-to-sequence
architecture Transformer (Vaswani et al., 2017) introduced
Multi-Head Attention (MHA), enabling more effective cap-
ture of long-range dependencies. Subsequent work has ex-
plored a variety of attention mechanisms aimed at improving
scalability and efficiency, including sparse patterns (Child

et al., 2019; Shi et al., 2023; Han et al., 2024; Liang et al.,
2024a; Li et al., 2024; Liang et al., 2024b), kernel-based
projections (Choromanski et al., 2021), and linearized trans-
formers (Tsai et al., 2019; Katharopoulos et al., 2020; Schlag
et al., 2021; Zhang et al., 2023b; Sun et al., 2023; Zhang
et al., 2024). To decrease memory usage and circumvent the
limitation of memory bandwidth in training, Shazeer (2019)
proposed Multi-Query Attention (MQA) where multiple
query heads share the same key head and value head. To
tackle with the issue of quality degradation and instability
in training, Grouped-Query Attention (GQA) (Ainslie et al.,
2023) divides queries into several groups, and each group of
queries shares a single key head and value head. Recently,
DeepSeek-V2 (Liu et al., 2024a) applied multihead latent
attention (MLA) to achieve better performance than MHA
while reducing KV cache in inference time by sharing the
same low-rank representation of key and value. Concur-
rently, Hu et al. (2024) proposed Multi-matrix Factorization
Attention (MFA), which can be simply seen as MQA with
low-rank factorized Q. Compared to the approaches above,
TPA applied contextual tensor decompositions to represent
queries, keys, and values activations compactly, achieving
better reduction on the size of KV cache with improved
performance.
KV Cache Optimization. During the inference time of
Transformers, key and value tensors of the previous tokens
are repeatedly computed due to their auto-regressive na-
ture. To enhance efficiency, firstly proposed by Ott et al.
(2019), these tensors can be cached in memory for future
decoding, referred to as the KV cache. However, the KV
cache requires additional memory usage and may add to
more latencies due to the bandwidth limitation (Adnan et al.,
2024). Therefore, previous studies have explored diverse
approaches to mitigate these issues, including KV cache
eviction to discard less significant tokens (Zhang et al.,
2023c; Xiao et al., 2024; Cai et al., 2024; Adnan et al.,
2024), dynamic sparse attention among selected keys and
values (Ribar et al., 2024; Tang et al., 2024; Singhania et al.,
2024), KV cache offloading to CPU (He & Zhai, 2024; Lee
et al., 2024; Sun et al., 2024), as well as quantization of KV
cache (Xiao et al., 2023; Liu et al., 2024c; Hooper et al.,
2024). Different from the methods above, TPA reduces the
size of the KV cache by using tensor-decomposed KV.

6 Conclusion

We introduced Tensor Product Attention (TPA), which fac-
torizes query, key, and value matrices into rank-R tensor
products dependent on the token’s hidden state. Storing
only the factorized key/value components during autoregres-
sive decoding substantially decreases the kv memory size
with improved performance compared with MHA, MQA,
GQA, and MLA. The approach is fully compatible with
RoPE (and can store pre-rotated keys). Variants of TPA in-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Tensor Product Attention Is All You Need

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)
Figure 2. The training loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention
mechanisms on the FineWeb-Edu 100B dataset.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)
Figure 3. The validation loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention
mechanisms on the FineWeb-Edu 100B dataset.

Table 2. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.51 29.52 59.60 45.68 34.20 68.82 53.43 23.33 76.90 50.11
MQA 57.62 31.91 59.45 45.69 35.40 69.31 53.51 26.47 74.60 50.44
GQA 58.67 31.48 58.29 45.45 35.20 68.50 54.46 24.58 76.50 50.35
MLA 56.65 29.52 57.83 46.05 34.60 69.42 52.80 24.62 79.70 50.13

TPA-KVonly 58.01 30.12 58.01 45.95 35.60 69.10 53.12 25.39 75.10 50.04
TPA (non-ctx-A) 58.96 31.48 59.76 45.07 34.80 69.21 53.59 25.42 76.40 50.52
TPA 58.38 31.57 59.39 46.83 37.00 70.02 54.06 25.52 79.90 51.41

Table 3. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.93 33.62 61.93 50.63 36.00 71.06 55.41 22.87 81.20 52.52
MQA 60.73 33.62 57.34 50.09 37.00 69.97 55.49 25.30 79.60 52.13
GQA 61.66 34.30 58.72 49.85 38.40 71.16 53.75 25.23 77.60 52.30
MLA 63.55 32.85 60.95 51.72 38.80 70.51 55.01 24.55 81.90 53.32

TPA-KVonly 63.26 34.13 61.96 50.66 37.20 72.09 55.25 26.06 81.10 53.52
TPA 63.22 35.58 60.03 51.26 36.80 71.44 55.56 24.77 79.60 53.10

clude factorizing only the key/value or sharing basis vectors
across tokens. Overall, TPA offers a powerful mechanism
for compressing KV storage while improving the model per-

formance, thereby enabling longer sequence contexts under
constrained memory.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Tensor Product Attention Is All You Need

Impact Statement
This paper presents work whose goal is to advance the field
of foundation models especially Large Language Models
(LLMs). We believe that our work contributes meaningfully
to the field, specifically on advancing the efficiency in the
inference stage of LLMs by reducing KV cache size. By re-
ducing memory requirements, our method could enable the
deployment of capable language models on more resource-
constrained devices and in broader settings, opening new
avenues for their application in various downstream tasks.
Lower memory usage typically correlates with reduced en-
ergy consumption, potentially decreasing the environmental
footprint of LLM inference. This advancement underscores
the potential of LLMs architecture design in both techno-
logical and societal contexts.

References
Adnan, M., Arunkumar, A., Jain, G., Nair, P., Solovey-

chik, I., and Kamath, P. Keyformer: Kv cache reduction
through key tokens selection for efficient generative in-
ference. Proceedings of Machine Learning and Systems,
6:114–127, 2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. GQA: training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singa-
pore, December 6-10, 2023, pp. 4895–4901. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/
2023.EMNLP-MAIN.298. URL https://doi.org/
10.18653/v1/2023.emnlp-main.298.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in natural
language. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI
Press, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Büyükakyüz, K. Olora: Orthonormal low-rank adaptation of
large language models. arXiv preprint arXiv:2406.01775,
2024.

Cai, Z., Zhang, Y., Gao, B., Liu, Y., Liu, T., Lu, K., Xiong,
W., Dong, Y., Chang, B., Hu, J., et al. Pyramidkv: Dy-
namic kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069, 2024.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024, 2024.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlós, T., Hawkins, P., Davis, J. Q., Mohi-
uddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., and
Weller, A. Rethinking attention with performers. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling
language modeling with pathways. J. Mach. Learn. Res.,
24:240:1–240:113, 2023.

Clark, C., Lee, K., Chang, M., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Burstein, J., Do-
ran, C., and Solorio, T. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
2924–2936. Association for Computational Linguistics,
2019.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,

9

https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Tensor Product Attention Is All You Need

H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff,
D. P., and Zandieh, A. Hyperattention: Long-context
attention in near-linear time. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
id=Eh0Od2BJIM.

