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Abstract
Scaling language models to handle longer input
sequences typically necessitates large key-value
(KV) caches, resulting in substantial memory
overhead during inference. In this paper, we pro-
pose Tensor Product Attention (TPA), a novel
attention mechanism that uses tensor decomposi-
tions to represent queries, keys, and values com-
pactly, significantly shrinking KV cache size at
inference time. By factorizing these representa-
tions into contextual low-rank components (con-
textual factorization) and seamlessly integrating
with RoPE, TPA achieves improved model qual-
ity alongside memory efficiency. Based on TPA,
we introduce the Tensor ProducT ATTenTion
Transformer (T6), a new model architecture for
sequence modeling. Through extensive empiri-
cal evaluation of language modeling tasks, we
demonstrate that T6 exceeds the performance of
standard Transformer baselines including MHA,
MQA, GQA, and MLA across various metrics,
including perplexity and a range of renowned
evaluation benchmarks. Notably, TPA’s mem-
ory efficiency enables the processing of signifi-
cantly longer sequences under fixed resource con-
straints, addressing a critical scalability challenge
in modern language models. The code is avail-
able at https://anonymous.4open.science/r/T6-
anonymous-2025.

1 Introduction
Large language models (LLMs) have revolutionized natu-
ral language processing, demonstrating exceptional perfor-
mance across tasks (Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023; Bubeck et al., 2023). As these
models evolve, their ability to process longer contexts be-
comes increasingly important for sophisticated applications
such as document analysis, complex reasoning, and code

1Anonymous Institution, Anonymous City, Anonymous Region,
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<anon.email@domain.com>.
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Figure 1. Tensor Product Attention (TPA) in the Tensor ProducT
ATTenTion Transformer (T6). Different from multi-head atten-
tion, in each layer, firstly the hidden state goes through different
linear layers to get the latent factor matrices A(·)’s and B(·)’s for
query, key, and value. We additionally apply RoPE to BQ and BK

for query and key. Then the multi-head query, key, and value vec-
tors are attained by the tensor product of A(·) and B(·). Finally,
the output of TPA is produced by scaled dot-product attention
followed by linear projection of concatenated results of multiple
heads.

completions. However, managing longer sequences during
inference poses significant computational and memory chal-
lenges, particularly due to the storage of key-value (KV)
caches (Zhang et al., 2023c; Liu et al., 2024c). Because
memory consumption grows linearly with sequence length,
the maximum context window is limited by practical hard-
ware constraints.
A variety of solutions have been explored to address this
memory bottleneck. Some approaches compress or se-
lectively prune cached states through sparse attention pat-
terns (Child et al., 2019) or token eviction strategies (Zhang
et al., 2023c; Xiao et al., 2024; Ribar et al., 2024), though
such methods risk discarding tokens that may later prove
important. Other work proposes off-chip storage of key-
value states (He & Zhai, 2024), at the expense of in-
creased I/O latency. Attention variants like multi-query
attention (MQA) (Shazeer, 2019) and grouped-query atten-
tion (GQA) (Ainslie et al., 2023) reduce per-token cache
requirements by sharing keys and values across heads, but
often compromise flexibility or require significant architec-
tural modifications. Meanwhile, low-rank weight factor-
ization methods such as LoRA (Hu et al., 2022) effectively
reduce fine-tuning memory, yet do not address the KV cache
overhead that dominates runtime. The recently introduced
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Multi-head Latent Attention (MLA) in Deepseek-V2 (Liu
et al., 2024a) caches compressed key-value representations
but needs additional position-encoded parameters per head
due to incompatibility with Rotary Position Embedding
(RoPE) efficiently (Su et al., 2024).
In order to overcome the limitations of existing approaches,
we introduce Tensor Product Attention (TPA), as illustrated
in Figure 1, a novel architecture that uses higher-order ten-
sors to factorize queries (Q), keys (K), and values (V) during
attention computation. By dynamically factorizing activa-
tions rather than static weights (e.g., LoRA), TPA constructs
low-rank, contextual representations that substantially re-
duce KV cache memory usage with improved representa-
tional capacity. In practice, TPA can reduce the memory
overhead by an order of magnitude compared to standard
multi-head attention (MHA) with lower pretraining vali-
dation loss (perplexity) and improved downstream perfor-
mance.
A key advantage of TPA is its native compatibility with
rotary positional embeddings (RoPE) (Su et al., 2024), en-
abling a straightforward drop-in replacement for multi-head
attention (MHA) layers in modern LLM architectures such
as LLaMA (Touvron et al., 2023) and Gemma (Team et al.,
2024).
Our primary contributions are summarized as follows:
• We propose Tensor Product Attention (TPA), A mecha-

nism that factorizes Q, K, and V activations using con-
textual tensor-decompositions to achieve 10× or more
reduction in inference-time KV cache size relative to stan-
dard attention mechanism (Vaswani et al., 2017) with im-
proved performance compared to previous methods such
as MHA, MQA, GQA, and MLA. In addition, we unify
existing attention mechanisms by revealing that MHA,
MQA, and GQA all arise naturally as non-contextual vari-
ants of TPA.

• We introduce the Tensor ProducT ATTenTion
Transformer (T6), a new TPA-based model architecture
for sequence modeling. On language modeling experi-
ments, T6 consistently improves validation perplexity
and downstream evaluation performance with reduced
KV cache size.

• We show TPA integrates seamlessly with RoPE (Su et al.,
2024), facilitating easy adoption in popular foundation
model architectures such as LLaMA and Gemma.

2 Background
In this section, we review two classical forms of attention:
Scaled Dot-Product Attention, and Multi-Head Attention
(MHA) (Vaswani et al., 2017). More types of attention
are introduced in the Appendix E, including Multi-Query
Attention (MQA) (Shazeer, 2019), and Grouped Query At-
tention (GQA) (Ainslie et al., 2023), as well as a recent

method called Multi-head Latent Attention (MLA) used in
DeepSeek-V2 (Liu et al., 2024a) and DeepSeek-V3 (Liu
et al., 2024b). We also introduce Rotary Position Embed-
ding (RoPE, Su et al. (2024)), which is commonly used in
recent works of large language models.
Notations. We use bold uppercase letters (e.g., X, Q) for
matrices, bold lowercase (e.g., a, b) for vectors, and italic
uppercase (e.g., WQ

i ) for learnable parameter matrices. We
denote by [n] the set {1, . . . , n} for some positive integer
n. We use ⊤ to denote the transpose of a vector or a matrix.
Let dmodel be the embedding dimension, h the number of
attention heads, dh the dimension per head, xt ∈ Rd the
input for the t-th token at a given attention layer, X ∈
RT×dmodel denotes the input embeddings for T tokens, and
Q, K, V ∈ RT×h×dh denote the queries, keys, and values
of h heads for T tokens. With a little abuse of notation, Qi,
Ki, Vi ∈ RT×dh denote the i-th head of queries, keys, and
values, and Qt, Kt, Vt ∈ Rh×dh denote the heads of the
query, key, and value for t-th token.
Throughout the paper, WQ,WK ,W V denote projection
matrices for queries, keys, and values, respectively. In
multi-head attention, each head is associated with its
own set of WQ

i ,WK
i ,W V

i , and each has dimension
WQ

i ,WK
i ,W V

i ∈ R dmodel×dk , where dk is typically set
to dh, the dimension of each head.5 Similarly, we have an
output projection matrix WO ∈ R(h·dh)×dmodel . For methods
like MQA and GQA, some of these are shared or partially
shared across heads, but their shapes remain consistent.
We define the tensor product of two vectors as follows: for
vectors a ∈ Rm,b ∈ Rn, the tensor product of a and b is:

a⊗ b = C ∈ Rm×n,with Cij = aibj ,

where ai and bj are the i-th and j-th elements of a and b
respectively, and Cij is the (i, j)-th entry of C. We also
define the vectorization of a matrix C ∈ Rm×n by:

vec(C) = d ∈ Rmn,with di·n+j = Cij ,

where di·n+j is the (i · n+ j)-th element of d.

2.1 Scaled Dot-Product Attention

Scaled dot-product attention (Vaswani et al., 2017) deter-
mines how to focus on different parts of an input sequence
by comparing queries (Q) and keys (K). It produces a
weighted combination of the values (V). Formally, the
attention output is:

Attention(Q,K,V) = Softmax
(

QK⊤
√
dk

)
V,

where each of Q,K,V is an (n× dk) matrix for n tokens
and key dimension dk. The division by

√
dk stabilizes

training by controlling the scale of the inner products.

5Often, one sets h × dh = dmodel, so each head has
query/key/value dimension dh.
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2.2 Multi-Head Attention (MHA)

Multi-Head Attention (MHA) extends scaled dot-product
attention by dividing the model’s internal representation into
several heads. Each head learns different projections for
queries, keys, and values, allowing the model to attend to
different types of information. For each token embedding
xt ∈ Rdmodel , MHA computes each head i as follows:

Qt,i = (WQ
i )⊤ xt ∈ Rdh ,

Kt,i = (WK
i )⊤ xt ∈ Rdh ,

Vt,i = (W V
i )⊤ xt ∈ Rdh ,

headi = Attention
(
Qi,Ki,Vi

)
,

where WQ
i ,WK

i ,W V
i ∈ Rdmodel×dh are learnable projec-

tion matrices for the i-th head, Qi,Ki,Vi ∈ RT×dh . After
computing each head’s attention, the outputs are concate-
nated and mapped back to the original dimension via another
matrix WO ∈ Rhdh×dmodel :

MHA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

MHA can capture a rich set of dependencies while each
head focuses on different subspaces.

2.3 Rotary Position Embedding (RoPE)

Many recent LLMs use rotary position embedding (RoPE;
Su et al., 2024) to encode positional information in the
query/key vectors. Specifically, let RoPEt denote the
rotation operator Tt ∈ Rdh×dh corresponding to the t-
th position. Tt is a block-diagonal matrix, which con-

sists of block-diagonal matrix
(
cos(tθj) − sin(tθj)
sin(tθj) cos(tθj)

)
, j ∈

{1, · · · , dh/2}, where {θj} are pre-defined frequency pa-
rameters, e.g., θj = 1/100002j/dh . Then we define

RoPE (Qt) ≜ QtTt, where Qt ∈ Rh×dh .

