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ABSTRACT

Learning energy-based models (EBMs) is known to be difficult especially on dis-
crete data where gradient-based learning strategies cannot be applied directly. Al-
though ratio matching is a sound method to learn discrete EBMs, it suffers from
expensive computation and excessive memory requirement, thereby resulting in
difficulties for learning EBMs on high-dimensional data. In this study, we pro-
pose ratio matching with gradient-guided importance sampling (RMwGGIS) to
alleviate the above limitations. Particularly, we leverage the gradient of the energy
function w.r.t. the discrete data space to approximately construct the provable op-
timal proposal distribution, which is subsequently used by importance sampling to
efficiently estimate the original ratio matching objective. We perform experiments
on density modeling over synthetic discrete data, graph generation, and training
Ising models to evaluate our proposed method. The experimental results demon-
strate that our method can significantly alleviate the limitations of ratio matching,
perform more effectively in practice, and scale to high-dimensional problems.

1 INTRODUCTION

Energy-Based models (EBMs), also known as unnormalized probabilistic models, model distribu-
tions by associating unnormalized probability densities. Such methods have been developed for
decades (Hopfield, 1982; Ackley et al., 1985; Cipra, 1987; Dayan et al., 1995; Zhu et al., 1998;
Hinton, 2012) and are unified as energy-based models (EBMs) (LeCun et al., 2006) in the machine
learning community. EBMs have great simplicity and flexibility since energy functions are not re-
quired to integrate or sum to one, thus enabling the usage of various energy functions. In practice,
given different data types, we can parameterize the energy function with different neural networks
as needed, such as multi-layer perceptrons (MLPs), convolutional neural networks (CNNs) (LeCun
et al., 1998), and graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008). Recently,
EBMs have been drawing increasing attention and are demonstrated to be effective in various do-
mains, including images (Ngiam et al., 2011; Xie et al., 2016; Du & Mordatch, 2019), videos (Xie
et al., 2017), texts (Deng et al., 2020), 3D objects (Xie et al., 2018), molecules (Liu et al., 2021;
Hataya et al., 2021), and proteins (Du et al., 2020b).

Nonetheless, learning (a.k.a., training) EBMs is known to be challenging since we cannot compute
the exact likelihood due to the intractable normalization constant. As reviewed in Section 4, many
approaches have been proposed to learn EBMs, such as maximum likelihood training with MCMC
sampling (Hinton, 2002) and score matching (Hyvärinen & Dayan, 2005). However, most recent
advanced methods cannot be applied to discrete data directly since they usually leverage gradients
over the continuous data space. For example, for many methods based on maximum likelihood
training with MCMC sampling, they use the gradient w.r.t. the data space to update samples in
each MCMC step. If we update discrete samples using such gradient, the resulting samples are
usually invalid in the discrete space. Notably, discrete data is common in our real world, such as
texts, graphs, and genome sequences. Therefore, learning EBMs on discrete data remains to be
challenging and in demand.

Ratio matching (Hyvärinen, 2007; Lyu, 2009) is proposed to learn discrete EBMs by matching ratios
of probabilities between the data distribution and the model distribution, as detailed in Section 2.2.
However, as analyzed in Section 3.1, it requires expensive computations and excessive memory us-
ages, which is infeasible if the data is high-dimensional. In this work, we propose to use the gradient
of the energy function w.r.t. the discrete data space to guide the importance sampling for estimating
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the original ratio matching objective. More specifically, we utilize such gradient to approximately
construct the provable optimal proposal distribution for importance sampling. Thus, the proposed
approach is termed as ratio matching with gradient-guided importance sampling (RMwGGIS). Our
RMwGGIS can significantly overcome the limitations of ratio matching. In addition, it is demon-
strated to be more effective than the original ratio matching because it can be optimized better in
practice. Experimental results on synthetic discrete data, graph generation, and Ising model training
demonstrate that our RMwGGIS significantly alleviates the limitations of ratio matching, achieves
better performance with obvious margins, and has the ability of scaling to high-dimensional relevant
problems.

2 PRELIMINARIES

2.1 ENERGY-BASED MODELS

Let x be a data point and Eθ(x) ∈ R be the corresponding energy, where θ represents the learnable
parameters of the parameterized energy function Eθ(·). The probability density function of the
model distribution is given as

pθ(x) =
e−Eθ(x)

Zθ
∝ e−Eθ(x), (1)

where Zθ ∈ R is the normalization constant (a.k.a., partition function). To be specific, Zθ =∫
e−Eθ(x)dx if x is in the continuous space and Zθ =

∑
e−Eθ(x) for discrete data. Hence, com-

puting Zθ is usually infeasible due to the intractable integral or summation. Note that Zθ is a
variable depending on θ but a constant w.r.t. x.

2.2 RATIO MATCHING

Ratio matching (Hyvärinen, 2007) is developed for learning EBMs on discrete data by matching
ratios of probabilities between the data distribution and the model distribution. Note that we focus
on d-dimensional binary discrete data x ∈ {0, 1}d in this work.

Specifically, ratio matching considers the ratio of p(x) and p(x−i), where x−i =
(x1, x2, · · · , x̄i, · · · , xd) denotes a point in the data space obtained by flipping the i-th dimension
of x. The key idea is to force the ratios pθ(x)

pθ(x−i)
defined by the model distribution pθ to be as

close as possible to the ratios pD(x)
pD(x−i)

given by the data distribution pD. The benefit of consid-
ering ratios of probabilities is that they do not involve the intractable normalization constant Zθ

since pθ(x)
pθ(x−i)

= e−Eθ(x)

e−Eθ(x−i)
= eEθ(x−i)−Eθ(x) according to Eq. (1). To achieve the match between

ratios, Hyvärinen (2007) proposes to minimize the objective function

JRM (θ) = Ex∼pD(x)

d∑
i=1

[
g

(
pD(x)

pD(x−i)

)
− g

(
pθ(x)

pθ(x−i)

)]2
+

[
g

(
pD(x−i)

pD(x)

)
− g

(
pθ(x−i)

pθ(x)

)]2
.