He, J. and Zhai, J. Fastdecode: High-throughput gpu-
efficient llm serving using heterogeneous pipelines. arXiv
preprint arXiv:2403.11421, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

Hu, J., Li, H., Zhang, Y., Wang, Z., Zhou, S., Zhang, X., and
Shum, H.-Y. Multi-matrix factorization attention. arXiv
preprint arXiv:2412.19255, 2024.

Jiang, T., Huang, S., Luo, S., Zhang, Z., Huang, H., Wei,
F., Deng, W., Sun, F., Zhang, Q., Wang, D., et al. Mora:
High-rank updating for parameter-efficient fine-tuning.
arXiv preprint arXiv:2405.12130, 2024.

Karpathy, A. NanoGPT. https://github.com/
karpathy/nanoGPT, 2022.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Lee, W., Lee, J., Seo, J., and Sim, J. {InfiniGen}: Effi-
cient generative inference of large language models with
dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 155–172, 2024.

Li, X., Liang, Y., Shi, Z., and Song, Z. A tighter complexity
analysis of sparsegpt. arXiv preprint arXiv:2408.12151,
2024.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. Relora: High-rank training through low-rank updates.
In The Twelfth International Conference on Learning
Representations, 2023.

Liang, Y., Liu, H., Shi, Z., Song, Z., Xu, Z., and Yin, J.
Conv-basis: A new paradigm for efficient attention in-
ference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Liang, Y., Long, J., Shi, Z., Song, Z., and Zhou, Y. Be-
yond linear approximations: A novel pruning approach
for attention matrix. arXiv preprint arXiv:2410.11261,
2024b.

Liang, Y.-S. and Li, W.-J. Inflora: Interference-free low-
rank adaptation for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23638–23647, 2024.

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C.,
Dengr, C., Ruan, C., Dai, D., Guo, D., et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts
language model. arXiv preprint arXiv:2405.04434,
2024a.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024, 2024c.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Lozhkov, A., Ben Allal, L., von Werra, L., and Wolf,
T. Fineweb-edu: the finest collection of educational
content, 2024. URL https://huggingface.co/
datasets/HuggingFaceFW/fineweb-edu.

10

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Tensor Product Attention Is All You Need

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A
kernel-based view of language model fine-tuning. In In-
ternational Conference on Machine Learning, pp. 23610–
23641. PMLR, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? A new dataset for open
book question answering. In Riloff, E., Chiang, D., Hock-
enmaier, J., and Tsujii, J. (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November
4, 2018, pp. 2381–2391. Association for Computational
Linguistics, 2018. doi: 10.18653/V1/D18-1260. URL
https://doi.org/10.18653/v1/d18-1260.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling. In Ammar, W., Louis, A.,
and Mostafazadeh, N. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Demonstrations, pp. 48–53. Association
for Computational Linguistics, 2019.

Ren, W., Li, X., Wang, L., Zhao, T., and Qin, W. Analyzing
and reducing catastrophic forgetting in parameter efficient
tuning. arXiv preprint arXiv:2402.18865, 2024.

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient LLM inference. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Aus-
tria, July 21-27, 2024, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI
Press, 2020.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transform-
ers are secretly fast weight programmers. In Interna-
tional Conference on Machine Learning, pp. 9355–9366.
PMLR, 2021.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shi, Y., Wei, J., Wu, Y., Ran, R., Sun, C., He, S., and Yang,
Y. Loldu: Low-rank adaptation via lower-diag-upper
decomposition for parameter-efficient fine-tuning. arXiv
preprint arXiv:2410.13618, 2024.

Shi, Z., Chen, J., Li, K., Raghuram, J., Wu, X., Liang, Y.,
and Jha, S. The trade-off between universality and label
efficiency of representations from contrastive learning.
In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023, 2023.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. arXiv
preprint arXiv:2406.02542, 2024.

Su, J. The extreme pull between cache and effect: From
MHA, MQA, GQA to MLA. https://spaces.ac.
cn/archives/10091, May 2024.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, H., Chang, L.-W., Bao, W., Zheng, S., Zheng, N., Liu,
X., Dong, H., Chi, Y., and Chen, B. Shadowkv: Kv
cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han, S.
QUEST: query-aware sparsity for efficient long-context
LLM inference. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024, 2024.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: An unified
understanding for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 4344–4353, 2019.

11

https://doi.org/10.18653/v1/d18-1260
https://spaces.ac.cn/archives/10091
https://spaces.ac.cn/archives/10091

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Tensor Product Attention Is All You Need

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Vienna, Austria, May 7-11, 2024,
2024.

Yadav, V., Bethard, S., and Surdeanu, M. Quick and (not so)
dirty: Unsupervised selection of justification sentences
for multi-hop question answering. In Inui, K., Jiang,
J., Ng, V., and Wan, X. (eds.), Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pp. 2578–2589.
Association for Computational Linguistics, 2019. doi:
10.18653/V1/D19-1260. URL https://doi.org/
10.18653/v1/D19-1260.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Korhonen, A., Traum, D. R., and Màrquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp.
4791–4800. Association for Computational Linguistics,
2019. doi: 10.18653/V1/P19-1472. URL https://
doi.org/10.18653/v1/p19-1472.

Zeng, Y. and Lee, K. The expressive power of low-rank
adaptation. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, 2024.

Zhang, H. Sinklora: Enhanced efficiency and chat capa-
bilities for long-context large language models. arXiv
preprint arXiv:2406.05678, 2024.

Zhang, M., Bhatia, K., Kumbong, H., and Ré, C. The hedge-
hog & the porcupine: Expressive linear attentions with
softmax mimicry. In The Twelfth International Confer-
ence on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024, 2024.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for

parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023b.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023c.

Zhao, H., Ni, B., Fan, J., Wang, Y., Chen, Y., Meng, G.,
and Zhang, Z. Continual forgetting for pre-trained vision
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 28631–
28642, 2024.

12

https://doi.org/10.18653/v1/D19-1260
https://doi.org/10.18653/v1/D19-1260
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Tensor Product Attention Is All You Need

Appendix

A Toward Faster Computation Without Materializing Q, K and V 14
A.1 Single-Head Factorization Setup Without Materializing Q and K . 14
A.2 Multi-Head Case . 14
A.3 Complexity Analysis . 14
A.4 Complexity Analysis for the Specialized Implementation . 15
A.5 Toward Faster Computation Without Materializing Q, K, V . 16
A.6 Overall Complexity for Single-Head . 16
A.7 Multi-Head and Batch Extensions (Reuse of b-Dot Products) . 17
A.8 Decoding Speed during Inference Time of MHA, MQA, GQA, MLA, and TPA 17

B Higher-Order Tensor Product Attention 18
B.1 RoPE Compatibility in Higher-Order TPA . 18

C Proofs of Theorems 19
C.1 Proof of Theorem 1 . 19
C.2 Proof of Theorem 2 . 20

D More Related Works 21

E More on Attention Mechanisms 21
E.1 Multi-Query Attention (MQA) . 21
E.2 Grouped Query Attention (GQA) . 22
E.3 Multi-head Latent Attention (MLA) . 22
E.4 Multi-matrix Factorization Attention (MFA) . 23

F Other Variants of TPA 23

G More on Experiments 24
G.1 Experimental Settings . 24
G.2 Additional Experimental Results . 24
G.3 Ablation Studies on Learning Rates . 25

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Tensor Product Attention Is All You Need

A Toward Faster Computation Without Materializing Q, K and V

We now explore whether it is possible to compute attention scores QK⊤ of Tensor Product Attention (TPA) directly from
their factorized forms, thereby reducing floating-point operations.