A fundamental property is that

Tt T
⊤
s = Tt−s, (2.1)

which ensures that relative positions (t− s) are preserved,
thereby providing a form of translation invariance in the
rotary position embedding.

3 Tensor Product Attention
In this section, we provide a detailed description of our
proposed Tensor Product Attention (TPA), which allows
contextual low-rank factorization for queries, keys, and val-
ues. First, we explain how TPA factorizes queries, keys,
and values with explicit tensor shapes. Next, we describe
how TPA can be integrated into the multi-head attention
framework and how it reduces memory consumption in KV
caching at inference time. Finally, we show how RoPE
can seamlessly integrate with TPA (including a pre-rotated
variant).

3.1 Tensor Factorization of Queries, Keys, and Values

Let xt ∈ Rdmodel for t = 1, . . . , T be the hidden-state vector
corresponding to the t-th token in a sequence of length
T . A typical multi-head attention block has h heads, each
of dimension dh, satisfying dmodel = h × dh. Standard
attention projects the entire sequence into three tensors,
Q, K, V ∈ RT×h×dh , where Qt,Kt,Vt ∈ Rh×dh

denote the slices for the t-th token.
Contextual Factorization (CF). Instead of forming each
head’s query, key, or value via a single linear map, TPA
factorizes each Qt,Kt,Vt into a sum of (contextual) tensor
products whose ranks are Rq , Rk, and Rv , respectively and
may differ. Specifically, for each token t, with a small abuse
of notation, we define:

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ bQ
r (xt), (3.1)

Kt =
1

RK

RK∑
r=1

aKr (xt) ⊗ bK
r (xt), (3.2)

Vt =
1

RV

RV∑
r=1

aVr (xt) ⊗ bV
r (xt), (3.3)

where aQr (xt),a
K
r (xt),a

V
r (xt) ∈ Rh,

bQ
r (xt),b

K
r (xt),b

V
r (xt) ∈ Rdh . Hence, for queries, each

tensor product aQr (xt) ⊗ bQ
r (xt) : Rh × Rdh → Rh×dh

adds up to form the query slice Qt ∈ Rh×dh . Similarly,
analogous definitions apply to key slice Kt and value slice
Vt.
Latent Factor Maps. Each factor in the tensor product
depends on the token’s hidden state xt. For example, for
queries, we can write:

aQr (xt) = W aQ

r xt ∈ Rh, bQ
r (xt) = W bQ

r xt ∈ Rdh ,

and similarly for keys and values.
One often merges the rank index into a single output dimen-
sion. For instance, for queries:

aQ(xt) = W aQ

xt ∈ RRq·h, bQ(xt) = W bQ xt ∈ RRq·dh ,

which are then reshaped into AQ(xt) ∈ RRq×h and
BQ(xt) ∈ RRq×dh . Summing over Rq and scaled by 1

Rq

yields

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh .

Repeating for all tokens reconstitutes Q ∈ RT×h×dh . Simi-
lar procedures can be applied to obtain K and V with ranks
Rk and Rv , respectively.

3
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Scaled Dot-Product Attention. Once Q,K,V are fac-
torized, multi-head attention proceeds as in standard Trans-
formers. For each head i ∈ {1, . . . , h}:

headi = Softmax
(

1√
dh

Qi (Ki)
⊤
)
Vi, (3.4)

where Qi,Ki,Vi ∈ RT×dh are the slices along the head di-
mension. Concatenating these h heads along the last dimen-
sion yields an RT×(h·dh) tensor, which is projected back to
RT×dmodel by an output weight matrix WO ∈ R(h·dh)×dmodel :

TPA(Q,K,V) = Concat
(
head1, . . . ,headh

)
WO.

(3.5)

Parameter Initialization. We initialize the weight matrices
W aQ

r , W aK

r , W aV

r , W bQ

r , W bK

r , W bV

r using Xavier ini-
tialization (Glorot & Bengio, 2010). Specifically, each entry
of the weight matrix is drawn from a uniform distribution
with bounds [−

√
6/(nin + nout),

√
6/(nin + nout)], where

nin and nout are the input and output dimensions of the re-
spective weight matrices. This initialization strategy helps
maintain the variance of activations and gradients across the
network.

3.2 RoPE Compatibility and Acceleration

In a typical workflow of adding RoPE to standard multi-
head attention, one first computes Qt,Ks ∈ Rh×dh of the
t-th token and s-th token and then applies:

Qt 7→ Q̃t = RoPEt(Qt), Ks 7→ K̃s = RoPEs(Ks).

Direct Integration. A useful optimization is to integrate
RoPE directly into the TPA factorization. For example, one
can pre-rotate the token-dimension factors:

B̃K(xt) ←− RoPEt

(
BK(xt)

)
, (3.6)

yielding a pre-rotated key representation:

K̃t =
1

RK

RK∑
r=1

aK(r)(xt)⊗ RoPEt

(
bK
(s)(xt)

)
=

1

RK
AK(xt)

⊤ RoPEt

(
BK(xt)

)
.

Thus, each Kt is already rotated before caching, removing
the need for explicit rotation at the decoding time and accel-
erating autoregressive inference. Depending on hardware
and performance requirements, one can also adopt different
RoPE integration approaches for training and inference.

Theorem 1 (RoPE’s Compatibility with TPA). Let Qt be
factorized by TPA as

Qt =
1

RQ
AQ(xt)

⊤ BQ(xt) ∈ Rh×dh ,

where AQ(xt) ∈ RRQ×h and BQ(xt) ∈ RRQ×dh . Then
we have:

RoPE(Qt) =
1

RQ
AQ(xt)

⊤ B̃Q(xt), (3.7)

where B̃Q(xt) = RoPEt

(
BQ(xt)

)
. In addition, as-

sume Qt and Ks are factorized by TPA and then ro-
tated by RoPEt,RoPEs. Let Q̃t = RoPEt(Qt) and
K̃s = RoPEs(Ks). Then we have

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality
implies:

RoPEt−s

(
qt,i

)⊤
ks,i = q̃⊤

t,i k̃s,i.

where qt,i ∈ Rdh is the i-th query head of t-th token, and
ks,i ∈ Rdh is the j-th key head of s-th token, and

q̃t,i = RoPE(qt,i) = Ttqt,i ∈ Rdh

k̃s,i = RoPE(ks,i) = Tsks,i ∈ Rdh .

Theorem 1 indicates that TPA does not break RoPE’s rel-
ative translational property. We prove Theorem 1 in Ap-
pendix C.1. In short, RoPEt acts as a block-diagonal orthog-
onal transform (i.e., a matrix Tt) on BQ(xt). Consequently,
AQ(xt) remains unchanged, while each column of BQ(xt)
is rotated appropriately, preserving the TPA structure.

3.3 KV Caching and Memory Reduction

In autoregressive decoding, standard attention caches
Kt,Vt ∈ Rh×dh for each past token t. This accumulates to
RT×h×dh for keys and RT×h×dh for values, i.e., 2T h dh
total.
TPA Factorized KV Caching. Instead of storing the full Kt

and Vt, TPA stores only their factorized ranks. Specifically,
we keep

AK(xt), B̃K(xt) and AV (xt), BV (xt),

where AK(xt) ∈ RRK×h, B̃K(xt) ∈
RRK×dh , AV (xt) ∈ RRV ×h, BV (xt) ∈ RRV ×dh .
Hence, the memory cost per token is

RK(h+ dh)︸ ︷︷ ︸
for K

+ RV (h+ dh)︸ ︷︷ ︸
for V

= (RK +RV )
(
h+ dh

)
.

Compared to the standard caching cost of 2h dh, the ratio
is:

(RK +RV ) (h+ dh)

2h dh
.

For large h and dh (typically dh = 64 or 128), setting
RK , RV ≪ h (e.g., rank 1 or 2) often yields 10× or more
reduction.

4
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Table 1. Comparison of different attention mechanisms. Here, RQ, RK , and RV denote the ranks for queries, keys, and values in TPA,
respectively. Variants of TPA, such as TPA (KVonly), TPA (Non-contextual A), and TPA (Non-contextual B), are detailed in Section F.
For MLA, dRh and dh are the dimensions for RoPE and non-RoPE parts; d′c and dc are the dimensions of compressed vectors for query
and key-value, respectively.

METHOD KV CACHE # PARAMETERS # QUERY HEADS # KV HEADS

MHA 2hdh 4d2model h h
MQA 2dh (2 + 2/h)d2model h 1
GQA 2gdh (2 + 2g/h)d2model h g

MLA dc + dRh
d′c(dmodel + hdh + hdRh )

+dmodeld
R
h + dc(dmodel + 2hdh) h h

TPA (RK +RV )(h+ dh) dmodel(RQ +RK +RV )(h+ dh) + dmodel hdh h h
TPA (KVonly) (RK +RV )(h+ dh) dmodel(RK +RV )(h+ dh) + 2dmodel hdh h h

TPA (Non-contextual A) (RK +RV )dh (RQ +RK +RV )(dmodeldh + h) + dmodel hdh h h
TPA (Non-contextual B) (RK +RV )h (RQ +RK +RV )(dmodelh+ dh) + dmodel hdh h h

3.4 Unifying MHA, MQA, and GQA as
Non-contextual TPA

3.4.1 MHA AS NON-CONTEXTUAL TPA

Standard multi-head attention (MHA) can be viewed as a
specific instance of TPA in which: 1) the rank is set equal
to the number of heads; 2) the head dimension factor is non-
contextual (i.e., independent of the t-th token embedding
xt ∈ Rdmodel ); 3) the token dimension factor is a linear
function of xt.
To match MHA with TPA, let RQ = RK = RV = h.
Focusing on Qt:

(a) Non-contextual head factors. Define

aQi = RQei ∈ Rh, (3.8)

where ei ∈ Rh is the i-th standard basis vector, so that
ei ⊗ · corresponds to the i-th head of Qt.