(2)
The sum of two square distances with the role of x and x−i switched is specifically designed since
it is essential for the following simplification. In addition, the function g(u) = 1

1+u is also carefully
chosen in order to obtain the subsequent simplification. To compute the objective defined in Eq. (2),
it is known that the expectation over data distribution (i.e., Ex∼pD(x)) can be unbiasedly estimated
by the empirical mean of samples x ∼ pD(x). However, to obtain the ratios between pD(x) and
pD(x−i) in Eq. (2), the exact data distribution is required to be known, which is usually impossible.

Fortunately, thanks to the above carefully designed objective, Hyvärinen (2007) demostrates that the
objective function in Eq. (2) is equivalent to the following simplified version

JRM (θ) = Ex∼pD(x)

d∑
i=1

[
g

(
pθ(x)

pθ(x−i)

)]2
= Ex∼pD(x)

d∑
i=1

[
g
(
eEθ(x−i)−Eθ(x)

)]2
, (3)

which does not require the data distribution to be known and can be easily computed by evaluating
the energy of x and x−i. It is proved that the estimator given by Eq. (3) is consistent (Hyvärinen,
2007). That means if it is minimized perfectly, the obtained model distribution will capture the data
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distribution exactly. Further, Lyu (2009) shows that the objective function of ratio matching can be
reduced to

JRM (θ) = Ex∼pD(x)

d∑
i=1

[
pθ(x−i)

pθ(x)

]2
= Ex∼pD(x)

d∑
i=1

[
eEθ(x)−Eθ(x−i)

]2
. (4)

It is obvious that Eq. (3) and Eq. (4) agree with each other since function g(·) decreases monotoni-
cally in [0,+∞), which aligns with the value range of probability ratios pθ(x)

pθ(x−i)
.

Intuitively, the objective function of ratio matching, as formulated in Eq. (4), can push down the
energy of the training sample x and push up the energies of other data points obtained by flipping
one dimension of x. Thus, this objective faithfully expect that each training sample x has higher
probability than its local neighboring points that are hamming distance 1 from x.

3 THE PROPOSED METHOD

In this section, we analyze the limitations of the ratio matching method from the perspective of
computational time and memory usage. Then, we describe our proposed method, ratio matching
with gradient-guided importance sampling (RMwGGIS), which utilizes the gradient of the energy
function w.r.t. the discrete input x to guide the importance sampling for estimating the original ratio
matching objective. Our approach can alleviate the limitations significantly and is shown to be more
effective in practice.

3.1 ANALYSIS OF RATIO MATCHING

Time-intensive computations. According to Eq. (4), for a given training sample x, we have to
compute the energies for all x−i, where i = 1, · · · , d. In other words, we have O(d) evaluations of
the energy function for each training sample. This is computationally intensive, especially when the
data dimension d is large.

Excessive memory usages. Besides the expensive computation, the memory usage of ratio match-
ing is another limitation that cannot be ignored, especially when we learn the energy function using
modern GPUs with limited memory. As shown in Eq. (4), the objective function consists of d
terms for each training sample. When we do backpropagation, computing the gradient of the objec-
tive function w.r.t. the learnable parameters of the energy function is required. Therefore, in order to
compute such gradient, we have to store the whole computational graph and the intermediate tensors
for all of the d terms, thereby leading to excessive memory usages especially if the data dimension
d is large. Hence, it is challenging to learn EBMs with ratio matching on modern devices, such as
GPUs, for high-dimensional discrete data.

3.2 RATIO MATCHING WITH GRADIENT-GUIDED IMPORTANCE SAMPLING

The key idea of our approach is to use the well-known importance sampling technique to reduce the
variance of estimating JRM (θ) with Monte Carlo method. The most critical and challenging part
of using the importance sampling technique is choosing a good proposal distribution. In this work,
we propose to utilize the gradient of the energy function w.r.t. the discrete input x to approximately
construct the optimal proposal distribution for importance sampling. We describe the details of our
method below.

The objective for each sample x, defined by Eq. (4), can be reformulated as

JRM (θ,x) = d

d∑
i=1

1

d

[
eEθ(x)−Eθ(x−i)

]2
= dEx−i∼m(x−i)

[
eEθ(x)−Eθ(x−i)

]2
, (5)

where m(x−i) =
1
d for i = 1, · · · , d is a discrete distribution. Thus, the objective of ratio matching

for each sample x can be viewed as the expectation of
[
eEθ(x)−Eθ(x−i)

]2
over the discrete distribu-

tion m(x−i). In the original ratio matching method, as described in Section 2.2, we compute such
expectation exactly by considering all possible x−i, leading to expensive computations and exces-
sive memory usages as analyzed in Section 3.1. Naturally, we can estimate the desired expectation
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with Monte Carlo method by considering fewer terms sampled based on m(x−i). However, such es-
timation usually has a high variance, and is empirically verified to be ineffective by our experiments
in Section 5.

Further, we can apply the importance sampling method to reduce the variance of Monte Carlo es-
timation. Intuitively, certain values have more impact on the expectation than others. Hence, the
estimator variance can be reduced if such important values are sampled more frequently than others.
To be specific, instead of sampling based on the distribution m(x−i), importance sampling aims to
sample from another distribution n(x−i), namely, proposal distribution. Formally,

JRM (θ,x) = dEx−i∼m(x−i)

[
eEθ(x)−Eθ(x−i)

]2
= dEx−i∼n(x−i)

m(x−i)
[
eEθ(x)−Eθ(x−i)

]2
n(x−i)

.