A.1 Single-Head Factorization Setup Without Materializing Q and K

Consider a single head i. Each query vector Q(i)
t ∈ Rdh is factorized (with rank Rq):

Q
(i)
t =

Rq∑
r=1

a
(r)
q,i (xt)b

(r)
q (xt),

and each key vector K(i)
τ ∈ Rdh is factorized (with rank Rk):

K(i)
τ =

Rk∑
s=1

a
(s)
k,i(xτ)b

(s)
k (xτ).

Their dot-product for tokens t, τ is

[
Q(i) (K(i))⊤

]
t,τ

=

Rq∑
r=1

Rk∑
s=1

a
(r)
q,i (xt) a

(s)
k,i(xτ)

〈
b(r)
q (xt),b

(s)
k (xτ)

〉
. (A.1)

A.2 Multi-Head Case

For multi-head attention with h heads, one repeats the factorization across all heads. The b(r)
q ,b

(s)
k vectors are shared across

heads.

A.3 Complexity Analysis

We compare the cost of standard multi-head attention versus TPA under two scenarios:

1. Naı̈ve: Materialize Q and K from factors, then perform the usual batched GEMM.

2. Specialized: Attempt to compute QK⊤ directly from the rank-(Rq, Rk) factors without explicitly forming Q,K.

Standard Multi-Head Attention. For batch size B and sequence length T :

• Projection cost: O
(
B T d2model

)
or O

(
B T dmodel dh

)
.

• Dot-product: Q (K)⊤ ∈ R(B h)×T×T costs O
(
B T 2 dmodel

)
.

For large T , the O(B T 2 dmodel) term dominates.
TPA: Naı̈ve Implementation.

• Constructing factors: O
(
B T dmodel ×Rq(h+ dh) +Rk(h+ dh) +Rv(h+ dh)

)
.

• Materializing Q,K: O
(
B T (Rq h dh +Rk h dh)

)
.

• Dot-product Q (K)⊤: O
(
B T 2 dmodel

)
.

Typically Rq, Rk, Rv ≪ h, so the overhead of constructing factors is small relative to O(T 2 dmodel). Meanwhile, we still
gain KV caching benefits.
TPA: Specialized Implementation. If we bypass explicitly forming Q,K, each dot product Qt ·Kτ is a double sum over
rank indices. Below we detail its complexity.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Tensor Product Attention Is All You Need

A.4 Complexity Analysis for the Specialized Implementation

Single-Head Complexity. A single attention head of dimension dh. For each query:

Q
(i)
t =

Rq∑
r=1

a
(r)
q,i (xt)b

(r)
q (xt),

and for each key:

K(i)
τ =

Rk∑
s=1

a
(s)
k,i(xτ)b

(s)
k (xτ).

Their dot product:

Q
(i)
t ·K(i)

τ =

Rq∑
r=1

Rk∑
s=1

[
a
(r)
q,i (xt) a

(s)
k,i(xτ)

] 〈
b(r)
q (xt),b

(s)
k (xτ)

〉
.

For each pair (r, s), we pay:

1. O(1) for multiplying two scalars,

2. O(dh) for the dot product b(r)
q (xt) · b(s)

k (xτ).

Since (r, s) runs over Rq ×Rk, each token-pair (t, τ) costs roughly

O
(
Rq Rk

(
1 + dh

))
≈ O(Rq Rk dh).

For T queries and T keys, that is O(T 2 Rq Rk dh) for a single head.
Multi-Head and Batches (Reusing b-Dot Products). When extending to h heads, each head i has its own scalar factors
a
(r)
q,i (xt) and a

(s)
k,i(xτ), but the b-vectors b(r)

q (xt) and b
(s)
k (xτ) can still be shared across all heads (assuming the same

rank-R factors for every head). Hence, one can split the total cost into two stages:

1. b-Dot-Product Stage:
For each token pair (t, τ) and each rank pair (r, s), compute the dot product〈

b(r)
q (xt), b

(s)
k (xτ)

〉
∈ R.

Since each dot product is O(dh) and there are RqRk rank pairs as well as T 2 token pairs, this stage costs:

O
(
T 2 RqRk dh

)
.

Crucially, these b-dot products need only be computed once and can be cached for reuse by all heads.

2. Per-Head Scalar Multiplications:
After the b-dot products are precomputed (and cached), each head i only needs to multiply each stored dot product by
the corresponding scalars a(r)q,i (xt)a

(s)
k,i(xτ). Since this scalar multiplication is O(1) per pair, and there are T 2 token

pairs and RqRk rank pairs for each of the h heads, this step costs:

O
(
hT 2 RqRk

)
.

Putting these together, for batch size B, the total cost is

O
(
B T 2 RqRk dh

)
+ O

(
B T 2 hRqRk

)
= O

(
B T 2 RqRk

(
dh + h

))
.

By contrast, the standard multi-head attention dot-product step is O
(
B T 2 h dh

)
. Hence, for the specialized TPA approach

to reduce flops,

RqRk (dh + h) ≤ h dh.

Thus a practical guideline is to ensure RqRk < h dh

dh+h . When that holds, bypassing explicit materialization of Q and K
can be beneficial.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Tensor Product Attention Is All You Need

A.5 Toward Faster Computation Without Materializing Q, K, V

We have explored a two-step procedure for computing QK⊤ directly from factorized queries and keys without materializing
Q or K. Here, we extend this idea to also avoid explicitly forming V. That is, all three activations Q,K,V remain
factorized throughout the attention pipeline. We present a single-head formulation below, and then discuss multi-head and
batch extensions.
Extending the Two-Step Approach to Avoid V Materialization. After we obtain QK⊤, we apply αt,τ =
softmax

(
1√
dh

(QK⊤)t,τ
)
. The final attention output at token t (single head) is

head(t) =

T∑
τ=1

αt,τ Vτ .

Using the factorization Vτ =
∑Rv

u=1 a
(u)
v (xτ)b

(u)
v (xτ), we write:

head(t) =

T∑
τ=1

αt,τ

Rv∑
u=1

a(u)v (xτ)b
(u)
v (xτ).

Rearrange sums:

head(t) =

Rv∑
u=1

[T∑
τ=1

(
αt,τ a

(u)
v (xτ)

)
b(u)
v (xτ)

]
.

We still do not explicitly form Vτ . Instead:

Stage 1: Calculating b
(u)
v (xτ) for all tokens. We simply observe that each output head(t) can be computed by summing

vectors b(u)
v (xτ) ∈ Rdh weighted by αt,τ a

(u)
v (xτ). The complexity for constructing b

(u)
v (xτ) ∀u, τ is O(T Rv dh).

Stage 2: Weighted Summation by αt,τ a
(u)
v (xτ). For each token t, the final attention head output is

T∑
τ=1

αt,τ

Rv∑
u=1

a(u)v (xτ)b
(u)
v (xτ) =

Rv∑
u=1

[T∑
τ=1

(
αt,τ a

(u)
v (xτ)

)
b(u)
v (xτ)

]
.

