Tensor Product Attention Is All You Need

Anonymous Authors'

Abstract

Scaling language models to handle longer input
sequences typically necessitates large key-value
(KV) caches, resulting in substantial memory
overhead during inference. In this paper, we pro-
pose Tensor Product Attention (TPA), a novel
attention mechanism that uses tensor decomposi-
tions to represent queries, keys, and values com-
pactly, significantly shrinking KV cache size at
inference time. By factorizing these representa-
tions into contextual low-rank components (con-
textual factorization) and seamlessly integrating
with RoPE, TPA achieves improved model qual-
ity alongside memory efficiency. Based on TPA,
we introduce the Tensor ProducT ATTenTion
Transformer (T6), a new model architecture for
sequence modeling. Through extensive empiri-
cal evaluation of language modeling tasks, we
demonstrate that T6 exceeds the performance of
standard Transformer baselines including MHA,
MQA, GQA, and MLA across various metrics,
including perplexity and a range of renowned
evaluation benchmarks. Notably, TPA’s mem-
ory efficiency enables the processing of signifi-
cantly longer sequences under fixed resource con-
straints, addressing a critical scalability challenge
in modern language models. The code is avail-
able at https://anonymous.4open.science/r/T6-
anonymous-2025.

1 Introduction

Large language models (LLMs) have revolutionized natu-
ral language processing, demonstrating exceptional perfor-
mance across tasks (Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023; Bubeck et al., 2023). As these
models evolve, their ability to process longer contexts be-
comes increasingly important for sophisticated applications
such as document analysis, complex reasoning, and code

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. Tensor Product Attention (TPA) in the Tensor ProducT
ATTenTion Transformer (T6). Different from multi-head atten-
tion, in each layer, firstly the hidden state goes through different
linear layers to get the latent factor matrices A (.)’s and B.)’s for
query, key, and value. We additionally apply RoPE to Bg and Bx
for query and key. Then the multi-head query, key, and value vec-
tors are attained by the tensor product of A .y and B.). Finally,
the output of TPA is produced by scaled dot-product attention
followed by linear projection of concatenated results of multiple
heads.

completions. However, managing longer sequences during
inference poses significant computational and memory chal-
lenges, particularly due to the storage of key-value (KV)
caches (Zhang et al., 2023c; Liu et al., 2024c). Because
memory consumption grows linearly with sequence length,
the maximum context window is limited by practical hard-
ware constraints.

A variety of solutions have been explored to address this
memory bottleneck. Some approaches compress or se-
lectively prune cached states through sparse attention pat-
terns (Child et al., 2019) or token eviction strategies (Zhang
et al., 2023c; Xiao et al., 2024; Ribar et al., 2024), though
such methods risk discarding tokens that may later prove
important. Other work proposes off-chip storage of key-
value states (He & Zhai, 2024), at the expense of in-
creased I/O latency. Attention variants like multi-query
attention (MQA) (Shazeer, 2019) and grouped-query atten-
tion (GQA) (Ainslie et al., 2023) reduce per-token cache
requirements by sharing keys and values across heads, but
often compromise flexibility or require significant architec-
tural modifications. Meanwhile, low-rank weight factor-
ization methods such as LoRA (Hu et al., 2022) effectively
reduce fine-tuning memory, yet do not address the KV cache
overhead that dominates runtime. The recently introduced


https://anonymous.4open.science/r/T6-anonymous-2025
https://anonymous.4open.science/r/T6-anonymous-2025

Tensor Product Attention Is All You Need

Multi-head Latent Attention (MLA) in Deepseek-V2 (Liu
et al., 2024a) caches compressed key-value representations
but needs additional position-encoded parameters per head
due to incompatibility with Rotary Position Embedding
(RoPE) efficiently (Su et al., 2024).

In order to overcome the limitations of existing approaches,
we introduce Tensor Product Attention (TPA), as illustrated
in Figure 1, a novel architecture that uses higher-order ten-
sors to factorize queries (Q), keys (K), and values (V) during
attention computation. By dynamically factorizing activa-
tions rather than static weights (e.g., LoRA), TPA constructs
low-rank, contextual representations that substantially re-
duce KV cache memory usage with improved representa-
tional capacity. In practice, TPA can reduce the memory
overhead by an order of magnitude compared to standard
multi-head attention (MHA) with lower pretraining vali-
dation loss (perplexity) and improved downstream perfor-
mance.

A key advantage of TPA is its native compatibility with
rotary positional embeddings (RoPE) (Su et al., 2024), en-
abling a straightforward drop-in replacement for multi-head
attention (MHA) layers in modern LLM architectures such
as LLaMA (Touvron et al., 2023) and Gemma (Team et al.,
2024).

Our primary contributions are summarized as follows:

* We propose Tensor Product Attention (TPA), A mecha-
nism that factorizes Q, K, and V activations using con-
textual tensor-decompositions to achieve 10x or more
reduction in inference-time KV cache size relative to stan-
dard attention mechanism (Vaswani et al., 2017) with im-
proved performance compared to previous methods such
as MHA, MQA, GQA, and MLA. In addition, we unify
existing attention mechanisms by revealing that MHA,
MQA, and GQA all arise naturally as non-contextual vari-
ants of TPA.

* We introduce the Tensor ProducT ATTenTion
Transformer (T6), a new TPA-based model architecture
for sequence modeling. On language modeling experi-
ments, T6 consistently improves validation perplexity
and downstream evaluation performance with reduced
KV cache size.

* We show TPA integrates seamlessly with RoPE (Su et al.,
2024), facilitating easy adoption in popular foundation
model architectures such as LLaMA and Gemma.

2 Background

In this section, we review two classical forms of attention:
Scaled Dot-Product Attention, and Multi-Head Attention
(MHA) (Vaswani et al., 2017). More types of attention
are introduced in the Appendix E, including Multi-Query
Attention (MQA) (Shazeer, 2019), and Grouped Query At-
tention (GQA) (Ainslie et al., 2023), as well as a recent

method called Multi-head Latent Attention (MLA) used in
DeepSeek-V2 (Liu et al., 2024a) and DeepSeek-V3 (Liu
et al., 2024b). We also introduce Rotary Position Embed-
ding (RoPE, Su et al. (2024)), which is commonly used in
recent works of large language models.

Notations. We use bold uppercase letters (e.g., X, Q) for
matrices, bold lowercase (e.g., a, b) for vectors, and italic
uppercase (e.g., WiQ) for learnable parameter matrices. We
denote by [n] the set {1,...,n} for some positive integer
n. We use T to denote the transpose of a vector or a matrix.
Let dmoger be the embedding dimension, h the number of
attention heads, dj, the dimension per head, x; € R< the
input for the ¢-th token at a given attention layer, X €
RT*dmae denotes the input embeddings for T tokens, and
Q. K, V € RT*hxdn denote the queries, keys, and values
of h heads for T" tokens. With a little abuse of notation, Q;,
K,, V; € RT%4n denote the i-th head of queries, keys, and
values, and Q;, K;, V, € R"*? denote the heads of the
query, key, and value for ¢-th token.

Throughout the paper, W@, WX WV denote projection
matrices for queries, keys, and values, respectively. In
multi-head attention, each head is associated with its
own set of W2 WX WY, and each has dimension
WiQ7 WE WY € Rdmwaxdr where dj, is typically set
to dj,, the dimension of each head.’ Similarly, we have an
output projection matrix W ¢ R(h+dn)*dmoe - For methods
like MQA and GQA, some of these are shared or partially
shared across heads, but their shapes remain consistent.

We define the tensor product of two vectors as follows: for
vectors a € R™, b € R", the tensor product of a and b is:

a®b=CcR"™", with C” = aibj,

where a; and b; are the i-th and j-th elements of a and b
respectively, and Cj; is the (4, j)-th entry of C. We also
define the vectorization of a matrix C € R™*"™ by:

VCC(C) =de Rmn’ with di"n-{-j = Cij,
where d;.,t; is the (i - n + j)-th element of d.
2.1 Scaled Dot-Product Attention

Scaled dot-product attention (Vaswani et al., 2017) deter-
mines how to focus on different parts of an input sequence
by comparing queries (Q) and keys (K). It produces a
weighted combination of the values (V). Formally, the
attention output is:

. _ QKT
Attention(Q, K, V) = Softmax(ﬁ> V,

where each of Q, K,V is an (n x dj;) matrix for n tokens
and key dimension dy. The division by +/dj stabilizes
training by controlling the scale of the inner products.

>Often, one sets h X dp =
query/key/value dimension dp,.

dmodel, SO each head has



Tensor Product Attention Is All You Need

2.2 Multi-Head Attention (MHA)

Multi-Head Attention (MHA) extends scaled dot-product
attention by dividing the model’s internal representation into
several heads. Each head learns different projections for
queries, keys, and values, allowing the model to attend to
different types of information. For each token embedding
x; € Rmoter MHA computes each head ¢ as follows:

Qi = (W) x, e R%,
K = (WK x, e R,
Vii= (W) x, e R,
head, = Attention (Qi, K, Vi>,

where WiQ7 WE W)Y € Rdmaaxdn gre learnable projec-
tion matrices for the i-th head, Q;, K;, V; € RT*%_ After
computing each head’s attention, the outputs are concate-

nated and mapped back to the original dimension via another
matrix WO ¢ RdnXdmode -

MHA(Q, K, V) = Concat(head;, ..., head),) W°.

MHA can capture a rich set of dependencies while each
head focuses on different subspaces.

2.3 Rotary Position Embedding (RoPE)

Many recent LLLMs use rotary position embedding (RoPE;
Su et al., 2024) to encode positional information in the
query/key vectors. Specifically, let RoPE, denote the
rotation operator T; € R > corresponding to the ¢-
th position. T} is a block-diagonal matrix, which con-

' _ . (cos(td;) —sin(td;)) .
sists of block-diagonal matrix < sin(tf;)  cos(th;) )’ e
{1,---,dn/2}, where {6} are pre-defined frequency pa-

rameters, e.g., §; = 1/10000%//4». Then we define

RoPE (Q;) £ Q,T;, where Q; € R,
A fundamental property is that
T, T] =T, 2.1)

which ensures that relative positions (¢t — s) are preserved,
thereby providing a form of translation invariance in the
rotary position embedding.

3 Tensor Product Attention

In this section, we provide a detailed description of our
proposed Tensor Product Attention (TPA), which allows
contextual low-rank factorization for queries, keys, and val-
ues. First, we explain how TPA factorizes queries, keys,
and values with explicit tensor shapes. Next, we describe
how TPA can be integrated into the multi-head attention
framework and how it reduces memory consumption in KV
caching at inference time. Finally, we show how RoPE
can seamlessly integrate with TPA (including a pre-rotated
variant).

3.1 Tensor Factorization of Queries, Keys, and Values

Let x;, € Rmowet for ¢ = 1,..., T be the hidden-state vector
corresponding to the ¢-th token in a sequence of length
T'. A typical multi-head attention block has /i heads, each
of dimension dj, satisfying dyoger = h X dp. Standard
attention projects the entire sequence into three tensors,
Q, K, V ¢ RT>*">dn where Q;, Ky, V; € R¥dn
denote the slices for the ¢-th token.