(6)
The detailed derivation of Eq. (6) is given in Appendix A. Afterwards, we can apply Monte Carlo
estimation based on the proposal distribution n(x−i). Specifically, we sample s terms, denoted as
x
(1)
−i , · · · ,x

(s)
−i , according to the proposal distribution n(x−i). Note that s is usually chosen to be

much smaller than d. Then the Monte Carlo estimation for JRM (θ,x) is computed based on these
s terms. Formally,

JRM (θ,x)̂n = d
1

s

s∑
t=1

m(x
(t)
−i)
[
eEθ(x)−Eθ(x

(t)
−i)
]2

n(x
(t)
−i)

, x
(t)
−i ∼ n(x−i). (7)

It is known that the estimator obtained by Monte Carlo estimation with importance sampling is
an unbiased estimator, as the conventional Monte Carlo estimator. The key point of importance
sampling is to choose an appropriate proposal distribution n(x−i), which determines the variance of
the corresponding estimator. The optimal proposal distribution n∗(x−i), which yields the minimum
variance, is given by the following theorem.

Theorem 1. Let n∗(x−i) =
[eEθ(x)−Eθ(x−i)]

2∑d
k=1[e

Eθ(x)−Eθ(x−k)]
2 be a discrete distribution on x−i, where

i = 1, · · · , d. Then for any discrete distribution n(x−i) on x−i, where i = 1, · · · , d, we have

V ar
(
JRM (θ,x)̂n∗

)
≤ V ar

(
JRM (θ,x)̂n

)
.

Proof. The proof of Theorem 1 is included in Appendix B.

To construct the exact optimal proposal distribution n∗(x−i) given by Theorem 1, we still have to
evaluate the energies of all x−i, where i = 1, · · · , d. To avoid such complexity, we propose to
leverage the gradient of the energy function w.r.t. the discrete input x to approximately construct the
optimal proposal distribution. Our approach only needs O(1) evaluations of the energy function to
construct the proposal distribution.

It is observed by Grathwohl et al. (2021) that many discrete distributions are implemented as contin-
uous and differentiable functions, although they are evaluated only in discrete domains. Grathwohl
et al. (2021) further proposes a scalable sampling method for discrete distributions by utilizing the
gradients of the underlying continuous functions w.r.t. the discrete input. In this study, we extend
this idea to improve ratio matching. More specifically, in our case, even though our input x is
discrete, our parameterized energy function Eθ(·), such as a neural network, is usually continuous
and differentiable. Hence, we can use such gradient information to efficiently and approximately
construct the optimal proposal distribution given by Theorem 1.

The basic idea is that we can approximate Eθ(x−i) based on the Taylor series of Eθ(·) at x, given
that x−i is close to x in the data space because they only have differences in one dimension1.
Formally,

Eθ(x−i) ≈ Eθ(x) + (x−i − x)
T ∇xEθ(x). (8)

Thus, we can approximately obtain the desired term Eθ(x)−Eθ(x−i) in Theorem 1 using Eq. (8).
Note that ∇xEθ(x) ∈ Rd contains the information for approximating all Eθ(x)−Eθ(x−i), where

1We have this assumption because data space is usually high-dimensional. If the number of data dimension
is small, we can use the original ratio matching method with affordable time and memory budgets.
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Algorithm 1 Ratio Matching with Gradient-Guided Importance Sampling (RMwGGIS)

Input: Observed dataset D =
{
x(m)

}|D|
m=1

, parameterized energy function Eθ(·), number of sam-
ples s for Monte Carlo estimation with importance sampling

1: for x ∼ D do ▷ Batch training is applied in practice
2: Compute Eθ(x)
3: Compute ∇xEθ(x)

4: Compute the proposal distribution ñ∗(x−i) =
[e2(2x−1)⊙∇xEθ(x)]

i∑d
k=1[e2(2x−1)⊙∇xEθ(x)]

k

▷ Eq. (11)

5: Sample s terms, denoted as x(1)
−i , · · · ,x

(s)
−i , according to ñ∗(x−i)

6: Compute JRM (θ,x)̂ñ∗ = d 1
s

∑s
t=1

m(x
(t)
−i)

[
e
Eθ(x)−Eθ(x

(t)
−i

)
]2

ñ∗(x
(t)
−i)

▷ Eq. (7) (or Eq. (12))

7: Update θ based on ∇θJRM (θ,x)̂ñ∗

8: end for

i = 1, · · · , d. Hence, we can consider the following d-dimensional vector

(2x− 1)⊙∇xEθ(x) ∈ Rd, (9)

where ⊙ denotes element-wise multiplication. Note that we have xi − x̄i = −1 if xi = 0 and
xi − x̄i = 1 if xi = 1, which can be unified as xi − x̄i = 2xi − 1. Therefore, we have

Eθ(x)− Eθ(x−i) ≈ [(2x− 1)⊙∇xEθ(x)]i , i = 1, · · · , d. (10)

Afterwards, we can provide a proposal distribution ñ∗(x−i) as an approximation of the optimal
proposal distribution n∗(x−i) given by Theorem 1. Formally,

ñ∗(x−i) =

[
e2(2x−1)⊙∇xEθ(x)

]
i∑d

k=1

[
e2(2x−1)⊙∇xEθ(x)

]
k

, i = 1, · · · , d. (11)

Then ñ∗(x−i) is used as the proposal distribution for Monte Carlo estimation with importance
sampling, as described by Eq. (7). The overall process of our RMwGGIS method is summarized in
Algorithm 1.

3.3 COMPARISON BETWEEN RATIO MATCHING AND RMWGGIS

Time and memory. Since only s (s < d) terms are considered in the objective function of our
RMwGGIS, as shown in Eq. (7), we have better computational efficiency and less memory require-
ment compared to the original ratio matching method. To be specific, our RMwGGIS only needs
O(s) evaluations of the energy function compared with O(d) in ratio matching, leading to a linear
speedup, which is significant especially when the data is high-dimensional. The improvement in
terms of memory usage is similar. In Section 5.1, we compare the real running time and memory
usage between ratio matching and our proposed RMwGGIS on datasets with different data dimsen-
sions.