We still never explicitly materialize V. Instead, for each pair (t, u), we must accumulate the sum of T vectors b(u)
v (xτ) ∈

Rdh , each scaled by the scalar αt,τ a
(u)
v (xτ). Because each vector is dh-dimensional, each (t, u) summation costs O(T dh).

Summed over t = 1 . . . T and u = 1 . . . Rv, the total work is O(T 2 Rv dh) for the entire sequence.

In practice, one precomputes all b(u)
v (xτ) for τ = 1 . . . N , so each accumulation can be implemented as a simple “scalar-

times-vector add” in a tight loop. This cost is usually smaller than the QK⊤ factorized cost if Rv ≪ dh.

A.6 Overall Complexity for Single-Head

Combining the four bullet-point stages from above (ignoring smaller overheads like the softmax) yields:

(i) QK b-Dot Product Stage: O(T 2 Rq Rk dh).

(ii) QK Scalar-Multiply Stage: O(T 2 Rq Rk).

(iii) Computing b
(u)
v (xτ) for all tokens: O(T Rv dh).

(iv) Weighted Summation by αt,τ a
(u)
v (xτ): O(T 2 Rv dh).

Hence, for a single head, the total cost is:

O
(
T 2 Rq Rk dh + T 2 Rq Rk + T Rv dh + T 2 Rv dh

)
.

In many cases (especially for large T), the O(T 2) terms dominate, so one often focuses on

O
(
T 2 Rq Rk dh + T 2 Rq Rk + T 2 Rv dh

)
.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Tensor Product Attention Is All You Need

A.7 Multi-Head and Batch Extensions (Reuse of b-Dot Products)

When extending to h heads and batch size B, all sequence-length-dependent terms are multiplied by ∼ B h. However,
crucial b-dot products can be shared across heads:

QK b-Dot Products. Since each head has distinct scalar factors aq,i, ak,i but the same b
(r)
q , b

(s)
k across heads, each

pairwise dot product

⟨b(r)
q (xt), b

(s)
k (xτ)⟩

is computed just once per batch. That cost remains

O
(
B T 2 Rq Rk dh

)
,

not multiplied by h. After caching these dot products, each of the h heads pays O
(
B T 2 hRq Rk

)
total for the head-specific

scalar multiplications (the “αt,τ”–like factors).

V b-Evaluations. Likewise, the b
(u)
v factors are shared across heads (i.e. one set of bv-vectors for all heads). Hence,

computing all b(u)
v (xτ) for τ = 1 . . . T (across the batch) is a one-time cost:

O
(
B T Rv dh

)
.

Then each head i has its own scalar factors a
(u)
v,i (xτ), so the final accumulation

∑T
τ=1 αt,τ a

(u)
v,i (xτ)b

(u)
v (xτ) costs

O
(
B T 2 hRv dh

)
in total (for all t, u).

Putting it all together, the total flops for multi-head attention with batch size B are:

O
(
B T 2 Rq Rk dh

)︸ ︷︷ ︸
QK b-dot products

(shared across heads)

+ O
(
B T 2 hRq Rk

)︸ ︷︷ ︸
per-head QK scalar mult.

+ O
(
B T Rv dh

)︸ ︷︷ ︸
Compute bv for all tokens

(shared across heads)

+ O
(
B T 2 hRv dh

)︸ ︷︷ ︸
final accumulations

(per head)

.

Discussion. By contrast, standard multi-head attention typically requires O
(
B T 2 h dh

)
flops for the QK⊤ dot product

(plus a similar O
(
B T 2 h dh

)
for multiplying by V). The factorization can yield savings provided RqRk ≪ h (for QK) and

Rv ≪ h (for V), though actual speedups depend on how well these multi-stage kernels are implemented and on hardware
efficiency. By retaining Q,K, and V in factorized form, one can forgo the usual steps:

xt 7→ Qt, Kτ 7→ (QK⊤) 7→ softmax(QK⊤)V 7→ final output.

Instead, the large Q,K,V tensors (of size T × dh) are never materialized. The cost is replaced by rank-based b-dot-product
computations plus per-head scalar multiplications. The main challenge is to keep the factor ranks (Rq, Rk, Rv) sufficiently
small relative to dh and to implement the necessary multi-stage kernels efficiently. When Rq, Rk, Rv ≪ h, fully factorized
QKV attention can yield substantial gains in both computation and memory footprint.

A.8 Decoding Speed during Inference Time of MHA, MQA, GQA, MLA, and TPA

Suppose we are in an autoregressive setting, decoding the current token xT given cached keys and values (KV) from all
previous tokens x1, . . . ,xT−1. For each attention head i ∈ {1, . . . , h}, we store Ki ∈ RT×dh ,Vi ∈ RT×dh . Below, we
compare the flops needed by MHA, MQA, GQA, MLA, and TPA to compute the next-token logits during inference.
MHA, MQA, and GQA. Despite sharing or grouping keys/values in MQA and GQA, the decoding cost for MHA, MQA,
and GQA remains of the same order. Specifically, for each head i, we compute:

Qi(xT) ∈ Rdh , Ki ∈ RT×dh , Qi(xT)K
⊤
i ∈ R1×T , and Softmax

(
Qi(xT)K

⊤
i

)
Vi ∈ Rdh .

Hence, the flops scale linearly in h, dh, and T . For example, forming Qi(xT)K
⊤
i for each head i costs roughly O(h dh T).

MLA. During inference, MLA can be seen as MQA but uses a larger head dimension to accommodate both RoPE
and compressed representations (e.g., d′h = drope + dc). In typical configurations, drope + dc can be significantly larger
(e.g., d′h = 576 rather than dh = 64 or 128), thus inflating the dot-product cost by roughly 4.5× to 9× compared to
MHA/MQA/GQA.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Tensor Product Attention Is All You Need

TPA. Recall that TPA factorizes Q and K into rank-(Rq, Rk) terms (see Section A), potentially avoiding large Q,K
materializations. At inference, TPA’s dot-product cost can be broken into two parts:

Rq Rk dh T︸ ︷︷ ︸
QK b-dot products (shared across all heads)

+ 2 Rq Rk hT︸ ︷︷ ︸
per-head scalar multiplications

,

where T is the current sequence length. For concrete values dh = 128, h = 64, Rq = 8, and Rk = 2 (or Rq = 16, Rk = 1),
we obtain:

MHA, MQA, GQA: 128× 64× T = 8192T,

MLA: 576× 64× T = 36,384T,

TPA:
(
8× 2× 128× T

)
+

(
2× 8× 2× 64× T

)
= 4096T.

Thus, in this setup, TPA can significantly reduce the flops needed for computing the Q(xT)K
⊤ operation at each

decoding step. The actual end-to-end wall-clock speedup also depends on kernel fusion, caching strategies, and hardware
implementation details, but the factorized formulation offers a pathway to more efficient decoding than standard attention.