(b) Contextual token factors. Define

bQ
i (xt) = (WQ

i )⊤xt ∈ Rdh , (3.9)

where WQ
i ∈ Rdmodel×dh is the per-head query projec-

tion defined before, hence bQ
i (xt) dependent on xt.

Substituting (3.8)–(3.9) into (3.1) gives:

Qt =

h∑
i=1

[
ei ⊗

(
(WQ

i )⊤ xt

)]
∈ Rh×dh . (3.10)

Each term ei⊗
(
(WQ

i )⊤xt

)
in (3.10) contributes only to the

i-th row, reconstituting the usual MHA form of Qt. Anal-
ogous constructions hold for Kt and Vt using WK

i ,W V
i .

Thus, MHA is a non-contextual, full-rank variant of TPA.
TPA with Non-contextual A. More broadly, TPA
can use non-contextual head-dimension factors
aQr ,a

K
r ,aVr ∈ Rh (i.e., independent of xt), while allowing

bQ
r (xt),b

K
r (xt),b

V
r (xt) to remain context-dependent.

Then, for keys:

Kt =
1

RK

RK∑
r=1

aKr ⊗ bK
r (xt),

and similarly for queries/values. This reduces per-token
computations and can be effective when head-dimension
relationships are relatively stable across all tokens.
MQA and GQA as Non-Contextual TPA. Multi-Query
Attention (MQA) (Shazeer, 2019) and Grouped Query At-
tention (GQA) (Ainslie et al., 2023)6 also emerge naturally
from TPA by restricting the head-dimension factors to be
non-contextual and low-rank:

• MQA as Rank-1 TPA. In MQA, all heads share a single
set of keys/values, corresponding to RK = RV = 1 along
the head dimension. Concretely,

Kt = (1, . . . , 1)⊤ ⊗ bK(xt),

Vt = (1, . . . , 1)⊤ ⊗ bV (xt),

forces every head to use the same Kt,Vt. Each head
retains a distinct query projection, matching the MQA
design.

• GQA as Grouped Rank-1 TPA. GQA partitions h heads
into G groups, each sharing keys/values within that group.
In TPA form, each group g has a dedicated non-contextual
factor pair aKg ,aVg ∈ Rh, which acts as a “mask” for the
heads in that group. Varying G from 1 to h interpolates
from MQA to standard MHA.

Hence, by constraining TPA’s head-dimension factors to be
constant masks (one for MQA; multiple for GQA), these
popular variants are recovered as special cases.

3.5 Computational Cost.

For a detailed analysis of the computational cost of TPA,
please refer to Appendix A, which shows that the training

6The original definitions of MQA and GQA are presented in
Appendix E.1 and E.2, respectively.
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and inference flops of TPA with optimized implementa-
tion (without materializing Q, K, and V) are smaller than
MHA, GQA, and MLA. Specifically, when we set Rq = 6,
Rk = Rv = 2 (our default setting), TPA is 10× or more
faster on calculating QK⊤ than MLA during inference (see
Appendix A.8).

3.6 Model Architectures

We propose a new architecture called Tensor ProducT
ATTenTion Transformer (T6), which uses our Tensor Prod-
uct Attention (TPA) in place of standard MHA (multi-head
attention) or GQA (grouped-query attention). Building upon
the query, key, and value tensors Q,K,V ∈ RT×h×dh de-
fined in Section 3.1, T6 utilize the overall architecture of
LLaMA (Touvron et al., 2023) while changing the self-
attention block to our TPA-based version. The feed-forward
network (FFN) adopts a SwiGLU layer, as in (Shazeer, 2020;
Touvron et al., 2023).
TPA QKV Factorization. Let each token’s hidden-
state vector be xt ∈ Rdmodel , and we follow Sec-
tion 3.1 to project the entire sequence into three tensors
Q,K,V ∈ RT×h×dh , where Qt, Kt, Vt ∈ Rh×dh

denote the slices for the t-th token. The factor components
aQr (xt),b

Q
r (xt),a

K
r (xt),b

K
r (xt),a

V
r (xt),b

V
r (xt) are

produced by linear transformations on xt. For instance,
letting W aQ

r ∈ Rh×dmodel and W bQ

r ∈ Rdh×dmodel , we have:

aQr (xt) = W aQ

r xt, bQ
r (xt) = W bQ

r xt.

In practice, we merge all ranks r into a single dimension
of the output, reshape, and sum over rank indices; see Sec-
tion 3.1 for details. The factorization for K and V follows
the same pattern.
Rotary Positional Embedding (RoPE). As discussed in
Section 3.2, RoPE (Su et al., 2024) is applied to the Q
and K. Within TPA, we pre-rotate the factor bQ

t (xt) and
bK
s (xs) directly, so that each Ks is already rotated prior to

caching, see (3.6) and Theorem 1.
Attention Step and Output Projection. Once we have
Q,K,V factorized per token with RoPE applied on Q and
K, the attention step proceeds for each head i ∈ {1, . . . , h}
using (3.4). Finally, concatenating these h heads and then
projecting them back using an output weight matrix gives
the final attention result, as shown in (3.5).
SwiGLU Feed-Forward Network. Following Shazeer
(2020); Touvron et al. (2023), our T6 uses a SwiGLU-based
Feed-Forward Network (FFN): FFN(x) =

[
σ(xW1) ⊙

(xW2)
]
W3, where σ is the SiLU (a.k.a., swish) nonlin-

earity, ⊙ is element-wise product, and W1,W2,W3 are
learnable parameters. Note that other activation functions
can also be used.
Overall T6 Block Structure. Putting everything together,

one T6 block consists of:

x ← x+TPA
(
RMSNorm(x)

)
,

x ← x+ SwiGLU-FFN
(
RMSNorm(x)

)
.

We place norm layers (e.g., RMSNorm) before each sub-
layer. Stacking L such blocks yields a T6 model architecture
with L layers.

4 Experiments

4.1 Language Modeling Tasks

All experiments reported in this paper are implemented
on the nanoGPT code base (Karpathy, 2022), using the
FineWeb-Edu 100B dataset (Lozhkov et al., 2024). The
dataset contains 100 billion tokens for training and 0.1 bil-
lion tokens for validation. We compare T6 against the base-
line Llama architecture (Touvron et al., 2023) with SwiGLU
activation (Shazeer, 2020) and RoPE embeddings (Su et al.,
2024), as well as Llama variants that replace Multi-Head
Attention (MHA; Vaswani et al., 2017) with Multi-Query
Attention (MQA; Shazeer, 2019), Grouped Query Attention
(GQA; Ainslie et al., 2023), or Multi-head Latent Attention
(MLA; Liu et al., 2024a). In our experiments, the number
of heads h is adjusted for each attention mechanism to en-
sure that all attention mechanisms have the same number of
parameters as the standard Multi-Head Attention (MHA),
which has 4d2model parameters per attention layer. We train
models at four scales: small (124M parameters), medium
(353M), large (773M), and XL (1.5B). Details on architec-
ture hyperparameters and training hardware are shown in
Appendix G.1.
Training Setup. We follow the nanoGPT training con-
figuration. In particular, we use the AdamW (Loshchilov,
2017) optimizer with (β1, β2) = (0.9, 0.95), a weight de-
cay of 0.1, and gradient clipping at 1.0. We follow the same
setting as nanoGPT that the learning rate is managed by
a cosine annealing scheduler (Loshchilov & Hutter, 2016)
with 2,000 warmup steps and a (total) global batch size of
480. For the small, medium, large and XL models, we set
maximum learning rates of 6× 10−4, 3× 10−4, 2× 10−4,
and 1× 10−4 (respectively), and minimum learning rates of
3× 10−5, 6× 10−5, 1× 10−5, and 1× 10−5 (respectively).
Training & Validation Curves. Figures 2 and 3 com-
pare training and validation loss curves for the medium
(353M), large (773M), and XL (1.5B) models on FineWeb-
Edu-100B. Overall, TPA (red curves) and its simpler vari-
ant TPA-KVonly (pink curves) (see F) converge as fast as
or faster than the baselines (MHA, MQA, GQA, MLA)
while also achieving visibly lower final losses. For in-
stance, in Figure 3(b), TPA and TPA-KVonly remain below
the MHA baseline in terms of validation loss at nearly all
training stages. Meanwhile, Multi-Head Latent Attention
(MLA) (Liu et al., 2024a) (blue curves) generally trains
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more slowly and yields higher losses.
Validation Perplexity. Figure 4 (in the Appendix) shows
the validation perplexities of the medium- and large-scale
models. Mirroring the loss curves, TPA and TPA-KVonly
steadily outperform MHA, MQA, GQA, and MLA over the
course of training. By the end of pretraining (around 49B
tokens), TPA-based approaches achieve the lowest perplexi-
ties in most configurations.
Downstream Evaluation. We evaluate zero-shot and
two-shot performance on standard benchmarks, including
ARC (Yadav et al., 2019), BoolQ (Clark et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2020) and MMLU (Hendrycks et al., 2021), using the
lm-evaluation-harness codebase (Gao et al., 2024).
For ARC-E, ARC-C, HellaSwag, OBQA, PIQA, and SciQ,
we report accuracy norm; for other tasks, we report stan-
dard accuracy. Due to the page limitation, we only display
the zero-shot evaluation results of medium and large mod-
els here in Tables 2 and 3. Zero-shot evaluation of small
and XL models are displayed in Tables 6 and 7 in the ap-
pendix. Moreover, we also present 2-shot evaluation results
in Tables 8, 9, 10 and 11 in the appendix.
For the medium-size (353M) models (Tables 2 and 9), TPA
generally ties or outperforms all competing methods, achiev-
ing, for example, an average of 51.41% in zero-shot mode
versus MHA’s 50.11%, MQA’s 50.44%, and MLA’s 50.13%.
When given two-shot prompts, TPA again leads with 53.12%
average accuracy. A similar trend appears for the large-size
(773M) models (Tables 3), where TPA-KVonly attains the
highest average (53.52% zero-shot). And for the XL size
(1.5B) models (Table 7), TPA-KVonly attains the highest
average (55.03% zero-shot).
Our experiments confirm that TPA consistently matches
or exceeds the performance of established attention mech-
anisms (MHA, MQA, GQA, MLA) across medium and
large model scales. The fully factorized TPA excels on
mid-scale models, while TPA-KVonly can rival or surpass it
at larger scales. In both cases, factorizing the attention ac-
tivations shrinks autoregressive KV cache requirements by
up to 5×–10×, thus enabling much longer context windows
under fixed memory budgets. In summary, tensor product
attention provides a flexible, memory-efficient alternative to
standard multi-head attention, advancing the scalability of
modern language models.