Contextual Factorization (CF). Instead of forming each
head’s query, key, or value via a single linear map, TPA
factorizes each Q;, K;, V into a sum of (contextual) tensor
products whose ranks are R, %y, and R, respectively and
may differ. Specifically, for each token ¢, with a small abuse
of notation, we define:

1
Q=D al(x) ® b(x), ()

LZaff(xt) ® bl (x1), (3.2)

where a?(x;),ak (x;),aY (x;) € R",
b&(x;), bX (x;),bY (x;) € R . Hence, for queries, each
tensor product a%(x;) ® b@(x;): R? x R — Rxdn
adds up to form the query slice Q; € R"*% _ Similarly,
analogous definitions apply to key slice K; and value slice
Vt.

Latent Factor Maps. Each factor in the tensor product
depends on the token’s hidden state x;. For example, for
queries, we can write:

X¢ € Rh,

a%(x;) = wea® WfQ x; € R,

s

b (x;) =

and similarly for keys and values.

One often merges the rank index into a single output dimen-
sion. For instance, for queries:

a®(x;) = W x, € REah bQ(x,) = WP x, € RFadn,
which are then reshaped into Ag(x;) € RE<" and
Bg(x;) € RE«*dn Summing over R, and scaled by P%q
yields

1
Qt = FQAQ(Xt)T BQ(Xt) S R}Lth.

Repeating for all tokens reconstitutes Q € R7*"*dn_ Simi-
lar procedures can be applied to obtain K and V with ranks
Ry, and R, respectively.



Tensor Product Attention Is All You Need

Scaled Dot-Product Attention. Once Q, K,V are fac-
torized, multi-head attention proceeds as in standard Trans-
formers. For each head i € {1,...,h}:

head, — Softmax(ﬁ Qi (Kl-)T) Vi, (3.4)
where Q;, K;, V,; € RT¥% are the slices along the head di-
mension. Concatenating these h heads along the last dimen-
sion yields an R”*("dx) tensor, which is projected back to
RT*dmecel by an output weight matrix WO € R dn)X dmoger

TPA(Q, K, V) = Concat(head;, ... head,) W°.
(3.5)

Parameter Initialization. We initialize the weight matrices
wae®, we we', Wb, W, Wb using Xavier ini-
tialization (Glorot & Bengio, 2010). Specifically, each entry
of the weight matrix is drawn from a uniform distribution
with bounds [—+/6/(nin + Mout), \/6/(Nin + Nour)], Where
nin and ny are the input and output dimensions of the re-
spective weight matrices. This initialization strategy helps
maintain the variance of activations and gradients across the
network.

3.2 RoPE Compatibility and Acceleration

In a typical workflow of adding RoPE to standard multi-
head attention, one first computes Q;, K, € R"*9 of the
t-th token and s-th token and then applies:

Q: — Q; = RoPE,(Q;), K, — K, = RoPE,(K,).
Direct Integration. A useful optimization is to integrate

ROPE directly into the TPA factorization. For example, one
can pre-rotate the token-dimension factors:
Br(x:) +— RoPE;(Bk(x:)), (3.6)

yielding a pre-rotated key representation:

Ry
~ 1
Kt = R7K ; ag) (Xt) (24 ROPEt (b(lg) (Xf))

= i1&]{ (Xt)T ROPEt (BK(Xf)) .
Rk

Thus, each K} is already rotated before caching, removing

the need for explicit rotation at the decoding time and accel-

erating autoregressive inference. Depending on hardware

and performance requirements, one can also adopt different

RoPE integration approaches for training and inference.

Theorem 1 (RoPE’s Compatibility with TPA). Let Q; be
factorized by TPA as

1
Q= FQAQ(xt)TBQ(xt) € RMxdn,

where Ag(x;) € RFe*" and By(x;) € RFe*dn, Then
we have:

1 ~
RoPE(Q,) = FQAQ(xt)T Bo(x:), (3.7)
where EQ(xt) = RoPE;(Bg(x;)). In addition, as-

sume Q; and K, are factorized by TPA and then ro-
tated by RoPE;, RoPE;. Let Q; = RoPE;(Q;) and

K, = RoPE,(Kjy). Then we have
RoPE;+(Q)K, = QK]

Focusing on individual heads ¢, the above matrix equality
implies:

RoPE; () ke = G/ ke

where q; ; € R is the i-th query head of ¢-th token, and
k,; € R is the j-th key head of s-th token, and

qt,i = RoPE(qy,i) = Tiqy,i € Rén
K.; = RoPE(k, ;) = T.k,,; € R%.

Theorem 1 indicates that TPA does not break RoPE’s rel-
ative translational property. We prove Theorem 1 in Ap-
pendix C.1. In short, RoPE; acts as a block-diagonal orthog-
onal transform (i.e., a matrix T¢) on Bg(x;). Consequently,
A (x¢) remains unchanged, while each column of B (x;)
is rotated appropriately, preserving the TPA structure.

3.3 KYV Caching and Memory Reduction

In autoregressive decoding, standard attention caches
K., V, € R"* for each past token ¢. This accumulates to
RTxhxdn for keys and RT*xhxdn for values, i.e., 2T hdy,
total.

TPA Factorized KV Caching. Instead of storing the full K;
and 'V, TPA stores only their factorized ranks. Specifically,
we keep

Ax(x), Bi(x;) and Ay (x), By(x),

where A (x) € RExxh, B (x¢) €

RExdn - Ay (x,) € RFVE By (x,) € REvXdn,

Hence, the memory cost per token is

Rx(h+dp) + Ry(h+dy) =(Rg +Rv) (h+dp).

for K for V

Compared to the standard caching cost of 2 h dj,, the ratio
is:

(R + Rv) (h+dp)
2 hdp, '
For large h and dj, (typically d;, = 64 or 128), setting

Ry, Ry < h (e.g., rank 1 or 2) often yields 10x or more
reduction.



Tensor Product Attention Is All You Need

Table 1. Comparison of different attention mechanisms. Here, Rq, Rk, and Ry denote the ranks for queries, keys, and values in TPA,
respectively. Variants of TPA, such as TPA (KVonly), TPA (Non-contextual A), and TPA (Non-contextual B), are detailed in Section F.
For MLA, df and dj, are the dimensions for RoPE and non-RoPE parts; d, and d. are the dimensions of compressed vectors for query

and key-value, respectively.

METHOD KV CACHE # PARAMETERS # QUERY HEADS # KV HEADS

MHA 2hdp, 4d2 e h h

MQA 2dy, (24 2/h)d2 4 h 1

GQA 2gdp, (2 + 29/h)dz o0 h 9

d dR dé(dmndel + hdh + hd}?)

MLA et h +dmodeld;§ + dc (dmode] + thh) h h

TPA (Rx + Rv)(h+dn) dmoet(Rq + Rx + Rv)(h + dr) + dmodel hdn h h

TPA (KVonly) (Rx + Rv)(h+dn) dmodel (R + Rv)(h + dn) + 2dmodel hdn h h
TPA (Non-contextual A) (Rx + Rv)dn (Rg + Rx + Rv)(dmoderdn + h) + dmodel hdp h h
TPA (Non-contextual B) (Rk + Rv)h (Rg + Rk + Rv)(dmodeth + di) + dmodel hdh, h h

3.4 Unifying MHA, MQA, and GQA as
Non-contextual TPA

3.4.1 MHA AS NON-CONTEXTUAL TPA

Standard multi-head attention (MHA) can be viewed as a
specific instance of TPA in which: 1) the rank is set equal
to the number of heads; 2) the head dimension factor is non-
contextual (i.e., independent of the ¢-th token embedding
x; € Rdma): 3) the token dimension factor is a linear
function of x;.

To match MHA with TPA, let Rq
Focusing on Q;:

Rg = Ry = h.

(a) Non-contextual head factors. Define

a® = Rpe; e R", (3.8)

where e; € R" is the i-th standard basis vector, so that
e; ® - corresponds to the i-th head of Q;.

(b) Contextual token factors. Define

b (x;) = (W) x, € R%, (3.9)

where WiQ € Rémosaxdn jg the per-head query projec-
tion defined before, hence biQ (x;) dependent on x;.

Substituting (3.8)—(3.9) into (3.1) gives:

zh: {ei ® ((WZ_Q)T Xt)} € Rhxdn.

i=1

Q: (3.10)

Eachterme;® ((WiQ)Txt) in (3.10) contributes only to the
i-th row, reconstituting the usual MHA form of Q;. Anal-
ogous constructions hold for K; and V; using WX W)V,
Thus, MHA is a non-contextual, full-rank variant of TPA.

TPA with Non-contextual A. More broadly, TPA
can use non-contextual head-dimension factors
a%,af a¥ ¢ R” (i.e., independent of x;), while allowing
b&(x;), bX (x;),bY (x;) to remain context-dependent.

Then, for keys:
1 &
K, — K o bk 7
t RK ;ar ® r (Xt)

and similarly for queries/values. This reduces per-token
computations and can be effective when head-dimension
relationships are relatively stable across all tokens.

MOQA and GQA as Non-Contextual TPA. Multi-Query
Attention (MQA) (Shazeer, 2019) and Grouped Query At-
tention (GQA) (Ainslie et al., 2023)° also emerge naturally
from TPA by restricting the head-dimension factors to be
non-contextual and low-rank:

* MQA as Rank-1 TPA. In MQA, all heads share a single
set of keys/values, corresponding to Rx = Ry = 1 along
the head dimension. Concretely,

K. =(1,....,1)" @ b%(xy),
Vi=(1,....,1)7 @ b¥(x),

forces every head to use the same K;, V;. Each head
retains a distinct query projection, matching the MQA
design.

* GQA as Grouped Rank-1 TPA. GQA partitions h heads
into G groups, each sharing keys/values within that group.
In TPA form, each group g has a dedicated non-contextual
factor pair af , a;/ € R", which acts as a “mask” for the
heads in that group. Varying G from 1 to h interpolates
from MQA to standard MHA.

Hence, by constraining TPA’s head-dimension factors to be
constant masks (one for MQA; multiple for GQA), these
popular variants are recovered as special cases.

3.5 Computational Cost.

For a detailed analysis of the computational cost of TPA,
please refer to Appendix A, which shows that the training

%The original definitions of MQA and GQA are presented in
Appendix E.1 and E.2, respectively.



Tensor Product Attention Is All You Need

and inference flops of TPA with optimized implementa-
tion (without materializing Q, K, and V) are smaller than
MHA, GQA, and MLA. Specifically, when we set i, = 6,
R; = R, = 2 (our default setting), TPA is 10x or more
faster on calculating QK T than MLA during inference (see
Appendix A.8).

3.6 Model Architectures

We propose a new architecture called Tensor ProducT
ATTenTion Transformer (T6), which uses our Tensor Prod-
uct Attention (TPA) in place of standard MHA (multi-head
attention) or GQA (grouped-query attention). Building upon
the query, key, and value tensors Q, K,V € RT*"xdn de-
fined in Section 3.1, T6 utilize the overall architecture of
LLaMA (Touvron et al., 2023) while changing the self-
attention block to our TPA-based version. The feed-forward
network (FFN) adopts a SwiGLU layer, as in (Shazeer, 2020;
Touvron et al., 2023).