B Higher-Order Tensor Product Attention
All prior discussions have focused on a second-order factorization in which each rank-RQ (and similarly RK , RV)
component is the outer product of two vectors: one in Rh (the “head” dimension) and one in Rdh . We now generalize this
by introducing an additional latent factor, yielding a third-order (or higher) factorization reminiscent of canonical polyadic
(CP) decomposition. Concretely, for a single token t, we write

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
,

where the newly introduced factor cQr (xt) ∈ Rdc can be viewed as a learnable gate or modulation term. Analogous
expansions apply to Kt and Vt. In practice, these triple (or higher-order) products still collapse into a matrix in Rh×dh .
One straightforward way to achieve this collapse is to split the feature dimension dh such that db × dc = dh,

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , vec

(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rdh .

This additional factor can enhance expressiveness without necessarily increasing the base rank. Conceptually, it can act as
a learnable nonlinearity or gating mechanism. One could also tie or share cQr across queries, keys, and values, to reduce
parameter overhead.
A similar setup holds for keys (with rank RK) and values (with rank RV). Although this extra dimension adds to the
parameter count, it can reduce the required rank to achieve a certain level of representational power.
From a memory perspective, higher-order TPA still leverages factorized KV caching: only the factors a(xt),b(xt), and
c(xt) for each past token are cached. As usual, a trade-off arises between model capacity and the overhead of memory and
computing. Nonetheless, moving from a rank-

(
RQ, RK , RV

)
matrix factorization to a higher-order tensor decomposition

can provide additional flexibility and increased capacity.

B.1 RoPE Compatibility in Higher-Order TPA

Rotary positional embeddings (RoPE) remain compatible even under higher-order factorizations. In second-order TPA,
RoPE can be treated as an invertible blockwise linear map acting on the last dimension of Qt or Kt. The same argument
carries over when a third factor cQr (xt) is present. Suppose RoPE acts on the bQ

r (xt) portion (of dimension size db), we
have the following theorem.

Theorem 2 (RoPE Compatibility in Higher-Order TPA). Consider the higher-order (3-order) Tensor Product Attention
(TPA) query factorization

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Tensor Product Attention Is All You Need

where aQr (xt) ∈ Rh, bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dc = dh

db
. Define the RoPE-transformed query as Q̃t =

RoPEt

(
Qt

)
= QtTt, where

Tt = Rt ⊗ Idc
=

Rt · · · 0 0
0 Rt · · · 0
...

...
. . .

...
0 0 · · · Rt

 ∈ Rdh×dh ,

and Rt ∈ Rdb×db (db ∈ Z+ is even) is a block-diagonal matrix composed of 2× 2 rotation matrices:

Rt =

cos(tθ1) − sin(tθ1)
sin(tθ1) cos(tθ1)

cos(tθ2) − sin(tθ2)
sin(tθ2) cos(tθ2)

. . .
cos(tθdb/2) − sin(tθdb/2)
sin(tθdb/2) cos(tθdb/2)

,

for t ∈ {1, . . . , T} and j ∈ {1, . . . , db/2}.
This construction ensures that RoPE rotates only the coordinates corresponding to bQ

r (xt) while leaving cQr (xt) unchanged.
Under these conditions, the RoPE-transformed query RoPEt

(
Qt

)
admits a higher-order TPA factorization of the same rank

RQ. Specifically, we have

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
, (B.1)

where b̃Q
r (xt) = Rtb

Q
r (xt).

Please see Appendix C.2 for the proof. For fourth-order or higher, this result still holds.

C Proofs of Theorems

C.1 Proof of Theorem 1

Proof. Because RoPE is a linear orthogonal transform, we can write

Q̃t = Qt Tt =
1

RQ

(
AQ(xt)

⊤ BQ(xt)
)
Tt =

1

RQ
AQ(xt)

⊤(BQ(xt)Tt

)
,

where Tt is the block-diagonal matrix encoding RoPE. This allows us to define

B̃Q(xt) = BQ(xt)Tt,

thereby obtaining

RoPE(Qt) =
1

RQ
AQ(xt)

⊤B̃Q(xt).

Similarly, for the key tensor Ks, we have

K̃s = Ks Ts =
1

RK

(
AK(xs)

⊤ BK(xs)
)
Ts =

1

RK
AK(xs)

⊤(BK(xs)Ts

)
,

which defines

B̃K(xs) = BK(xs)Ts,

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Tensor Product Attention Is All You Need

and thus

RoPE(Ks) =
1

RK
AK(xs)

⊤B̃K(xs).

Now, consider the product of the rotated queries and keys:

Q̃t K̃
⊤
s =

1

RQRK

(
AQ(xt)

⊤B̃Q(xt)
)(

AK(xs)
⊤B̃K(xs)

)⊤

=
1

RQRK
AQ(xt)

⊤B̃Q(xt)B̃K(xs)
⊤AK(xs),

Since Tt and Ts encode positional rotations, the product TtT
⊤
s corresponds to a relative rotation Tt−s. Therefore, we can

express the above as

Q̃t K̃
⊤
s =

1

RQRK
AQ(xt)

⊤ (
BQ(xt)TtT

⊤
s BK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (
BQ(xt)Tt−sBK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (BQ(xt)Tt−s)
(
BK(xs)

⊤AK(xs)
)

=

(
1

RQ
AQ(xt)

⊤BQ(xt)Tt−s

)(
1

RK
AK(xs)

⊤BK(xs)

)⊤

,

This shows that

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality implies:

RoPEt−s(qt,i)
⊤ks,i = q̃⊤

t,ik̃s,i,

where

q̃t,i = RoPE(qt,i) = Ttqt,i ∈ Rdh , k̃s,i = RoPE(ks,i) = Tsks,i ∈ Rdh .

This equality confirms that the relative positional encoding between queries and keys is preserved under TPA’s factorization
and RoPE’s rotation. Thus, TPA maintains compatibility with RoPE. This completes the proof of Theorem 1.

C.2 Proof of Theorem 2

Proof. We begin by observing that each term aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
is an element of Rh ⊗ Rdh . Here,

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dc =

dh

db
. Consequently, the tensor product bQ

r (xt)⊗ cQr (xt) forms a db × dc matrix,
and its vectorization lies in Rdb·dc = Rdh .
Applying the RoPE transformation to a single summand yields

vec
(
bQ
r (xt)⊗ cQr (xt)

)
7→ Tt vec

(
bQ
r (xt)⊗ cQr (xt)

)
.

Since Tt is defined as the Kronecker product Rt ⊗ Idc
, where Rt ∈ Rdb×db and Idc

is the identity matrix of size dc × dc, it
follows that

Tt vec
(
bQ
r (xt)⊗ cQr (xt)

)
= vec

(
Rtb

Q
r (xt)⊗ cQr (xt)

)
.

This is because the Kronecker product with an identity matrix effectively applies the rotation Rt to the bQ
r (xt) component

while leaving cQr (xt) unchanged.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Tensor Product Attention Is All You Need

Therefore, the RoPE transformation of a single summand becomes

RoPEt

(
aQr (xt)⊗ vec

(
bQ
r (xt)⊗ cQr (xt)

))
= aQr (xt)⊗ vec

(
Rtb

Q
r (xt)⊗ cQr (xt)

)
.