5 Related Work
Transformers and Attention. As a sequence-to-sequence
architecture Transformer (Vaswani et al., 2017) introduced
Multi-Head Attention (MHA), enabling more effective cap-
ture of long-range dependencies. Subsequent work has ex-
plored a variety of attention mechanisms aimed at improving
scalability and efficiency, including sparse patterns (Child

et al., 2019; Shi et al., 2023; Han et al., 2024; Liang et al.,
2024a; Li et al., 2024; Liang et al., 2024b), kernel-based
projections (Choromanski et al., 2021), and linearized trans-
formers (Tsai et al., 2019; Katharopoulos et al., 2020; Schlag
et al., 2021; Zhang et al., 2023b; Sun et al., 2023; Zhang
et al., 2024). To decrease memory usage and circumvent the
limitation of memory bandwidth in training, Shazeer (2019)
proposed Multi-Query Attention (MQA) where multiple
query heads share the same key head and value head. To
tackle with the issue of quality degradation and instability
in training, Grouped-Query Attention (GQA) (Ainslie et al.,
2023) divides queries into several groups, and each group of
queries shares a single key head and value head. Recently,
DeepSeek-V2 (Liu et al., 2024a) applied multihead latent
attention (MLA) to achieve better performance than MHA
while reducing KV cache in inference time by sharing the
same low-rank representation of key and value. Concur-
rently, Hu et al. (2024) proposed Multi-matrix Factorization
Attention (MFA), which can be simply seen as MQA with
low-rank factorized Q. Compared to the approaches above,
TPA applied contextual tensor decompositions to represent
queries, keys, and values activations compactly, achieving
better reduction on the size of KV cache with improved
performance.
KV Cache Optimization. During the inference time of
Transformers, key and value tensors of the previous tokens
are repeatedly computed due to their auto-regressive na-
ture. To enhance efficiency, firstly proposed by Ott et al.
(2019), these tensors can be cached in memory for future
decoding, referred to as the KV cache. However, the KV
cache requires additional memory usage and may add to
more latencies due to the bandwidth limitation (Adnan et al.,
2024). Therefore, previous studies have explored diverse
approaches to mitigate these issues, including KV cache
eviction to discard less significant tokens (Zhang et al.,
2023c; Xiao et al., 2024; Cai et al., 2024; Adnan et al.,
2024), dynamic sparse attention among selected keys and
values (Ribar et al., 2024; Tang et al., 2024; Singhania et al.,
2024), KV cache offloading to CPU (He & Zhai, 2024; Lee
et al., 2024; Sun et al., 2024), as well as quantization of KV
cache (Xiao et al., 2023; Liu et al., 2024c; Hooper et al.,
2024). Different from the methods above, TPA reduces the
size of the KV cache by using tensor-decomposed KV.

6 Conclusion

We introduced Tensor Product Attention (TPA), which fac-
torizes query, key, and value matrices into rank-R tensor
products dependent on the token’s hidden state. Storing
only the factorized key/value components during autoregres-
sive decoding substantially decreases the kv memory size
with improved performance compared with MHA, MQA,
GQA, and MLA. The approach is fully compatible with
RoPE (and can store pre-rotated keys). Variants of TPA in-
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(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)
Figure 2. The training loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention
mechanisms on the FineWeb-Edu 100B dataset.

(a) Medium models (353M) (b) Large models (773M) (c) XL models (1.5B)
Figure 3. The validation loss of medium-size (353M), large-size (773M) as well as XL-size (1.5B) models, with different attention
mechanisms on the FineWeb-Edu 100B dataset.

Table 2. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.51 29.52 59.60 45.68 34.20 68.82 53.43 23.33 76.90 50.11
MQA 57.62 31.91 59.45 45.69 35.40 69.31 53.51 26.47 74.60 50.44
GQA 58.67 31.48 58.29 45.45 35.20 68.50 54.46 24.58 76.50 50.35
MLA 56.65 29.52 57.83 46.05 34.60 69.42 52.80 24.62 79.70 50.13

TPA-KVonly 58.01 30.12 58.01 45.95 35.60 69.10 53.12 25.39 75.10 50.04
TPA (non-ctx-A) 58.96 31.48 59.76 45.07 34.80 69.21 53.59 25.42 76.40 50.52
TPA 58.38 31.57 59.39 46.83 37.00 70.02 54.06 25.52 79.90 51.41

Table 3. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 59.93 33.62 61.93 50.63 36.00 71.06 55.41 22.87 81.20 52.52
MQA 60.73 33.62 57.34 50.09 37.00 69.97 55.49 25.30 79.60 52.13
GQA 61.66 34.30 58.72 49.85 38.40 71.16 53.75 25.23 77.60 52.30
MLA 63.55 32.85 60.95 51.72 38.80 70.51 55.01 24.55 81.90 53.32

TPA-KVonly 63.26 34.13 61.96 50.66 37.20 72.09 55.25 26.06 81.10 53.52
TPA 63.22 35.58 60.03 51.26 36.80 71.44 55.56 24.77 79.60 53.10

clude factorizing only the key/value or sharing basis vectors
across tokens. Overall, TPA offers a powerful mechanism
for compressing KV storage while improving the model per-

formance, thereby enabling longer sequence contexts under
constrained memory.
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Impact Statement
This paper presents work whose goal is to advance the field
of foundation models especially Large Language Models
(LLMs). We believe that our work contributes meaningfully
to the field, specifically on advancing the efficiency in the
inference stage of LLMs by reducing KV cache size. By re-
ducing memory requirements, our method could enable the
deployment of capable language models on more resource-
constrained devices and in broader settings, opening new
avenues for their application in various downstream tasks.
Lower memory usage typically correlates with reduced en-
ergy consumption, potentially decreasing the environmental
footprint of LLM inference. This advancement underscores
the potential of LLMs architecture design in both techno-
logical and societal contexts.

References
Adnan, M., Arunkumar, A., Jain, G., Nair, P., Solovey-

chik, I., and Kamath, P. Keyformer: Kv cache reduction
through key tokens selection for efficient generative in-
ference. Proceedings of Machine Learning and Systems,
6:114–127, 2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. GQA: training generalized
multi-query transformer models from multi-head check-
points. In Bouamor, H., Pino, J., and Bali, K. (eds.), Pro-
ceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singa-
pore, December 6-10, 2023, pp. 4895–4901. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/
2023.EMNLP-MAIN.298. URL https://doi.org/
10.18653/v1/2023.emnlp-main.298.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
PIQA: reasoning about physical commonsense in natural
language. In The Thirty-Fourth AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI
Press, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.
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A Toward Faster Computation Without Materializing Q, K and V

We now explore whether it is possible to compute attention scores QK⊤ of Tensor Product Attention (TPA) directly from
their factorized forms, thereby reducing floating-point operations.

A.1 Single-Head Factorization Setup Without Materializing Q and K

Consider a single head i. Each query vector Q(i)
t ∈ Rdh is factorized (with rank Rq):

Q
(i)
t =

Rq∑
r=1

a
(r)
q,i (xt)b

(r)
q (xt),

and each key vector K(i)
τ ∈ Rdh is factorized (with rank Rk):

K(i)
τ =

Rk∑
s=1

a
(s)
k,i(xτ )b

(s)
k (xτ ).

Their dot-product for tokens t, τ is

[
Q(i) (K(i))⊤

]
t,τ

=

Rq∑
r=1

Rk∑
s=1

a
(r)
q,i (xt) a

(s)
k,i(xτ )

〈
b(r)
q (xt),b

(s)
k (xτ )

〉
. (A.1)

A.2 Multi-Head Case

For multi-head attention with h heads, one repeats the factorization across all heads. The b(r)
q ,b

(s)
k vectors are shared across

heads.

A.3 Complexity Analysis

We compare the cost of standard multi-head attention versus TPA under two scenarios:

1. Naı̈ve: Materialize Q and K from factors, then perform the usual batched GEMM.

2. Specialized: Attempt to compute QK⊤ directly from the rank-(Rq, Rk) factors without explicitly forming Q,K.

Standard Multi-Head Attention. For batch size B and sequence length T :

• Projection cost: O
(
B T d2model

)
or O

(
B T dmodel dh

)
.

• Dot-product: Q (K)⊤ ∈ R(B h)×T×T costs O
(
B T 2 dmodel

)
.

For large T , the O(B T 2 dmodel) term dominates.
TPA: Naı̈ve Implementation.

• Constructing factors: O
(
B T dmodel ×Rq(h+ dh) +Rk(h+ dh) +Rv(h+ dh)

)
.

• Materializing Q,K: O
(
B T (Rq h dh +Rk h dh)

)
.

• Dot-product Q (K)⊤: O
(
B T 2 dmodel

)
.

Typically Rq, Rk, Rv ≪ h, so the overhead of constructing factors is small relative to O(T 2 dmodel). Meanwhile, we still
gain KV caching benefits.
TPA: Specialized Implementation. If we bypass explicitly forming Q,K, each dot product Qt ·Kτ is a double sum over
rank indices. Below we detail its complexity.
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A.4 Complexity Analysis for the Specialized Implementation

Single-Head Complexity. A single attention head of dimension dh. For each query:

Q
(i)
t =

Rq∑
r=1

a
(r)
q,i (xt)b

(r)
q (xt),

and for each key:

K(i)
τ =

Rk∑
s=1

a
(s)
k,i(xτ )b

(s)
k (xτ ).