TPA QKYV Factorization. Let ecach token’s hidden-
state vector be x; € Rfmdw  and we follow Sec-
tion 3.1 to project the entire sequence into three tensors
Q. K,V ¢ RT*"xdn where Q;, K;, V, € R¥d
denote the slices for the ¢-th token. The factor components
a? (x,), b2 (x:), 2 (x), b (x1), a) (x:), b} (x)  are

produced by linear transformations on x;. For instance,
. Q Q
letting W2~ € R dnowet and WP~ € Rn X dnocet e have:

al(x¢) = W x;,  b2(x,) = W x..

In practice, we merge all ranks r into a single dimension
of the output, reshape, and sum over rank indices; see Sec-
tion 3.1 for details. The factorization for K and V follows
the same pattern.

Rotary Positional Embedding (RoPE). As discussed in
Section 3.2, RoPE (Su et al., 2024) is applied to the Q
and K. Within TPA, we pre-rotate the factor b® (x;) and
bX (x,) directly, so that each K is already rotated prior to
caching, see (3.6) and Theorem 1.

Attention Step and Output Projection. Once we have
Q, K, V factorized per token with RoPE applied on Q and
K., the attention step proceeds for each head i € {1,...,h}
using (3.4). Finally, concatenating these h heads and then
projecting them back using an output weight matrix gives
the final attention result, as shown in (3.5).

SwiGLU Feed-Forward Network. Following Shazeer
(2020); Touvron et al. (2023), our T6 uses a SwiGLU-based
Feed-Forward Network (FFN): FFN(x) = [o(xW;) ©
(x W3)| W3, where o is the SiLU (a.k.a., swish) nonlin-
earity, ® is element-wise product, and W7, Wy, W3 are
learnable parameters. Note that other activation functions
can also be used.

Overall T6 Block Structure. Putting everything together,

one T6 block consists of:

x < x+ TPA(RMSNorm(x)),
x < x+ SwiGLU-FFN(RMSNorm(x)).

We place norm layers (e.g., RMSNorm) before each sub-
layer. Stacking L such blocks yields a T6 model architecture
with L layers.

4 Experiments

4.1 Language Modeling Tasks

All experiments reported in this paper are implemented
on the nanoGPT code base (Karpathy, 2022), using the
FineWeb-Edu 100B dataset (Lozhkov et al., 2024). The
dataset contains 100 billion tokens for training and 0.1 bil-
lion tokens for validation. We compare T6 against the base-
line Llama architecture (Touvron et al., 2023) with SwiGLU
activation (Shazeer, 2020) and RoPE embeddings (Su et al.,
2024), as well as Llama variants that replace Multi-Head
Attention (MHA; Vaswani et al., 2017) with Multi-Query
Attention (MQA; Shazeer, 2019), Grouped Query Attention
(GQA; Ainslie et al., 2023), or Multi-head Latent Attention
(MLA; Liu et al., 2024a). In our experiments, the number
of heads 4 is adjusted for each attention mechanism to en-
sure that all attention mechanisms have the same number of
parameters as the standard Multi-Head Attention (MHA),
which has 4d2 ., parameters per attention layer. We train
models at four scales: small (124M parameters), medium
(353M), large (773M), and XL (1.5B). Details on architec-
ture hyperparameters and training hardware are shown in
Appendix G.1.

Training Setup. We follow the nanoGPT training con-
figuration. In particular, we use the AdamW (Loshchilov,
2017) optimizer with (51, 82) = (0.9,0.95), a weight de-
cay of 0.1, and gradient clipping at 1.0. We follow the same
setting as nanoGPT that the learning rate is managed by
a cosine annealing scheduler (Loshchilov & Hutter, 2016)
with 2,000 warmup steps and a (total) global batch size of
480. For the small, medium, large and XL models, we set
maximum learning rates of 6 x 107%,3 x 1074, 2 x 1074,
and 1 x 10~* (respectively), and minimum learning rates of
3x1075,6 x 1075, 1 x 107, and 1 x 10~ (respectively).

Training & Validation Curves. Figures 2 and 3 com-
pare training and validation loss curves for the medium
(353M), large (773M), and XL (1.5B) models on FineWeb-
Edu-100B. Overall, TPA (red curves) and its simpler vari-
ant TPA-KVonly (pink curves) (see F) converge as fast as
or faster than the baselines (MHA, MQA, GQA, MLA)
while also achieving visibly lower final losses. For in-
stance, in Figure 3(b), TPA and TPA-KVonly remain below
the MHA baseline in terms of validation loss at nearly all
training stages. Meanwhile, Multi-Head Latent Attention
(MLA) (Liu et al., 2024a) (blue curves) generally trains



Tensor Product Attention Is All You Need

more slowly and yields higher losses.

Validation Perplexity. Figure 4 (in the Appendix) shows
the validation perplexities of the medium- and large-scale
models. Mirroring the loss curves, TPA and TPA-KVonly
steadily outperform MHA, MQA, GQA, and MLA over the
course of training. By the end of pretraining (around 49B
tokens), TPA-based approaches achieve the lowest perplexi-
ties in most configurations.

Downstream Evaluation. We evaluate zero-shot and
two-shot performance on standard benchmarks, including
ARC (Yadav et al., 2019), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2020) and MMLU (Hendrycks et al., 2021), using the
Ilm-evaluation-harness codebase (Gao et al., 2024).
For ARC-E, ARC-C, HellaSwag, OBQA, PIQA, and SciQ,
we report accuracy norm; for other tasks, we report stan-
dard accuracy. Due to the page limitation, we only display
the zero-shot evaluation results of medium and large mod-
els here in Tables 2 and 3. Zero-shot evaluation of small
and XL models are displayed in Tables 6 and 7 in the ap-
pendix. Moreover, we also present 2-shot evaluation results
in Tables 8, 9, 10 and 11 in the appendix.

For the medium-size (353M) models (Tables 2 and 9), TPA
generally ties or outperforms all competing methods, achiev-
ing, for example, an average of 51.41% in zero-shot mode
versus MHA’s 50.11%, MQA’s 50.44%, and MLA’s 50.13%.
When given two-shot prompts, TPA again leads with 53.12%
average accuracy. A similar trend appears for the large-size
(773M) models (Tables 3), where TPA-KVonly attains the
highest average (53.52% zero-shot). And for the XL size
(1.5B) models (Table 7), TPA-KVonly attains the highest
average (55.03% zero-shot).

Our experiments confirm that TPA consistently matches
or exceeds the performance of established attention mech-
anisms (MHA, MQA, GQA, MLA) across medium and
large model scales. The fully factorized TPA excels on
mid-scale models, while TPA-KVonly can rival or surpass it
at larger scales. In both cases, factorizing the attention ac-
tivations shrinks autoregressive KV cache requirements by
up to 5x—10x, thus enabling much longer context windows
under fixed memory budgets. In summary, tensor product
attention provides a flexible, memory-efficient alternative to
standard multi-head attention, advancing the scalability of
modern language models.

5 Related Work

Transformers and Attention. As a sequence-to-sequence
architecture Transformer (Vaswani et al., 2017) introduced
Multi-Head Attention (MHA), enabling more effective cap-
ture of long-range dependencies. Subsequent work has ex-
plored a variety of attention mechanisms aimed at improving
scalability and efficiency, including sparse patterns (Child

et al., 2019; Shi et al., 2023; Han et al., 2024; Liang et al.,
2024a; Li et al., 2024; Liang et al., 2024b), kernel-based
projections (Choromanski et al., 2021), and linearized trans-
formers (Tsai et al., 2019; Katharopoulos et al., 2020; Schlag
et al., 2021; Zhang et al., 2023b; Sun et al., 2023; Zhang
et al., 2024). To decrease memory usage and circumvent the
limitation of memory bandwidth in training, Shazeer (2019)
proposed Multi-Query Attention (MQA) where multiple
query heads share the same key head and value head. To
tackle with the issue of quality degradation and instability
in training, Grouped-Query Attention (GQA) (Ainslie et al.,
2023) divides queries into several groups, and each group of
queries shares a single key head and value head. Recently,
DeepSeek-V2 (Liu et al., 2024a) applied multihead latent
attention (MLA) to achieve better performance than MHA
while reducing KV cache in inference time by sharing the
same low-rank representation of key and value. Concur-
rently, Hu et al. (2024) proposed Multi-matrix Factorization
Attention (MFA), which can be simply seen as MQA with
low-rank factorized Q. Compared to the approaches above,
TPA applied contextual tensor decompositions to represent
queries, keys, and values activations compactly, achieving
better reduction on the size of KV cache with improved
performance.

KV Cache Optimization. During the inference time of
Transformers, key and value tensors of the previous tokens
are repeatedly computed due to their auto-regressive na-
ture. To enhance efficiency, firstly proposed by Ott et al.
(2019), these tensors can be cached in memory for future
decoding, referred to as the KV cache. However, the KV
cache requires additional memory usage and may add to
more latencies due to the bandwidth limitation (Adnan et al.,
2024). Therefore, previous studies have explored diverse
approaches to mitigate these issues, including KV cache
eviction to discard less significant tokens (Zhang et al.,
2023c¢; Xiao et al., 2024; Cai et al., 2024; Adnan et al.,
2024), dynamic sparse attention among selected keys and
values (Ribar et al., 2024; Tang et al., 2024; Singhania et al.,
2024), KV cache offloading to CPU (He & Zhai, 2024; Lee
et al., 2024; Sun et al., 2024), as well as quantization of KV
cache (Xiao et al., 2023; Liu et al., 2024c; Hooper et al.,
2024). Different from the methods above, TPA reduces the
size of the KV cache by using tensor-decomposed KV.

6 Conclusion

We introduced Tensor Product Attention (TPA), which fac-
torizes query, key, and value matrices into rank-R tensor
products dependent on the token’s hidden state. Storing
only the factorized key/value components during autoregres-
sive decoding substantially decreases the kv memory size
with improved performance compared with MHA, MQA,
GQA, and MLA. The approach is fully compatible with
ROPE (and can store pre-rotated keys). Variants of TPA in-



Tensor Product Attention Is All You Need

Medium Model, FineWeb-edul100B

Large Model, FineWeb-edu100B

XL Model, FineWeb-edu100B

Training Loss

MHA
— MQA
— GQA
— MLA
TPA-KVonly

Training Loss

MHA

— MQA

— GQA

— MLA
TPA-KVonly

— TPA

Training Loss

MHA
— MQA
— GOA
— MLA
TPA-KVonly
— TPA

mechanisms on the FineWeb-Edu 100B dataset.

3.1

0 10 20 30

Training tokens (B)

(a) Medium models (353M)

Medium Model, FineWeb-edu100B

[ 10 20 30

Training tokens (B)

(b) Large models (773M)

40 50

Large Model, FineWeb-edu100B

10 20

30

Training tokens (B)
(c) XL models (1.5B)
Figure 2. The training loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention

40

50

XL Model, FineWeb-edu100B

w
)

MHA
— MQA
— GQA
— MLA

MHA
— MQA
— GQA
— MLA

N
©

g
®

Validation Loss

L
<

— TPA

TPA-KVonly

Validation Loss

TPA-KVonly
— TPA

Validation Loss

— MQA
— GQA
—— MLA

MHA

TPA-KVonly

2.6
0 10 20 30

Training tokens (B)

40

(a) Medium models (353M)
Figure 3. The validation loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention

mechanisms on the FineWeb-Edu 100B dataset.