Importantly, this transformation does not mix the components bQ
r (xt) and cQr (xt); it solely rotates bQ

r (xt) via Rt.
Summing over all ranks r = 1, . . . , RQ, we obtain

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
Rtb

Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
,

which retains the same higher-order TPA structure with rank RQ.
Thus, the RoPE transformation is fully compatible with higher-order TPA, preserving the factorization rank and maintaining
the structure by only rotating the bQ

r (xt) components while leaving cQr (xt) unchanged.

D More Related Works

Low-Rank Factorizations. Low-rank approximations have been applied to compress model parameters and reduce complex-
ity including LoRA (Hu et al., 2022), which factorizes weight updates during fine-tuning, and its derivatives for other training
scenarios such as efficient pretraining (ReLoRA (Lialin et al., 2023), MoRA (Jiang et al., 2024)), long-context training
(LongLoRA (Chen et al., 2024), SinkLoRA (Zhang, 2024)), as well as continual training (InfLoRA (Liang & Li, 2024),
GS-LoRA (Zhao et al., 2024), I-LoRA (Ren et al., 2024)). These approaches typically produce static low-rank expansions
that do not explicitly depend on the input context. And Malladi et al. (2023); Zeng & Lee (2024) provided theoretical proof
of the expressiveness of low-rank approximation. For the initialization of factorization matrices, OLoRA (Büyükakyüz,
2024) applied QR-decomposition of pretrained weight to achieve better performance of language models while LoLDU (Shi
et al., 2024) used LDU-decomposition to accelerate training of LoRA. Moreover, AdaLoRA (Zhang et al., 2023a) utilized
Singular Value Decomposition (SVD) of the pretrained weight and introduced importance score for each parameter as a
measurement to achieve dynamic adjustment of rank. TPA, by contrast, constructs Q, K, and V as contextually factorized
tensors, enabling dynamic adaptation.

E More on Attention Mechanisms

E.1 Multi-Query Attention (MQA)

Multi-Query Attention (MQA) (Shazeer, 2019) significantly reduces memory usage by sharing keys and values across
heads, while still preserving unique query projections. For a sequence of embeddings X ∈ RT×dmodel ,

Qi = XWQ
i , Kshared = XWK

shared, Vshared = XW V
shared.

Hence, each head i only has a distinct query Qi ∈ RT×dh , but shares the same key Kshared ∈ RT×dh and value Vshared ∈
RT×dh . In practice, this means:

WQ
i ∈ Rdmodel×dh , WK

shared,W
V
shared ∈ R dmodel×dh .

The resulting MQA operation is:

MQA(X) = Concat
(

head1, . . . ,headh

)
WO,

where

headi = Attention
(
Qi,Kshared,Vshared

)
.

By sharing these key and value projections, MQA cuts down on memory usage (especially for the key-value cache in
autoregressive inference) but loses some expressivity since all heads must rely on the same key/value representations.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Tensor Product Attention Is All You Need

E.2 Grouped Query Attention (GQA)

Grouped Query Attention (GQA) (Ainslie et al., 2023) generalizes MHA and MQA by grouping heads. Specifically, we
partition the h total heads into G groups. Each group has a single set of keys and values, but each individual head within
that group still retains its own query projection. Formally, if g(i) maps a head i ∈ [h] to its group index g ∈ [G], then:

Kg(i) = XWK
g(i), Vg(i) = XW V

g(i), Qi = XWQ
i ,

and

headi = Attention
(
Qi,Kg(i),Vg(i)

)
.

Again, WK
g ,W V

g ∈ Rdmodel×dh for each group g, and WQ
i ∈ R dmodel×dh for each head i. The complete output is again a

concatenation of all heads:
GQA(X) = Concat

(
head1, . . . , headh

)
WO.

By adjusting G between 1 and h, GQA can interpolate between sharing all key/value projections across heads (i.e., MQA)
and having one set of projections per head (i.e., MHA).

E.3 Multi-head Latent Attention (MLA)

Below, we briefly outline the Multi-head Latent Attention (MLA) approach used by DeepSeek-V2 (Liu et al., 2024a) and
DeepSeek-V3 (Liu et al., 2024b). MLA introduces a low-rank compression of the keys and values to reduce the Key-Value
(KV) caching cost at inference.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV WUK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV WUV ,

where WDKV ∈ R dmodel×dc ,WUK ∈ Rdc×dhh,WKR ∈ Rdmodel×dR
h ,WUV ∈ Rdc×dhh, and CKV ∈ RT×dc is the

compressed KV latent (with dc ≪ dhh), and RoPE(·) represents the RoPE transform applied to the separate key embeddings
KR of dimension dRh . Thus, only CKV and KR need to be cached, reducing KV memory usage while largely preserving
performance compared to standard MHA (Vaswani et al., 2017).
MLA also compresses the queries, lowering their training-time memory footprint:

CQ = XWDQ,

Concat
(
QC

1 ,Q
C
2 , . . . ,Q

C
h

)
= QC = CQWUQ,

Concat
(
QR

1 , Q
R
2 , . . . , Q

R
h

)
= QR = RoPE

(
CQWQR

)
,

Q = Concat
(
QC ,QR

)
.

where WDQ ∈ R dmodel×d′
c ,WUQ ∈ R d′

c×dhh,WQR ∈ Rd′
c×dR

h h. Here, CQ ∈ RT×d′
c (with d′c ≪ dhh) is the compressed

query latent. As above, each WDQ, WUQ, and WQR connects these lower-dimensional query latents back to h heads of
dimension dh + dRh .
Given compressed queries, keys, and values, the final attention output for the t-th token is:

Oi = Softmax
(

QiK
⊤
i√

dh+dR
h

)
VC

i ,

U = Concat
(
O1,O2, . . . ,Oh

)
WO,

where WO ∈ R(dhh)× dmodel is the output projection.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Tensor Product Attention Is All You Need

In inference time, CKV and KR can be cached to accelerate decoding. In detail, when RoPE is ignored, the inner product
q⊤
t,iks,i (where qt,i,ks,i ∈ Rd) of the i-th head between t-th and s-th tokens can be calculated using the hidden state

xt ∈ Rdmodel for t-th token and the cached latent state cKV
s ∈ Rdc for s-th token:

q⊤
t,iks,i = [(WUQ

i)⊤(WDQ
i)⊤xt]

⊤[(WUK
i)⊤cKV

s] (E.1)

= x⊤
t [W

DQ
i WUQ

i (WUK
i)⊤]cKV

s , (E.2)

where W
(·)
i is the i-th head of the original weight, and [WDQ

i WUQ
i (WUK

i)⊤] can be computed previously for faster
decoding. However, this process fails when RoPE is considered according to (Su, 2024). Since RoPE can be considered as
multiplication with a block-diagonal matrix Tt ∈ Rdh×dh (see Section 2.3), with the property (2.1) that TtT

⊤
s = Tt−s,

then

q⊤
t,iks,i = [Tt

⊤(WUQ
i)⊤(WDQ

i)⊤xt]
⊤[Ts

⊤(WUK
i)⊤cKV

s]

= x⊤
t [W

DQ
i WUQ

i Tt−s(W
UK
i)⊤]cKV

s .
(E.3)

Different from (E.2), acceleration by pre-computing [WDQ
i WUQ

i Tt−s(W
UK
i)⊤] fails since it varies for different (t, s)

position pairs. Therefore, MLA adds the additional kR
t part with a relatively smaller size for RoPE compatibility. In Section

3.2, we will show that TPA addresses the issue of RoPE-incompatibility by applying tensor product.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV WUK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV WUV ,

E.4 Multi-matrix Factorization Attention (MFA)

Hu et al. (2024) proposed Multi-matrix Factorization Attention (MFA), which can be seen as Multi-Query Attention (MQA)
with dimension of each head equals dC , and low-rank factorized Q:

Qi = XWDQWUQ
i , Kshared = XWK

shared, Vshared = XW V
shared,

where

WDQ ∈ Rdmodel×dc , WUQ
i ∈ Rdc×dc , WK

shared,W
V
shared ∈ R dmodel×dc .