Their dot product:

Q
(i)
t ·K(i)

τ =

Rq∑
r=1

Rk∑
s=1

[
a
(r)
q,i (xt) a

(s)
k,i(xτ )

] 〈
b(r)
q (xt),b

(s)
k (xτ )

〉
.

For each pair (r, s), we pay:

1. O(1) for multiplying two scalars,

2. O(dh) for the dot product b(r)
q (xt) · b(s)

k (xτ ).

Since (r, s) runs over Rq ×Rk, each token-pair (t, τ) costs roughly

O
(
Rq Rk

(
1 + dh

))
≈ O(Rq Rk dh).

For T queries and T keys, that is O(T 2 Rq Rk dh) for a single head.
Multi-Head and Batches (Reusing b-Dot Products). When extending to h heads, each head i has its own scalar factors
a
(r)
q,i (xt) and a

(s)
k,i(xτ ), but the b-vectors b(r)

q (xt) and b
(s)
k (xτ ) can still be shared across all heads (assuming the same

rank-R factors for every head). Hence, one can split the total cost into two stages:

1. b-Dot-Product Stage:
For each token pair (t, τ) and each rank pair (r, s), compute the dot product〈

b(r)
q (xt), b

(s)
k (xτ )

〉
∈ R.

Since each dot product is O(dh) and there are RqRk rank pairs as well as T 2 token pairs, this stage costs:

O
(
T 2 RqRk dh

)
.

Crucially, these b-dot products need only be computed once and can be cached for reuse by all heads.

2. Per-Head Scalar Multiplications:
After the b-dot products are precomputed (and cached), each head i only needs to multiply each stored dot product by
the corresponding scalars a(r)q,i (xt)a

(s)
k,i(xτ ). Since this scalar multiplication is O(1) per pair, and there are T 2 token

pairs and RqRk rank pairs for each of the h heads, this step costs:

O
(
hT 2 RqRk

)
.

Putting these together, for batch size B, the total cost is

O
(
B T 2 RqRk dh

)
+ O

(
B T 2 hRqRk

)
= O

(
B T 2 RqRk

(
dh + h

))
.

By contrast, the standard multi-head attention dot-product step is O
(
B T 2 h dh

)
. Hence, for the specialized TPA approach

to reduce flops,

RqRk (dh + h) ≤ h dh.

Thus a practical guideline is to ensure RqRk < h dh

dh+h . When that holds, bypassing explicit materialization of Q and K
can be beneficial.
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A.5 Toward Faster Computation Without Materializing Q, K, V

We have explored a two-step procedure for computing QK⊤ directly from factorized queries and keys without materializing
Q or K. Here, we extend this idea to also avoid explicitly forming V. That is, all three activations Q,K,V remain
factorized throughout the attention pipeline. We present a single-head formulation below, and then discuss multi-head and
batch extensions.
Extending the Two-Step Approach to Avoid V Materialization. After we obtain QK⊤, we apply αt,τ =
softmax

(
1√
dh

(QK⊤)t,τ
)
. The final attention output at token t (single head) is

head(t) =

T∑
τ=1

αt,τ Vτ .

Using the factorization Vτ =
∑Rv

u=1 a
(u)
v (xτ )b

(u)
v (xτ ), we write:

head(t) =

T∑
τ=1

αt,τ

Rv∑
u=1

a(u)v (xτ )b
(u)
v (xτ ).

Rearrange sums:

head(t) =

Rv∑
u=1

[ T∑
τ=1

(
αt,τ a

(u)
v (xτ )

)
b(u)
v (xτ )

]
.

We still do not explicitly form Vτ . Instead:

Stage 1: Calculating b
(u)
v (xτ ) for all tokens. We simply observe that each output head(t) can be computed by summing

vectors b(u)
v (xτ ) ∈ Rdh weighted by αt,τ a

(u)
v (xτ ). The complexity for constructing b

(u)
v (xτ ) ∀u, τ is O(T Rv dh).

Stage 2: Weighted Summation by αt,τ a
(u)
v (xτ ). For each token t, the final attention head output is

T∑
τ=1

αt,τ

Rv∑
u=1

a(u)v (xτ )b
(u)
v (xτ ) =

Rv∑
u=1

[ T∑
τ=1

(
αt,τ a

(u)
v (xτ )

)
b(u)
v (xτ )

]
.

We still never explicitly materialize V. Instead, for each pair (t, u), we must accumulate the sum of T vectors b(u)
v (xτ ) ∈

Rdh , each scaled by the scalar αt,τ a
(u)
v (xτ ). Because each vector is dh-dimensional, each (t, u) summation costs O(T dh).

Summed over t = 1 . . . T and u = 1 . . . Rv, the total work is O(T 2 Rv dh) for the entire sequence.

In practice, one precomputes all b(u)
v (xτ ) for τ = 1 . . . N , so each accumulation can be implemented as a simple “scalar-

times-vector add” in a tight loop. This cost is usually smaller than the QK⊤ factorized cost if Rv ≪ dh.

A.6 Overall Complexity for Single-Head

Combining the four bullet-point stages from above (ignoring smaller overheads like the softmax) yields:

(i) QK b-Dot Product Stage: O(T 2 Rq Rk dh).

(ii) QK Scalar-Multiply Stage: O(T 2 Rq Rk).

(iii) Computing b
(u)
v (xτ ) for all tokens: O(T Rv dh).

(iv) Weighted Summation by αt,τ a
(u)
v (xτ ): O(T 2 Rv dh).

Hence, for a single head, the total cost is:

O
(
T 2 Rq Rk dh + T 2 Rq Rk + T Rv dh + T 2 Rv dh

)
.

In many cases (especially for large T ), the O(T 2) terms dominate, so one often focuses on

O
(
T 2 Rq Rk dh + T 2 Rq Rk + T 2 Rv dh

)
.
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A.7 Multi-Head and Batch Extensions (Reuse of b-Dot Products)

When extending to h heads and batch size B, all sequence-length-dependent terms are multiplied by ∼ B h. However,
crucial b-dot products can be shared across heads:

QK b-Dot Products. Since each head has distinct scalar factors aq,i, ak,i but the same b
(r)
q , b

(s)
k across heads, each

pairwise dot product

⟨b(r)
q (xt), b

(s)
k (xτ )⟩

is computed just once per batch. That cost remains

O
(
B T 2 Rq Rk dh

)
,

not multiplied by h. After caching these dot products, each of the h heads pays O
(
B T 2 hRq Rk

)
total for the head-specific

scalar multiplications (the “αt,τ”–like factors).

V b-Evaluations. Likewise, the b
(u)
v factors are shared across heads (i.e. one set of bv-vectors for all heads). Hence,

computing all b(u)
v (xτ ) for τ = 1 . . . T (across the batch) is a one-time cost:

O
(
B T Rv dh

)
.

Then each head i has its own scalar factors a
(u)
v,i (xτ ), so the final accumulation

∑T
τ=1 αt,τ a

(u)
v,i (xτ )b

(u)
v (xτ ) costs

O
(
B T 2 hRv dh

)
in total (for all t, u).

Putting it all together, the total flops for multi-head attention with batch size B are:

O
(
B T 2 Rq Rk dh

)︸ ︷︷ ︸
QK b-dot products

(shared across heads)

+ O
(
B T 2 hRq Rk

)︸ ︷︷ ︸
per-head QK scalar mult.

+ O
(
B T Rv dh

)︸ ︷︷ ︸
Compute bv for all tokens

(shared across heads)

+ O
(
B T 2 hRv dh

)︸ ︷︷ ︸
final accumulations

(per head)

.

Discussion. By contrast, standard multi-head attention typically requires O
(
B T 2 h dh

)
flops for the QK⊤ dot product

(plus a similar O
(
B T 2 h dh

)
for multiplying by V). The factorization can yield savings provided RqRk ≪ h (for QK) and

Rv ≪ h (for V), though actual speedups depend on how well these multi-stage kernels are implemented and on hardware
efficiency. By retaining Q,K, and V in factorized form, one can forgo the usual steps:

xt 7→ Qt, Kτ 7→ (QK⊤) 7→ softmax(QK⊤)V 7→ final output.

Instead, the large Q,K,V tensors (of size T × dh) are never materialized. The cost is replaced by rank-based b-dot-product
computations plus per-head scalar multiplications. The main challenge is to keep the factor ranks (Rq, Rk, Rv) sufficiently
small relative to dh and to implement the necessary multi-stage kernels efficiently. When Rq, Rk, Rv ≪ h, fully factorized
QKV attention can yield substantial gains in both computation and memory footprint.

A.8 Decoding Speed during Inference Time of MHA, MQA, GQA, MLA, and TPA

Suppose we are in an autoregressive setting, decoding the current token xT given cached keys and values (KV) from all
previous tokens x1, . . . ,xT−1. For each attention head i ∈ {1, . . . , h}, we store Ki ∈ RT×dh ,Vi ∈ RT×dh . Below, we
compare the flops needed by MHA, MQA, GQA, MLA, and TPA to compute the next-token logits during inference.
MHA, MQA, and GQA. Despite sharing or grouping keys/values in MQA and GQA, the decoding cost for MHA, MQA,
and GQA remains of the same order. Specifically, for each head i, we compute:

Qi(xT ) ∈ Rdh , Ki ∈ RT×dh , Qi(xT )K
⊤
i ∈ R1×T , and Softmax

(
Qi(xT )K

⊤
i

)
Vi ∈ Rdh .

Hence, the flops scale linearly in h, dh, and T . For example, forming Qi(xT )K
⊤
i for each head i costs roughly O(h dh T ).