0

(b) Large models (773M)

10 20

30

Training tokens (B)

40

50

(c) XL models (1.5B)

10 20

30

Training tokens (B)

Table 2. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(0-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =

WinoGrande.
Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ ‘ Avg.
MHA 59.51 29.52 59.60 45.68 3420 68.82 5343 23.33 76.90 | 50.11
MQA 57.62 31.91 59.45 45.69 3540 6931 53.51 26.47 74.60 | 50.44
GQA 58.67 31.48 58.29 45.45 3520 68.50 54.46 24.58 76.50 | 50.35
MLA 56.65 29.52 57.83 46.05 3460 69.42 52.80 24.62 79.70 | 50.13
TPA-KVonly 58.01 30.12 58.01 45.95 35.60 69.10 53.12 25.39 75.10 | 50.04
TPA (non-ctx-A) 58.96 31.48 59.76 45.07 3480 69.21 53.59 25.42 76.40 | 50.52
TPA 58.38 31.57 59.39 46.83 37.00 70.02 54.06 25.52 79.90 | 51.41

Table 3. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(0-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =

WinoGrande.
Method ARC-E  ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ \ Avg.
MHA 59.93 33.62 61.93 50.63 36.00 71.06 55.41 22.87 81.20 | 52.52
MQA 60.73 33.62 57.34 50.09 37.00 6997 55.49 25.30 79.60 | 52.13
GQA 61.66 34.30 58.72 49.85 3840 71.16 53.75 25.23 77.60 | 52.30
MLA 63.55 32.85 60.95 51.72 38.80 70.51 55.01 24.55 81.90 | 53.32
TPA-KVonly 63.26 34.13 61.96 50.66 3720 72.09 5525 26.06 81.10 | 53.52
TPA 63.22 35.58 60.03 51.26 36.80 7144 55.56 24.77 79.60 | 53.10

clude factorizing only the key/value or sharing basis vectors
across tokens. Overall, TPA offers a powerful mechanism
for compressing KV storage while improving the model per-

formance, thereby enabling longer sequence contexts under
constrained memory.



Tensor Product Attention Is All You Need

Impact Statement

This paper presents work whose goal is to advance the field
of foundation models especially Large Language Models
(LLMs). We believe that our work contributes meaningfully
to the field, specifically on advancing the efficiency in the
inference stage of LLMs by reducing KV cache size. By re-
ducing memory requirements, our method could enable the
deployment of capable language models on more resource-
constrained devices and in broader settings, opening new
avenues for their application in various downstream tasks.
Lower memory usage typically correlates with reduced en-
ergy consumption, potentially decreasing the environmental
footprint of LLM inference. This advancement underscores
the potential of LLMs architecture design in both techno-
logical and societal contexts.

References

Adnan, M., Arunkumar, A., Jain, G., Nair, P., Solovey-
chik, I., and Kamath, P. Keyformer: Kv cache reduction
through key tokens selection for efficient generative in-
ference. Proceedings of Machine Learning and Systems,
6:114-127,2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrén, F., and Sanghai, S. GQA: training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singa-
pore, December 6-10, 2023, pp. 4895-4901. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/
2023.EMNLP-MAIN.298. URL https://doi.org/
10.18653/v1/2023.emnlp-main.298.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in natural
language. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 7432-7439. AAAI
Press, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:
1877-1901, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P, Lee, Y. T, Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Biiyiikakyiiz, K. Olora: Orthonormal low-rank adaptation of
large language models. arXiv preprint arXiv:2406.01775,
2024.

Cai, Z., Zhang, Y., Gao, B., Liu, Y., Liu, T., Lu, K., Xiong,
W., Dong, Y., Chang, B., Hu, J., et al. Pyramidkv: Dy-
namic kv cache compression based on pyramidal informa-
tion funneling. arXiv preprint arXiv:2406.02069, 2024.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. In The Twelfth International
Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024, 2024.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlés, T., Hawkins, P., Davis, J. Q., Mohi-
uddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., and
Weller, A. Rethinking attention with performers. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton,
C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko,
S., Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer,
N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B.,
Pope, R., Bradbury, J., Austin, J., Isard, M., Gur-Ari,
G., Yin, P, Duke, T., Levskaya, A., Ghemawat, S., Dev,
S., Michalewski, H., Garcia, X., Misra, V., Robinson,
K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim,
H., Zoph, B., Spiridonov, A., Sepassi, R., Dohan, D.,
Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pel-
lat, M., Lewkowycz, A., Moreira, E., Child, R., Polozov,
0., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M.,
Firat, O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck,
D., Dean, J., Petrov, S., and Fiedel, N. Palm: Scaling
language modeling with pathways. J. Mach. Learn. Res.,
24:240:1-240:113, 2023.

Clark, C., Lee, K., Chang, M., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Burstein, J., Do-
ran, C., and Solorio, T. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
2924-2936. Association for Computational Linguistics,
2019.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,


https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298

Tensor Product Attention Is All You Need

H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
07 2024. URL https://zenodo.org/records/
12608602.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249-256. JMLR
Workshop and Conference Proceedings, 2010.

Han, I., Jayaram, R., Karbasi, A., Mirrokni, V., Woodruff,
D. P, and Zandieh, A. Hyperattention: Long-context
attention in near-linear time. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?
1d=Eh00d2BJIM.

He, J. and Zhai, J. Fastdecode: High-throughput gpu-
efficient llm serving using heterogeneous pipelines. arXiv
preprint arXiv:2403.11421, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In 9th International Conference

on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In The Tenth International

Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022, 2022.

Hu, J,, Li, H., Zhang, Y., Wang, Z., Zhou, S., Zhang, X., and
Shum, H.-Y. Multi-matrix factorization attention. arXiv
preprint arXiv:2412.19255, 2024.

Jiang, T., Huang, S., Luo, S., Zhang, Z., Huang, H., Wei,
F., Deng, W., Sun, F., Zhang, Q., Wang, D, et al. Mora:
High-rank updating for parameter-efficient fine-tuning.
arXiv preprint arXiv:2405.12130, 2024.

Karpathy, A. NanoGPT. https://github.com/
karpathy/nanoGPT, 2022.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156-5165. PMLR, 2020.

10

Lee, W., Lee, J., Seo, J., and Sim, J. {InfiniGen}: Effi-
cient generative inference of large language models with
dynamic {KV} cache management. In /8th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 24), pp. 155-172, 2024.

Li, X., Liang, Y., Shi, Z., and Song, Z. A tighter complexity
analysis of sparsegpt. arXiv preprint arXiv:2408.12151,
2024.

Lialin, V., Muckatira, S., Shivagunde, N., and Rumshisky,
A. Relora: High-rank training through low-rank updates.
In The Twelfth International Conference on Learning
Representations, 2023.

Liang, Y., Liu, H., Shi, Z., Song, Z., Xu, Z., and Yin, J.
Conv-basis: A new paradigm for efficient attention in-
ference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Liang, Y., Long, J., Shi, Z., Song, Z., and Zhou, Y. Be-
yond linear approximations: A novel pruning approach
for attention matrix. arXiv preprint arXiv:2410.11261,
2024b.

Liang, Y.-S. and Li, W.-J. Inflora: Interference-free low-
rank adaptation for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 23638-23647, 2024.

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C.,
Dengr, C., Ruan, C., Dai, D., Guo, D., et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts
language model. arXiv preprint arXiv:2405.04434,
2024a.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-
v3 technical report. arXiv preprint arXiv:2412.19437,
2024b.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. KIVI: A tuning-free asymmetric
2bit quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024, 2024c.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Loshchilov, I. and Hutter, F. Sgdr:
dient descent with warm restarts.
arXiv:1608.03983, 2016.

Stochastic gra-
arXiv preprint

Lozhkov, A., Ben Allal, L., von Werra, L., and Wolf,
T. Fineweb-edu: the finest collection of educational
content, 2024. URL https://huggingface.co/
datasets/HuggingFaceFW/fineweb-edu.


https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

Tensor Product Attention Is All You Need

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S. A
kernel-based view of language model fine-tuning. In In-
ternational Conference on Machine Learning, pp. 23610—
23641. PMLR, 2023.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? A new dataset for open
book question answering. In Riloff, E., Chiang, D., Hock-
enmaier, J., and Tsujii, J. (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, October 31 - November
4, 2018, pp. 2381-2391. Association for Computational
Linguistics, 2018. doi: 10.18653/V1/D18-1260. URL
https://doi.org/10.18653/v1/d18-1260.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling. In Ammar, W., Louis, A.,
and Mostafazadeh, N. (eds.), Proceedings of the 2019
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Demonstrations, pp. 48-53. Association
for Computational Linguistics, 2019.

Ren, W., Li, X., Wang, L., Zhao, T., and Qin, W. Analyzing
and reducing catastrophic forgetting in parameter efficient
tuning. arXiv preprint arXiv:2402.18865, 2024.

Ribar, L., Chelombiev, 1., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient LLM inference. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna, Aus-
tria, July 21-27, 2024, 2024.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 8732-8740. AAAI
Press, 2020.

Schlag, L., Irie, K., and Schmidhuber, J. Linear transform-
ers are secretly fast weight programmers. In Interna-
tional Conference on Machine Learning, pp. 9355-9366.
PMLR, 2021.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.
Shazeer, N. Glu variants improve transformer. arXiv

preprint arXiv:2002.05202, 2020.

11

Shi, Y., Wei, J., Wu, Y., Ran, R., Sun, C., He, S., and Yang,
Y. Loldu: Low-rank adaptation via lower-diag-upper
decomposition for parameter-efficient fine-tuning. arXiv
preprint arXiv:2410.13618, 2024.

Shi, Z., Chen, J., Li, K., Raghuram, J., Wu, X, Liang, Y.,
and Jha, S. The trade-off between universality and label
efficiency of representations from contrastive learning.
In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023, 2023.

Singhania, P., Singh, S., He, S., Feizi, S., and Bhatele, A.
Loki: Low-rank keys for efficient sparse attention. arXiv
preprint arXiv:2406.02542, 2024.

Su, J. The extreme pull between cache and effect: From
MHA, MQA, GQA to MLA. https://spaces.ac.
cn/archives/10091, May 2024.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, H., Chang, L.-W., Bao, W., Zheng, S., Zheng, N., Liu,
X., Dong, H., Chi, Y., and Chen, B. Shadowkv: Kv
cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han, S.
QUEST: query-aware sparsity for efficient long-context
LLM inference. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024, 2024.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Riviere, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F,, et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: An unified
understanding for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 4344-4353, 2019.


https://doi.org/10.18653/v1/d18-1260
https://spaces.ac.cn/archives/10091
https://spaces.ac.cn/archives/10091

Tensor Product Attention Is All You Need

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099.
PMLR, 2023.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks. In
The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Vienna, Austria, May 7-11, 2024,
2024.

Yadav, V., Bethard, S., and Surdeanu, M. Quick and (not so)
dirty: Unsupervised selection of justification sentences
for multi-hop question answering. In Inui, K., Jiang,
J., Ng, V., and Wan, X. (eds.), Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019, pp. 2578-2589.
Association for Computational Linguistics, 2019. doi:
10.18653/V1/D19-1260. URL https://doi.org/
10.18653/v1/D19-1260.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Korhonen, A., Traum, D. R., and Marquez, L. (eds.),
Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp.
4791-4800. Association for Computational Linguistics,
2019. doi: 10.18653/V1/P19-1472. URL https://
doi.org/10.18653/v1/pl9-1472.