F Other Variants of TPA

TPA with Non-contextual B. Conversely, one may fix the token-dimension factors bQ
r ,b

K
r ,bV

r ∈ Rdh as learned
parameters, while allowing aQr (xt),a

K
r (xt),a

V
r (xt) to adapt to xt. For keys:

Kt =
1

RK

RK∑
r=1

aKr (xt)⊗ bK
r ,

and similarly for values. This arrangement is effective if the token-dimension structure remains mostly uniform across the
sequence, while the head-dimension factors capture context.
TPA KV Only. One can preserve a standard query mapping,

Qt = WQ xt ∈ Rh×dh ,

and factorize only the keys and values. This leaves the query projection as the original linear transformation while reducing
memory usage via factorized KV caching.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Tensor Product Attention Is All You Need

TPA KV with Shared B. Another variant is to share the token-dimension factors of keys and values:

bK
r (xt) = bV

r (xt),

lowering parameter counts and the KV cache footprint. While it constrains K and V to be formed from the same token
basis, it can still perform well and provide additional memory savings.
Nonlinear Head Factors. Rather than applying purely linear mappings to the head-dimension factors aQr ,a

K
r ,aVr , one

may introduce element-wise nonlinearities such as σ(·) or softmax(·). This effectively yields a Mixture of Heads Attention
(MoH Attention), where each component becomes a learned mixture weight modulated by the nonlinearity.
Discussion. These variants illustrate TPA’s versatility in balancing memory cost, computational overhead, and representation
power. By choosing which dimensions (heads or tokens) remain contextual and adjusting ranks (RQ, RK , RV), TPA unifies
multiple existing attention mechanisms—such as MHA, MQA, and GQA—under one framework, while potentially reducing
the KV cache size by an order of magnitude during autoregressive inference.

G More on Experiments

G.1 Experimental Settings

We list the main architecture hyper-parameters and training devices in Table 4. We fix dh = 64 for all the models. Moreover,
we fix the number of KV heads with 2 for GQA models; dRh = 32 for MLA models; and Rk = Rv = 2, Rq = 6 for TPA
and TPA-KV only models. Other hyper-parameters are listed in Table 5.

Table 4. The architecture hyper-parameters and training devices of models. Abbreviations: BS. = Batch Size, GAS. = Gradient Accumula-
tion Steps.

MODEL SIZE #PARAM DEVICES MICRO BS. GAS. #LAYER dMODEL

SMALL 124M 4× A100 GPUS 24 5 12 768
MEDIUM 353M 8× A100 GPUS 20 3 24 1024
LARGE 772M 8× A100 GPUS 15 4 36 1280

XL 1.55B 8× A100 GPUS 6 10 48 1600

Table 5. The architecture hyper-parameters for different models.
MODEL SIZE SMALL MEDIUM LARGE XL

h (MHA) 12 16 20 25
h (MQA) 23 31 39 49
h (GQA) 22 30 38 48
h (MLA) 12 23 34 49

h (TPA-KVONLY) 22 29 37 47
h (TPA) 34 47 61 78

dc (MLA) 256 512 512 512
d′c (MLA) 512 1024 1024 1024

G.2 Additional Experimental Results

G.2.1 PERPLEXITY CURVES

We display the perplexity curves for medium, large and XL size of models in Figure 4.

G.2.2 ABLATION STUDY ON DIFFERENT RANKS

Figure 5 shows the training loss, validation loss, and validation perplexity curves of XL-size (1.5B) T6 models with different
ranks trained on the FineWeb-Edu 100B dataset, and the evaluation results are displayed in Table 7. It can be observed that
increase in rank can improve the performances of large language models.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Tensor Product Attention Is All You Need

(a) Validation Perplexity (b) Validation Perplexity (c) Validation Perplexity

Figure 4. The validation perplexity of medium-size (353M) models, large-size (773M), and XL-size (1.5B) models with different attention
mechanisms on the FineWeb-Edu 100B dataset.

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 5. The training loss, validation loss and validation perplexity curves of XL-size (1.5B) T6 models with different ranks on the
FineWeb-Edu 100B dataset.

G.2.3 0-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

For the evaluation, We show the 0-shot performances with lm-evaluation-harness for small-size (124M) and XL-size (1.5B)
models in Tables 6 and 7.

G.2.4 2-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

We also show 2-shot performances in Tables 8, 9, 10 and 11.

G.3 Ablation Studies on Learning Rates

We implement a set of parallel experiments for medium models with learning rate 3× 10−4, and the curves for training
loss, validation loss, and validation perplexity are displayed in Figure 6. We also show the performance of these models
on the benchmarks described in Section 4 in Tables 12-13. The results show that TPA and TPA-KVonly models can also
outperform other types of attention with different learning rates.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Tensor Product Attention Is All You Need

Table 6. The evaluation results of small models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset (0-shot
with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 50.63 26.96 59.39 36.18 32.00 64.96 51.85 23.40 70.30 46.19
MQA 49.62 25.34 55.72 35.94 31.40 64.85 51.30 23.37 68.70 45.14
GQA 48.70 25.68 56.15 35.58 31.40 64.91 51.62 23.12 68.20 45.04
MLA 50.21 26.71 58.01 36.25 32.80 64.69 50.59 24.67 71.90 46.20

TPA-KVonly 51.05 26.54 57.25 36.77 32.60 65.02 50.91 23.64 69.70 45.94
TPA (non-ctx-A) 50.17 25.60 57.95 36.13 31.40 64.80 49.57 24.88 64.80 45.03
TPA 51.26 27.39 57.00 36.68 32.80 64.47 49.72 24.61 72.00 46.21

Table 7. The evaluation results of XL models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset (0-shot
with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If
not specified, TPA and TPA-KVonly set RK = RV = 2.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.81 35.41 61.90 54.32 37.20 72.74 55.80 25.44 82.80 54.49
MQA 64.10 36.01 62.26 54.38 39.00 72.58 56.43 23.70 81.90 54.48
GQA 63.68 35.92 60.46 54.17 38.40 73.56 56.27 24.77 81.70 54.33
MLA 64.14 35.92 60.12 53.60 39.20 72.25 55.17 24.71 81.60 54.08

TPA-KVonly 65.61 36.77 63.02 54.17 37.00 73.34 54.62 25.02 81.60 54.57
TPA-KVonly (RK,V = 4) 64.52 37.03 63.27 54.89 39.80 72.91 56.51 24.74 81.60 55.03
TPA-KVonly (RK,V = 6) 65.78 35.92 61.71 54.86 38.60 72.69 57.93 25.59 82.20 55.03
TPA 66.71 36.52 61.38 54.03 40.40 72.52 56.83 24.49 82.20 55.01