MLA. During inference, MLA can be seen as MQA but uses a larger head dimension to accommodate both RoPE
and compressed representations (e.g., d′h = drope + dc). In typical configurations, drope + dc can be significantly larger
(e.g., d′h = 576 rather than dh = 64 or 128), thus inflating the dot-product cost by roughly 4.5× to 9× compared to
MHA/MQA/GQA.
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TPA. Recall that TPA factorizes Q and K into rank-(Rq, Rk) terms (see Section A), potentially avoiding large Q,K
materializations. At inference, TPA’s dot-product cost can be broken into two parts:

Rq Rk dh T︸ ︷︷ ︸
QK b-dot products (shared across all heads)

+ 2 Rq Rk hT︸ ︷︷ ︸
per-head scalar multiplications

,

where T is the current sequence length. For concrete values dh = 128, h = 64, Rq = 8, and Rk = 2 (or Rq = 16, Rk = 1),
we obtain:

MHA, MQA, GQA: 128× 64× T = 8192T,

MLA: 576× 64× T = 36,384T,

TPA:
(
8× 2× 128× T

)
+

(
2× 8× 2× 64× T

)
= 4096T.

Thus, in this setup, TPA can significantly reduce the flops needed for computing the Q(xT )K
⊤ operation at each

decoding step. The actual end-to-end wall-clock speedup also depends on kernel fusion, caching strategies, and hardware
implementation details, but the factorized formulation offers a pathway to more efficient decoding than standard attention.

B Higher-Order Tensor Product Attention
All prior discussions have focused on a second-order factorization in which each rank-RQ (and similarly RK , RV )
component is the outer product of two vectors: one in Rh (the “head” dimension) and one in Rdh . We now generalize this
by introducing an additional latent factor, yielding a third-order (or higher) factorization reminiscent of canonical polyadic
(CP) decomposition. Concretely, for a single token t, we write

Qt =
1

RQ

RQ∑
r=1

aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
,

where the newly introduced factor cQr (xt) ∈ Rdc can be viewed as a learnable gate or modulation term. Analogous
expansions apply to Kt and Vt. In practice, these triple (or higher-order) products still collapse into a matrix in Rh×dh .
One straightforward way to achieve this collapse is to split the feature dimension dh such that db × dc = dh,

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , vec

(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rdh .

This additional factor can enhance expressiveness without necessarily increasing the base rank. Conceptually, it can act as
a learnable nonlinearity or gating mechanism. One could also tie or share cQr across queries, keys, and values, to reduce
parameter overhead.
A similar setup holds for keys (with rank RK) and values (with rank RV ). Although this extra dimension adds to the
parameter count, it can reduce the required rank to achieve a certain level of representational power.
From a memory perspective, higher-order TPA still leverages factorized KV caching: only the factors a(xt),b(xt), and
c(xt) for each past token are cached. As usual, a trade-off arises between model capacity and the overhead of memory and
computing. Nonetheless, moving from a rank-

(
RQ, RK , RV

)
matrix factorization to a higher-order tensor decomposition

can provide additional flexibility and increased capacity.

B.1 RoPE Compatibility in Higher-Order TPA

Rotary positional embeddings (RoPE) remain compatible even under higher-order factorizations. In second-order TPA,
RoPE can be treated as an invertible blockwise linear map acting on the last dimension of Qt or Kt. The same argument
carries over when a third factor cQr (xt) is present. Suppose RoPE acts on the bQ

r (xt) portion (of dimension size db), we
have the following theorem.

Theorem 2 (RoPE Compatibility in Higher-Order TPA). Consider the higher-order (3-order) Tensor Product Attention
(TPA) query factorization

Qt =
1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
bQ
r (xt)⊗ cQr (xt)

)
∈ Rh×dh ,
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where aQr (xt) ∈ Rh, bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dc = dh

db
. Define the RoPE-transformed query as Q̃t =

RoPEt

(
Qt

)
= QtTt, where

Tt = Rt ⊗ Idc
=


Rt · · · 0 0
0 Rt · · · 0
...

...
. . .

...
0 0 · · · Rt

 ∈ Rdh×dh ,

and Rt ∈ Rdb×db (db ∈ Z+ is even) is a block-diagonal matrix composed of 2× 2 rotation matrices:

Rt =



cos(tθ1) − sin(tθ1)
sin(tθ1) cos(tθ1)

cos(tθ2) − sin(tθ2)
sin(tθ2) cos(tθ2)

. . .
cos(tθdb/2) − sin(tθdb/2)
sin(tθdb/2) cos(tθdb/2)


,

for t ∈ {1, . . . , T} and j ∈ {1, . . . , db/2}.
This construction ensures that RoPE rotates only the coordinates corresponding to bQ

r (xt) while leaving cQr (xt) unchanged.
Under these conditions, the RoPE-transformed query RoPEt

(
Qt

)
admits a higher-order TPA factorization of the same rank

RQ. Specifically, we have

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
b̃Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
, (B.1)

where b̃Q
r (xt) = Rtb

Q
r (xt).

Please see Appendix C.2 for the proof. For fourth-order or higher, this result still holds.

C Proofs of Theorems

C.1 Proof of Theorem 1

Proof. Because RoPE is a linear orthogonal transform, we can write

Q̃t = Qt Tt =
1

RQ

(
AQ(xt)

⊤ BQ(xt)
)
Tt =

1

RQ
AQ(xt)

⊤(BQ(xt)Tt

)
,

where Tt is the block-diagonal matrix encoding RoPE. This allows us to define

B̃Q(xt) = BQ(xt)Tt,

thereby obtaining

RoPE(Qt) =
1

RQ
AQ(xt)

⊤B̃Q(xt).

Similarly, for the key tensor Ks, we have

K̃s = Ks Ts =
1

RK

(
AK(xs)

⊤ BK(xs)
)
Ts =

1

RK
AK(xs)

⊤(BK(xs)Ts

)
,

which defines

B̃K(xs) = BK(xs)Ts,
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and thus

RoPE(Ks) =
1

RK
AK(xs)

⊤B̃K(xs).

Now, consider the product of the rotated queries and keys:

Q̃t K̃
⊤
s =

1

RQRK

(
AQ(xt)

⊤B̃Q(xt)
)(

AK(xs)
⊤B̃K(xs)

)⊤

=
1

RQRK
AQ(xt)

⊤B̃Q(xt)B̃K(xs)
⊤AK(xs),

Since Tt and Ts encode positional rotations, the product TtT
⊤
s corresponds to a relative rotation Tt−s. Therefore, we can

express the above as

Q̃t K̃
⊤
s =

1

RQRK
AQ(xt)

⊤ (
BQ(xt)TtT

⊤
s BK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (
BQ(xt)Tt−sBK(xs)

⊤)AK(xs)

=
1

RQRK
AQ(xt)

⊤ (BQ(xt)Tt−s)
(
BK(xs)

⊤AK(xs)
)

=

(
1

RQ
AQ(xt)

⊤BQ(xt)Tt−s

)(
1

RK
AK(xs)

⊤BK(xs)

)⊤

,

This shows that

RoPEt−s(Qt)K
⊤
s = Q̃t K̃

⊤
s ,

Focusing on individual heads i, the above matrix equality implies:

RoPEt−s(qt,i)
⊤ks,i = q̃⊤

t,ik̃s,i,

where

q̃t,i = RoPE(qt,i) = Ttqt,i ∈ Rdh , k̃s,i = RoPE(ks,i) = Tsks,i ∈ Rdh .

This equality confirms that the relative positional encoding between queries and keys is preserved under TPA’s factorization
and RoPE’s rotation. Thus, TPA maintains compatibility with RoPE. This completes the proof of Theorem 1.

C.2 Proof of Theorem 2

Proof. We begin by observing that each term aQr (xt) ⊗ vec
(
bQ
r (xt) ⊗ cQr (xt)

)
is an element of Rh ⊗ Rdh . Here,

bQ
r (xt) ∈ Rdb , cQr (xt) ∈ Rdc , with dc =

dh

db
. Consequently, the tensor product bQ

r (xt)⊗ cQr (xt) forms a db × dc matrix,
and its vectorization lies in Rdb·dc = Rdh .
Applying the RoPE transformation to a single summand yields

vec
(
bQ
r (xt)⊗ cQr (xt)

)
7→ Tt vec

(
bQ
r (xt)⊗ cQr (xt)

)
.

Since Tt is defined as the Kronecker product Rt ⊗ Idc
, where Rt ∈ Rdb×db and Idc

is the identity matrix of size dc × dc, it
follows that

Tt vec
(
bQ
r (xt)⊗ cQr (xt)

)
= vec

(
Rtb

Q
r (xt)⊗ cQr (xt)

)
.

This is because the Kronecker product with an identity matrix effectively applies the rotation Rt to the bQ
r (xt) component

while leaving cQr (xt) unchanged.
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Therefore, the RoPE transformation of a single summand becomes

RoPEt

(
aQr (xt)⊗ vec

(
bQ
r (xt)⊗ cQr (xt)

))
= aQr (xt)⊗ vec

(
Rtb

Q
r (xt)⊗ cQr (xt)

)
.

Importantly, this transformation does not mix the components bQ
r (xt) and cQr (xt); it solely rotates bQ

r (xt) via Rt.
Summing over all ranks r = 1, . . . , RQ, we obtain

1

RQ

RQ∑
r=1

aQr (xt)⊗ vec
(
Rtb

Q
r (xt)⊗ cQr (xt)

)
= RoPEt

(
Qt

)
,

which retains the same higher-order TPA structure with rank RQ.
Thus, the RoPE transformation is fully compatible with higher-order TPA, preserving the factorization rank and maintaining
the structure by only rotating the bQ

r (xt) components while leaving cQr (xt) unchanged.