Zeng, Y. and Lee, K. The expressive power of low-rank
adaptation. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024, 2024.

Zhang, H. Sinklora: Enhanced efficiency and chat capa-
bilities for long-context large language models. arXiv
preprint arXiv:2406.05678, 2024.

Zhang, M., Bhatia, K., Kumbong, H., and Ré, C. The hedge-
hog & the porcupine: Expressive linear attentions with
softmax mimicry. In The Twelfth International Confer-

ence on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024, 2024

Zhang, Q., Chen, M., Bukharin, A., He, P, Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for

12

parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023a.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023b.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of

large language models. Advances in Neural Information
Processing Systems, 36:34661-34710, 2023c.

Zhao, H., Ni, B., Fan, J., Wang, Y., Chen, Y., Meng, G.,
and Zhang, Z. Continual forgetting for pre-trained vision
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 28631—
28642, 2024.


https://doi.org/10.18653/v1/D19-1260
https://doi.org/10.18653/v1/D19-1260
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

Tensor Product Attention Is All You Need

Appendix

Toward Faster Computation Without Materializing Q, K and V

A.1 Single-Head Factorization Setup Without Materializing Qand K . . . . . . . ... ... ... ... ...
A2 Multi-Head Case . . . . . . . . . . . e
A3 Complexity Analysis . . . . . . . . . . e
A.4 Complexity Analysis for the Specialized Implementation . . . . . . ... ... ... ... ........
A.5 Toward Faster Computation Without Materializing Q, K,V . . . . . ... .. ... .. ... ......
A.6 Overall Complexity for Single-Head . . . . . . . ... .. ... .. L
A.7 Multi-Head and Batch Extensions (Reuse of b-Dot Products) . . . . . . ... ... ... .. .......
A.8 Decoding Speed during Inference Time of MHA, MQA, GQA, MLA,and TPA . . . . . ... ... ...

Higher-Order Tensor Product Attention
B.1 RoPE Compatibility in Higher-Order TPA . . . . . . . . . . ... ... . ... ... .

Proofs of Theorems
C.1 Proofof Theorem 1 . . . . . . . . . . . e
C.2 Proofof Theorem 2 . . . . . . . . . e e e

More Related Works

More on Attention Mechanisms

E.1 Multi-Query Attention (MQA) . . . . . . . . . e e e e
E.2 Grouped Query Attention (GQA) . . . . . . . . . e e e e e
E.3 Multi-head Latent Attention (MLA) . . . . . . . . . . . .
E.4 Multi-matrix Factorization Attention (MFA) . . . . . . . . . . . . . e

Other Variants of TPA

More on Experiments

G.1 Experimental SEttings . . . . . . . . . . . . e e e e e e e e e e e e
G.2 Additional Experimental Results . . . . . . . ... ... oL
G.3 Ablation Studies on Learning Rates . . . . . . . . . . ...

13



Tensor Product Attention Is All You Need

A Toward Faster Computation Without Materializing Q, K and V

We now explore whether it is possible to compute attention scores Q K T of Tensor Product Attention (TPA) directly from
their factorized forms, thereby reducing floating-point operations.

A.1 Single-Head Factorization Setup Without Materializing Q and K

Consider a single head ¢. Each query vector Qgi) € R is factorized (with rank R,):

Za(r) (xt) b(r) (x4),

and each key vector K@ € R9 is factorized (with rank Ry,):

Za,“ Xr) X, ).

Their dot-product for tokens ¢, T is

Ry Ry
@ &), = 30> alx) ) ) (b ) b ) (A
r=1s=1

A.2 Multi-Head Case

For multi-head attention with h heads, one repeats the factorization across all heads. The bér), b,(j) vectors are shared across

heads.
A.3 Complexity Analysis

We compare the cost of standard multi-head attention versus TPA under two scenarios:

1. Naive: Materialize Q and K from factors, then perform the usual batched GEMM.

2. Specialized: Attempt to compute Q KT directly from the rank-(R,, Ry,) factors without explicitly forming Q, K.
Standard Multi-Head Attention. For batch size B and sequence length 7"

¢ Projection cost: O (B T d? ) or O(B T diodel dh).

‘model

* Dot-product: Q (K)T € REBMXTXT ¢ogstg O(BT? diodel)-

For large T, the O(B T? dinoder) term dominates.
TPA: Naive Implementation.

e Constructing factors: O(B T dmodel X Rg(h+dp) + Ri(h+dp) + Ry(h + dh)).
e Materializing Q,K: O(B T (Rghdn+ R h dh)).
* Dot-product Q (K) T : O(B T2 dmodel).

Typically Ry, Ry, R, < h, so the overhead of constructing factors is small relative to (’)(T2 dmodel)- Meanwhile, we still
gain KV caching benefits.

TPA: Specialized Implementation. If we bypass explicitly forming Q, K, each dot product Q, - K is a double sum over
rank indices. Below we detail its complexity.

14



Tensor Product Attention Is All You Need

A4 Complexity Analysis for the Specialized Implementation

Single-Head Complexity. A single attention head of dimension dj. For each query:

Za(’“) )bl (x0),

and for each key:
Za,” X;) b( s) (x7)-
Their dot product:
) Ry Ry
Q7 KD = 33 lal)(xi) o) (x0) | (b (x0), b (x))-
r=1s=1

For each pair (7, s), we pay:
1. O(1) for multiplying two scalars,
2. O(dj,) for the dot product by (x;) - bl* (x,).
Since (r, s) runs over R, X Ry, each token-pair (¢, 7) costs roughly
O(Ry B (1+dn)) ~ O(R, Rydy).

For T queries and T keys, that is O(T? R, Ry, d,) for a single head.

Multi-Head and Batches (Reusing b-Dot Products). When extending to h heads, each head 7 has its own scalar factors

aé L)(xt) and aé Z(XT) but the b-vectors b((f)(xt) and bfj) (x,) can still be shared across all heads (assuming the same

rank-R factors for every head). Hence, one can split the total cost into two stages:

1. b-Dot-Product Stage:
For each token pair (¢, 7) and each rank pair (r, s), compute the dot product
(b (x;), by (x,)) € R.
Since each dot product is O(dp,) and there are R, Rj, rank pairs as well as T2 token pairs, this stage costs:
O(T? RyRy dy).
Crucially, these b-dot products need only be computed once and can be cached for reuse by all heads.

2. Per-Head Scalar Multiplications:

After the b-dot products are precomputed (and cached), each head ¢ only needs to multiply each stored dot product by
the corresponding scalars a (r )(xt) affs)( ). Since this scalar multiplication is O(1) per pair, and there are T token
pairs and R, IR, rank pairs for each of the & heads, this step costs:

O(hT? R Ry,).
Putting these together, for batch size B, the total cost is
O(BT? RyRydy) + O(BT*hRyRy) = O(BT? RyRi(dn +h)).
By contrast, the standard multi-head attention dot-product step is O(B T%h dh). Hence, for the specialized TPA approach
to reduce flops,

Rqu (dh + h) < hdy,.

dn

Thus a practical guideline is to ensure R R, < h I

can be beneficial.

. When that holds, bypassing explicit materialization of Q and K

15



Tensor Product Attention Is All You Need

A.5 Toward Faster Computation Without Materializing Q, K, V

We have explored a two-step procedure for computing Q K ' directly from factorized queries and keys without materializing
Q or K. Here, we extend this idea to also avoid explicitly forming V. That is, all three activations Q, K,V remain
factorized throughout the attention pipeline. We present a single-head formulation below, and then discuss multi-head and
batch extensions.

Extending the Two-Step Approach to Avoid V Materialization. After we obtain QK ', we apply oy, =
softmax( (QK e, T) The final attention output at token ¢ (single head) is

head(t Z oy Vo

Using the factorization V, = Zf;l al® (%) bi™ (x,), we write:

head(t Z oy Z a(“ (%) b(“) (%7)-

u=1
Rearrange sums:
R, T
head(t Z [Z o7 alW X:)) bg)“)(xT)] .
u=1 =1

We still do not explicitly form V ;. Instead:

Stage 1: Calculating bq(,“) (x,) for all tokens. We simply observe that each output head(t) can be computed by summing

vectors bi“) (x,) € R weighted by oy, aq(f‘) (x;). The complexity for constructing bS}” (x7) Yu, 7is O(T R, dp,).

Stage 2: Weighted Summation by o - ag,") (x;). For each token t, the final attention head output is

R, T

Zozmza(“ x)b{"(x,) = Z[Z(O‘”a( )(xT))ij‘)(xT)].

u=1 7=1

We still never explicitly materialize V. Instead, for each pair (¢, u), we must accumulate the sum of T vectors be‘) (x,) €

R? , each scaled by the scalar Qr ag,u) (x). Because each vector is dj-dimensional, each (¢, u) summation costs O(T dy,).

Summedovert =1...Tandu =1... R,, the total work is (9(T2 R, d},) for the entire sequence.

In practice, one precomputes all bq(,“) (x;) forT =1...N, so each accumulation can be implemented as a simple “scalar-
times-vector add” in a tight loop. This cost is usually smaller than the QK factorized cost if R, < dJ,.

A.6 Overall Complexity for Single-Head

Combining the four bullet-point stages from above (ignoring smaller overheads like the softmax) yields:
(i) QK b-Dot Product Stage: O(T? R, Ry dy,).
(ii) QK Scalar-Multiply Stage: O(T? R, Ry,).
(i) Computing b{" (x.) for all tokens: O(T R, dy,).
(iv) Weighted Summation by «; , aw (x,): O(T? R, dp).
Hence, for a single head, the total cost is:
O(T? Ry Ridy, + T2 Ry Ry + TRydy + T° Ry d).
In many cases (especially for large T'), the O(T?) terms dominate, so one often focuses on

O(T% Ry Ridy, + T2 By Ry + T Ry dy).

16



Tensor Product Attention Is All You Need

A.7 Multi-Head and Batch Extensions (Reuse of b-Dot Products)

When extending to h heads and batch size B, all sequence-length-dependent terms are multiplied by ~ B h. However,
crucial b-dot products can be shared across heads:

QK b-Dot Products. Since each head has distinct scalar factors a4 ;, ax ; but the same bgr), b,(f) across heads, each

pairwise dot product

(b (x1), by (x,))
is computed just once per batch. That cost remains

O(BT? Ry Ry dy),
not multiplied by h. After caching these dot products, each of the h heads pays O (B T?h R, Rk) total for the head-specific
scalar multiplications (the “oy . —like factors).
V b-Evaluations. Likewise, the bS,“) factors are shared across heads (i.e. one set of b,-vectors for all heads). Hence,
computing all bg,“> (x;) for7 = 1...T (across the batch) is a one-time cost:

O(BT Ry dy).

E}“) (x,), so the final accumulation Y 7_, ay , a™ (x:) b\ (x,) costs

i v,1

Then each head ¢ has its own scalar factors a
O(B T?>h R, dh) in total (for all ¢, u).
Putting it all together, the total flops for multi-head attention with batch size B are:

O(BT? R, Ry dy) + O(BT*hRyRi) + O(BTR,dy) + O(BT?hR,dy).