Better optimization? In Section 3.2, we propose our RMwGGIS based on the motivation to approx-
imate the objective of ratio matching with fewer terms. Although our RMwGGIS can approximate
the original ratio matching objective numerically, our objective only includes s terms compared to d
terms in the original ratio matching objective; That is, only s terms are involved in the computational
graph, leading to different back-propogated gradients compared to the original ratio matching. In
other words, the objective of ratio matching, as shown in Eq. (4), intuitively pushes up the energies
of all x−i for i = 1, · · · , d, while our RMwGGIS only considers pushing up energies of s terms
among them, as formulated by Eq. (7). Thus, the following question might be raised. Why can our
objective be effective for learning EBMs without pushing up the energies of all d terms? In prac-
tice, we even observe that our RMwGGIS achieves better density modeling performance than ratio
matching. We conjecture that this is because our RMwGGIS can be optimized better in practice for
the following two properties, which are empirically verified in Section 5.

(1) RMwGGIS introduces stochasticity. Without involving all d terms in the objective function,
our method can introduce stochasticity, which could lead to better optimization in practice. This has
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the same philosophy as the comparison between mini-batch gradient descent and vanilla gradient
descent. The gradient is obtained based on each batch in mini-batch gradient descent, while it is
computed over the entire dataset in vanilla gradient descent. It is known that the mini-batch gradient
descent usually performs better in practice since the stochasticity introduced by mini-batch training
could help to escape from the saddle points in non-convex optimization (Ge et al., 2015). Therefore,
the stochasticity introduced by sampling only s terms in RMwGGIS could help the optimization
especially when d is large.

(2) RMwGGIS focuses on neighbors with low energies. Even though only energies of s terms are
pushed up in our method, these s terms correspond to the neighboring points that have low energies.
According to n∗(x−i) given by Theorem 1, a neighbor of x, denoted as x−i, is more likely to be
sampled if its corresponding energy value is lower 2. Hence, we choose to push up the energies of
s neighbors according to their current energies. The lower the energy, the more likely it is to be
selected. This is intuitively sound because the terms that have low energies are the most offending
terms, which should have the higher priorities to be pushed up. This point has the same philosophy
as hard negative mining, which pays more attention to hard negative samples during training. More
detailed explanation about this connection is provided in Appendix C.

Following the hard negative mining perspective, we observe that the coefficients used in Eq. (7) pro-
vide smaller weights for terms with lower energies, which is intuitively less effective, as detailed in
Appendix D. Therefore, we further propose the following biased estimation as the objective function
by removing the coefficients in Eq. (7). Formally,

JRM (θ,x)̂
biased

ñ∗ =

s∑
t=1

[
eEθ(x)−Eθ(x

(t)
−i)
]2

, x
(t)
−i ∼ ñ∗(x−i). (12)

This biased version is essentially an natural extension of the unbiased version. It is demonstrated to
be more effective in practice. The explanation about this is discussed in Appendix D.

4 RELATED WORKS

Learning EBMs has been drawing increasing attention recently. Maximum likelihood training with
MCMC sampling, also known as contrastive divergence (Hinton, 2002), is the most representative
method. It contrasts samples from training set and samples from the model distribution. To draw
samples from the model distribution, we can employ MCMC sampling approaches, such as Langevin
dynamics (Welling & Teh, 2011) and Hamiltonian dynamics (Neal et al., 2011). Such methods are
further improved and shown to be effective by recent studies (Xie et al., 2016; Gao et al., 2018;
Du & Mordatch, 2019; Nijkamp et al., 2019; Grathwohl et al., 2019; Jacob et al., 2020; Qiu et al.,
2019; Du et al., 2020a). These methods, however, require the gradient w.r.t. the data space to update
samples in each MCMC step. Thus, they cannot be applied to discrete data directly. To enable
maximum likelihood training with MCMC sampling on discrete data, we can naturally use discrete
sampling methods, such as Gibbs sampling and Metropolis-Hastings algorithm (Zanella, 2020), to
replace the above gradient-based sampling algorithms. Unfortunately, sampling from a discrete
distribution is extremely time-consuming and not scalable. Recently, Dai et al. (2020) develops a
learnable sampler parameterized as a local discrete search algorithm to propose negative samples for
contrasting. Grathwohl et al. (2021) proposes a scalable sampling method for discrete distributions
by surprisingly using the gradient w.r.t. the data space, which inspires our work a lot.

Maximum likelihood training with MCMC sampling is computationally expensive since MCMC
sampling methods usually require a large number of steps to obtain reasonable samples. An alterna-
tive method for learning EBMs is score matching (Hyvärinen & Dayan, 2005; Vincent, 2011; Song
et al., 2020; Song & Ermon, 2019), where the scores, i.e., the gradients of the logarithmic probability
distribution w.r.t. the data space, of the energy function are forced to match the scores of the train-
ing data. Ratio matching (Hyvärinen, 2007; Lyu, 2009) is obtained by extending the idea of score
matching to discrete data. Our work is motivated by the limitations of ratio matching, as analyzed in
Section 3.1. Stochastic ratio matching (Dauphin & Bengio, 2013) also aims to make ratio matching
more efficient by considering the sparsity of input data, while our approach uses the gradient of the
energy function. Hence, our method is effective for general EBMs, but stochastic ratio matching is
limited to sparse data.

2Although this only strictly holds for n∗(x−i), this can serve as a relaxed explanation for ñ∗(x−i) as well
since ñ∗(x−i) is a good approximation of n∗(x−i). More detailed analysis is included in Appendix C
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Table 1: Results on 32-dimensional synthetic discrete data in terms of MMD. The lower the better.
The top two results on each dataset are highlighted as 1st and 2nd.

Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Ratio Matching 0.01514 0.10270 0.11856 0.02901 0.31353 0.05820 0.00059
RMwGGIS (unbiased) 0.01099 0.09763 0.11017 0.03111 0.27885 0.05176 0.00050
RMwGGIS (biased) 0.00876 0.08414 0.10230 0.02787 0.26188 0.04477 0.00026

There are some other methods for learning EBMs, such as noise contrastive estimation (Gutmann
& Hyvärinen, 2010; Bose et al., 2018; Ceylan & Gutmann, 2018; Gao et al., 2020) and learning
the stein discrepancy (Grathwohl et al., 2020). We recommend readers to refer to Song & Kingma
(2021) for a comprehensive introduction on learning EBMs. We note that several works (Elvira
et al., 2015; Schuster, 2015) use the gradient information of the target distribution to iteratively
optimize the proposal distributions for adaptive importance sampling. However, compared to our
method, they can only applied to continuous distributions and require expensive iterative process.

5 EXPERIMENTS

5.1 DENSITY MODELING ON SYNTHETIC DISCRETE DATA

Setup. For both quantitative results and qualitative visualization, we follow the experimental set-
ting of Dai et al. (2020) for density modeling on synthetic discrete data. We firstly draw 2D
data points from 2D continuous space according to some unknown distribution p̂, which can be
naturally visualized. Then, we convert each 2D data point x̂ ∈ R2 to a discrete data point
x ∈ {0, 1}d, where d is the desired number of data dimensions. To be specific, we transform
each dimension of x̂, which is a floating-point number, into a d

2 -bit Gray code3 and concate-
nate the results to obtain a d-bit vector x. Thus, the unknown distribution in discrete space is
p(x) = p̂

([
GrayToFloat(x1: d2

),GrayToFloat(x d
2+1:d)

])
. This density modeling task is challeng-

ing since the transformation from x̂ to x is non-linear.

To quantitatively evaluate the performance of density modeling, we adopt the maximum mean dis-
crepancy (MMD) (Gretton et al., 2012) with a linear kernel corresponding to (d-HammingDistance).
The MMD is commonly used to compare distributions. In our case, particularly, the MMD is com-
puted based on 4000 samples, drawn from the learned energy function via Gibbs sampling, and the
same number of samples from the training set. Lower MMD indicates that the distribution defined
by the learned energy function is closer to the unknown data distribution. In addition, in order to
qualitatively visualize the learned energy function, we firstly uniformly obtain 10k data points from
2D continuous space. Afterwards, they are converted into bit vectors and evaluated by the learned
energy function. Subsequently, we can visualize the obtained corresponding energies in 2D space.

The energy function is parameterized by a 4-layer MLP with the Swish (Ramachandran et al., 2017)
activation and 256 hidden dimensions. The number of samples s, involved in the objective func-
tions of our RMwGGIS method, is set to be 10. In the following, we compare our unbiased and
biased methods, as formulated in Eq. (7) and Eq. (12) respectively, with the original ratio matching
method (Hyvärinen, 2007; Lyu, 2009).

Figure 1: Visualization of learned energy functions on 32-
dimensional synthetic discrete datasets.

Quantitative and qualitative
results. The quantitative results
on 32-dimensional datasets are
shown in Table 1. Our RMwG-
GIS, especially the biased ver-
sion, consistently outperforms
the original ratio matching by
large margins, which demon-
strates that it is effective for our
proposed gradient-guided impor-
tance sampling to stochastically
push up neighbors with low energies. This verifies our analysis in Section 3.3. In Figure 1, we

3https://en.wikipedia.org/wiki/Gray_code
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Table 2: Comparison between ratio matching and our RMwGGIS on 2spirals datasets with different
dimensions in terms of running time and memory usage.

# Data Dimensions 32 64 128 256 512 1024 2048

Ti
m

e Ratio Matching 63.9ms 106.5ms 185.6ms 372.9ms 735.2ms 1390.1ms 2684.1ms
RMwGGIS 41.2ms 47.2ms 58.8ms 86.9ms 137.7ms 244.9ms 434.1ms
Speedup 1.6× 2.3× 3.2× 4.3× 5.3× 5.7× 6.2×

M
em

or
y Ratio Matching 957MB 1031MB 1189MB 1545MB 2315MB 4237MB 9633MB

RMwGGIS 891MB 893MB 893MB 915MB 919MB 931MB 951MB
Memory Saving 6.9% 13.4% 24.9% 40.8% 60.3% 78.0% 90.1%

qualitatively visualize the learned energy functions of our proposed RMwGGIS. It is observed that
EBMs learned by our method can fit the data distribution accurately. Note that we choose d = 32 for
quantitative evaluation because Gibbs sampling cannot obtain appropriate samples from the learned
energy function with an affordable time budget if the data dimension is too high, thus leading to
invalid MMD results. We will compare the results on higher-dimensional data in the following by
observing the qualitative visualization. To further demonstrate that the performance improvement
of RMwGGIS over ratio matching is brought by better optimization, we show that energy functions
learned with our methods actually lead to lower value for the objective function defined by Eq. (4).
The details are included in Appendix E.

Observations on higher-dimensional data. As analyzed in Section 3.3, the advantages of our
approach can be greater on higher-dimensional data. To evaluate this, we conduct experiments on
the 256-dimensional 2spirals dataset, and visualize the learned energy functions corresponding to
different learning iterations. We construct a method for ablation study, named as RMwRAND,
which estimates the original ratio matching objective by randomly sampling s = 10 terms. The only
difference between our RMwGGIS method and RMwRAND is that we focus more on the terms
corresponding to low energies thanks to our proposed gradient-guided importance sampling.