D More Related Works

Low-Rank Factorizations. Low-rank approximations have been applied to compress model parameters and reduce complex-
ity including LoRA (Hu et al., 2022), which factorizes weight updates during fine-tuning, and its derivatives for other training
scenarios such as efficient pretraining (ReLoRA (Lialin et al., 2023), MoRA (Jiang et al., 2024)), long-context training
(LongLoRA (Chen et al., 2024), SinkLoRA (Zhang, 2024)), as well as continual training (InfLoRA (Liang & Li, 2024),
GS-LoRA (Zhao et al., 2024), I-LoRA (Ren et al., 2024)). These approaches typically produce static low-rank expansions
that do not explicitly depend on the input context. And Malladi et al. (2023); Zeng & Lee (2024) provided theoretical proof
of the expressiveness of low-rank approximation. For the initialization of factorization matrices, OLoRA (Büyükakyüz,
2024) applied QR-decomposition of pretrained weight to achieve better performance of language models while LoLDU (Shi
et al., 2024) used LDU-decomposition to accelerate training of LoRA. Moreover, AdaLoRA (Zhang et al., 2023a) utilized
Singular Value Decomposition (SVD) of the pretrained weight and introduced importance score for each parameter as a
measurement to achieve dynamic adjustment of rank. TPA, by contrast, constructs Q, K, and V as contextually factorized
tensors, enabling dynamic adaptation.

E More on Attention Mechanisms

E.1 Multi-Query Attention (MQA)

Multi-Query Attention (MQA) (Shazeer, 2019) significantly reduces memory usage by sharing keys and values across
heads, while still preserving unique query projections. For a sequence of embeddings X ∈ RT×dmodel ,

Qi = XWQ
i , Kshared = XWK

shared, Vshared = XW V
shared.

Hence, each head i only has a distinct query Qi ∈ RT×dh , but shares the same key Kshared ∈ RT×dh and value Vshared ∈
RT×dh . In practice, this means:

WQ
i ∈ Rdmodel×dh , WK

shared,W
V
shared ∈ R dmodel×dh .

The resulting MQA operation is:

MQA(X) = Concat
(

head1, . . . ,headh

)
WO,

where

headi = Attention
(
Qi,Kshared,Vshared

)
.

By sharing these key and value projections, MQA cuts down on memory usage (especially for the key-value cache in
autoregressive inference) but loses some expressivity since all heads must rely on the same key/value representations.
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E.2 Grouped Query Attention (GQA)

Grouped Query Attention (GQA) (Ainslie et al., 2023) generalizes MHA and MQA by grouping heads. Specifically, we
partition the h total heads into G groups. Each group has a single set of keys and values, but each individual head within
that group still retains its own query projection. Formally, if g(i) maps a head i ∈ [h] to its group index g ∈ [G], then:

Kg(i) = XWK
g(i), Vg(i) = XW V

g(i), Qi = XWQ
i ,

and

headi = Attention
(
Qi,Kg(i),Vg(i)

)
.

Again, WK
g ,W V

g ∈ Rdmodel×dh for each group g, and WQ
i ∈ R dmodel×dh for each head i. The complete output is again a

concatenation of all heads:
GQA(X) = Concat

(
head1, . . . , headh

)
WO.

By adjusting G between 1 and h, GQA can interpolate between sharing all key/value projections across heads (i.e., MQA)
and having one set of projections per head (i.e., MHA).

E.3 Multi-head Latent Attention (MLA)

Below, we briefly outline the Multi-head Latent Attention (MLA) approach used by DeepSeek-V2 (Liu et al., 2024a) and
DeepSeek-V3 (Liu et al., 2024b). MLA introduces a low-rank compression of the keys and values to reduce the Key-Value
(KV) caching cost at inference.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV WUK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV WUV ,

where WDKV ∈ R dmodel×dc ,WUK ∈ Rdc×dhh,WKR ∈ Rdmodel×dR
h ,WUV ∈ Rdc×dhh, and CKV ∈ RT×dc is the

compressed KV latent (with dc ≪ dhh), and RoPE(·) represents the RoPE transform applied to the separate key embeddings
KR of dimension dRh . Thus, only CKV and KR need to be cached, reducing KV memory usage while largely preserving
performance compared to standard MHA (Vaswani et al., 2017).
MLA also compresses the queries, lowering their training-time memory footprint:

CQ = XWDQ,

Concat
(
QC

1 ,Q
C
2 , . . . ,Q

C
h

)
= QC = CQWUQ,

Concat
(
QR

1 , Q
R
2 , . . . , Q

R
h

)
= QR = RoPE

(
CQWQR

)
,

Q = Concat
(
QC ,QR

)
.

where WDQ ∈ R dmodel×d′
c ,WUQ ∈ R d′

c×dhh,WQR ∈ Rd′
c×dR

h h. Here, CQ ∈ RT×d′
c (with d′c ≪ dhh) is the compressed

query latent. As above, each WDQ, WUQ, and WQR connects these lower-dimensional query latents back to h heads of
dimension dh + dRh .
Given compressed queries, keys, and values, the final attention output for the t-th token is:

Oi = Softmax
(

QiK
⊤
i√

dh+dR
h

)
VC

i ,

U = Concat
(
O1,O2, . . . ,Oh

)
WO,

where WO ∈ R(dhh)× dmodel is the output projection.
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In inference time, CKV and KR can be cached to accelerate decoding. In detail, when RoPE is ignored, the inner product
q⊤
t,iks,i (where qt,i,ks,i ∈ Rd) of the i-th head between t-th and s-th tokens can be calculated using the hidden state

xt ∈ Rdmodel for t-th token and the cached latent state cKV
s ∈ Rdc for s-th token:

q⊤
t,iks,i = [(WUQ

i )⊤(WDQ
i )⊤xt]

⊤[(WUK
i )⊤cKV

s ] (E.1)

= x⊤
t [W

DQ
i WUQ

i (WUK
i )⊤]cKV

s , (E.2)

where W
(·)
i is the i-th head of the original weight, and [WDQ

i WUQ
i (WUK

i )⊤] can be computed previously for faster
decoding. However, this process fails when RoPE is considered according to (Su, 2024). Since RoPE can be considered as
multiplication with a block-diagonal matrix Tt ∈ Rdh×dh (see Section 2.3), with the property (2.1) that TtT

⊤
s = Tt−s,

then

q⊤
t,iks,i = [Tt

⊤(WUQ
i )⊤(WDQ

i )⊤xt]
⊤[Ts

⊤(WUK
i )⊤cKV

s ]

= x⊤
t [W

DQ
i WUQ

i Tt−s(W
UK
i )⊤]cKV

s .
(E.3)

Different from (E.2), acceleration by pre-computing [WDQ
i WUQ

i Tt−s(W
UK
i )⊤] fails since it varies for different (t, s)

position pairs. Therefore, MLA adds the additional kR
t part with a relatively smaller size for RoPE compatibility. In Section

3.2, we will show that TPA addresses the issue of RoPE-incompatibility by applying tensor product.

CKV = XWDKV ,

Concat
(
KC

1 ,K
C
2 , . . . ,K

C
h

)
= KC = CKV WUK ,

KR = RoPE
(
XWKR

)
,

Ki = Concat
(
KC

i ,K
R
)
,

Concat
(
VC

1 ,V
C
2 , . . . ,V

C
h

)
= VC = CKV WUV ,

E.4 Multi-matrix Factorization Attention (MFA)

Hu et al. (2024) proposed Multi-matrix Factorization Attention (MFA), which can be seen as Multi-Query Attention (MQA)
with dimension of each head equals dC , and low-rank factorized Q:

Qi = XWDQWUQ
i , Kshared = XWK

shared, Vshared = XW V
shared,

where

WDQ ∈ Rdmodel×dc , WUQ
i ∈ Rdc×dc , WK

shared,W
V
shared ∈ R dmodel×dc .

F Other Variants of TPA

TPA with Non-contextual B. Conversely, one may fix the token-dimension factors bQ
r ,b

K
r ,bV

r ∈ Rdh as learned
parameters, while allowing aQr (xt),a

K
r (xt),a

V
r (xt) to adapt to xt. For keys:

Kt =
1

RK

RK∑
r=1

aKr (xt)⊗ bK
r ,

and similarly for values. This arrangement is effective if the token-dimension structure remains mostly uniform across the
sequence, while the head-dimension factors capture context.
TPA KV Only. One can preserve a standard query mapping,

Qt = WQ xt ∈ Rh×dh ,

and factorize only the keys and values. This leaves the query projection as the original linear transformation while reducing
memory usage via factorized KV caching.
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TPA KV with Shared B. Another variant is to share the token-dimension factors of keys and values:

bK
r (xt) = bV

r (xt),

lowering parameter counts and the KV cache footprint. While it constrains K and V to be formed from the same token
basis, it can still perform well and provide additional memory savings.
Nonlinear Head Factors. Rather than applying purely linear mappings to the head-dimension factors aQr ,a

K
r ,aVr , one

may introduce element-wise nonlinearities such as σ(·) or softmax(·). This effectively yields a Mixture of Heads Attention
(MoH Attention), where each component becomes a learned mixture weight modulated by the nonlinearity.
Discussion. These variants illustrate TPA’s versatility in balancing memory cost, computational overhead, and representation
power. By choosing which dimensions (heads or tokens) remain contextual and adjusting ranks (RQ, RK , RV ), TPA unifies
multiple existing attention mechanisms—such as MHA, MQA, and GQA—under one framework, while potentially reducing
the KV cache size by an order of magnitude during autoregressive inference.

G More on Experiments

G.1 Experimental Settings

We list the main architecture hyper-parameters and training devices in Table 4. We fix dh = 64 for all the models. Moreover,
we fix the number of KV heads with 2 for GQA models; dRh = 32 for MLA models; and Rk = Rv = 2, Rq = 6 for TPA
and TPA-KV only models. Other hyper-parameters are listed in Table 5.

Table 4. The architecture hyper-parameters and training devices of models. Abbreviations: BS. = Batch Size, GAS. = Gradient Accumula-
tion Steps.