Table 8. The evaluation results of small models with different attention mechanisms on FineWeb-Edu 100B dataset (2-shot with lm-
evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 57.66 28.24 57.28 36.43 29.60 64.09 51.14 26.57 82.00 48.11
MQA 53.79 26.35 44.95 34.18 28.80 62.79 52.01 25.91 78.10 45.21
GQA 55.01 25.94 55.72 35.68 31.80 65.29 51.93 25.27 77.80 47.16
MLA 54.76 27.13 58.07 36.13 31.40 65.07 51.30 25.90 78.90 47.63

TPA-KVonly 54.25 27.90 57.06 36.36 31.80 64.31 53.59 26.18 79.20 47.85
TPA (non-ctx-A) 55.09 27.65 53.82 36.24 30.20 64.53 50.75 26.01 78.60 46.99
TPA 57.53 28.07 56.33 36.49 31.80 64.36 51.14 25.92 79.70 47.93

Table 9. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.73 32.42 58.29 45.89 34.20 68.50 53.20 25.86 88.00 52.34
MQA 64.98 33.62 55.02 45.81 34.00 69.59 53.43 24.30 85.20 51.77
GQA 65.24 33.19 56.54 45.41 34.80 69.04 55.72 24.73 87.90 52.51
MLA 64.98 33.62 53.52 45.94 33.00 68.55 51.85 25.46 89.10 51.78

TPA-KVonly 64.69 32.34 59.48 46.23 35.40 70.08 54.06 25.64 86.30 52.69
TPA (non-ctx-A) 65.45 33.79 56.88 45.23 33.60 68.61 54.22 25.00 85.00 51.98
TPA 67.97 34.56 57.22 46.87 34.60 69.91 52.01 25.07 89.90 53.12

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Tensor Product Attention Is All You Need

Table 10. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSwag = HellaSwag, WG =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSwag OBQA PIQA WG MMLU SciQ Avg.

MHA 67.85 36.35 59.82 50.22 35.00 70.67 53.35 23.92 91.10 54.25
MQA 68.86 36.09 53.79 50.50 37.00 70.89 54.70 25.01 88.00 53.87
GQA 69.15 36.09 58.84 50.29 36.20 70.73 54.22 26.08 90.00 54.62
MLA 70.54 38.74 61.50 51.86 36.00 70.89 54.22 25.47 92.40 55.74

TPA-KVonly 71.34 37.71 59.76 51.10 36.00 71.49 54.62 25.83 90.10 55.33
TPA 70.41 37.71 60.06 51.30 34.00 71.06 54.54 25.79 90.30 55.02

Table 11. The evaluation results of XL models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSwag = HellaSwag, WG =
WinoGrande. If not specified, We set RK = RV = 2 for TPA and TPA-KVonly.

Method ARC-E ARC-C BoolQ HellaSwag OBQA PIQA WG MMLU SciQ Avg.

MHA 70.83 39.93 59.85 54.05 36.20 72.52 55.17 25.42 91.70 56.18
MQA 71.34 39.76 58.93 54.27 39.40 72.96 57.38 24.74 91.90 56.74
GQA 71.17 39.08 60.18 54.05 37.40 73.07 56.35 24.87 92.20 56.49
MLA 70.79 37.54 50.83 53.33 40.00 72.09 56.51 24.93 91.80 55.31

TPA-KVonly 72.85 39.68 60.92 53.81 37.00 73.34 56.83 26.19 91.30 56.88
TPA-KVonly (RK,V = 4) 72.98 40.27 60.15 54.88 36.80 73.29 56.43 25.50 92.10 56.93
TPA-KVonly (RK,V = 6) 73.95 39.76 58.99 54.73 36.80 72.91 59.04 24.93 92.90 57.11
TPA 71.76 39.16 61.25 53.74 37.80 72.80 55.49 23.86 90.70 56.28

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 6. The training loss, validation loss, and validation perplexity of medium-size (353M) models (learning rate 3×10−4) and different
attention mechanisms on the FineWeb-Edu 100B dataset.

Table 12. The evaluation results of medium models (learning rate 3× 10−4) with different attention mechanisms pretrained using the
FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 56.52 29.27 58.84 44.06 35.00 68.44 51.07 25.35 76.40 49.44
MQA 55.68 28.24 60.86 44.17 35.20 68.66 52.72 25.14 72.90 49.29
GQA 54.88 29.61 56.36 43.77 35.20 68.82 52.57 25.41 74.80 49.05
MLA 59.64 29.78 60.73 45.17 34.20 68.66 52.80 25.34 75.70 50.22

TPA-KVonly 57.11 30.03 61.25 44.83 34.60 69.04 54.54 23.35 74.60 49.93
TPA 59.30 31.91 60.98 45.57 34.60 69.48 53.91 24.93 77.20 50.88

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Tensor Product Attention Is All You Need

Table 13. The evaluation results of medium models (learning rate 3× 10−4) with different attention mechanisms pre-trained using the
FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.44 32.85 59.05 44.18 33.20 68.72 50.12 26.01 87.40 49.44
MQA 64.27 32.94 57.71 44.36 31.80 68.01 51.70 25.99 86.00 49.29
GQA 61.70 32.17 52.81 43.99 33.80 68.50 53.35 24.44 86.40 50.80
MLA 65.95 31.48 50.98 44.99 32.20 68.93 51.93 25.89 88.80 51.24

TPA-KVonly 65.99 33.70 57.49 44.47 34.20 69.53 53.28 24.23 86.50 49.93
TPA 66.54 34.47 58.96 45.35 33.00 69.21 53.99 24.51 91.30 53.04

28

	Introduction
	Background
	Scaled Dot-Product Attention
	Multi-Head Attention (MHA)
	Rotary Position Embedding (RoPE)

	Tensor Product Attention
	Tensor Factorization of Queries, Keys, and Values
	RoPE Compatibility and Acceleration
	KV Caching and Memory Reduction
	Unifying MHA, MQA, and GQA as Non-contextual TPA
	MHA as Non-contextual TPA

	Computational Cost.
	Model Architectures

	Experiments
	Language Modeling Tasks

	Related Work
	Conclusion
	Appendices
	Toward Faster Computation Without Materializing Q, K and V
	Single-Head Factorization Setup Without Materializing Q and K
	Multi-Head Case
	Complexity Analysis
	Complexity Analysis for the Specialized Implementation
	Toward Faster Computation Without Materializing Q, K, V
	Overall Complexity for Single-Head
	Multi-Head and Batch Extensions (Reuse of b-Dot Products)
	Decoding Speed during Inference Time of MHA, MQA, GQA, MLA, and TPA

	Higher-Order Tensor Product Attention
	RoPE Compatibility in Higher-Order TPA

	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	More Related Works
	More on Attention Mechanisms
	Multi-Query Attention (MQA)
	Grouped Query Attention (GQA)
	Multi-head Latent Attention (MLA)
	Multi-matrix Factorization Attention (MFA)

	Other Variants of TPA
	More on Experiments
	Experimental Settings
	Additional Experimental Results
	Ablation Studies on Learning Rates