QK b-dot products per-head QK scalar mult. Compute b,, for all tokens final accumulations
(shared across heads) (shared across heads) (per head)

Discussion. By contrast, standard multi-head attention typically requires O (B T?h dh) flops for the QK " dot product
(plus a similar O (B T?h dh) for multiplying by V). The factorization can yield savings provided R, R) < h (for QK) and
R, < h (for V), though actual speedups depend on how well these multi-stage kernels are implemented and on hardware
efficiency. By retaining Q, K, and V in factorized form, one can forgo the usual steps:

x; = Q, K; = (QK') — softmax(QK ')V + final output.

Instead, the large Q, K,V tensors (of size T' x dj,) are never materialized. The cost is replaced by rank-based b-dot-product
computations plus per-head scalar multiplications. The main challenge is to keep the factor ranks (R,, Ry, R,,) sufficiently
small relative to dj, and to implement the necessary multi-stage kernels efficiently. When Ry, Ry, R, < h, fully factorized
QKYV attention can yield substantial gains in both computation and memory footprint.

A.8 Decoding Speed during Inference Time of MHA, MQA, GQA, MLA, and TPA

Suppose we are in an autoregressive setting, decoding the current token x7 given cached keys and values (KV) from all
previous tokens X1, .. .,X7_;. For each attention head i € {1,...,h}, we store K; € RT*9 V, € RT*dn Below, we
compare the flops needed by MHA, MQA, GQA, MLA, and TPA to compute the next-token logits during inference.

MHA, MQA, and GQA. Despite sharing or grouping keys/values in MQA and GQA, the decoding cost for MHA, MQA,
and GQA remains of the same order. Specifically, for each head i, we compute:

Qi(xr) € R", K; € R™  Qixr)K;] € R, and Softmax(Q;(xr)K;)V,; € R%.

Hence, the flops scale linearly in k, dj,, and T. For example, forming Q;(x7)K, for each head i costs roughly O(h d, T).

MLA. During inference, MLA can be seen as MQA but uses a larger head dimension to accommodate both RoPE
and compressed representations (e.g., dj, = drope + dc). In typical configurations, dyope + d. can be significantly larger
(e.g., dj, = 576 rather than d;, = 64 or 128), thus inflating the dot-product cost by roughly 4.5x to 9x compared to
MHA/MQA/GQA.

17



Tensor Product Attention Is All You Need

TPA. Recall that TPA factorizes Q and K into rank-(R,, Ry) terms (see Section A), potentially avoiding large Q, K
materializations. At inference, TPA’s dot-product cost can be broken into two parts:

Ry Rid, T +2 R, R.hT
———
QK b-dot products (shared across all heads) per-head scalar multiplications

where 7' is the current sequence length. For concrete values dj, = 128, h = 64, R, = 8, and R, = 2 (or R, = 16, R}, = 1),
we obtain:

MHA, MQA, GQA: 128 x 64 x T = 81927,
MLA: 576 x 64 x T = 36,3847,
TPA: (8x2x128xT) + (2x8x2x64xT) = 40967T.

Thus, in this setup, TPA can significantly reduce the flops needed for computing the Q(x7)K " operation at each
decoding step. The actual end-to-end wall-clock speedup also depends on kernel fusion, caching strategies, and hardware
implementation details, but the factorized formulation offers a pathway to more efficient decoding than standard attention.

B Higher-Order Tensor Product Attention

All prior discussions have focused on a second-order factorization in which each rank-R¢ (and similarly Ry, Ry)
component is the outer product of two vectors: one in R” (the “head” dimension) and one in R?%". We now generalize this
by introducing an additional latent factor, yielding a third-order (or higher) factorization reminiscent of canonical polyadic
(CP) decomposition. Concretely, for a single token ¢, we write

Rq

Q = %Zag(xt) @ vee(b? (x;) ® c?(xy)),
r=1

where the newly introduced factor c¢%(x;) € R% can be viewed as a learnable gate or modulation term. Analogous
expansions apply to K, and V. In practice, these triple (or higher-order) products still collapse into a matrix in R?*@»
One straightforward way to achieve this collapse is to split the feature dimension dy, such that dp x d. = dp,

b%(x;) e R%, ¢%(x;) € R%, vec(b?(xt) ® c?(xt)) € R,

This additional factor can enhance expressiveness without necessarily increasing the base rank. Conceptually, it can act as
a learnable nonlinearity or gating mechanism. One could also tie or share c& across queries, keys, and values, to reduce
parameter overhead.

A similar setup holds for keys (with rank Ry) and values (with rank Ry ). Although this extra dimension adds to the
parameter count, it can reduce the required rank to achieve a certain level of representational power.

From a memory perspective, higher-order TPA still leverages factorized KV caching: only the factors a(x;), b(x;), and
c(x;) for each past token are cached. As usual, a trade-off arises between model capacity and the overhead of memory and
computing. Nonetheless, moving from a rank- (RQ, Ry, Rv) matrix factorization to a higher-order tensor decomposition
can provide additional flexibility and increased capacity.

B.1 RoPE Compatibility in Higher-Order TPA

Rotary positional embeddings (RoPE) remain compatible even under higher-order factorizations. In second-order TPA,
ROPE can be treated as an invertible blockwise linear map acting on the last dimension of Q; or K;. The same argument
carries over when a third factor c¢%(x;) is present. Suppose RoPE acts on the b?(x;) portion (of dimension size d;), we
have the following theorem.

Theorem 2 (RoPE Compatibility in Higher-Order TPA). Consider the higher-order (3-order) Tensor Product Attention
(TPA) query factorization

Rq
1
Qt = e Za?(xt) ® vec(b% (x;) ® c?(x;)) € R,
Q r=1

18



Tensor Product Attention Is All You Need

where a%(x;) € R", b?(x;) € R%, c?(x;) € R, with d. = ’fl—’b‘. Define the RoPE-transformed query as Q, =
RoPE,;(Q;) = Q;T;, where

Tt = Rt ®Idc - . . . . E Rdthh,

and R; € R%*% (d, € 7, is even) is a block-diagonal matrix composed of 2 x 2 rotation matrices:

cos(tfy) —sin(t6r)
sin(t61)  cos(tbq)
cos(thy) —sin(ths)

R, sin(tfz)  cos(tf2)

cos(tly, 2) —sin(t0g, /2)
sin(t0g,/2)  cos(tfy, /2)

fort € {1,...,T}and j € {1,...,dp/2}.

This construction ensures that RoPE rotates only the coordinates corresponding to b@ (x;) while leaving c% (x;) unchanged.
Under these conditions, the RoPE-transformed query RoPE;, (Qt) admits a higher-order TPA factorization of the same rank
Rq. Specifically, we have

Rq
Y al(x) ® vec(E9 (x) ® cf?(xt)> — RoPE,(Q;), (B.1)

r=1

L

Rq
where b@(x;) = R;b?(x;).
Please see Appendix C.2 for the proof. For fourth-order or higher, this result still holds.
C Proofs of Theorems

C.1 Proof of Theorem 1
Proof. Because RoPE is a linear orthogonal transform, we can write

1

Qt =Q:T: = RIQ(AQ(Xt)T BQ(Xt)) T, = Ro

Ag(xi)" (Bo(xi) T),

where T is the block-diagonal matrix encoding RoPE. This allows us to define
EQ(Xt) =Bg(x¢) T¢,

thereby obtaining
1 ~
RoPE(Q:) = FQAQ(Xt)TBQ(Xt)~

Similarly, for the key tensor K, we have

which defines



Tensor Product Attention Is All You Need

and thus

RoPE(K,) — iAK(xs)TﬁK(xs).

Now, consider the product of the rotated queries and keys:

QK] = RQIRK (AQ(Xt)TﬁQ(xt)) (AK(XS)TﬁK(XS)>T

1

~ RoRx Ao(x:) " Bo(x)Bre(x) T A (xy),

Since T; and T encode positional rotations, the product TtTST corresponds to a relative rotation T;_ . Therefore, we can
express the above as

QK] = Al (Bole) TT] Bil) ) Al

1
" RoRx
1

" RoRxk

- (RlAQ(Xt)TBQ(Xt)Tt—S) (R1

Q K

AQ (Xt)T (BQ (Xt)Tt—sBK(Xs)T) AK (Xs)

AQ(X,&)T (BQ(Xt)Tt—s) (BK(XG)TAK(XQ))

-
Ar(x) Brlx)
This shows that
RoPE,_,(Q)K] = Q; K/,
Focusing on individual heads ¢, the above matrix equality implies:
ROPE;_(q::) ' ksi = (NltT,iEs,iv

where

dei = RoPE(qq,) = Tiqr; € R™,  k,; = RoPE(k,,;) = T.k,; € R%.

This equality confirms that the relative positional encoding between queries and keys is preserved under TPA’s factorization
and RoPE’s rotation. Thus, TPA maintains compatibility with RoPE. This completes the proof of Theorem 1. O

C.2 Proof of Theorem 2

Proof. We begin by observing that each term a%(x;) ® vec(b¥(x¢) ® c?(x;)) is an element of R" @ R . Here,
b¥(x;) € R%, c?(x;) € R%, with d. = 9. Consequently, the tensor product b%(x;) © ¢ (x;) forms a dy x d.. matrix,
and its vectorization lies in R%de = Rn,

Applying the RoPE transformation to a single summand yields
vec(b% (x:) ® €@ (x;)) — Ty vee(b? (x;) ® c?(xy)).

Since T is defined as the Kronecker product R; ® 14,, where R; € R4 *dv gnd I, is the identity matrix of size d. x d., it
follows that

T, vec(b?(xt) ® cf?(xt)) = Vec(Rtbg(xt) ®c(xs)).

This is because the Kronecker product with an identity matrix effectively applies the rotation R to the b% (x;) component
while leaving ¢ (x;) unchanged.

20



Tensor Product Attention Is All You Need

Therefore, the RoPE transformation of a single summand becomes

RoPE; (af?(xt) ® vec(b% (x;) ® c,@(xt))) = a%(x;) ® vec(R;b¥ (x;) ® €2 (x¢)).

Importantly, this transformation does not mix the components b?(x;) and c?(x;); it solely rotates b%(x;) via Ry.

Summing over all ranks r = 1,..., Rg, we obtain

Rq
Z a%(x;) ® vec(R;b% (x;) ® c?(x;)) = RoPE,;(Q:),

r=1

1
Rq

which retains the same higher-order TPA structure with rank Rg.