MODEL SIZE #PARAM DEVICES MICRO BS. GAS. #LAYER dMODEL

SMALL 124M 4× A100 GPUS 24 5 12 768
MEDIUM 353M 8× A100 GPUS 20 3 24 1024
LARGE 772M 8× A100 GPUS 15 4 36 1280

XL 1.55B 8× A100 GPUS 6 10 48 1600

Table 5. The architecture hyper-parameters for different models.
MODEL SIZE SMALL MEDIUM LARGE XL

h (MHA) 12 16 20 25
h (MQA) 23 31 39 49
h (GQA) 22 30 38 48
h (MLA) 12 23 34 49

h (TPA-KVONLY) 22 29 37 47
h (TPA) 34 47 61 78

dc (MLA) 256 512 512 512
d′c (MLA) 512 1024 1024 1024

G.2 Additional Experimental Results

G.2.1 PERPLEXITY CURVES

We display the perplexity curves for medium, large and XL size of models in Figure 4.

G.2.2 ABLATION STUDY ON DIFFERENT RANKS

Figure 5 shows the training loss, validation loss, and validation perplexity curves of XL-size (1.5B) T6 models with different
ranks trained on the FineWeb-Edu 100B dataset, and the evaluation results are displayed in Table 7. It can be observed that
increase in rank can improve the performances of large language models.
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(a) Validation Perplexity (b) Validation Perplexity (c) Validation Perplexity

Figure 4. The validation perplexity of medium-size (353M) models, large-size (773M), and XL-size (1.5B) models with different attention
mechanisms on the FineWeb-Edu 100B dataset.

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 5. The training loss, validation loss and validation perplexity curves of XL-size (1.5B) T6 models with different ranks on the
FineWeb-Edu 100B dataset.

G.2.3 0-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

For the evaluation, We show the 0-shot performances with lm-evaluation-harness for small-size (124M) and XL-size (1.5B)
models in Tables 6 and 7.

G.2.4 2-SHOT EVALUATION WITH LM-EVALUATION-HARNESS

We also show 2-shot performances in Tables 8, 9, 10 and 11.

G.3 Ablation Studies on Learning Rates

We implement a set of parallel experiments for medium models with learning rate 3× 10−4, and the curves for training
loss, validation loss, and validation perplexity are displayed in Figure 6. We also show the performance of these models
on the benchmarks described in Section 4 in Tables 12-13. The results show that TPA and TPA-KVonly models can also
outperform other types of attention with different learning rates.
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Table 6. The evaluation results of small models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset (0-shot
with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 50.63 26.96 59.39 36.18 32.00 64.96 51.85 23.40 70.30 46.19
MQA 49.62 25.34 55.72 35.94 31.40 64.85 51.30 23.37 68.70 45.14
GQA 48.70 25.68 56.15 35.58 31.40 64.91 51.62 23.12 68.20 45.04
MLA 50.21 26.71 58.01 36.25 32.80 64.69 50.59 24.67 71.90 46.20

TPA-KVonly 51.05 26.54 57.25 36.77 32.60 65.02 50.91 23.64 69.70 45.94
TPA (non-ctx-A) 50.17 25.60 57.95 36.13 31.40 64.80 49.57 24.88 64.80 45.03
TPA 51.26 27.39 57.00 36.68 32.80 64.47 49.72 24.61 72.00 46.21

Table 7. The evaluation results of XL models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset (0-shot
with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande. If
not specified, TPA and TPA-KVonly set RK = RV = 2.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.81 35.41 61.90 54.32 37.20 72.74 55.80 25.44 82.80 54.49
MQA 64.10 36.01 62.26 54.38 39.00 72.58 56.43 23.70 81.90 54.48
GQA 63.68 35.92 60.46 54.17 38.40 73.56 56.27 24.77 81.70 54.33
MLA 64.14 35.92 60.12 53.60 39.20 72.25 55.17 24.71 81.60 54.08

TPA-KVonly 65.61 36.77 63.02 54.17 37.00 73.34 54.62 25.02 81.60 54.57
TPA-KVonly (RK,V = 4) 64.52 37.03 63.27 54.89 39.80 72.91 56.51 24.74 81.60 55.03
TPA-KVonly (RK,V = 6) 65.78 35.92 61.71 54.86 38.60 72.69 57.93 25.59 82.20 55.03
TPA 66.71 36.52 61.38 54.03 40.40 72.52 56.83 24.49 82.20 55.01

Table 8. The evaluation results of small models with different attention mechanisms on FineWeb-Edu 100B dataset (2-shot with lm-
evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 57.66 28.24 57.28 36.43 29.60 64.09 51.14 26.57 82.00 48.11
MQA 53.79 26.35 44.95 34.18 28.80 62.79 52.01 25.91 78.10 45.21
GQA 55.01 25.94 55.72 35.68 31.80 65.29 51.93 25.27 77.80 47.16
MLA 54.76 27.13 58.07 36.13 31.40 65.07 51.30 25.90 78.90 47.63

TPA-KVonly 54.25 27.90 57.06 36.36 31.80 64.31 53.59 26.18 79.20 47.85
TPA (non-ctx-A) 55.09 27.65 53.82 36.24 30.20 64.53 50.75 26.01 78.60 46.99
TPA 57.53 28.07 56.33 36.49 31.80 64.36 51.14 25.92 79.70 47.93

Table 9. The evaluation results of medium models with different attention mechanisms pre-trained using FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. = HellaSwag, W.G. =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.73 32.42 58.29 45.89 34.20 68.50 53.20 25.86 88.00 52.34
MQA 64.98 33.62 55.02 45.81 34.00 69.59 53.43 24.30 85.20 51.77
GQA 65.24 33.19 56.54 45.41 34.80 69.04 55.72 24.73 87.90 52.51
MLA 64.98 33.62 53.52 45.94 33.00 68.55 51.85 25.46 89.10 51.78

TPA-KVonly 64.69 32.34 59.48 46.23 35.40 70.08 54.06 25.64 86.30 52.69
TPA (non-ctx-A) 65.45 33.79 56.88 45.23 33.60 68.61 54.22 25.00 85.00 51.98
TPA 67.97 34.56 57.22 46.87 34.60 69.91 52.01 25.07 89.90 53.12
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Table 10. The evaluation results of large models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSwag = HellaSwag, WG =
WinoGrande.

Method ARC-E ARC-C BoolQ HellaSwag OBQA PIQA WG MMLU SciQ Avg.

MHA 67.85 36.35 59.82 50.22 35.00 70.67 53.35 23.92 91.10 54.25
MQA 68.86 36.09 53.79 50.50 37.00 70.89 54.70 25.01 88.00 53.87
GQA 69.15 36.09 58.84 50.29 36.20 70.73 54.22 26.08 90.00 54.62
MLA 70.54 38.74 61.50 51.86 36.00 70.89 54.22 25.47 92.40 55.74

TPA-KVonly 71.34 37.71 59.76 51.10 36.00 71.49 54.62 25.83 90.10 55.33
TPA 70.41 37.71 60.06 51.30 34.00 71.06 54.54 25.79 90.30 55.02

Table 11. The evaluation results of XL models with different attention mechanisms pre-trained using the FineWeb-Edu 100B dataset
(2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSwag = HellaSwag, WG =
WinoGrande. If not specified, We set RK = RV = 2 for TPA and TPA-KVonly.

Method ARC-E ARC-C BoolQ HellaSwag OBQA PIQA WG MMLU SciQ Avg.

MHA 70.83 39.93 59.85 54.05 36.20 72.52 55.17 25.42 91.70 56.18
MQA 71.34 39.76 58.93 54.27 39.40 72.96 57.38 24.74 91.90 56.74
GQA 71.17 39.08 60.18 54.05 37.40 73.07 56.35 24.87 92.20 56.49
MLA 70.79 37.54 50.83 53.33 40.00 72.09 56.51 24.93 91.80 55.31

TPA-KVonly 72.85 39.68 60.92 53.81 37.00 73.34 56.83 26.19 91.30 56.88
TPA-KVonly (RK,V = 4) 72.98 40.27 60.15 54.88 36.80 73.29 56.43 25.50 92.10 56.93
TPA-KVonly (RK,V = 6) 73.95 39.76 58.99 54.73 36.80 72.91 59.04 24.93 92.90 57.11
TPA 71.76 39.16 61.25 53.74 37.80 72.80 55.49 23.86 90.70 56.28

(a) Training Loss (b) Validation Loss (c) Validation Perplexity

Figure 6. The training loss, validation loss, and validation perplexity of medium-size (353M) models (learning rate 3×10−4) and different
attention mechanisms on the FineWeb-Edu 100B dataset.

Table 12. The evaluation results of medium models (learning rate 3× 10−4) with different attention mechanisms pretrained using the
FineWeb-Edu 100B dataset (0-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 56.52 29.27 58.84 44.06 35.00 68.44 51.07 25.35 76.40 49.44
MQA 55.68 28.24 60.86 44.17 35.20 68.66 52.72 25.14 72.90 49.29
GQA 54.88 29.61 56.36 43.77 35.20 68.82 52.57 25.41 74.80 49.05
MLA 59.64 29.78 60.73 45.17 34.20 68.66 52.80 25.34 75.70 50.22

TPA-KVonly 57.11 30.03 61.25 44.83 34.60 69.04 54.54 23.35 74.60 49.93
TPA 59.30 31.91 60.98 45.57 34.60 69.48 53.91 24.93 77.20 50.88
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Table 13. The evaluation results of medium models (learning rate 3× 10−4) with different attention mechanisms pre-trained using the
FineWeb-Edu 100B dataset (2-shot with lm-evaluation-harness). The best scores in each column are bolded. Abbreviations: HellaSw. =
HellaSwag, W.G. = WinoGrande.

Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.

MHA 64.44 32.85 59.05 44.18 33.20 68.72 50.12 26.01 87.40 49.44
MQA 64.27 32.94 57.71 44.36 31.80 68.01 51.70 25.99 86.00 49.29
GQA 61.70 32.17 52.81 43.99 33.80 68.50 53.35 24.44 86.40 50.80
MLA 65.95 31.48 50.98 44.99 32.20 68.93 51.93 25.89 88.80 51.24

TPA-KVonly 65.99 33.70 57.49 44.47 34.20 69.53 53.28 24.23 86.50 49.93
TPA 66.54 34.47 58.96 45.35 33.00 69.21 53.99 24.51 91.30 53.04
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