As shown in Figure 3, Appendix F, our RMwGGIS accurately capture the data distribution, while the
original ratio matching method cannot. This further verifies that our RMwGGIS can be optimized
better than ratio matching especially when the data dimension is high, as analyzed in Section 3.3.
In addition, although RMwRAND can also introduce stochasticity as our RMwGGIS by randomly
sampling, it fails to capture the data distribution. This observation is intuitively reasonable since
randomly pushing up s = 10 terms among d = 256 terms leads to large variance and unsatisfactory
performance. Instead, our RMwGGIS performs well since we focus on pushing up terms with low
energies, which are the most offending terms and should be pushed up first. Overall, these experi-
ments can show the superiority of RMwGGIS endowed by our proposed gradient-guided importance
sampling on high-dimensional data.

Running time and memory usage. As analyzed in Section 3.3, our RMwGGIS has better efficiency
than ratio matching in terms of computational cost and memory requirement. To empirically verify
this, we compare the real running time and memory usage on datasets of various dimensions. Specif-
ically, we construct several 2spirals datasets with different data dimensions and train parameterized
energy functions using ratio matching and our RMwGGIS, respectively. We choose batch size to be
256. The reported time corresponds to the average training time per batch. For RMwGGIS, both
the unbiased version and the biased version have almost the same running time and memory usage.
Thus, we report the results of the biased version.

As summarized in Table 2, our RMwGGIS is much more efficient in terms of running time and mem-
ory usage, compared with the original ratio matching method. In addition, our method can achieve
more speedup and save more memory usages with the increasing of data dimension. Specifically,
compared with ratio matching, our RMwGGIS can achieve 6.2 times speedup and save 90.1% mem-
ory usage on the 2048-dimensional dataset. This shows the efficiency of our RMwGGIS especially
for high-dimensional data.

5.2 GRAPH GENERATION

Setup. We further evaluate our RMwGGIS on graph generation using the Ego-small dataset (You
et al., 2018). It is a set of one-hop ego graphs, where the number of nodes 4 ≤ |V |≤ 18, obtained
from the Citeseer network (Sen et al., 2008). Following the experimental setting of You et al. (2018)
and Liu et al. (2019), 80% of the graphs are used for training and the rest for testing. New graphs can
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be generated via Gibbs sampling on the learned energy function. To evaluate the graph generation
performance based on the generated graphs and the test graphs, we calculate the maximum mean
discrepancy (MMD) (Gretton et al., 2012) over three statistics, i.e., degrees, clustering coefficients,
and orbit counts, as proposed in You et al. (2018).

Table 3: Graph generation results in
terms of MMD. The lower the better.
Avg. denotes the average over three
MMD results. The results of baselines
are reported from You et al. (2018), Liu
et al. (2019), Niu et al. (2020), Shi et al.
(2019), and Luo et al. (2021). We ob-
tain the result of EBM (GWG) by us-
ing their official implementation, and
the detailed settings is provided in Ap-
pendix G.

Method Degree Cluster Orbit Avg.

GraphVAE 0.130 0.170 0.050 0.117
DeepGMG 0.040 0.100 0.020 0.053
GraphRNN 0.090 0.220 0.003 0.104
GNF 0.030 0.100 0.001 0.044
EDP-GNN 0.052 0.093 0.007 0.050
GraphAF 0.030 0.110 0.001 0.047
GraphDF 0.040 0.130 0.010 0.060
EBM (GWG) 0.093 0.027 0.053 0.058

Ratio Matching 0.062 0.066 0.008 0.045
RMwGGIS 0.044 0.059 0.013 0.039

We parameterize the energy function by a 5-layer
R-GCN (Schlichtkrull et al., 2018) model with the
Swish (Ramachandran et al., 2017) activation and 32 hid-
den dimensions, whose input is the upper triangle of
the graph adjacency matrix. The number of samples s
used in our RMwGGIS objective is 50. We apply our
biased version to learn the energy function since it is
shown to be more effective in Section 5.1. Besides ra-
tio matching, we consider the recent proposed method
EBM (GWG) (Grathwohl et al., 2021), which develops a
gradient-based MCMC sampling method on discrete dis-
tribuion to learn discrete EBMs with maximum-likelihood
training, as a baseline. We also consider the recent
works developed for graph generation as baselines, includ-
ing GraphVAE (Simonovsky & Komodakis, 2018), Deep-
GMG (Li et al., 2018), GraphRNN (You et al., 2018),
GNF (Liu et al., 2019), EDP-GNN (Niu et al., 2020),
GraphAF (Shi et al., 2019), and GraphDF (Luo et al.,
2021).

Quantitative and qualitative results. As summarized in
Table 3, our RMwGGIS outperforms baselines in terms of the average over three MMD results. This
shows that our method can learn EBMs to generate graphs that align with various characteristics
of the training graphs. The generated samples are visualized in Figure 4, Appdendix H. It can be
observed that the generated samples are realistic one-hop ego graphs that have similar characteristics
as the training samples.

5.3 TRAINING ISING MODELS

Table 4: Comparison of training Ising models in terms of
RMSE and running time.

MCMC #Steps 5 10 25 50 100 RMwGGIS

log(RMSE) EBM (Gibbs) −1.60 −1.90 −2.50 −3.00 −3.60 −4.00EBM (GWG) −4.02 −4.49 −4.87 −4.94 −5.05

Time/iter EBM (Gibbs) 263.5ms 437.3ms 1113.2ms 2524.9ms 4670.1ms 13.9msEBM (GWG) 37.5ms 63.4ms 100.5ms 222.6ms 395.7ms

To further demonstrate the scaling abil-
ity of our method and compare with re-
cent baselines more thoroughly, we use
our RMwGGIS to train the Ising model
with a 2D cyclic lattice structure, fol-
lowing Grathwohl et al. (2021). We
compare methods in terms of the RMSE between the inferred connectivity matrix Ĵ and the true
J and the running time per iteration. The experimental details are included in Appendix I. As
shown in Table 4, our RMwGGIS is more effective than EBM (Gibbs) with various sample steps.
The recently proposed EBM (GWG) (Grathwohl et al., 2021) achieves better RMSE than ours. In
terms of running time, our method is much more efficient than baselines since we avoid the expen-
sive MCMC sampling during training. According to this experiment, one future direction could be
further improving the effectiveness of RMwGGIS while preserving the efficiency advantage.