Thus, the RoPE transformation is fully compatible with higher-order TPA, preserving the factorization rank and maintaining
the structure by only rotating the b?(x;) components while leaving c% (x;) unchanged. O

D More Related Works

Low-Rank Factorizations. Low-rank approximations have been applied to compress model parameters and reduce complex-
ity including LoRA (Hu et al., 2022), which factorizes weight updates during fine-tuning, and its derivatives for other training
scenarios such as efficient pretraining (ReLoRA (Lialin et al., 2023), MoRA (Jiang et al., 2024)), long-context training
(LongL.oRA (Chen et al., 2024), SinkLoRA (Zhang, 2024)), as well as continual training (InfLoRA (Liang & Li, 2024),
GS-LoRA (Zhao et al., 2024), I-LoRA (Ren et al., 2024)). These approaches typically produce static low-rank expansions
that do not explicitly depend on the input context. And Malladi et al. (2023); Zeng & Lee (2024) provided theoretical proof
of the expressiveness of low-rank approximation. For the initialization of factorization matrices, OLoRA (Biiyiikakyiiz,
2024) applied QR-decomposition of pretrained weight to achieve better performance of language models while LoLDU (Shi
et al., 2024) used LDU-decomposition to accelerate training of LoRA. Moreover, AdaLoRA (Zhang et al., 2023a) utilized
Singular Value Decomposition (SVD) of the pretrained weight and introduced importance score for each parameter as a
measurement to achieve dynamic adjustment of rank. TPA, by contrast, constructs Q, K, and V as contextually factorized
tensors, enabling dynamic adaptation.

E More on Attention Mechanisms

E.1 Multi-Query Attention (MQA)

Multi-Query Attention (MQA) (Shazeer, 2019) significantly reduces memory usage by sharing keys and values across
heads, while still preserving unique query projections. For a sequence of embeddings X € R dmoder

Q; = XWiQ7 Kshared = Xstared? Vhared = XVVS‘I{ﬁred'

Hence, each head i only has a distinct query Q; € RT*?»  but shares the same key Karea € RT*% and value Vgpareq €
RT>dn In practice, this means:
WiQ € R %model th’ wk wVv 4 € R @modet X

shared s share

The resulting MQA operation is:
MQA(X) = Concat (headl, . ,headh> wo,
where

head; = Attention(Q,-, Khared; Vshared) .

By sharing these key and value projections, MQA cuts down on memory usage (especially for the key-value cache in
autoregressive inference) but loses some expressivity since all heads must rely on the same key/value representations.

21



Tensor Product Attention Is All You Need

E.2 Grouped Query Attention (GQA)

Grouped Query Attention (GQA) (Ainslie et al., 2023) generalizes MHA and MQA by grouping heads. Specifically, we
partition the / total heads into G groups. Each group has a single set of keys and values, but each individual head within
that group still retains its own query projection. Formally, if g(7) maps a head ¢ € [h] to its group index g € [G], then:

K —XWE v - XwV - X “rQ
g(i) — g(i)’ g(i) — g(3)’ Qi = i
and

head; = Attention (Qi Ky Vg(i)> .

Again, WgK , ng € RdmaaXdn for each group g, and WiQ € R dmaaXdn for each head i. The complete output is again a
concatenation of all heads:

GQA(X) = Concat (headl, - ,headh> wo.

By adjusting G between 1 and h, GQA can interpolate between sharing all key/value projections across heads (i.e., MQA)
and having one set of projections per head (i.e., MHA).

E.3 Multi-head Latent Attention (MLA)

Below, we briefly outline the Multi-head Latent Attention (MLA) approach used by DeepSeek-V2 (Liu et al., 2024a) and
DeepSeek-V3 (Liu et al., 2024b). MLA introduces a low-rank compression of the keys and values to reduce the Key-Value
(KV) caching cost at inference.

CKV _ XWDKV
Concat(K{,KY,...,K{) = K¢ = CKVWUE,
K" = RoPE(XWXH),
K; = Concat(K{, K"),
Concat(V{,V{,...,Vy)) =V =CcrVwl,

where WPEKV c Rdmodelec7 WUK c Rdcxdhh7 WER c Rdmodelxdf7 wUuv c Rdcxdhh, and CKV c RTxdc is the
compressed KV latent (with d. < dph), and RoPE(-) represents the RoPE transform applied to the separate key embeddings
K% of dimension d£. Thus, only CXV and K7 need to be cached, reducing KV memory usage while largely preserving
performance compared to standard MHA (Vaswani et al., 2017).

MLA also compresses the queries, lowering their training-time memory footprint:

C? =XWPe,
Concat(QY, Q5. ....Qy) = Q% = CYWe,
Concat(QF, QF, ..., QF) = Q" = RoPE(CeW<H),
Q= Concat(QC, QR).
where WPQ ¢ Rdmuxd; WUQ ¢ Rdcxdnh WQR ¢ Rdexdi’h Here, CQ € RT*4: (with d/, < d,h) is the compressed

query latent. As above, each WPQ, WUQ and WE connects these lower-dimensional query latents back to h heads of
dimension dy, + d¥.

Given compressed queries, keys, and values, the final attention output for the ¢-th token is:

_ QK[ ) c
O; = Softmax(m Vv,
U= Concat(Ol, O,,..., Oh)Wo7
where WO ¢ R(@n1)x dmoat s the output projection.

22



Tensor Product Attention Is All You Need

In inference time, CX"V and K ' can be cached to accelerate decoding. In detail, when RoPE is ignored, the inner product
q;': ks i (wWhere qq i, ks € R%) of the i-th head between ¢-th and s-th tokens can be calculated using the hidden state
x; € Rt for ¢-th token and the cached latent state cXV € R for s-th token:

S

=x/; (W IW/ S WVE) Tk, (E2)

al ke = (W) T (W) Tx ] T[(WIH) Tl (E.D)

where W, is the i-th head of the original weight, and [W,"“W"?(WUX)T] can be computed previously for faster
decoding. However, this process fails when RoPE is considered according to (Su, 2024). Since RoPE can be considered as
multiplication with a block-diagonal matrix T; € R4 *dn (see Section 2.3), with the property (2.1) that TtTST =T _,,
then

aliksi = [T," (W) T (W) Tx, ] T[T, T (W) TelV]
_ X;F [WiDQWiUQTLfs(WiUK)T}CKV-

S

(E.3)

Different from (E.2), acceleration by pre-computing [WiDQV[/'iUQTt_S (WUE)T] fails since it varies for different (¢, s)
position pairs. Therefore, MLA adds the additional k[* part with a relatively smaller size for RoPE compatibility. In Section
3.2, we will show that TPA addresses the issue of RoPE-incompatibility by applying tensor product.

CKV — XWDKV
Concat(K{,KY,...,K{) = K = CKVWUEK,
K" = RoPE(XWXH),
K; = Concat (K¢, K%),
Concat(V{,V§,...,Vy)) =V =CcrVwl,
E.4 Multi-matrix Factorization Attention (MFA)
Hu et al. (2024) proposed Multi-matrix Factorization Attention (MFA), which can be seen as Multi-Query Attention (MQA)

with dimension of each head equals d¢, and low-rank factorized Q:

Qi = XWPOWY? Kred = XWE i, Vinared = XWY i

shared »

where

wDhe eRdmodeIXdc’ Wz'UQ eRdCXdc7 WK wY 4 € IR dmoder X e

shared share

F Other Variants of TPA

TPA with Non-contextual B. Conversely, one may fix the token-dimension factors b%, bX bY € R? as learned

parameters, while allowing a@(x;), aX (x;),aY (x;) to adapt to x;. For keys:

1 8
K= — K bk,
t RK ;ar (Xt) ® r

and similarly for values. This arrangement is effective if the token-dimension structure remains mostly uniform across the
sequence, while the head-dimension factors capture context.

TPA KV Only. One can preserve a standard query mapping,
Qi = Wex, e R,

and factorize only the keys and values. This leaves the query projection as the original linear transformation while reducing
memory usage via factorized KV caching.

23



Tensor Product Attention Is All You Need

TPA KV with Shared B. Another variant is to share the token-dimension factors of keys and values:
bl (x¢) = by (x),

lowering parameter counts and the KV cache footprint. While it constrains K and V to be formed from the same token

basis, it can still perform well and provide additional memory savings.

Nonlinear Head Factors. Rather than applying purely linear mappings to the head-dimension factors a%,a’ aV’, one

may introduce element-wise nonlinearities such as o (-) or softmax(-). This effectively yields a Mixture of Heads Attention
(MoH Attention), where each component becomes a learned mixture weight modulated by the nonlinearity.

Discussion. These variants illustrate TPA’s versatility in balancing memory cost, computational overhead, and representation
power. By choosing which dimensions (heads or tokens) remain contextual and adjusting ranks (Rg, R, Ry ), TPA unifies
multiple existing attention mechanisms—such as MHA, MQA, and GQA—under one framework, while potentially reducing
the KV cache size by an order of magnitude during autoregressive inference.

G More on Experiments

G.1 Experimental Settings

We list the main architecture hyper-parameters and training devices in Table 4. We fix d;, = 64 for all the models. Moreover,
we fix the number of KV heads with 2 for GQA models; d = 32 for MLA models; and R, = R, = 2, R, = 6 for TPA
and TPA-KYV only models. Other hyper-parameters are listed in Table 5.

Table 4. The architecture hyper-parameters and training devices of models. Abbreviations: BS. = Batch Size, GAS. = Gradient Accumula-
tion Steps.

MODEL SIZE | #PARAM DEVICES MICRO BS. GAS. #LAYER  dyoprL

SMALL 124M 4x A100 GPUs 24 5 12 768
MEDIUM 353M 8x A100 GPUs 20 3 24 1024
LARGE 772M 8x A100 GPUs 15 4 36 1280
XL 1.55B 8x A100 GPUs 6 10 48 1600

Table 5. The architecture hyper-parameters for different models.

MODEL SIZE ‘ SMALL MEDIUM LARGE XL
h (MHA) 12 16 20 25
h (MQA) 23 31 39 49
h (GQA) 22 30 38 48
h (MLA) 12 23 34 49
h (TPA-KVONLY) 22 29 37 47
h (TPA) 34 47 61 78
d. (MLA) 256 512 512 512
d. (MLA) 512 1024 1024 1024

G.2 Additional Experimental Results

G.2.1 PERPLEXITY CURVES

We display the perplexity curves for medium, large and XL size of models in Figure 4.
G.2.2 ABLATION STUDY ON DIFFERENT RANKS

Figure 5 shows the training loss, validation loss, and validation perplexity curves of XL-size (1.5B) T6 models with different
ranks trained on the FineWeb-Edu 100B dataset, and the evaluation results are displayed in Table 7. It can be observed that
increase in rank can improve the performances of large language models.

24



Tensor Product Attention Is All You Need

Medium Model, FineWeb-edul100B Large Model, FineWeb-edu100B XL Model, FineWeb-edu100B

21 19 19
MHA MHA MHA
20 — MQA 184 — MQA 184 — MQA
— GQA — GQA — GQA
S 19 — MLA S 179 — MLA S 177 — MLA
g TPA-KVonly 3 TPA-KVonly i TPA-KVonly
o218 — TPA < 161 — TPA 2 161
; 8 5
c 17 z 15 = 154
S S S
516 8141 8141
b} = b}
g B g
15 13 134
14 124 124
13 11 11
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Training tokens (B) Training tokens (B) Training tokens (B)

(a) Validation Perplexity (b) Validation Perplexity (c) Validation Perplexity
Figure 4. The validation perplexity of medium-size (353M) models, large-size (773M), and XL-size (1.5B) models with different attention

mechanisms on the FineWeb-Edu 100B dataset.

XL Model, FineWeb-edul00B

XL Model, FineWeb-edu100B

XL Model, FineWeb-edu100B

3.0 2.9
—— TPA-KVonly (rank 2) —— TPA-KVonly (rank 2) —— TPA-KVonly (rank 2)
2.9 —— TPA-KVonly (rank 4) —— TPAKVonly (rank 4) 18 —— TPA-KVonly (rank 4)
—— TPA-KVonly (rank 6) 2.8 —— TPA-KVonly (rank 6) —— TPA-KVonly (rank 6)
17
2.8 F
o 2 316
827 S27 e
o s -4
£ k=] c 15
£26 3 2
£ 526 % 14
=
23 13
25
2.4 12
2.3 2.4 11 T T T T y u
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Training tokens (B)

(c) Validation Perplexity

Training tokens (B)

(b) Validation Loss

Training tokens (B)

(a) Training Loss

Figure 5. The training loss, validation loss and validation perplexity curves of XL-size (1.5B) T6 models with different ranks on the
FineWeb-Edu 100B dataset.

G.2.3 0-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

For the evaluation, We show the 0-shot performances with Im-evaluation-harness for small-size (124M) and XL-size (1.5B)
models in Tables 6 and 7.

G.2.4 2-SHOT EVALUATION WITH LM-EVALUATION-HARNESS
We also show 2-shot performances in Tables 8,9, 10 and 11.
G.3 Ablation Studies on Learning Rates

We implement a set of parallel experiments for medium models with learning rate 3 x 10~%, and the curves for training
loss, validation loss, and validation perplexity are displayed in Figure 6. We also show the performance of these models
on the benchmarks described in Section 4 in Tables 12-13. The results show that TPA and TPA-KVonly models can also
outperform other types of attention with different learning rates.

25



Tensor Product Attention Is All You Need

Table 6. The evaluation results of small models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset (0-shot
with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.
MHA 50.63 26.96 59.39 36.18 32.00 6496 51.85 23.40 70.30 46.19
MQA 49.62 25.34 55.72 35.94 3140 6485 51.30 23.37 68.70 45.14
GQA 48.70 25.68 56.15 35.58 3140 6491 51.62 23.12 68.20 45.04
MLA 50.21 26.71 58.01 36.25 3280 64.69 50.59 24.67 71.90 46.20
TPA-KVonly 51.05 26.54 57.25 36.77 32.60 65.02 5091 23.64 69.70 4594
TPA (non-ctx-A)  50.17 25.60 57.95 36.13 3140 64.80 49.57 24.88 64.80 45.03
TPA 51.26 27.39 57.00 36.68 3280 6447 49.72 24.61 72.00 46.21

Table 7. The evaluation results of XL models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset (0-shot
with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If
not specified, TPA and TPA-KVonly set Rx = Ry = 2.

Method ARC-E  ARC-C  BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ | Avg
MHA 6481 3541 6190 5432 3720 7274 5580 2544  82.80 | 54.49
MQA 64.10 3601 6226 5438  39.00 72.58 5643 2370  81.90 | 54.48
GQA 63.68 3592 6046  54.17 3840 73.56 5627 2477 8170 | 54.33
MLA 64.14 3592  60.12  53.60 3920 7225 5517 2471  81.60 | 54.08
TPA-KVonly 65.61 3677  63.02 5417 3700 7334 5462 2502 81.60 | 54.57
TPA-KVonly (R v =4) 6452 3703 6327 5489 3980 7291 5651 2474 81.60 | 55.03
TPA-KVonly (Rx,v =6) 6578 3592  61.71 5486 3860 72.69 57.93 2559 8220 | 55.03
TPA 66.71 3652 6138 5403 4040 72.52 5683 2449 8220 | 55.01

Table 8. The evaluation results of small models with different attention mechanisms on FineWeb-Edu 100B dataset (2-shot with Im-
evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E  ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.
MHA 57.66 2824 5728 3643  29.60 6409 51.14 2657 8200 48.11
MQA 5379 2635 4495 3418 2880 6279 5201 2591 78.10 4521
GQA 5501 2594 5572 3568  31.80 6529 5193 2527 77.80 47.16
MLA 5476  27.13 5807  36.13 3140 6507 5130 2590 78.90 47.63
TPA-KVonly 5425 2790 5706 3636  31.80 6431 5359 2618 79.20 47.85
TPA (non-ctx-A)  55.09  27.65 53.82 3624 3020 6453 5075 2601 78.60 46.99
TPA 5753 2807 5633 3649  31.80 6436 S51.14 2592 7970 47.93

Table 9. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(2-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E  ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ \ Avg.
MHA 64.73 32.42 58.29 45.89 3420  68.50 53.20 25.86 88.00 | 52.34
MQA 64.98 33.62 55.02 45.81 3400 69.59 5343 24.30 85.20 | 51.77
GQA 65.24 33.19 56.54 45.41 3480 69.04 55.72 24.73 87.90 | 52.51
MLA 64.98 33.62 53.52 45.94 33.00 68.55 51.85 25.46 89.10 | 51.78
TPA-KVonly 64.69 32.34 59.48 46.23 3540 70.08 54.06 25.64 86.30 | 52.69
TPA (non-ctx-A)  65.45 33.79 56.88 45.23 33.60 68.61 54.22 25.00 85.00 | 51.98
TPA 67.97 34.56 57.22 46.87 3460 6991 52.01 25.07 89.90 | 53.12

26



Tensor Product Attention Is All You Need

Table 10. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(2-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSwag = HellaSwag, WG =
WinoGrande.

Method ARC-E  ARC-C BoolQ HellaSwag OBQA PIQA WG MMLU SciQ | Avg.
MHA 67.85 36.35 59.82 50.22 35,00 70.67 5335 2392  91.10 | 54.25
MQA 68.86 36.09 53.79 50.50 37.00 70.89 54.70 2501 88.00 | 53.87
GQA 69.15 36.09 58.84 50.29 3620  70.73 5422 2608  90.00 | 54.62
MLA 70.54 38.74 61.50 51.86 36.00 70.89 5422 2547 9240 | 55.74
TPA-KVonly  71.34 37.71 59.76 51.10 36.00 7149 5462 2583 90.10 | 55.33
TPA 70.41 37.71 60.06 51.30 34.00 71.06 5454 2579  90.30 | 55.02

Table 11. The evaluation results of XL models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(2-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSwag = HellaSwag, WG =
WinoGrande. If not specified, We set Rx = Ry = 2 for TPA and TPA-KVonly.

Method ARC-E  ARC-C BoolQ HellaSwag OBQA PIQA WG MMLU SciQ \ Avg.
MHA 70.83 39.93 59.85 54.05 36.20  72.52  55.17 2542 91.70 | 56.18
MQA 71.34 39.76 58.93 54.27 3940 7296 57.38 24.74 91.90 | 56.74
GQA 71.17 39.08 60.18 54.05 3740  73.07 56.35 24.87 92.20 | 56.49
MLA 70.79 37.54 50.83 53.33 40.00 72.09 56.51 2493 91.80 | 55.31
TPA-KVonly 72.85 39.68 60.92 53.81 37.00 7334 56.83 26.19 91.30 | 56.88
TPA-KVonly (Rx,v =4)  72.98 40.27 60.15 54.88 36.80 73.29 5643 25.50 92.10 | 56.93
TPA-KVonly (Rx,v = 6) 73.95 39.76 58.99 54.73 36.80 7291 59.04 24.93 92.90 | 57.11
TPA 71.76 39.16 61.25 53.74 37.80 72.80 5549 23.86 90.70 | 56.28
Medium Model, FineWeb-edu100B 11 Medium Model, FineWeb-edu100B n Medium Model, FineWeb-edul00B

MHA
— MQA
— GQA
— MLA
TPA-KVonly
— TPA

MHA

— MQA

— GQA

— MLA
TPA-KVonly

— TPA

MHA
— MQA
— GQA
— MLA
TPA-KVonly

N
o

w

=)
-
©

-
©

g
©
N
©

Training Loss
N
@
Validation Loss
I
®
[
o S

N
~
N
N
Validation Perplexity
—
a

-
IS

N
o
-
w

g
o

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Training tokens (B) Training tokens (B) Training tokens (B)
(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 6. The training loss, validation loss, and validation perplexity of medium-size (353M) models (learning rate 3 x 10~%) and different
attention mechanisms on the FineWeb-Edu 100B dataset.

Table 12. The evaluation results of medium models (learning rate 3 x 10~%) with different attention mechanisms pretrained using the
FineWeb-Edu 100B dataset (0-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E  ARC-C  BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ | Avg.
MHA 56.52 29.27 58.84 44.06 35.00 68.44 51.07 2535 7640 | 49.44
MQA 55.68 28.24 60.86 44.17 3520 68.66 5272  25.14 7290 | 49.29
GQA 54.88 29.61 56.36 43.77 3520 6882 5257 2541  74.80 | 49.05
MLA 59.64 29.78 60.73 45.17 3420 68.66 52.80 2534 7570 | 50.22
TPA-KVonly  57.11 30.03 61.25 44.83 3460 69.04 5454 2335  74.60 | 49.93
TPA 59.30 3191 60.98 45.57 3460 6948 5391 2493  77.20 | 50.88

27



Tensor Product Attention Is All You Need

Table 13. The evaluation results of medium models (learning rate 3 x 10~*) with different attention mechanisms pre-trained using the
FineWeb-Edu 100B dataset (2-shot with Im-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E  ARC-C  BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ | Avg.
MHA 64.44 32.85 59.05 44.18 3320  68.72 50.12  26.01 87.40 | 49.44
MQA 64.27 32.94 57.71 44.36 31.80 68.01 51.70 2599  86.00 | 49.29
GQA 61.70 32.17 52.81 43.99 33.80 68.50 5335 2444  86.40 | 50.80
MLA 65.95 31.48 50.98 44.99 3220 6893 5193 2589  88.80 | 51.24
TPA-KVonly  65.99 33.70 57.49 44.47 3420 69.53 5328 2423 86.50 | 49.93
TPA 66.54 34.47 58.96 45.35 33.00 69.21 5399 2451 91.30 | 53.04

28



	Introduction
	Background
	Scaled Dot-Product Attention
	Multi-Head Attention (MHA)
	Rotary Position Embedding (RoPE)

	Tensor Product Attention
	Tensor Factorization of Queries, Keys, and Values
	RoPE Compatibility and Acceleration
	KV Caching and Memory Reduction
	Unifying MHA, MQA, and GQA as Non-contextual TPA
	MHA as Non-contextual TPA

	Computational Cost. 
	Model Architectures

	Experiments
	Language Modeling Tasks

	Related Work
	Conclusion
	Appendices
	Toward Faster Computation Without Materializing Q, K and V
	Single-Head Factorization Setup Without Materializing Q and K
	Multi-Head Case
	Complexity Analysis
	Complexity Analysis for the Specialized Implementation
	Toward Faster Computation Without Materializing Q, K, V
	Overall Complexity for Single-Head
	Multi-Head and Batch Extensions (Reuse of b-Dot Products)
	Decoding Speed during Inference Time of MHA, MQA, GQA, MLA, and TPA

	Higher-Order Tensor Product Attention
	RoPE Compatibility in Higher-Order TPA

	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	More Related Works
	More on Attention Mechanisms
	Multi-Query Attention (MQA)
	Grouped Query Attention (GQA)
	Multi-head Latent Attention (MLA)
	Multi-matrix Factorization Attention (MFA)

	Other Variants of TPA
	More on Experiments
	Experimental Settings
	Additional Experimental Results
	Ablation Studies on Learning Rates