6 CONCLUSION

We propose ratio matching with gradient-guided importance sampling (RMwGGIS) for learning
EBMs on discrete data. In particular, we utilize the gradient of the energy function w.r.t. the discrete
input space to guide the importance sampling for estimating the original ratio matching objective.
Compared to ratio matching, our RMwGGIS is more efficient in terms of computation and memory
usage, and is shown to be more effective for density modeling. We perform thorough experiments
on both synthetic data density modeling and graph generation. The results demonstrate that our
RMwGGIS achieves significant improvements over previous methods in terms of both effectiveness
and efficiency.
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REPRODUCIBILITY STATEMENT

We have made several efforts to guarantee the reproducibility of our work. To clearly present our
technical method, in addition to the explanation in Section 3, we provide the rigorous description of
our approach in Algorithm 1, and the detailed proof of the proposed Theorem 1 in Appendix B. For
experiments in Section 5, we provide the detailed description of datasets, model configurations, and
evaluation metrics for both synthetic data density modeling and graph generation. Our implementa-
tions will be publicly available once the paper is published.
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A THE DETAILED DERIVATION OF EQ. (6)

The detailed derivation of Eq. (6) is as follows.

JRM (θ,x) = dEx−i∼m(x−i)

[
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]2
= d
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B PROOF OF THEOREM 1

Proof. According to Eq. (7), we have
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Then we can compare the variance of the estimator based on n∗(x−i) and n(x−i). Formally,
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Eq. (18) can be derived because the estimator is unbiased no matter what proposal distribution is

applied. Eq. (20) is obtained by choosing n∗(x−i) =
[eEθ(x)−Eθ(x−i)]

2∑d
k=1[e

Eθ(x)−Eθ(x−k)]
2 . Eq. (21) holds

since m(x−i) =
1
d for i = 1, · · · , d. To derive Eq. (23), we apply the Cauchy-Schwarz inequality(∑d

i=1 aibi

)2
≤
(∑d

i=1 a
2
i

)(∑d
i=1 b

2
i

)
. This completes the proof of Theorem 1.

C CONNECTION WITH HARD NEGATIVE MINING

Here, we provide an additional insight to understand why the second property, described in Sec-
tion 3.3, can lead to better optimization, by connecting it with hard sample mining.

Hard sample mining (Felzenszwalb et al., 2009; Rowley et al., 1998) has been widely applied to
train deep neural networks (Shrivastava et al., 2016). Our RMwGGIS is particularly highly related
to hard negative training strategies. The basic idea for hard negative mining is to pay more attention
to hard negative samples during training, which can usually achieve better performance since it can
reduce false positives. In our setting of discrete EBMs, each training sample x is a positive sample,
and its energy should be pushed down. For each positive sample x, all x−i for i = 1, 2, · · · , d are
negative samples, and their energy should be pushed up. Our RMwGGIS with the specific proposal
distribution shown in Eq. (11) can approximately choose the x−i’s that currently have low energies
with larger probabilities. This has the same philosophy as hard negative mining. Specifically, in our
case, x−i’s with low energies are hard negative samples since they are the most offending terms,
which are close to the positive sample x and have low energies.

Since our proposal distribution defined in Eq. (11) approximates the provable optimal proposal dis-
tribution given in Theorem 1, our proposal distribution thus approximately performs “hard negative
mining”. The natural follow-up question is how accurate is the approximation and how does it af-
fect the learning process? We answer this question by analyzing the following two stages during
learning, which can intuitively show that our RMwGGIS is technically sound.

Figure 2: An intuitive illustration of the approximation: (a) Stage I and (b) Stage II. The black
curves denote the energy functions. Green nodes and brown nodes represent the true energy values
and approximated values of neighbors, respectively. Note that the approximated values are obtained
based on Taylor series of Eθ(·) at x, as shown in Eq. (8). For clarity, we only show two neighbors
of x in this figure, but this illustration can also be extended to include all neighbors.

Stage I. As shown in Figure 2 (a), at the early stage of learning, the energy function is not learned
well, thus the energy Eθ(x) of positive sample x is not smaller than its all neighbors. In this case,
there are some neighbors of x which have lower energies than Eθ(x), such as x−1 in Figure 2 (a).
Therefore, “hard negative mining” is in demand in this stage. Under this situation, our approximated
energies of neighbors could help to perform “hard negative mining”. To be specific, the estimated
energies of neighbors are close to the true energies, and the estimated energy of x−1 is much lower
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Table 5: Comparison of resulting objective values. The top two lowest values on each dataset are
highlighted as 1st and 2nd.

Method 2spirals 8gaussians circles moons pinwheel swissroll checkerboard

Ratio Matching 46.02 39.26 31.82 28.57 28.50 37.52 26.05
RMwGGIS (unbiased) 26.84 30.15 29.89 27.80 28.08 32.20 26.09
RMwGGIS (biased) 27.15 29.31 29.54 27.75 27.30 29.45 26.06

Figure 3: Visualization of learned energy functions w.r.t. number of learning iterations on the 256-
dimensional 2spirals dataset.

than the estimated energy of x−2. Thus, our proposal distribution will sample x−1 with a higher
probability. This actually works as “hard negative mining” since x−1 is the current most offending
term, i.e., the so-called hard negative sample.

Stage II. After learning for a while, we can obtain a relatively good energy function, where the
positive sample x locates in the low energy area compared to its local neighbors. In this case our
approximation is less accurate. Fortunately, in this case, “hard negative mining” is not that necessary
since there do not exist many offending terms. Specifically, as shown in Figure 2 (b), the energies
of x−1 and x−2 are safely higher than Eθ(x).

Even though the above analysis is based on a simplified example, we believe it can serve as a good
intuitive understanding of why our RMwGGIS performs better than ratio matching.

D WHY DOES THE BIASED VERSION PERFORM BETTER?

Here, we provide an intuitive explanation on why our biased RMwGGIS usually performs better
than unbiased version.

Following our analysis of the connection between our method and hard negative mining, as described
in Appendix C, it is obvious that both unbiased version (i.e., Eq. (7)) and biased version (i.e.,
Eq. (12)) perform “hard negative sampling”. The difference lies in the coefficients for different
terms. Specifically, the biased version gives the same weights to all sampled terms. In contrast, the

unbiased version provides a weight
m(x

(t)
−i)

n(x
(t)
−i)

to each sampled term x
(t)
−i, as shown in Eq. (7). Note

that m(x
(t)
−i) = 1

d for all terms and n(x
(t)
−i) would be larger if x(t)

−i has lower energy. Hence, the
unbiased version provides smaller weights for terms with lower energies. In other words, among its
selected offending terms (i.e., hard negative samples), it pay least attention to the most offending
terms, which could be less effective than biased version with equal weights. This could explain why
our biased RMwGGIS usually performs better than unbiased version.

E COMPARISON OF ACHIEVED OBJECTIVE VALUES

Specifically, for all the learned energy functions in Table 1, we sample 4000 data points on each
dataset and evaluate the resulting objective value defined by Eq. (4). The results are summarized in
Table 5. We can observe that our unbiased and biased RMwGGIS indeed achieve lower objective
values, which further demonstrates that our proposed RWwGGIS can be optimized better.
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F VISUALIZATION OF LEARNED ENERGY FUNCTIONS ON
HIGHER-DIMENSIONAL DATA

The learned energy functions w.r.t. number of learning iterations on the 256-dimensional 2spirals
dataset are qualitatively visualized in Figure 3

G DETAILED SETTINGS OF EBM (GWG) ON GRAPH GENERATION

We use the official open-sourced implementation4 of EBM (GWG) to perform its graph genera-
tion experiment. We train models with persistent contrastive divergence (Tieleman, 2008) with
a buffer size of 200 samples. We use the Adam optimizer (Kingma & Ba, 2015) with a learn-
ing rate of 1e-4 and a batch size of 200. The following hyperparameters are tuned and the fi-
nally chosen ones are underlined: buffer initialization rate ∈ {0, 0.2, 0.4, 0.6} and MCMC steps ∈
{100, 200, 500, 1000, 2000}.

H VISUALIZATION OF GENERATED GRAPHS

Generated graph samples are shown in Figure 4.

Figure 4: Visualization of training data and samples drawn from the energy function learned by our
RMwGGIS for graph generation.

I DETAILS OF TRAINING ISING MODELS

Lattice Ising Models. Ising models (Cipra, 1987) is firstly developed to model the spin magnetic
particles (Ising, 1925). For Ising models, our energy function can be naturally defined as

E(x) = −xTJx− bTx, (27)

where J and b are the parameters. J is the connectivity matrix which indicates the correlation
across dimensions in x. We follow one specific setting in Grathwohl et al. (2021), where all of the
non-zero entries of J are identical (denoted as σ) and J is the adjacency matrix of a cyclic 2D lattice
structure. Therefore,

E(x) = −σxTJx− bTx. (28)
4https://github.com/wgrathwohl/GWG_release
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Setup. We follow Grathwohl et al. (2021) for our experimental setting. To be specific, we cre-
ate a model using a 25 × 25 lattice and σ = 0.25, thus leading to a 625 dimensional distribution.
For training the model, 2000 examples are generated via 1, 000, 000 steps of Gibbs sampling. We
apply our proposed RMwGGIS method to train the model. The number of samples s used in our
RMwGGIS objective is set to 10. We use Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 1e-4 and a batch size of 100. ℓ1 penalty with strength 0.01 is used to encourage sparsity.
In terms of baselines, we consider the approaches which train discrete EBMs with persistent con-
trastive divengence (Tieleman, 2008). The number of steps for MCMC per training iteration is
∈ {5, 10, 25, 50, 100}. The samplers are Gibbs and Gibbs-With-Gradient (GWG) (Grathwohl et al.,
2021). Results of EBM (GWG) are obtained by running the official implementation from Grathwohl
et al. (2021). Results of EBM (Gibbs) are obtained by reading from Figure 6 in Grathwohl et al.
(2021).

Evaluation. We evaluate the performance by computing the root-mean-squared-error (RMSE) be-
tween the learned connectivity matrix Ĵ and the true matrix J . In addition, we compare the effi-
ciency by reporting the running time for each iteration. To be specific, for comparing efficiency, we
use the same batch size 100 for our method and baselines. The report time is the average over 100
iterations.

18


	Introduction
	Preliminaries
	Energy-Based Models
	Ratio Matching

	The Proposed Method
	Analysis of Ratio Matching
	Ratio Matching with Gradient-Guided Importance Sampling
	Comparison between Ratio Matching and RMwGGIS

	Related Works
	Experiments
	Density Modeling on Synthetic Discrete Data
	Graph Generation
	Training Ising Models

	Conclusion
	The Detailed Derivation of Eq. (6)
	Proof of Theorem 1
	Connection with Hard Negative Mining
	Why Does the Biased Version Perform Better?
	Comparison of Achieved Objective Values
	Visualization of Learned Energy Functions on Higher-Dimensional Data
	Detailed Settings of EBM (GWG) on Graph Generation
	Visualization of Generated Graphs
	Details of Training Ising Models

